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05 Review of Linear Algebra and 

Transformations

Part of the slides taken and modified based on materials from Prof. M. Vasilescu’s Computer Vision 

Course taught in Stony Brook University (SUNY)  



Overview

 n-dimensional vectors

 Dot (Scalar) product

 Bases and Frames

 Homogeneous Coordinates

 2D and 3D Geometric Transformations



Vectors

Notation:

Length:

Geometric Meanings:

 An origin + 𝑛 pairwise perpendicular vectors defines a 

frame or a coordinate system

 For a fixed frame, a point  a 𝑛-dimensional vector 



Dot Product

Dot Product of two vectors:

Geometric Meanings:

Properties



Norms



Linear Dependence



Bases



Bases



Change of Bases

Note: B is an 

orthonormal 

matrix, whose 

inverse is its 

transpose. 

Therefore, 

we have 



Rank of a Matrix



Cross Product

Consider two vectors 𝒂 and 𝒃 in the 3D space 

 the cross product 𝒂 × 𝒃 is a vector perpendicular to both 𝒂 and 

𝒃, and therefore normal to the plane containing them

 If the two given vectors are parallel or one vector has zero 

length, then the cross product is zero

 Anti-commutative : 𝒂 × 𝒃 = −(𝒃 × 𝒂)
 Geometric meaning: 

 Magnitude: the area of a parallelogram

 Direction: right-hand rule

 Example 1: Prove if 𝒄 = 𝒂 × 𝒃 then 𝒂 ⋅ 𝒄 = 0



Homogeneous Coordinates (2D)

Consider a  point 𝒙 in the 2D plane:

Conventional Notation (inhomogeneous coordinates)
 A 2D point can be represented by a pair of coordinates 𝑥, 𝑦 ∈ 𝑅2

 A 2D point  a 2D vector 𝒙 = 𝑥, 𝑦 𝑇; the 2D plane  𝑅2 vector space 

 Homogeneous Notation (homogeneous coordinates)

  𝒙 = 𝑥, 𝑦, 1 𝑇, referred to as an augmented vector 

 3D vectors 𝑥, 𝑦, 𝑤 𝑇 can be converted to its corresponding augmented vectors 𝑤(𝑥/𝑤, 𝑦/𝑤, 1)
if 𝑤 ≠ 0; 

 In this case, we consider 𝑥, 𝑦, 𝑤 𝑇 and 
𝑥

𝑤
,
𝑦

𝑤
, 1

𝑇
to be equivalent

 The set of equivalence classes of vectors from 3D space 𝑅3 − 0,0,0 𝑇 forms the projective 

space 𝑃2

 Homogeneous vector representation of a point  𝒙 = 𝑥1, 𝑥2, 𝑥3
𝑇 corresponds to the point 

with the 2D inhomogeneous coordinates 
𝑥1

𝑥3
,
𝑥2

𝑥3

𝑇

 Example 2:

 A 2D point (3,4) , what is its homogeneous coordinates?

  (3,4,1)

 What about (6,8,2) ?



Homogeneous Coordinates (cont.)

 Motivation of using Homogeneous Coordinates:
 To consider and represent linear transformations using matrices

 Simplify a lot of computations

 A line in the plane: 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, can be put as 𝑎, 𝑏, 𝑐 𝑇 in Homogeneous Notation
 The correspondence is NOT one-to-one: 𝑘 𝑎, 𝑏, 𝑐 𝑇 , 𝑘 ≠ 0 represents the same line

 The set of equivalence classes of vectors in 𝑅3 − 0,0,0 𝑇 forms the projective space 𝑃2

 A planar point 𝑥 = 𝑥, 𝑦 𝑇 lies on the line 𝑙 = 𝑎, 𝑏, 𝑐 𝑇 iff 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0
 If we write the point as an augmented vector:  𝒙 = 𝑥, 𝑦, 1 𝑇

  inner product of vectors: 𝑥, 𝑦, 1 𝑎, 𝑏, 𝑐 𝑇 = 0, or simply  𝑥 ⋅ 𝑙 = 0



Homogeneous Coordinates for 3D Points

 Inhomogensou Coordinates 𝑥, 𝑦, 𝑧 𝑇
 homogeneous coordinates 𝑥, 𝑦, 𝑧, 1 𝑇

 A 3D plane can be represented as 𝒎 = 𝑎, 𝑏, 𝑐, 𝑑 𝑇, because any point 𝒙 = 𝑥, 𝑦, 𝑧 𝑇 on 

this plane satisfies:

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 =  𝒙 ⋅ 𝒎 = 0



2D Transformations

 Basic Transformations: Translations, Rotations, Scaling, Affine, Projective

 Euclidean Transformation = Rigid Transformation = Translations + Rotations

 Similarity Transformation = Uniform scaling + Translations + Rotations + Reflection

 Affine Transformation = Similarity + non-uniform scaling + shear mapping

 Projective Transformation



Linear Transformations
 A transformation 𝑇 𝒙 = 𝒚, 𝒙 ∈ 𝑅𝑛, 𝒚 ∈ 𝑅𝑚, is a linear transformation if it can be 

represented by a matrix: 𝒚 = 𝑴𝒙,𝑴 ∈ 𝑅𝑚 × 𝑅𝑁, where 𝑀 is called the 

transformation matrix

 With homogeneous coordinates, all basic transformations listed in the previous slide can 

be treated as linear transformations



Example: 2D Rotation

To rotate the left figure to the right figure (the left bottom 

corners of both objects remain at the origin) 

=To find a transformation 𝑇 such that 𝑇(𝒆1) = 𝒇1,
𝑇(𝒆2) = 𝒇2

 We can solve a linear system using elementary 

trigonometry:

𝒇1 = 𝑴𝒆1 ; 𝒇2 = 𝑴𝒆2

under the coordinate system of (𝒆1, 𝒆2), 

𝒇1 = 𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃 𝑇 ; 𝒇2 = (−𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃)

𝑴 =
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

e1
f1

f2e2



Example: Scaling

2D scaling transformation matrix:

𝑴 =
𝑎 0
0 𝑏

as

𝑴
𝑥
𝑦 =

𝑎 0
0 𝑏

𝑥
𝑦 =

𝑎𝑥
𝑏𝑦

where 𝑎 and 𝑏 are called the scaling factors along 𝑥
and 𝑦 axes.

 If 𝑎 = 𝑏 : uniform (isotropic) scaling, shape 

preserved, only size changed

 If 𝑎 = 𝑏 = 1 : identity transform

 Directly extendible to 3D



Example: Shear

Starting from the 2D scaling transformation matrix:

𝑴 =
𝑎 0
0 𝑏

Let one of the off-diagonal element be non-zero: 
𝑎 𝑐
0 𝑏

or 
𝑎 0
𝑐 𝑏

𝑴
𝑥
𝑦 =

𝑎 𝑐
0 𝑏

𝑥
𝑦 =

𝑎𝑥 + 𝑐𝑦
𝑏𝑦

 A general definition: shearing = to shift the figure 

along a direction by an amount proportional to its 

signed distance from the line parallel to that 

direction

 Shearing changes the shape (angles changes under 

shearing) but preserves the area

𝑎 = 𝑏 = 1, 𝑐 = 1



Examples: Reflection & Orthography

 Reflection = scaling with negative factors

𝑴 =
−1 0
0 1

 Orthographic Projection

𝑴 =
1 0
0 0

 Does not map a basis onto another basis

 A singular transformation (can’t be inverted, lost depth 

information along a direction)



Example: Translation

𝑥
𝑦 +

𝑑1
𝑑2

=
𝑥 + 𝑑1
𝑦 + 𝑑2

Not a linear transformation (can’t be represented as a matrix-

vector multiplication) 

But if the homogeneous coordinates are used:

1 𝑑1
1 𝑑2

1

𝑥
𝑦
1

=
𝑥 + 𝑑1
𝑦 + 𝑑2
1

Rigid Transformation = translation + rotation 

 If a transformation preserves distance  called an isometry

 Rigid transformations are definitely isometries, but isometries may not be rigid 

 e.g. bending a paper to a cylinder 



Example: General Projection 

A general projection, or perspective transformation, or also called homography, is 
defined on homogeneous coordinates,

 𝒙′ = 𝑯  𝒙

where 𝑯 is an arbitrary 3 × 3 matrix, defined up to a scale.

 Converting back to inhomogeneous coordinates:

 Perspective transformations preserve straight lines such that they remain straight after the 

transformation



Summary of 2D Transformations*

#DOF : the Number of Degrees of Freedom = the number of independent variables 

(unknowns) that can change freely 



Summary of 3D Transformations*

#DOF : the Number of Degrees of Freedom = the number of independent variables that 

can change freely 


