05 Review of Linear Algebra and Transformations

Xin Shane Li

Part of the slides taken and modified based on materials from Prof. M. Vasilescu’s Computer Vision Course taught in Stony Brook University (SUNY)
Overview

• n-dimensional vectors
• Dot (Scalar) product
• Bases and Frames
• Homogeneous Coordinates
• 2D and 3D Geometric Transformations
Vectors

Notation:

\[x \in \mathbb{R}^n, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad x = (x_1, x_2, \ldots, x_n)^T \]

Length:

\[\|x\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} = \sqrt{\sum_{i=1}^{n} x_i^2} \]

Geometric Meanings:

- An origin + \(n \) pairwise perpendicular vectors \(\rightarrow \) defines a frame or a coordinate system
- For a fixed frame, a point \(\rightarrow \) a \(n \)-dimensional vector
Dot Product

Dot Product of two vectors:
\[
\langle x, y \rangle = x \cdot y = x^T y = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}
\]

Geometric Meanings:
\[
x \cdot y = \|x\| \|y\| \cos \theta
\]

Properties
- Commutative: \(x \cdot y = y \cdot x \)
- Distributive: \((x + y) \cdot z = x \cdot z + y \cdot z \)
- Linearity:
 \[
 (cx) \cdot y = c(x \cdot y) \\
 x \cdot (cy) = c(x \cdot y)
 \]
 \[
 (c_1 x) \cdot (c_2 y) = (c_1 c_2)(x \cdot y)
 \]
- Non-negativity:
 \[
 \forall x \neq 0: \langle x, x \rangle > 0 \\
 \langle x, x \rangle = 0 \iff x = 0
 \]
- Orthogonality:
 \[
 \forall x \neq 0, y \neq 0 \quad x \cdot y = 0 \iff x \perp y
 \]
Norms

- Euclidean norm (sometimes called 2-norm):

\[\|\mathbf{x}\| = \|\mathbf{x}\|_2 = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} = \sqrt{\sum_{i=1}^{n} x_i^2} \]

- The length of a vector is defined to be its (Euclidean) norm.
- A unit vector is of length 1.
- Non-negativity properties also hold for the norm:

\[\forall \mathbf{x} \neq 0 : \|\mathbf{x}\|^2 > 0 \quad \|\mathbf{x}\|^2 = 0 \iff \mathbf{x} = 0 \]
Linear Dependence

- Linear combination of vectors $x_1, x_2, \ldots x_n$

$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

- A set of vectors $X = \{x_1, x_2, \ldots x_n\}$ are linearly dependent if there exists a vector $x_i \in X$ that is a linear combination of the rest of the vectors.

- In \mathbb{R}^n
 - sets of $n+1$ vectors are always dependent
 - there can be at most n linearly independent vectors
Bases

- A basis is a linearly independent set of vectors that spans the “whole space”. i.e., we can write every vector in our space as linear combination of vectors in that set.

- Every set of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n

- A basis is called
 - **orthogonal**, if every basis vector is orthogonal to all other basis vectors
 - **orthonormal**, if additionally all basis vectors have length 1.
Bases

- Standard basis in \mathbb{R}^n is made up of a set of unit vectors:

 $\hat{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \hat{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \ldots, \hat{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$

- We can write a vector in terms of its standard basis:

 $\begin{pmatrix} 4 \\ 7 \\ -3 \end{pmatrix} = 4 \hat{e}_1 + 7 \hat{e}_2 - 3 \hat{e}_3.$

- Observation: To find the coefficient for a particular basis vector, we project our vector onto it.

 $x_i = \hat{e}_i \cdot x$
Change of Bases

- Suppose we have a new basis $B = [b_1 \cdots b_n]$, $b_i \in \mathbb{R}^m$ and a vector $x \in \mathbb{R}^m$ that we would like to represent in terms of B.

- Compute the new components.

- When B is orthonormal:
 - \tilde{x} is a projection of x onto b_i.
 - Note the use of a dot product.

Note: B is an orthonormal matrix, whose inverse is its transpose. Therefore, we have $\tilde{x} = B^{-1}x$.
Rank of a Matrix

The rank of a matrix is the number of linearly independent rows or columns.

Examples: \[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\] has rank 2, but \[
\begin{pmatrix}
2 & 1 \\
4 & 2
\end{pmatrix}
\] only has rank 1.

Equivalent to the dimension of the range of the linear transformation.

A matrix with full rank is called non-singular, otherwise it is singular.
Cross Product

Consider two vectors \(\mathbf{a} \) and \(\mathbf{b} \) in the 3D space

- the cross product \(\mathbf{a} \times \mathbf{b} \) is a vector perpendicular to both \(\mathbf{a} \) and \(\mathbf{b} \), and therefore normal to the plane containing them

\[
\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta \mathbf{n}
\]

- If the two given vectors are parallel or one vector has zero length, then the cross product is zero

- Anti-commutative: \(\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a}) \)

- Geometric meaning:
 - Magnitude: the area of a parallelogram
 - Direction: right-hand rule

- Example 1: Prove if \(\mathbf{c} = \mathbf{a} \times \mathbf{b} \) then \(\mathbf{a} \cdot \mathbf{c} = 0 \)
Homogeneous Coordinates (2D)

Consider a point \(\mathbf{x} \) in the 2D plane:

- Conventional Notation (inhomogeneous coordinates)
 - A 2D point can be represented by a pair of coordinates \((x, y) \in \mathbb{R}^2\)
 - A 2D point \(\iff\) a 2D vector \(\mathbf{x} = (x, y)^T \); the 2D plane \(\iff\) \(\mathbb{R}^2\) vector space

- Homogeneous Notation (homogeneous coordinates)
 - \(\tilde{\mathbf{x}} = (x, y, 1)^T \), referred to as an augmented vector
 - 3D vectors \((x, y, w)^T\) can be converted to its corresponding augmented vectors \(w(x/w, y/w, 1)\) if \(w \neq 0\);
 - In this case, we consider \((x, y, w)^T\) and \(\left(\frac{x}{w}, \frac{y}{w}, 1\right)^T\) to be equivalent
 - The set of equivalence classes of vectors from 3D space \(\mathbb{R}^3 - (0,0,0)^T\) forms the projective space \(P^2\)
 - Homogeneous vector representation of a point \(\tilde{\mathbf{x}} = (x_1, x_2, x_3)^T\) corresponds to the point with the 2D inhomogeneous coordinates \(\left(\frac{x_1}{x_3}, \frac{x_2}{x_3}\right)^T\)

- Example 2:
 - A 2D point \((3,4)\), what is its homogeneous coordinates?
 - \(\rightarrow (3,4,1)\)
 - What about \((6,8,2)\)?
Homogeneous Coordinates (cont.)

- Motivation of using Homogeneous Coordinates:
 - To consider and represent linear transformations using matrices
 - Simplify a lot of computations

- A line in the plane: \(ax + by + c = 0 \), can be put as \((a, b, c)^T\) in Homogeneous Notation
 - The correspondence is **NOT** one-to-one: \(k(a, b, c)^T, k \neq 0\) represents the same line
 - The set of equivalence classes of vectors in \(R^3 - (0,0,0)^T\) forms the projective space \(P^2\)

- A planar point \(x = (x, y)^T\) lies on the line \(l = (a, b, c)^T\) iff \(ax + by + c = 0\)
 - If we write the point as an augmented vector: \(\tilde{x} = (x, y, 1)^T\)
 - \(\rightarrow\) inner product of vectors: \((x, y, 1)(a, b, c)^T = 0\), or simply \(\tilde{x} \cdot l = 0\)
Homogeneous Coordinates for 3D Points

- Inhomogeneous Coordinates \((x, y, z)^T\) → homogeneous coordinates \((x, y, z, 1)^T\)

- A 3D plane can be represented as \(m = (a, b, c, d)^T\), because any point \(x = (x, y, z)^T\) on this plane satisfies:
 \[ax + by + cz + d = \tilde{x} \cdot m = 0\]
2D Transformations

- Basic Transformations: Translations, Rotations, Scaling, Affine, Projective
- Euclidean Transformation = Rigid Transformation = Translations + Rotations
- Similarity Transformation = Uniform scaling + Translations + Rotations + Reflection
- Affine Transformation = Similarity + non-uniform scaling + shear mapping
- Projective Transformation

Figure 2.4 Basic set of 2D planar transformations.
Linear Transformations

- A transformation $T(x) = y, x \in \mathbb{R}^n, y \in \mathbb{R}^m$, is a linear transformation if it can be represented by a matrix: $y = Mx, M \in \mathbb{R}^m \times \mathbb{R}^N$, where M is called the transformation matrix.

- With homogeneous coordinates, all basic transformations listed in the previous slide can be treated as linear transformations.
Example: 2D Rotation

To rotate the left figure to the right figure (the left bottom corners of both objects remain at the origin)

\[T(e_1) = f_1, \quad T(e_2) = f_2 \]

\[\text{To find a transformation } T \text{ such that } T(e_1) = f_1, \quad T(e_2) = f_2 \]

\[\Rightarrow \text{ We can solve a linear system using elementary trigonometry:} \]

\[f_1 = Me_1; \quad f_2 = Me_2 \]

under the coordinate system of \((e_1, e_2)\),

\[f_1 = (\cos \theta, \sin \theta)^T; \quad f_2 = (-\sin \theta, \cos \theta) \]

\[M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]
Example: Scaling

2D scaling transformation matrix:

$$
M = \begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix}
$$

as

$$
M [x] = \begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix} [x] = [ax]
$$

where a and b are called the scaling factors along x and y axes.

- If $a = b$: uniform (isotropic) scaling, shape preserved, only size changed
- If $a = b = 1$: identity transform

• Directly extendible to 3D
Example: Shear

Starting from the 2D scaling transformation matrix:

\[
M = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}
\]

Let one of the off-diagonal element be non-zero:

\[
\begin{bmatrix} a & c \\ 0 & b \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} a & 0 \\ c & b \end{bmatrix}
\]

\[
M \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + cy \\ by \end{bmatrix}
\]

- A general definition: shearing = to shift the figure along a direction by an amount proportional to its signed distance from the line parallel to that direction
- Shearing changes the shape (angles changes under shearing) but preserves the area

\[a = b = 1, c = 1 \]
Examples: Reflection & Orthography

- **Reflection** = scaling with negative factors

 \[M = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \]

- **Orthographic Projection**

 \[M = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \]

- Does not map a basis onto another basis
- A singular transformation (can’t be inverted, lost depth information along a direction)
Example: Translation

\[
\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} x + d_1 \\ y + d_2 \end{bmatrix}
\]

Not a linear transformation (can’t be represented as a matrix-vector multiplication)

But if the homogeneous coordinates are used:

\[
\begin{bmatrix} 1 & d_1 \\ 1 & d_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + d_1 \\ y + d_2 \\ 1 \end{bmatrix}
\]

Rigid Transformation = translation + rotation

- If a transformation preserves distance \(\rightarrow \) called an isometry
- Rigid transformations are definitely isometries, but isometries may not be rigid
 - e.g. bending a paper to a cylinder
Example: General Projection

A general projection, or perspective transformation, or also called homography, is defined on homogeneous coordinates,

\[\tilde{x}' = H \tilde{x} \]

where \(H \) is an arbitrary \(3 \times 3 \) matrix, defined up to a scale.

- Converting back to inhomogeneous coordinates:

\[
x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \quad \text{and} \quad y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}.\]

- Perspective transformations preserve straight lines such that they remain straight after the transformation.
Summary of 2D Transformations*

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Matrix</th>
<th># DoF</th>
<th>Preserves</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$\begin{bmatrix} I & t \end{bmatrix}_{2\times3}$</td>
<td>2</td>
<td>orientation</td>
<td></td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$\begin{bmatrix} R & t \end{bmatrix}_{2\times3}$</td>
<td>3</td>
<td>lengths</td>
<td>◻️</td>
</tr>
<tr>
<td>similarity</td>
<td>$\begin{bmatrix} sR & t \end{bmatrix}_{2\times3}$</td>
<td>4</td>
<td>angles</td>
<td>◻️ ◻️</td>
</tr>
<tr>
<td>affine</td>
<td>$\begin{bmatrix} A \end{bmatrix}_{2\times3}$</td>
<td>6</td>
<td>parallelism</td>
<td>◻️</td>
</tr>
<tr>
<td>projective</td>
<td>$\begin{bmatrix} \tilde{H} \end{bmatrix}_{3\times3}$</td>
<td>8</td>
<td>straight lines</td>
<td>◻️ ◻️ ◻️</td>
</tr>
</tbody>
</table>

#DOF : the Number of Degrees of Freedom = the number of independent variables (unknowns) that can change freely
Summary of 3D Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Matrix</th>
<th># DoF</th>
<th>Preserves</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$\begin{bmatrix} I & t \end{bmatrix}_{3\times4}$</td>
<td>3</td>
<td>orientation</td>
<td></td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$\begin{bmatrix} R & t \end{bmatrix}_{3\times4}$</td>
<td>6</td>
<td>lengths</td>
<td></td>
</tr>
<tr>
<td>similarity</td>
<td>$\begin{bmatrix} sR & t \end{bmatrix}_{3\times4}$</td>
<td>7</td>
<td>angles</td>
<td></td>
</tr>
<tr>
<td>affine</td>
<td>$\begin{bmatrix} A \end{bmatrix}_{3\times4}$</td>
<td>12</td>
<td>parallelism</td>
<td></td>
</tr>
<tr>
<td>projective</td>
<td>$\begin{bmatrix} \tilde{H} \end{bmatrix}_{4\times4}$</td>
<td>15</td>
<td>straight lines</td>
<td></td>
</tr>
</tbody>
</table>

#DOF : the Number of Degrees of Freedom = the number of independent variables that can change freely