05 Review of Linear Algebra and Transformations

Xin Shane Li

Part of the slides taken and modified based on materials from Prof. M. Vasilescu's Computer Vision Course taught in Stony Brook University (SUNY)

Overview

- n -dimensional vectors
- Dot (Scalar) product
- Bases and Frames
- Homogeneous Coordinates
- 2D and 3D Geometric Transformations

Vectors

Notation:

$$
\mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}
$$

Length:

$$
\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Geometric Meanings:
\square An origin $+n$ pairwise perpendicular vectors \rightarrow defines a frame or a coordinate system
\square For a fixed frame, a point \rightarrow a n-dimensional vector

Dot Product

Dot Product of two vectors:

$$
\begin{aligned}
& \langle\mathbf{x}, \mathbf{y}\rangle \\
& \mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{T} \mathbf{y}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
\end{aligned}
$$

Geometric Meanings:

- Commutative:

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}
$$

- Distributive:

$$
(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}
$$

Properties

- Linearity

$$
\begin{aligned}
(c \mathbf{x}) \cdot \mathbf{y} & =c(\mathbf{x} \cdot \mathbf{y}) \\
\mathbf{x} \cdot(c \mathbf{y}) & =c(\mathbf{x} \cdot \mathbf{y}) \\
\left(c_{1} \mathbf{x}\right) \cdot\left(c_{2} \mathbf{y}\right) & =\left(c_{1} c_{2}\right)(\mathbf{x} \cdot \mathbf{y})
\end{aligned}
$$

- Non-negativity:

$$
\forall \mathbf{x} \neq 0:\langle\mathrm{x}, \mathrm{x}\rangle>0 \quad\langle\mathrm{x}, \mathrm{x}\rangle=0 \Leftrightarrow \mathrm{x}=0
$$

- Orthogonality:

$$
\forall \mathbf{x} \neq 0, \mathbf{y} \neq 0 \quad \mathbf{x} \cdot \mathbf{y}=0 \Leftrightarrow \mathbf{x} \perp \mathbf{y}
$$

Norms

- Euclidean norm (sometimes called 2-norm):

$$
\|\mathbf{x}\|=\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

- The length of a vector is defined to be its (Euclidean) norm.
- A unit vector is of length 1.
- Non-negativity properties also hold for the norm:

$$
\forall x \neq 0:\|x\|^{2}>0 \quad \quad\|x\|^{2}=0 \Leftrightarrow x=0
$$

Linear Dependence

- Linear combination of vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{n}$

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}
$$

- A set of vectors $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{\mathrm{n}}\right\}$ are linearly dependent if there exists a vector $\quad \mathbf{x}_{i} \in X$
that is a linear combination of the rest of the vectors.
- $\ln \mathrm{R}^{\mathrm{n}}$
- sets of $n+1$ vectors are always dependent
a there can be at most n linearly independent vectors

Bases

- A basis is a linearly independent set of vectors that spans the "whole space". ie., we can write every vector in our space as linear combination of vectors in that set.
- Every set of n linearly independent vectors in R^{n} is a basis of R^{n}
- A basis is called
- orthogonal, if every basis vector is orthogonal to all other basis vectors
- orthonormal, if additionally all basis vectors have length 1.

Bases

- Standard basis in R^{n} is made up of a set of unit vectors:

$$
\hat{\mathbf{e}}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \hat{\mathbf{e}}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots \hat{\mathbf{e}}_{n}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

- We can write a vector in terms of its standard basis:

$$
\left(\begin{array}{c}
4 \\
7 \\
-3
\end{array}\right)=4 \hat{\mathbf{e}}_{1}+7 \hat{\mathbf{e}}_{2}-3 \hat{\mathbf{e}}_{3}
$$

- Observation: -- to find the coefficient for a particular basis vector, we project our vector onto it.

$$
x_{i}=\hat{\mathbf{e}}_{i} \cdot \mathbf{x}
$$

Change of Bases

- Suppose we have a new basis $\mathbf{B}=\left[\begin{array}{lll}\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}\end{array}\right], \mathbf{b}_{i} \in \mathbb{R}^{m}$ and a vector $\mathbf{x} \in \mathbb{R}^{m}$ that we would like to represent in terms of \mathbf{B}

- Compute the new components
- When B is orthonormal
- $\widetilde{\mathbf{X}}$ is a projection of \mathbf{x} onto \mathbf{b}_{i}
- Note the use of a dot product

$$
\widetilde{\mathbf{x}}=\mathbf{B}^{-1} \mathbf{x}
$$

Note: B is an orthonormal matrix, whose inverse is its transpose. we have

$$
\widetilde{\mathbf{x}}=\left[\begin{array}{c}
\mathbf{b}_{1}^{T} \mathbf{x} \\
\vdots \\
\mathbf{b}_{n}^{T} \mathbf{x}
\end{array}\right] \quad \begin{aligned}
& \text { inverse is it } \\
& \text { transpose } . \\
& \text { Therefore }, \\
& \text { we have }
\end{aligned}
$$

Rank of a Matrix

The rank of a matrix is the number of linearly independent rows or columns.
Examples: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has rank 2, but $\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$ only has rank 1.
Equivalent to the dimension of the range of the linear transformation.

A matrix with full rank is called non-singular, otherwise it is singular.

Cross Product

Consider two vectors \boldsymbol{a} and \boldsymbol{b} in the 3D space
\square the cross product $\boldsymbol{a} \times \boldsymbol{b}$ is a vector perpendicular to both \boldsymbol{a} and \boldsymbol{b}, and therefore normal to the plane containing them

$$
\mathbf{a} \times \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta \mathbf{n}
$$

If the two given vectors are parallel or one vector has zero length, then the cross product is zero

\square Anti-commutative : $\boldsymbol{a} \times \boldsymbol{b}=-(\boldsymbol{b} \times \boldsymbol{a})$
\square Geometric meaning:
Magnitude: the area of a parallelogram
Direction: right-hand rule
Example 1: Prove if $\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$ then $\boldsymbol{a} \cdot \boldsymbol{c}=0$

Homogeneous Coordinates (2D)

Consider a point \boldsymbol{x} in the 2D plane:
\square Conventional Notation (inhomogeneous coordinates)
A 2D point can be represented by a pair of coordinates $(x, y) \in R^{2}$
A AD point \leftarrow a 2D vector $\boldsymbol{x}=(x, y)^{T}$; the 2D plane $\leftarrow R^{2}$ vector space
\square Homogeneous Notation (homogeneous coordinates)

- $\widetilde{\boldsymbol{x}}=(x, y, 1)^{T}$, referred to as an augmented vector
- 3D vectors $(x, y, w)^{T}$ can be converted to its corresponding augmented vectors $w(x / w, y / w, 1)$ if $w \neq 0$;

In this case, we consider $(x, y, w)^{T}$ and $\left(\frac{x}{w}, \frac{y}{w}, 1\right)^{T}$ to be equivalent
The set of equivalence classes of vectors from 3D space $R^{3}-(0,0,0)^{T}$ forms the projective space P^{2}
\square Homogeneous vector representation of a point $\widetilde{\boldsymbol{x}}=\left(x_{1}, x_{2}, x_{3}\right)^{T}$ corresponds to the point with the 2D inhomogeneous coordinates $\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right)^{T}$

- Example 2:
\square A 2D point $(3,4)$, what is its homogeneous coordinates?
- $\rightarrow(3,4,1)$
\square What about $(6,8,2)$?

Homogeneous Coordinates (cont.)

Motivation of using Homogeneous Coordinates:
\square To consider and represent linear transformations using matrices
\square Simplify a lot of computations
\square A line in the plane: $a x+b y+c=0$, can be put as $(a, b, c)^{T}$ in Homogeneous Notation
\square The correspondence is NOT one-to-one: $k(a, b, c)^{T}, k \neq 0$ represents the same line
\square The set of equivalence classes of vectors in $R^{3}-(0,0,0)^{T}$ forms the projective space P^{2}
\square A planar point $x=(x, y)^{T}$ lies on the line $l=(a, b, c)^{T}$ iff $a x+b y+c=0$
\square If we write the point as an augmented vector: $\widetilde{\boldsymbol{x}}=(x, y, 1)^{T}$
$\square \rightarrow$ inner product of vectors: $(x, y, 1)(a, b, c)^{T}=0$, or simply $\tilde{x} \cdot l=0$

Homogeneous Coordinates for 3D Points

Inhomogensou Coordinates $(x, y, z)^{T} \rightarrow$ homogeneous coordinates $(x, y, z, 1)^{T}$
\square A 3D plane can be represented as $\boldsymbol{m}=(a, b, c, d)^{T}$, because any point $\boldsymbol{x}=(x, y, z)^{T}$ on this plane satisfies:

$$
a x+b y+c z+d=\tilde{\boldsymbol{x}} \cdot \boldsymbol{m}=0
$$

2D Transformations

Figure 2.4 Basic set of 2D planar transformations.
\square Basic Transformations: Translations, Rotations, Scaling, Affine, Projective
\square Euclidean Transformation $=$ Rigid Transformation $=$ Translations + Rotations
\square Similarity Transformation $=$ Uniform scaling + Translations + Rotations + Reflection
\square Affine Transformation $=$ Similarity + non-uniform scaling + shear mapping
\square Projective Transformation

Linear Transformations

- A transformation $T(\boldsymbol{x})=\boldsymbol{y}, \boldsymbol{x} \in R^{n}, \boldsymbol{y} \in R^{m}$, is a linear transformation if it can be represented by a matrix: $\boldsymbol{y}=\boldsymbol{M} \boldsymbol{x}, \boldsymbol{M} \in R^{m} \times R^{N}$, where M is called the transformation matrix
- With homogeneous coordinates, all basic transformations listed in the previous slide can be treated as linear transformations

Example: 2D Rotation

To rotate the left figure to the right figure (the left bottom corners of both objects remain at the origin)
$=$ To find a transformation T such that $T\left(\boldsymbol{e}_{1}\right)=\boldsymbol{f}_{1}$, $T\left(\boldsymbol{e}_{2}\right)=\boldsymbol{f}_{2}$
\rightarrow We can solve a linear system using elementary
e2 trigonometry:
$\boldsymbol{f}_{1}=\boldsymbol{M e} \boldsymbol{e}_{1} ; \boldsymbol{f}_{2}=\boldsymbol{M} \boldsymbol{e}_{2}$
under the coordinate system of $\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)$,

$$
\boldsymbol{f}_{1}=(\cos \theta, \sin \theta)^{T} ; \boldsymbol{f}_{2}=(-\sin \theta, \cos \theta)
$$

$$
\boldsymbol{M}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Example: Scaling

2D scaling transformation matrix:

$$
\boldsymbol{M}=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

as

$$
\boldsymbol{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x \\
b y
\end{array}\right]
$$

where a and b are called the scaling factors along x and y axes.

If $a=b$: uniform (isotropic) scaling, shape preserved, only size changed
\square If $a=b=1$: identity transform

- Directly extendible to 3D

Example: Shear

Starting from the 2D scaling transformation matrix:

$$
\boldsymbol{M}=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

Let one of the off-diagonal element be non-zero:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right] \text { or }\left[\begin{array}{ll}
a & 0 \\
c & b
\end{array}\right]} \\
& \boldsymbol{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
a x+c y \\
b y
\end{array}\right]
\end{aligned}
$$

- A general definition: shearing $=$ to shift the figure along a direction by an amount proportional to its signed distance from the line parallel to that direction

Shearing changes the shape (angles changes under shearing) but preserves the area

$$
a=b=1, c=1
$$

Examples: Reflection \& Orthography

\square Reflection $=$ scaling with negative factors

$$
\boldsymbol{M}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

\square Orthographic Projection

$$
\boldsymbol{M}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

\square Does not map a basis onto another basis
\square A singular transformation (can't be inverted, lost depth information along a direction)

Example: Translation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{l}
x+d_{1} \\
y+d_{2}
\end{array}\right]
$$

Not a linear transformation (can't be represented as a matrixvector multiplication)

But if the homogeneous coordinates are used:

$$
\left[\begin{array}{lll}
1 & & d_{1} \\
& 1 & d_{2} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+d_{1} \\
y+d_{2} \\
1
\end{array}\right]
$$

Rigid Transformation $=$ translation + rotation
\square If a transformation preserves distance \rightarrow called an isometry
\square Rigid transformations are definitely isometries, but isometries may not be rigid
\square e.g. bending a paper to a cylinder

Example: General Projection

A general projection, or perspective transformation, or also called homography, is defined on homogeneous coordinates,

$$
\widetilde{x}^{\prime}=H \tilde{x}
$$

where \boldsymbol{H} is an arbitrary 3×3 matrix, defined up to a scale.
\square Converting back to inhomogeneous coordinates:

$$
x^{\prime}=\frac{h_{00} x+h_{01} y+h_{02}}{h_{20} x+h_{21} y+h_{22}} \text { and } y^{\prime}=\frac{h_{10} x+h_{11} y+h_{12}}{h_{20} x+h_{21} y+h_{22}} .
$$

\square Perspective transformations preserve straight lines such that they remain straight after the transformation

Summary of 2D Transformations*

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles	
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	

\#DOF : the Number of Degrees of Freedom = the number of independent variables (unknowns) that can change freely

Summary of 3D Transformations*

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{3 \times 4}$	6	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{3 \times 4}$	7	angles	
affine	$[\boldsymbol{A}]_{3 \times 4}$	12	parallelism	
projective	$[\tilde{\boldsymbol{H}}]_{4 \times 4}$	15	straight lines	

\#DOF : the Number of Degrees of Freedom $=$ the number of independent variables that can change freely

