Basic Geometric Computation on Meshes

Xin (Shane) Li

Basic Geometry of Curves and Surfaces

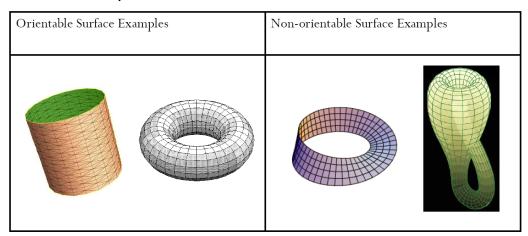
- What does it mean by:
 - two objects have the same geometric shape
 - > They have the same vertex table?
 - > These two objects "overlap" with each other in the 3D space?
 - equivalent under some transformation (rotation, translation, scaling...)?
 - two objects have the same topology?
 - Equivalent if one can deform to the other under continuous stretching and bending, without tearing or gluing (not a rigorous definition but gives you the intuition)
 - If there is a one-to-one map between the two shapes that does not change each point's neighboring information
 - two objects have similar geometry?
 - □ Need to be able to measure some properties quantitatively

Basic Geometry Properties

- Computing basic geometry and topology properties of surfaces on triangle meshes
- Using half-edge data structure to compute the approximated:
 - □ length of a curve
 - □ area of a surface patch
 - □ volume of a solid object

Basic Topology Properties

- □ Topological Classification of Surfaces
 - □ Topological equivalence-relationship can be characterized by:
 - \square # of connected components \rightarrow c
 - \square # of boundaries \rightarrow b
 - \Box # of genus \rightarrow g
 - \Box (orientability) \rightarrow \bigcirc (true/false)



- \square How to compute c, b, and g of a given surface using half-edge data structure?
 - \Box c \rightarrow BFS (O(N_F))
 - \square b \rightarrow boundary detection + boundary loop tracing $(O(N_E+N_{BE}))$
 - □ g \rightarrow (for each component) Euler Formula (O(n)) 2-2g=N_F-N_E+N_V

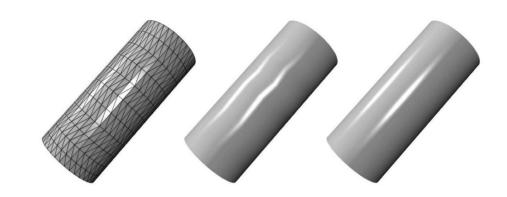
Normal Vectors

- □ Many operations in computer graphics require normal vectors (per face or per vertex), e.g. phone shading
- □ Face Normal vector: the normalized cross-product of two triangle edges: $\mathbf{n}(T) = \frac{(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)}{\|(\mathbf{x}_i - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)\|}$
- □ Vertex Normal: (spatial averages of normal vectors sampled in a local neighboring region) $\sum_{T \in \mathcal{M}_{r}(n)} \alpha_{T} \mathbf{n}(T)$ $\mathbf{n}(v) = \frac{\sum_{T \in \mathcal{N}_1(v)} \alpha_T \mathbf{n}(T)}{\left\| \sum_{T \in \mathcal{N}_1(v)} \alpha_T \mathbf{n}(T) \right\|}$
 - □ Different weights used: □ Constant weights: $\alpha_T = 1$

 - $lue{}$ Triangle area: $lpha_T = |T|$
 - $lue{}$ Incident triangle angles: $lpha_T = heta_T$

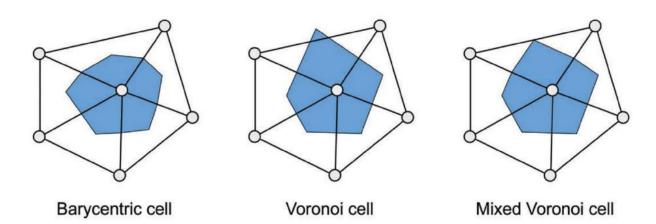
Why more complicated weights?

→ Uniformity of the sampling on a small disk region surrounding vertex $v \dots$



Local Averaging Region

- A straightforward approximation:
 - $\square x \rightarrow \text{mesh vertex } v_i$
 - \square $N(x) \rightarrow$ one-ring (n-ring) neighborhoods $N_n(v_i)$
- \square Size of local neighborhoods \rightarrow stability and accuracy of evaluation
 - □ Bigger: more smooth, more stable against noise
 - □ Smaller: more accurately capture fine-scale variations; preferable for clean data
- More accurate approximation than 1-ring/n-ring
 - □ Barycentric cell: connect triangle barycenters + edge midpoints
 - □ Voronoi cell: triangle circumcenters + perpendicular bisector
 - □ <u>Mixed-voronoi cell</u>: midpoint of edge opposing obtuse angle on center vertex + ...



More other differential operators

- ightharpoonup In general: to compute discrete differential properties as spatial averages over a local neighborhood N(x) of the point x on the mesh
- More differential operators
 - \square Gaussian curvature k_G
 - \blacksquare Mean curvature k_m
 - □ Laplace operator (later)

Example codes using MeshLib

• Computing the area of a triangle

```
\label{eq:computeAreaFace(Face * f) } $$ \{ $$ Vertex * v[3]; $$ int i=0; $$ for (MeshVertexIterator fvit(f); !fvit.end(); ++fvit,++i) $$ $$ $$ v[i]=*fvit; $$ double fArea = (v[1]->point()-v[0]->point())^(v[2]->point()-v[0]->point()).norm()/2.0; $$ return fArea; $$ $$ $$
```

Note: in the MeshLib implementation codes I provided, the " $^{\text{n}}$ " operator between two points is the cross product. Namely, $p1^{\text{n}}2$ returns a vector whose direction is perpendicular to p1 and p2, and magnitude is 2 times the area of the triangle formed by the origin and these two points.

Example codes using MeshLib

• Computing the corner angles inside a triangle

```
void ComputeCornerAngles(Face * f, double cAngles[3])
{
}
```

HW2

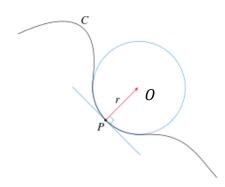
- 1) Integrate the halfedge mesh lib into your GUI
- 2) Compute vertex normal, apply it to produce better shading effects, using glNormal()
- Compute the topological properties b, c, g of the mesh, print them on the screen
- 4) Compute the Gaussian curvature k_G on every vertex, color the vertex accordingly

Curvature of a Smooth Curve

A definition by Cauchy (by Osculating Circle):

- 1. Center of curvature *0*: intersection of two infinitely close normal near *P*
- 2. Radius of curvature: distance from *O* to *P*
- 3. Curvature κ : the inverse of the radius of curvature

Intuition: flat region vs curved region on a curve



Definition in Differential Geometry:

For a \mathcal{C}^2 continuous curve $\gamma(t)$, parameterized using its arc-length (\mathcal{C}^2 and arc length will be defined officially in 2 weeks)

Tangent vector (velocity vector): $\mathbf{T}(t) = \gamma'(t)$

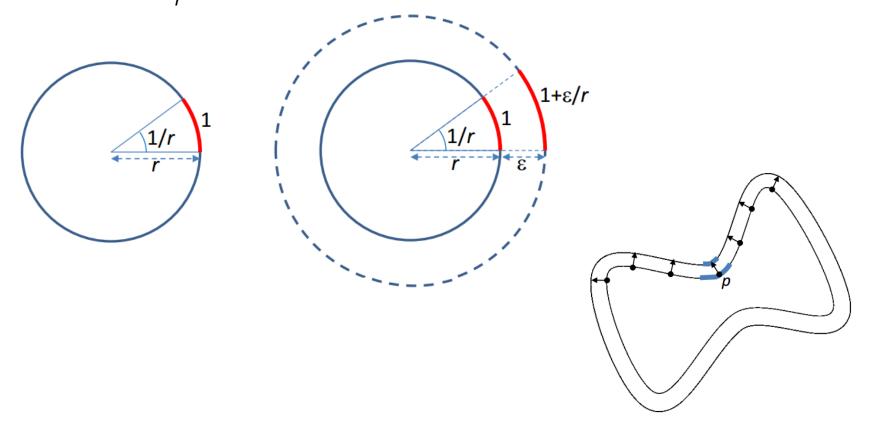
Normal vector: $T'(t) = \kappa(t)N(t)$

Intuition: how quick the direction changes

Curvature of a Smooth Curve

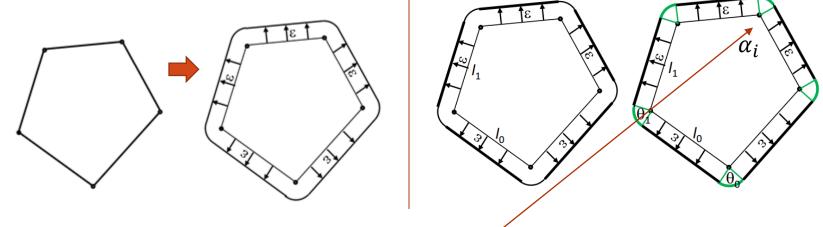
Another definition:

□ Curvature = the rate of change in length as a function of offset distance ϵ = $\frac{\epsilon}{r}$ / ϵ = 1 / r



Curvature of a Discrete Curve

Using the 3rd definition:

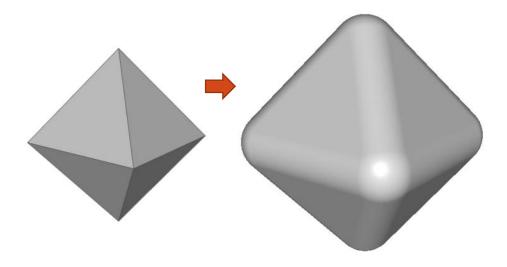


Total length of the offset curve = the length of the old curve + the lengths of the arcs

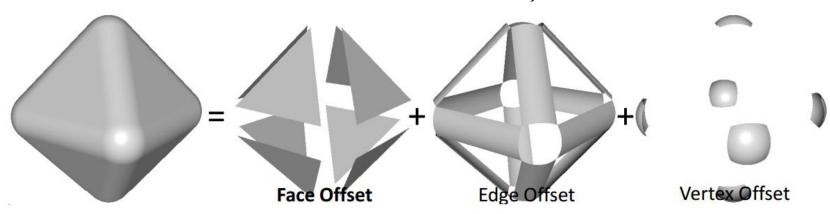
$$l_{new} = \sum_{i=0}^{N} (l_i + \epsilon \theta_i)$$
 θ_i is the deficit angle, $\theta_i = \pi - \alpha_i$

Therefore, discrete curvature of a curve = angular defect of a vertex

Curvature of a Discrete Surface



The area of the offset surface = $A_f + A_e + A_v$



Curvature of a Discrete Surface

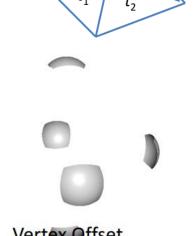
The area of the offset surface:

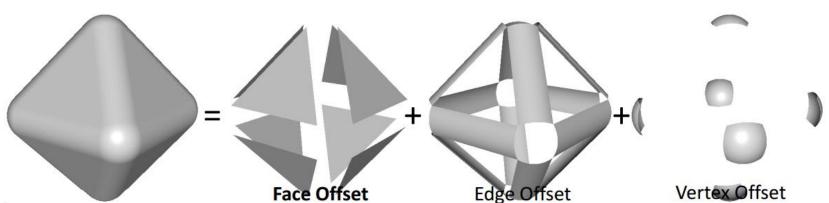
$$A_{\epsilon} = A_f + A_e + A_v$$

$$A_{\epsilon} = \sum_{f \in F} A(f) + \epsilon \sum_{e \in E} |e| \theta_e + \epsilon^2 \sum_{v \in V} \theta_v$$

Where:

- \square θ_e is the dihedral angle at edge e, $\cos\theta_e = \langle N_1, N_2 \rangle$
- \square θ_v is the solid angle at vertex v, $\theta_v = 2\pi \sum_i \alpha_i$





Discrete Gaussian Curvature

The Discrete Gaussian curvature at v is the angle of deficit:

$$\kappa_G = 2\pi - \sum_{i=0}^n \alpha_i$$

where α_i is the angle between e_i and e_{i+1} at v , α_n is the angle between e_n and e_0 , n is the total number of edges incident to v

The Discrete mean curvature at e is the dihedral angle :

$$\kappa_H = \theta_e$$

Note: The discrete mean curvature at v will be explained later.