
Introduction to OpenGL

Programming (2)

1

Contents

 OpenGL Basics

 Drawing Geometric Objects

 Viewing

 Color

 Lighting

2

OpenGL Viewing

 Read the Redbook Chapter 3

http://www.glprogramming.com/red/chapter03.html

http://www.glprogramming.com/red/chapter03.html

The camera analogy

Orders of these transformations in your

program:

 The viewing, modeling

transformations are from 3D to 3D;

 the projection transformations are

from 3D to 2D;

 Viewport transformations are from

2D to 2D.

 They are all modeled using 4 × 4
transformation matrices

(homogeneous representation).

The order of transformations in OpenGL execution:

1. Viewing + modeling transformations stored together in the

Modelview Matrix

2. Projection transformation the Projection Matrix

(viewing volume, clipping, get normalized device coordinates,

3. Viewport transformation

(projected image transformed to window coordinates)

𝒖 = 𝑇𝑝𝑜𝑟𝑡 𝑇𝑝𝑟𝑜𝑗 𝑇𝑚𝑜𝑑𝑒𝑙 𝑇𝑣𝑖𝑒𝑤 𝒙

Viewing Transformation
 Will be set on a Modelview transformation matrix

1. Initialize it to the identity matrix using

glLoadIdentity()

The composition of transformations in OpenGL:

 The newly added transformation commands will
multiply the current matrix by the newly specified
matrix and then set the result to be the current matrix.

 If you don't clear the current matrix (by loading it with
the identity matrix), you continue to combine previous
transformation matrices with the new one you supply.

Viewing Transformation (cont.)

After initialization:

 the viewing transformation can be specified with
void gluLookAt(GLdouble eyex, GLdouble eyey,

GLdouble eyez, GLdouble centerx, GLdouble centery,

GLdouble centerz, GLdouble upx, GLdouble upy,

GLdouble upz);

To indicate where the camera is placed, where it is

aimed, and which way is up.

 By default (If gluLookAt() was not called), the

setting is:
gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

Model Transformation

 To position and orient the model

 For example, you can rotate, translate, or scale

the model - or perform some combination of

these operations.

 void glTranslate{fd}(TYPE x, TYPE y, TYPEz);

 void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z);

 void glScale{fd}(TYPE x, TYPE y, TYPE z);

 void glLoadMatrix{fd}(const TYPE *m);

 void glMultMatrix{fd}(const TYPE *m);

Viewing + Modeling ModelView
 In OpenGL, Viewing + Modeling transformations are

combined together in a single ModelView matrix

 To manipulate the modeling/viewing transformation matrix,
use:

Void glMatrixMode(GL_MODELVIEW)

 By default (if you didn’t specify that you now are modifying
ModelView matrix by GL_MODELVIEW), initially all the
specified transformations are on ModelView matrix, until you
change the status (by specifying GL_PROJECTION)

 To make you program clear and easily readable, always
specify this first

Projections
 After modeling and viewing transformations, the camera and objects are

placed. Transformations are stored in the modelview matrix

 Next, define the desired projection matrix, which is also used to
transform the vertices in your scene.

 Before you issue any of the transformation commands described in this
section, remember to call

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

 In OpenGL, this volume (view volume) will be

normalized to a unit cube, after this Projection step.

 Everything outside the view volume will be ignored.

Projections

Generally:
Projections transform points in a n-D coordinate system into points in a m-D

coordinate system (m<n)

Computer Graphics has long been used for studying n-D objects by

projecting them into lower dimensional (especially, 2D) space.

Noll, M. , “A Computer Technique for Displaying N-dimensional hyperobjects”,

CACM, 10(8), Aug. 1967, 469-473.

Here:
We focus on projections

from 3D to 2D.

Projection :
straight projection rays (projectors) emanating from a center of projection

Passing through each point of the object

Intersecting a projection plane to form the projection image

Classification of Projections

General Classification:
We deal with planar geometric projections

Non-planar projection: the projection plane is a curved surface (e.g. many

cartographic projections)

Non-geometric projection: the projection rays are curved (e.g. the Omnimax film)

Planar Geometric Projections:
Parallel projection: projection center is infinitely far away

so that all projectors are parallel

We only need to specify direction of projection

Perspective projection: projection center is finite distance away

Need to specify projection center

Classification of Projections

General Classification:

Planar Geometric Projections:
Perspective projection:

Visually : perspective foreshortening (the object size varies inversely

with the distance from the projection center), similar to human visual

system

Measurement:
not good for recording exact shape,

angles are preserved only on those faces of the object parallel to the

projection plane,

parallel lines generally are not projected to be parallel

Parallel projection:

Visually : less realistic

Measurement:
good for exact measurement,

parallel lines remain parallel,

angles only preserved on faces that are parallel to the projection plane

For more detailed discussions, check: Carlbom, I. and J. Paciorek, “Planar Geometric

Projections and Viewing Transformations”, Computing Surveys, 10(4), Dec. 1978, pp. 465-502.

Projection Transformations in OpenGL

(cont.)

 Perspective Projection
Two simple ways to specify the pyramid:

 void glFrustum(double left, double right,

double bottom, double top, double near,

double far);

 void gluPerspective(double fovy, double

aspect, double zNear, double zFar);

 fovy: field of view angle in y direction

 aspect: aspect ratio = fov-size-x / fov-size-y

 zNear, zFar: distance from the viewer to the near

and far clipping planes, both are always positive

-z

FOV

y

z=-near

z=-far

y=top

Projection Transformations in OpenGL

(cont.)

 Orthographic Projection

 void glOrtho(GLdouble left, GLdouble
right, GLdouble bottom, GLdouble top,
GLdouble zNear, GLdouble zFar);

 void gluOrtho2D(GLdouble left,
GLdouble right, GLdouble bottom,
GLdouble top);

Summary:
A Common Routine in Setting Projection Transformations:

 First, put:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

 Then, put one of:
glFrustrum, gluPerspective, or glOrtho

Ex4.cpp

16

Pay attention to the set of transformations and their orders to

be applied.

(1) the transformation you do will affect all the subsequent

lines;

(2) If you want to do some transformations to only one object,

you may need to “undo” the transformations after plotting this

object.

(3) Instead of doing an inverse transformation to undo some

transformation, you can use glPushMatrix() and glPopMatrix()

to save a current configuration (the composed matrix) into a

stack and load it.

2D Window-To-Viewport Transformation

 objects (2D) are now in the normalized device coordinate (NDC) system

 need to map them onto screen coordinates

 This steps solves:

 Given a rectangular region in a 2D coordinates system (NDC)

 A user specifies the corresponding rectangular region in screen
coordinates (viewport)

 To find the 2D to 2D transformation

Sometimes, we want shape-preserving: make su=sv

Viewport Transformation in OpenGL

 By default the viewport is set to the entire pixel rectangle of the window
that's opened.

 You can use the glViewport() command to choose a smaller drawing
region; for example, you can subdivide the window to create a split-
screen effect for multiple views in the same window.

 void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);
 Defines a pixel rectangle in the window into which the final image is

mapped.

 (x, y) lower-left corner of the viewport,

 width and height size of the viewport rectangle.

 By default, the initial viewport values are (0, 0, winWidth, winHeight),
where winWidth and winHeight are the size of the window.

 The aspect ratio of a viewport is usually set to equal the aspect ratio of
the viewing volume. If the two ratios are different, the projected image
will be distorted when mapped to the viewport.

 To do this, our application should detect window resize events and
modify the viewport appropriately.

Example Programs (Ex5.cpp)

19

void display (void) {

…

}

void reshape(int w, int h)

{

glViewport (0, 0, (GLsizei) w, (GLsizei) h);

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluPerspective(60, 1, 1,10); // try this viewport setting first

//gluPerspective(60, (float)w / (float)h, 1, 10); // then try this viewport setting

glutPostRedisplay();

}

int main(int argc, char** argv) {

…

}
Setting 1 will map a square to the entire window.

Setting 2 will keep the aspect ratio, by adjusting

the camera (film) aspect ratio accordingly.

Example Programs (Ex6.cpp)

20

1. Check the print line in the reshape() function, and find out when will the

reshape() function be triggered.

2. In the display callback function, we get to the ModelView mode,

initialize the matrix to identity, then use GluLookAt to set up the camera.

3. To transform the object(s) to render, just call glTranslate/glRotate to

apply the transformations.

4. If you have multiple objects that you want to apply different

transformation. You can use glPushMatrix() and glPopMatrix() to save

and restore previous transformation setting (ModelView Matrix).

Example Programs (Ex6.cpp)

21

1. Check the print line in the reshape() function, and find out when will the

reshape() function be triggered.

2. In the display callback function, we get to the ModelView mode,

initialize the matrix to identity, then use GluLookAt to set up the camera.

3. To transform the object(s) to render, just call glTranslate/glRotate to

apply the transformations.

4. If you have multiple objects that you want to apply different

transformation. You can use glPushMatrix() and glPopMatrix() to save

and restore previous transformation setting (ModelView Matrix).

Example Programs (Ex7.cpp)

22

Some other notes:

1. glShadeModel (GL_FLAT) : the polygon will be rendered using a

constant color, while GL_SMOOTH is the other (default) option,

where the polygon will be interpolated using colors of vertices

2. Here the Pentagon is rendered using 3 composed triangles.

To rotate or translate objects differently:

1. From initial camera setting, right before rendering each object,

save current matrix status, then call approparite

glRotate/glTranslate

2. After redering each object, use glPopMatrix to restore camera

configuration, then do the transformation for the next object…

