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Basic Geometry of Curves and Surfaces

What does it mean by:
 two objects have the same geometric shape

 They have the same vertex table?

 These two objects “overlap” with each other in the 3D space?

 equivalent under some transformation (rotation, translation, 
scaling…)?

 two objects have the same topology?
 Equivalent if one can deform to the other under continuous 

stretching and bending, without tearing or gluing (not a rigorous 
definition but gives you the intuition)

 If there is a one-to-one map between the two shapes that does 
not change each point’s neighboring information

 two objects have similar geometry?
 Need to be able to measure some properties quantitatively



Basic Geometry Properties

 Computing basic geometry and topology properties of 
surfaces on triangle meshes

 Using half-edge data structure to compute the 
approximated:
 length of a curve

area of a surface patch

volume of a solid object



Basic Topology Properties

Topological Classification of Surfaces
 Topological equivalence-relationship can be characterized by:

 # of connected components  c

 # of boundaries  b

 # of genus  g

 (orientability)  o (true/false)

 How to compute c, b, and g of a given surface using half-edge data structure?
 c  BFS (O(NF))

 b  boundary detection + boundary loop tracing (O(NE+NBE))

 g  (for each component) Euler Formula (O(n))    2-2g=NF-NE+NV



Normal Vectors
 Many operations in computer graphics require normal vectors (per 

face or per vertex), e.g. phone shading
 Face Normal vector: the normalized cross-product of two triangle 

edges:

 Vertex Normal: (spatial averages of normal vectors sampled in a 
local neighboring region)

Different weights used:
 Constant weights:
 Triangle area:
 Incident triangle angles:

Why more complicated weights? 

 Uniformity of the sampling on a small 

disk region surrounding vertex 𝑣…



Local Averaging Region
 A straightforward approximation: 

 x  mesh vertex vi

 N(x)  one-ring (n-ring) neighborhoods Nn(vi)

 Size of local neighborhoods  stability and accuracy of evaluation
 Bigger: more smooth, more stable against noise
 Smaller: more accurately capture fine-scale variations; preferable for clean data

 More accurate approximation than 1-ring/n-ring
 Barycentric cell: connect triangle barycenters + edge midpoints
 Voronoi cell: triangle circumcenters + perpendicular bisector
 Mixed-voronoi cell: midpoint of edge opposing obtuse angle on center vertex + …



More other differential operators

 In general: to compute discrete differential properties as 
spatial averages over a local neighborhood 𝑁(𝑥) of the point 𝑥
on the mesh

More differential operators
Gaussian curvature 𝑘𝐺
Mean curvature 𝑘𝑚
Laplace operator (later) 



Example codes using MeshLib

 Computing the area of a triangle 

double ComputeAreaFace(Face * f)

{

Vertex * v[3];

int i=0;

for (MeshVertexIterator fvit(f); !fvit.end(); ++fvit,++i)

v[i]=*fvit;

double fArea = (v[1]->point()-v[0]->point())^(v[2]->point()-v[0]->point()).norm()/2.0;

return fArea;

}

Note: in the MeshLib implementation codes I provided, the “^” operator between two points is the 

cross product. Namely, 𝑝1^𝑝2 returns a vector whose direction is perpendicular to 𝑝1 and 𝑝2, 

and magnitude is 2 times the area of the triangle formed by the origin and these two points. 



Example codes using MeshLib

 Computing the corner angles inside a triangle 

void ComputeCornerAngles(Face * f, double cAngles[3])

{

}



HW2

1) Integrate the halfedge mesh lib into your GUI

2) Compute vertex normal, apply it to produce better 

shading effects, using glNormal()

3) Compute the topological properties 𝑏, 𝑐, 𝑔 of the mesh, 

print them on the screen

4) Compute the Gaussian curvature 𝑘𝐺 on every vertex, 

color the vertex accordingly



Curvature of a Smooth Curve

A definition by Cauchy (by Osculating Circle):

1. Center of curvature 𝑂: intersection of two 

infinitely close normal near 𝑃
2. Radius of curvature: distance from 𝑂 to 𝑃
3. Curvature 𝜅: the inverse of the radius of 

curvature

Intuition: flat region vs curved region on a curve 

𝑂

Definition in Differential Geometry:

For a 𝐶2 continuous curve 𝛾(𝑡), parameterized using its arc-length (𝐶2

and arc length will be defined officially in 2 weeks)

Tangent vector (velocity vector): 𝐓 t = 𝛾′(𝑡)
Normal vector: 𝑻′ 𝑡 = 𝜅 𝑡 𝑵(𝑡)
Intuition: how quick the direction changes



Curvature of a Smooth Curve

Another definition:

 Curvature = the rate of change in length as a function of offset distance 𝜖

= 
𝜖

𝑟
/ 𝜖 = 1 / 𝑟



Curvature of a Discrete Curve

Using the 3rd definition:

Total length of the offset curve = the length of the old curve + the lengths of the arcs

𝑙𝑛𝑒𝑤 =෍

𝑖=0

𝑁

(𝑙𝑖 + 𝜖𝜃𝑖)

𝜃𝑖 is the deficit angle, 𝜃𝑖 = 𝜋 − 𝛼𝑖

𝛼𝑖

Therefore, discrete curvature of a curve = angular defect of a vertex 



Curvature of a Discrete Surface

The area of the offset surface = 𝐴𝑓 + 𝐴𝑒 + 𝐴𝑣



Curvature of a Discrete Surface

The area of the offset surface : 

𝐴𝜖 = 𝐴𝑓 + 𝐴𝑒 + 𝐴𝑣

𝐴𝜖 = ෍

𝑓∈𝐹

𝐴 𝑓 + 𝜖෍

𝑒∈𝐸

𝑒 𝜃𝑒 + 𝜖2෍

𝑣∈𝑉

𝜃𝑣

Where: 

 𝜃𝑒 is the dihedral angle at edge 𝑒, cos𝜃𝑒 =< 𝑁1, 𝑁2 >
 𝜃𝑣 is the solid angle at vertex 𝑣, 𝜃𝑣 = 2𝜋 − σ𝑖 𝛼𝑖



Discrete Gaussian Curvature

The Discrete Gaussian curvature at 𝑣 is the angle of deficit:

𝜅𝐺 = 2𝜋 −෍

𝑖=0

𝑛

𝛼𝑖

where 𝛼𝑖 is the angle between 𝑒𝑖 and 𝑒𝑖+1 at 𝑣 , 𝛼𝑛 is the angle between 𝑒𝑛
and 𝑒0 , 𝑛 is the total number of edges incident to 𝑣

The Discrete mean curvature at 𝑒 is the dihedral angle :

𝜅𝐻 = 𝜃𝑒

Note: The discrete mean curvature at 𝑣 will be explained later.


