
Lecture 2

Triangle Mesh Representation

and its Data Structure

Overview

 To study the storage and data structure of the

widely used triangle mesh in representing 3D

surfaces

 triangle meshes can adaptively approximate the

continuous surfaces using a finite number of vertices and

triangles

 a piecewise linear representation

6

Storage of Triangle Meshes:

Polygon Soup

Polygon (Triangle) Soup: A collection of

unorganized triangles

Example: the Stereolithography (STL) Format

(widely used in computer-aided

design/manufacturing software) is a type of

polygon soup

Triangle Set

(x11,y11,z11) (x12,y12,z12) (x13,y13,z13)

(x21,y21,z21) (x22,y22,z22) (x23,y23,z23)

(x31,y31,z31) (x32,y32,z32) (x33,y33,z33)

Storage Cost:

If using x (e.g., 32-bits or 4 bytes) bits to

represent a vertex coordinate (float)

Then each triangle needs 3*3*4 = 36 bytes

A mesh with n triangles needs 36n bytes

Pros and Cons:

 Efficient rendering

 No connectivity info stored

 Inefficient for many geometric computing: e.g. traversing local adjacency information

 Vertex positions replicated as many times as the degree of the vertices

7

Storage of Triangle Meshes:

Indexed Vertex Tables

Vertex table

V1 (x1,y1,z1)

V2 (x2,y2,z2)

V3 (x3,y3,z3)

V4 (x4,y4,z4)

V5 (x5,y5,z5)

Face table

F1 V1,V3,V2

F2 V1,V4,V3

F3 V5,V1,V2

Using a an indexed vertex table, then a face table

Examples: OFF, OBJ, VRML, M formats

Storage Cost:

If using x (e.g., 32-bits or 4 bytes) bits to

represent a vertex coordinate (float), and x bits

to represent a vertex index (int)

Then each vertex needs 3*4=12 bytes, and each

triangle needs 3*4 = 12 bytes

A mesh with n triangles needs 12n+n/2*12 =

18n bytes

Pros and Cons:

 Efficient storage and rendering

 Inefficient for local traversal

8

Mesh Representation in Memory for

Efficient Computation in CG Tasks

What operators do we usually need?

 Access to individual elements (vertices edges, and faces): enumeration of all

elements

 Local traversal, e.g.:

What are the edges in a given face;

What are the vertices in a given face or edge;

What are the one-ring primitives of a geometric primitive

E.g. incident faces/edges/vertices of a given vertex

E.g. incident faces of a given edge

 Example: Modifying the last page’s data structure for local traversal

 For each face: store references to its 3 vertices + neighboring triangles

 For each vertex: store 3 coordinates + a reference to its neighboring

triangle

Used in CGAL for representing 2D Triangulation, 32 bytes / triangle

CGAL = an open-source computational geometry algorithm library;

Google “CGAL”

Limitations:

But enumerating the one-ring vertices of a vertex is not easy

Not easily extendable to general/mixed polygonal meshes

Edge-based Data Structure

 A more generally used data structure, since the connectivity is a graph,
directly relates to the mesh edges

 Many well known methods: winged-edge [Baumgart 72], quad-edge
[Guibas and Stolfi 85], and variants [O’Rourke 94]

 *An example: Winged-edge structure
 Each edge: stores references to its endpoint

vertices + two incident faces + next and
previous edge within the left and right faces

 Each vertex: stores a reference to one of its
incident edges

 Each face: stores a reference to one of its
incident edges

 Storage Cost: A mesh with n faces needs 60n bytes

 Limitations: Still not easy for some local
traversal

 e.g. to traverse the one-ring of a vertex, how do
you know if it is the first or second vertex of an
edge?

Half-Edge Data Structure

 (What?) A common way to represent triangular mesh for geometric

processing

 We first focus on triangle-mesh, (it works for general polygonal mesh).

 3D analogy: half-face data structure for tetrahedral mesh

 (Why?) Effective for maintaining incidence information of vertices

 Efficient local traversal

 Relatively low spatial cost

 Supporting dynamic local updates/manipulations (edge collapse, vertex

split, etc.)

 (Resources?) Codes are provided. After this class, please go through

them carefully, we will work on it during the whole semester.

Half-Edge Data Structure (cont.)

Consider each edge by splitting it into two halfedges

Primitives: Face, Edge, Halfedge, Vertex

Store all adjacency information between primitives on halfedges

Each edge has 2 halfedges (the boundary edge has only 1)

Half-Edge Data Structure (cont.)

Halfedges are oriented consistently in counterclockwise order around each face

Each halfedge designates a unique corner on each face (can be used to store texture

coordinates, later in texture mapping)

• On each halfedge, we store:

• the vertex it points to (its target);

• the face this halfedge locates;

• the next halfedge on the face;

• the previous halfedge on the face;

• *(1) its twin halfedge;

• For each vertex: store one of its incident incoming

halfedges

• For each face: store one of its halfedges

• *(2) for each edge: store its two halfedges

*(1) and *(2) : keep either one and we can get the other easily

Storage Costs:

A mesh with n triangles needs ?? Bytes

Hint: # of halfedges H is about 6 times of V

Half-Edge Structure Implementation

Read through the provided source codes for the

implementation of halfedge data structure:

• Check Halfedge.h, each halfedge class stores:

• target(): the target vertex;

• face(): adjacent face;

• next(): the next halfedge on the face;

• prev(): the previous halfedge in the face;

And you can use some other implmentation:

• twin(): its twin halfedge;

• source(): the source vertex;

• Check Edge.h, Vertex.h, Face.h, and finally Mesh.h

Half-Edge Data Structure (example)

1). In Mesh.h, four containers used to store primitives:

The Vertex Container* v1 … v6

The Half-Edge Container [v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4], …

The Edge Container [v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], …

The Face Container f1[v1,v2,v3] … f5[v4,v3,v6]

Note*: the container could be array, list, binary search tree…

(it depends, our sample codes used list)

Halfedges: 𝑣1, 𝑣2 ≠ [𝑣2, 𝑣1]

The orientation of all the halfedges should be consistent:

CounterClockWise (CCW) in our configuration

𝑣1, 𝑣2 means: a halfedge from 𝑣1 to 𝑣2

Half-Edge Data Structure (example)

1). Containers store primitives:

The Vertex Container* v1 … v6

The Half-Edge Container [v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4], …

The Edge Container [v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], …

The Face Container f1[v1,v2,v3] … f5[v4,v3,v6]

Face

Vertex

Edge

Half-Edge

2). Relationship between primitives:

Using Half-Edge Data Structure

1. How to check whether a vertex/edge/face is on the boundary?

2. How to track the boundary?

3. How to find your one-ring neighbor?

4. How to do subdivision/simplification…?

Face

Vertex

Edge

Half-Edge

Using Half-Edge Data Structure

– Local Rotations

 Rotation Operations defined on halfedge :

1. clw_rotate_about_target(): e.g. [v4, v3] to [v6, v3]

he→next()→twin()

2. clw_rotate_about_source(): e.g. [v3, v2] to [v3, v1]
he → twin() → next() ?

3. ccw_rotate_about_target(): e.g. [v6, v3] to [v4,v3]
he → twin() → prev() ?

4. ccw_rotate_about_source(): e.g. [v3, v1] to [v3, v2]

he→prev()→twin()

 Rotation Operations defined on boundary vertices:

1. most_clw_in_halfedge(): e.g. for v4, it is [v2, v4]
Let he = v →he(), then keep doing clw rotation about its target

2. most_ccw_in_halfedge(): e.g. for v4, it is [v6, v4]
Let he = v →he(), then keep doing ccw rotation about its target

3. most_clw_out_halfedge(): e.g. for v4, it is [v4, v1]

4. most_ccw_out_halfedge(): e.g. for v4, it is [v4, v1]

 What about interior vertices?

 Not well defined. Return any in/out halfedge

Using Half-Edge Data Structure

Mesh subdivision/simplification…?

Simplification (coarsening)

Subdivision (refining)

Half-Edge Data Structure (cont.)

1) Read “iterators.h” to see how you can do local

traversal

2) Read “mesh.h”, to see how you can get access

to primitives

3) *Go through “mesh→read()” method, to see

how the halfedge data structure is constructed

from indexed vertex-face table.

Some 3D Models in Polygonal Meshes

 “m” format

 Some models (with “.mesh” or “.m” as extension)

 A small openGL viewer “MViewer.exe” (you can drag your downloaded “.m”

file into it directly)

 “obj” format

 Two models with .obj extension

 You will be asked to write a program similar to “Mviewer” in homework 1

and 2

 Many 3D shapes/data available online (but in various formats):

 Stanford 3D Scanning Repository:

http://graphics.stanford.edu/data/3Dscanrep/

 Aim@Shape Repository: http://shapes.aim-at-shape.net/index.php

 Google 3D warehouse

http://graphics.stanford.edu/data/3Dscanrep/
http://shapes.aim-at-shape.net/index.php

