Lecture 2 Triangle Mesh Representation and its Data Structure

Overview

- To study the storage and data structure of the widely used triangle mesh in representing 3D surfaces
 - triangle meshes can adaptively approximate the continuous surfaces using a finite number of vertices and triangles
 - a piecewise linear representation

Storage of Triangle Meshes: Polygon Soup

Triangle Set		
(x ₁₁ ,y ₁₁ ,z ₁₁)	(x_{12}, y_{12}, z_{12})	(x ₁₃ ,y ₁₃ ,z ₁₃)
(x_{21}, y_{21}, z_{21})	(x_{22}, y_{22}, z_{22})	(x_{23}, y_{23}, z_{23})
(x_{31}, y_{31}, z_{31})	(x_{32}, y_{32}, z_{32})	(x_{33}, y_{33}, z_{33})

Pros and Cons:

- ✓ Efficient rendering
- □ No connectivity info stored
- □ Inefficient for many geometric computing: e.g. traversing local adjacency information
- □ Vertex positions replicated as many times as the degree of the vertices

Polygon (Triangle) Soup: A collection of unorganized triangles □Example: the Stereolithography (STL) Format (widely used in computer-aided design/manufacturing software) is a type of polygon soup

Storage Cost:

If using x (e.g., 32-bits or 4 bytes) bits to represent a vertex coordinate (float)
Then each triangle needs 3*3*4 = 36 bytes
A mesh with n triangles needs 36n bytes

Storage of Triangle Meshes: Indexed Vertex Tables

Vertex table		Fa	
V_1	(x_1, y_1, z_1)	F_1	
V ₂	(x_2, y_2, z_2)	F_2	
V ₃	(x_3, y_3, z_3)	F ₃	
V_4	(x_4, y_4, z_4)		
V_5	(x_5, y_5, z_5)		

	Face table	
F_1	V_1, V_3, V_2	
F ₂	V ₁ ,V ₄ ,V ₃	
F ₃	V_{5}, V_{1}, V_{2}	

Using a an indexed vertex table, then a face table Examples: OFF, OBJ, VRML, M formats

Storage Cost:

If using x (e.g., 32-bits or 4 bytes) bits to represent a vertex coordinate (float), and x bits to represent a vertex index (int)
 Then each vertex needs 3*4=12 bytes, and each

triangle needs 3*4 = 12 bytes

A mesh with n triangles needs 12n+n/2*12 = 18n bytes

Pros and Cons:

- ✓ Efficient storage and rendering
- □ Inefficient for local traversal

Mesh Representation in Memory for Efficient Computation in CG Tasks

What operators do we usually need?

- Access to individual elements (vertices edges, and faces): enumeration of all elements
- ➤ Local traversal, e.g.:
 - \Box What are the edges in a given face;
 - \Box What are the vertices in a given face or edge;
 - \Box What are the one-ring primitives of a geometric primitive
 - □ E.g. incident faces/edges/vertices of a given vertex
 - \Box E.g. incident faces of a given edge
- > Example: Modifying the last page's data structure for local traversal
 - □ For each face: store references to its 3 vertices + neighboring triangle
 - □ For each vertex: store 3 coordinates + a reference to its neighboring triangle
 - Used in CGAL for representing 2D Triangulation, 32 bytes / triangle
 CGAL = an open-source computational geometry algorithm libra Google "CGAL"
 - Limitations:
 - □ But enumerating the one-ring vertices of a vertex is not easy
 - □ Not easily extendable to general/mixed polygonal meshes

Vertex	
Point	position
FaceRef	face
Face	
race	
VertexRef	vertex[3]

Edge-based Data Structure

- A more generally used data structure, since the connectivity is a graph, directly relates to the mesh edges
- Many well known methods: winged-edge [Baumgart 72], quad-edge [Guibas and Stolfi 85], and variants [O'Rourke 94]
- *An example: Winged-edge structure
 - Each edge: stores references to its endpoint vertices + two incident faces + next and previous edge within the left and right faces
 - Each vertex: stores a reference to one of its incident edges
 - Each face: stores a reference to one of its incident edges
 - **Storage Cost**: A mesh with **n** faces needs 60n bytes
- Limitations: Still not easy for some local traversal
 - e.g. to traverse the one-ring of a vertex, how do you know if it is the first or second vertex of an edge?

Vertex		Edge	
Point EdgeRef	position edge	VertexRef FaceRef	<pre>vertex[2] face[2]</pre>
Face		EdgeRef EdgeRef	<pre>next[2] prev[2]</pre>
EdgeRef	edge		

Half-Edge Data Structure

- (What?) A common way to represent triangular mesh for geometric processing
 - We first focus on triangle-mesh, (it works for general polygonal mesh).
 - 3D analogy: half-face data structure for tetrahedral mesh
- (Why?) Effective for maintaining incidence information of vertices
 - Efficient local traversal
 - Relatively low spatial cost
 - Supporting dynamic local updates/manipulations (edge collapse, vertex split, etc.)
- (Resources?) Codes are provided. After this class, please go through them carefully, we will work on it during the whole semester.

Half-Edge Data Structure (cont.)

Consider each edge by splitting it into two halfedges
 Primitives: Face, Edge, Halfedge, Vertex
 Store all adjacency information between primitives on halfedges
 Each edge has 2 halfedges (the boundary edge has only 1)

Half-Edge Data Structure (cont.)

Halfedges are oriented consistently in counterclockwise order around each face
 Each halfedge designates a unique corner on each face (can be used to store texture coordinates, later in texture mapping)

- On each halfedge, we store:
 - the vertex it points to (its target);
 - the face this halfedge locates;
 - the next halfedge on the face;
 - the previous halfedge on the face;
 - *(1) its twin halfedge;
- For each vertex: store one of its incident incoming halfedges
- For each face: store one of its halfedges
- *(2) for each edge: store its two halfedges
- $\square^{*(1)}$ and $^{*(2)}$: keep either one and we can get the other easily

Storage Costs:

- A mesh with **n** triangles needs ?? Bytes
- □Hint: # of halfedges H is about 6 times of V

Half-Edge Structure Implementation

Read through the provided source codes for the implementation of halfedge data structure:

- Check Halfedge.h, each halfedge class stores:
 - \rightarrow target(): the target vertex;
 - \rightarrow face(): adjacent face;
 - \rightarrow next(): the next halfedge on the face;
 - \rightarrow prev(): the previous halfedge in the face;
 - And you can use some other implmentation:
 - \rightarrow twin(): its twin halfedge;
 - \rightarrow source(): the source vertex;
- Check Edge.h, Vertex.h, Face.h, and finally Mesh.h

Half-Edge Data Structure (example)

1). In Mesh.h, four containers used to store primitives:

The Vertex Container*	v1 v6
The Half-Edge Container	[v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4],
The Edge Container	$[v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], \dots$
The Face Container	f1[v1,v2,v3] f5[v4,v3,v6]

 $[v_1, v_2]$ means: a halfedge from v_1 to v_2

Halfedges: $[v_1, v_2] \neq [v_2, v_1]$

The orientation of all the halfedges should be consistent: CounterClockWise (CCW) in our configuration

Note*: the container could be array, list, binary search tree... (it depends, our sample codes used list)

Half-Edge Data Structure (example)

1). Containers store primitives:

The Vertex Container*	v1 v6
The Half-Edge Container	[v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4],
The Edge Container	$[v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], \dots$
The Face Container	f1[v1,v2,v3] f5[v4,v3,v6]

2). Relationship between primitives:

Using Half-Edge Data Structure

- 1. How to check whether a vertex/edge/face is on the boundary?
- 2. How to track the boundary?
- 3. How to find your one-ring neighbor?
- 4. How to do subdivision/simplification...?

Using Half-Edge Data Structure – Local Rotations

□ Rotation Operations defined on halfedge :
1. clw_rotate_about_target(): e.g. [v4, v3] to [v6, v3] he→next()→twin()
2. clw_rotate_about_source(): e.g. [v3, v2] to [v3, v1] he → twin() → next() ?
3. ccw_rotate_about_target(): e.g. [v6, v3] to [v4,v3] he → twin() → prev() ?
4. ccw_rotate_about_source(): e.g. [v3, v1] to [v3, v2] he→prev()→twin()

□ Rotation Operations defined on boundary vertices:
1. most_clw_in_halfedge(): e.g. for v4, it is [v2, v4] Let he = v →he(), then keep doing clw rotation about its target
2. most_ccw_in_halfedge(): e.g. for v4, it is [v6, v4] Let he = v →he(), then keep doing ccw rotation about its target
3. most_clw_out_halfedge(): e.g. for v4, it is [v4, v1]
4. most_ccw_out_halfedge(): e.g. for v4, it is [v4, v1]
> What about interior vertices?
→ Not well defined. Return any in/out halfedge

Using Half-Edge Data Structure

Mesh subdivision/simplification...?

Subdivision (refining)

Simplification (coarsening)

Half-Edge Data Structure (cont.)

- 1) Read "iterators.h" to see how you can do local traversal
- 2) Read "mesh.h", to see how you can get access to primitives
- 3) *Go through "mesh→read()" method, to see how the halfedge data structure is constructed from indexed vertex-face table.

Some 3D Models in Polygonal Meshes

□ "m" format

- □ Some models (with ".mesh" or ".m" as extension)
- □ A small openGL viewer "MViewer.exe" (you can drag your downloaded ".m" file into it directly)
- □ "obj" format
 - □ Two models with .obj extension
 - You will be asked to write a program similar to "Mviewer" in homework 1 and 2
- □ Many 3D shapes/data available online (but in various formats):
 - □ Stanford 3D Scanning Repository:
 - http://graphics.stanford.edu/data/3Dscanrep/
 - □ Aim@Shape Repository: <u>http://shapes.aim-at-shape.net/index.php</u>
 - Google 3D warehouse