Lecture 2
 Triangle Mesh Representation and its Data Structure

Overview

- To study the storage and data structure of the widely used triangle mesh in representing 3D surfaces
- triangle meshes can adaptively approximate the continuous surfaces using a finite number of vertices and triangles
- a piecewise linear representation

Storage of Triangle Meshes:

Polygon Soup

Triangle Set		
$\left(\mathrm{x}_{11}, \mathrm{y}_{11}, \mathrm{z}_{11}\right)$	$\left(\mathrm{x}_{12}, \mathrm{y}_{12}, \mathrm{z}_{12}\right)$	$\left(\mathrm{x}_{13}, \mathrm{y}_{13}, \mathrm{z}_{13}\right)$
$\left(\mathrm{x}_{21}, \mathrm{y}_{21}, \mathrm{z}_{21}\right)$	$\left(\mathrm{x}_{22}, \mathrm{y}_{22}, \mathrm{z}_{22}\right)$	$\left(\mathrm{x}_{23}, \mathrm{y}_{23}, \mathrm{z}_{23}\right)$
$\left(\mathrm{x}_{31}, \mathrm{y}_{31}, \mathrm{z}_{31}\right)$	$\left(\mathrm{x}_{32}, \mathrm{y}_{32}, \mathrm{z}_{32}\right)$	$\left(\mathrm{x}_{33}, \mathrm{y}_{33}, \mathrm{z}_{33}\right)$

Polygon (Triangle) Soup: A collection of unorganized triangles
\square Example: the Stereolithography (STL) Format (widely used in computer-aided design/manufacturing software) is a type of polygon soup

Storage Cost:

\square If using x (e.g., 32-bits or 4 bytes) bits to represent a vertex coordinate (float)
Then each triangle needs $3 * 3 * 4=36$ bytes
\square A mesh with n triangles needs $36 n$ bytes

Pros and Cons:

\checkmark Efficient rendering
\square No connectivity info stored
Inefficient for many geometric computing: e.g. traversing local adjacency information
\square Vertex positions replicated as many times as the degree of the vertices

Storage of Triangle Meshes: Indexed Vertex Tables

Vertex table		
V_{1}	$\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$	
V_{2}	$\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$	
V_{3}	$\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$	
V_{4}	Face table	
F_{1}	$\mathrm{~V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{2}$	
$\mathrm{~F}_{2}$	$\mathrm{~V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{3}$	
$\mathrm{~F}_{3}$	$\mathrm{~V}_{5}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$	

Using a an indexed vertex table, then a face table \square Examples: OFF, OBJ, VRML, M formats

Storage Cost:

\square If using x (e.g., 32-bits or 4 bytes) bits to represent a vertex coordinate (float), and x bits to represent a vertex index (int)
Then each vertex needs $3 * 4=12$ bytes, and each triangle needs $3 * 4=12$ bytes
\square A mesh with n triangles needs $12 \mathrm{n}+\mathrm{n} / 2 * 12=$ $18 n$ bytes

Pros and Cons:

\checkmark Efficient storage and rendering
\square Inefficient for local traversal

Mesh Representation in Memory for Efficient Computation in CG Tasks

What operators do we usually need?

$>$ Access to individual elements (vertices edges, and faces): enumeration of all elements
$>$ Local traversal, e.g.:
What are the edges in a given face;
What are the vertices in a given face or edge;
\square What are the one-ring primitives of a geometric primitive
E.g. incident faces/edges/vertices of a given vertex
E.g. incident faces of a given edge
> Example: Modifying the last page's data structure for local traversal
\square For each face: store references to its 3 vertices + neighboring triangle
\square For each vertex: store 3 coordinates + a reference to its neighboring triangle
\square Used in CGAL for representing 2D Triangulation, 32 bytes / triangle \square CGAL = an open-source computational geometry algorithm libra Google "CGAL"

- Limitations:

But enumerating the one-ring vertices of a vertex is not easy
\square Not easily extendable to general/mixed polygonal meshes

Edge-based Data Structure

- A more generally used data structure, since the connectivity is a graph, directly relates to the mesh edges
- Many well known methods: winged-edge [Baumgart 72], quad-edge [Guibas and Stolfi 85], and variants [O'Rourke 94]
- *An example: Winged-edge structure
- Each edge: stores references to its endpoint vertices + two incident faces + next and previous edge within the left and right faces
- Each vertex: stores a reference to one of its incident edges
- Each face: stores a reference to one of its incident edges
- Storage Cost: A mesh with n faces needs 60 n bytes
- Limitations: Still not easy for some local traversal
- e.g. to traverse the one-ring of a vertex, how do you know if it is the first or second vertex of an edge?

Face
EdgeRef edge

Edge

VertexRef vertex[2] FaceRef EdgeRef

Half-Edge Data Structure

- (What?) A common way to represent triangular mesh for geometric processing
- We first focus on triangle-mesh, (it works for general polygonal mesh).
- 3D analogy: half-face data structure for tetrahedral mesh
- (Why?) Effective for maintaining incidence information of vertices
- Efficient local traversal
- Relatively low spatial cost
- Supporting dynamic local updates/manipulations (edge collapse, vertex split, etc.)
- (Resources?) Codes are provided. After this class, please go through them carefully, we will work on it during the whole semester.

Half-Edge Data Structure (cont.)

\square Consider each edge by splitting it into two halfedges \square Primitives: Face, Edge, Halfedge, Vertex
\square Store all adjacency information between primitives on halfedges DEach edge has 2 halfedges (the boundary edge has only 1)

Half-Edge Data Structure (cont.)

\square Halfedges are oriented consistently in counterclockwise order around each face
\square Each halfedge designates a unique corner on each face (can be used to store texture coordinates, later in texture mapping)

- On each halfedge, we store:
- the vertex it points to (its target);
- the face this halfedge locates;
- the next halfedge on the face;
- the previous halfedge on the face;
- *(1) its twin halfedge;
- For each vertex: store one of its incident incoming halfedges
- For each face: store one of its halfedges

- *(2) for each edge: store its two halfedges
$\square^{*(1)}$ and ${ }^{*(2)}$: keep either one and we can get the other easily

\square Storage Costs:

\square A mesh with n triangles needs ?? Bytes
\square Hint: \# of halfedges H is about 6 times of V

Half-Edge Structure Implementation

Read through the provided source codes for the implementation of halfedge data structure:

- Check Halfedge.h, each halfedge class stores:
- \rightarrow target(): the target vertex;
- \rightarrow face(): adjacent face;

- \rightarrow next(): the next halfedge on the face;
- $\rightarrow \operatorname{prev}()$: the previous halfedge in the face;

And you can use some other implmentation:

- \rightarrow twin(): its twin halfedge;
- \rightarrow source(): the source vertex;
- Check Edge.h, Vertex.h, Face.h, and finally Mesh.h

Half-Edge Data Structure (example)

1). In Mesh.h, four containers used to store primitives:

The Vertex Container*	$\mathrm{v} 1 \ldots \mathrm{v} 6$
The Half-Edge Container	$[\mathrm{v} 1, \mathrm{v} 2],[\mathrm{v} 2, \mathrm{v} 3],[\mathrm{v} 3, \mathrm{v} 1],[\mathrm{v} 1, \mathrm{v} 3],[\mathrm{v} 3, \mathrm{v} 4], \ldots$
The Edge Container	$[\mathrm{v} 1, \mathrm{v} 3],[\mathrm{v} 1, \mathrm{v} 2],[\mathrm{v} 2, \mathrm{v} 3],[\mathrm{v} 1, \mathrm{v} 4],[\mathrm{v} 3, \mathrm{v} 4], \ldots$
The Face Container	$\mathrm{f} 1[\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3] \ldots \mathrm{f} 5[\mathrm{v} 4, \mathrm{v} 3, \mathrm{v} 6]$

[v_{1}, v_{2}] means: a halfedge from v_{1} to v_{2}
Halfedges: $\left[v_{1}, v_{2}\right] \neq\left[v_{2}, v_{1}\right]$
The orientation of all the halfedges should be consistent: CounterClockWise (CCW) in our configuration

Note*: the container could be array, list, binary search tree... (it depends, our sample codes used list)

Half-Edge Data Structure (example)

1). Containers store primitives:

The Vertex Container ${ }^{*}$	$\mathrm{v} 1 \ldots \mathrm{v} 6$
The Half-Edge Container	$[\mathrm{v} 1, \mathrm{v} 2],[\mathrm{v} 2, \mathrm{v} 3],[\mathrm{v} 3, \mathrm{v} 1],[\mathrm{v} 1, \mathrm{v} 3],[\mathrm{v} 3, \mathrm{v} 4], \ldots$
The Edge Container	$[\mathrm{v} 1, \mathrm{v} 3],[\mathrm{v} 1, \mathrm{v} 2],[\mathrm{v} 2, \mathrm{v} 3],[\mathrm{v} 1, \mathrm{v} 4],[\mathrm{v} 3, \mathrm{v} 4], \ldots$
The Face Container	$\mathrm{f} 1[\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3] \ldots \mathrm{f}[\mathrm{v} 4, \mathrm{v} 3, \mathrm{v} 6]$

2). Relationship between primitives:

Using Half-Edge Data Structure

1. How to check whether a vertex/edge/face is on the boundary?
2. How to track the boundary?
3. How to find your one-ring neighbor?
4. How to do subdivision/simplification...?

Using Half-Edge Data Structure - Local Rotations

\square Rotation Operations defined on halfedge :

1. clw_rotate_about_target(): e.g. [v4, v3] to [v6, v3] he \rightarrow next () \rightarrow twin()
2. clw_rotate_about_source(): e.g. [v3, v2] to [v3, v1] he $\rightarrow \operatorname{twin}() \rightarrow \operatorname{next}() \quad$?
3. ccw_rotate_about_target(): e.g. [v6, v3] to [v4,v3] he $\rightarrow \operatorname{twin}() \rightarrow \operatorname{prev}()$?
4. ccw_rotate_about_source(): e.g. [v3, v1] to [v3, v2] he $\rightarrow \operatorname{prev}() \rightarrow \operatorname{twin}()$

\square Rotation Operations defined on boundary vertices:
5. most_clw_in_halfedge(): e.g. for v4, it is [v2, v4] Let he $=\mathrm{v} \rightarrow \mathrm{he}()$, then keep doing clw rotation about its target
6. most_ccw_in_halfedge(): e.g. for v4, it is [v6, v4]

Let he $=\mathrm{v} \rightarrow$ he(), then keep doing ccw rotation about its target
3. most_clw_out_halfedge(): e.g. for v4, it is [v4, v1]
4. most_ccw_out_halfedge(): e.g. for v4, it is [v4, v1]
$>$ What about interior vertices?
\rightarrow Not well defined. Return any in/out halfedge

Using Half-Edge Data Structure

Mesh subdivision/simplification...?

Simplification (coarsening)

Half-Edge Data Structure (cont.)

1) Read "iterators.h" to see how you can do local traversal
2) Read "mesh.h", to see how you can get access to primitives
3) *Go through "mesh $\rightarrow \operatorname{read}()$ " method, to see how the halfedge data structure is constructed from indexed vertex-face table.

Some 3D Models in Polygonal Meshes

["m" format
Some models (with ".mesh" or ".m" as extension)
A small openGL viewer "MViewer.exe" (you can drag your downloaded ".m" file into it directly)

- "obj" format

Two models with .obj extension
You will be asked to write a program similar to "Mviewer" in homework 1 and 2

- Many 3D shapes/data available online (but in various formats):
- Stanford 3D Scanning Repository:
http://graphics.stanford.edu/data/3Dscanrep/
Aim@Shape Repository: http://shapes.aim-at-shape.net/index.php
Google 3D warehouse

