
Lecture 2

Triangle Mesh Representation

and its Data Structure

Overview

 To study the storage and data structure of the

widely used triangle mesh in representing 3D

surfaces

 triangle meshes can adaptively approximate the

continuous surfaces using a finite number of vertices and

triangles

 a piecewise linear representation

6

Storage of Triangle Meshes:

Polygon Soup

Polygon (Triangle) Soup: A collection of

unorganized triangles

Example: the Stereolithography (STL) Format

(widely used in computer-aided

design/manufacturing software) is a type of

polygon soup

Triangle Set

(x11,y11,z11) (x12,y12,z12) (x13,y13,z13)

(x21,y21,z21) (x22,y22,z22) (x23,y23,z23)

(x31,y31,z31) (x32,y32,z32) (x33,y33,z33)

Storage Cost:

If using x (e.g., 32-bits or 4 bytes) bits to

represent a vertex coordinate (float)

Then each triangle needs 3*3*4 = 36 bytes

A mesh with n triangles needs 36n bytes

Pros and Cons:

 Efficient rendering

 No connectivity info stored

 Inefficient for many geometric computing: e.g. traversing local adjacency information

 Vertex positions replicated as many times as the degree of the vertices

7

Storage of Triangle Meshes:

Indexed Vertex Tables

Vertex table

V1 (x1,y1,z1)

V2 (x2,y2,z2)

V3 (x3,y3,z3)

V4 (x4,y4,z4)

V5 (x5,y5,z5)

Face table

F1 V1,V3,V2

F2 V1,V4,V3

F3 V5,V1,V2

Using a an indexed vertex table, then a face table

Examples: OFF, OBJ, VRML, M formats

Storage Cost:

If using x (e.g., 32-bits or 4 bytes) bits to

represent a vertex coordinate (float), and x bits

to represent a vertex index (int)

Then each vertex needs 3*4=12 bytes, and each

triangle needs 3*4 = 12 bytes

A mesh with n triangles needs 12n+n/2*12 =

18n bytes

Pros and Cons:

 Efficient storage and rendering

 Inefficient for local traversal

8

Mesh Representation in Memory for

Efficient Computation in CG Tasks

What operators do we usually need?

 Access to individual elements (vertices edges, and faces): enumeration of all

elements

 Local traversal, e.g.:

What are the edges in a given face;

What are the vertices in a given face or edge;

What are the one-ring primitives of a geometric primitive

E.g. incident faces/edges/vertices of a given vertex

E.g. incident faces of a given edge

 Example: Modifying the last page’s data structure for local traversal

 For each face: store references to its 3 vertices + neighboring triangles

 For each vertex: store 3 coordinates + a reference to its neighboring

triangle

Used in CGAL for representing 2D Triangulation, 32 bytes / triangle

CGAL = an open-source computational geometry algorithm library;

Google “CGAL”

Limitations:

But enumerating the one-ring vertices of a vertex is not easy

Not easily extendable to general/mixed polygonal meshes

Edge-based Data Structure

 A more generally used data structure, since the connectivity is a graph,
directly relates to the mesh edges

 Many well known methods: winged-edge [Baumgart 72], quad-edge
[Guibas and Stolfi 85], and variants [O’Rourke 94]

 *An example: Winged-edge structure
 Each edge: stores references to its endpoint

vertices + two incident faces + next and
previous edge within the left and right faces

 Each vertex: stores a reference to one of its
incident edges

 Each face: stores a reference to one of its
incident edges

 Storage Cost: A mesh with n faces needs 60n bytes

 Limitations: Still not easy for some local
traversal

 e.g. to traverse the one-ring of a vertex, how do
you know if it is the first or second vertex of an
edge?

Half-Edge Data Structure

 (What?) A common way to represent triangular mesh for geometric

processing

 We first focus on triangle-mesh, (it works for general polygonal mesh).

 3D analogy: half-face data structure for tetrahedral mesh

 (Why?) Effective for maintaining incidence information of vertices

 Efficient local traversal

 Relatively low spatial cost

 Supporting dynamic local updates/manipulations (edge collapse, vertex

split, etc.)

 (Resources?) Codes are provided. After this class, please go through

them carefully, we will work on it during the whole semester.

Half-Edge Data Structure (cont.)

Consider each edge by splitting it into two halfedges

Primitives: Face, Edge, Halfedge, Vertex

Store all adjacency information between primitives on halfedges

Each edge has 2 halfedges (the boundary edge has only 1)

Half-Edge Data Structure (cont.)

Halfedges are oriented consistently in counterclockwise order around each face

Each halfedge designates a unique corner on each face (can be used to store texture

coordinates, later in texture mapping)

• On each halfedge, we store:

• the vertex it points to (its target);

• the face this halfedge locates;

• the next halfedge on the face;

• the previous halfedge on the face;

• *(1) its twin halfedge;

• For each vertex: store one of its incident incoming

halfedges

• For each face: store one of its halfedges

• *(2) for each edge: store its two halfedges


*(1) and *(2) : keep either one and we can get the other easily

Storage Costs:

A mesh with n triangles needs ?? Bytes

Hint: # of halfedges H is about 6 times of V

Half-Edge Structure Implementation

Read through the provided source codes for the

implementation of halfedge data structure:

• Check Halfedge.h, each halfedge class stores:

•  target(): the target vertex;

•  face(): adjacent face;

•  next(): the next halfedge on the face;

•  prev(): the previous halfedge in the face;

And you can use some other implmentation:

•  twin(): its twin halfedge;

•  source(): the source vertex;

• Check Edge.h, Vertex.h, Face.h, and finally Mesh.h

Half-Edge Data Structure (example)

1). In Mesh.h, four containers used to store primitives:

The Vertex Container* v1 … v6

The Half-Edge Container [v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4], …

The Edge Container [v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], …

The Face Container f1[v1,v2,v3] … f5[v4,v3,v6]

Note*: the container could be array, list, binary search tree…

(it depends, our sample codes used list)

Halfedges: 𝑣1, 𝑣2 ≠ [𝑣2, 𝑣1]

The orientation of all the halfedges should be consistent:

CounterClockWise (CCW) in our configuration

𝑣1, 𝑣2 means: a halfedge from 𝑣1 to 𝑣2

Half-Edge Data Structure (example)

1). Containers store primitives:

The Vertex Container* v1 … v6

The Half-Edge Container [v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4], …

The Edge Container [v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], …

The Face Container f1[v1,v2,v3] … f5[v4,v3,v6]

Face

Vertex

Edge

Half-Edge

2). Relationship between primitives:

Using Half-Edge Data Structure

1. How to check whether a vertex/edge/face is on the boundary?

2. How to track the boundary?

3. How to find your one-ring neighbor?

4. How to do subdivision/simplification…?

Face

Vertex

Edge

Half-Edge

Using Half-Edge Data Structure

– Local Rotations

 Rotation Operations defined on halfedge :

1. clw_rotate_about_target(): e.g. [v4, v3] to [v6, v3]

he→next()→twin()

2. clw_rotate_about_source(): e.g. [v3, v2] to [v3, v1]
he → twin() → next() ?

3. ccw_rotate_about_target(): e.g. [v6, v3] to [v4,v3]
he → twin() → prev() ?

4. ccw_rotate_about_source(): e.g. [v3, v1] to [v3, v2]

he→prev()→twin()

 Rotation Operations defined on boundary vertices:

1. most_clw_in_halfedge(): e.g. for v4, it is [v2, v4]
Let he = v →he(), then keep doing clw rotation about its target

2. most_ccw_in_halfedge(): e.g. for v4, it is [v6, v4]
Let he = v →he(), then keep doing ccw rotation about its target

3. most_clw_out_halfedge(): e.g. for v4, it is [v4, v1]

4. most_ccw_out_halfedge(): e.g. for v4, it is [v4, v1]

 What about interior vertices?

 Not well defined. Return any in/out halfedge

Using Half-Edge Data Structure

Mesh subdivision/simplification…?

Simplification (coarsening)

Subdivision (refining)

Half-Edge Data Structure (cont.)

1) Read “iterators.h” to see how you can do local

traversal

2) Read “mesh.h”, to see how you can get access

to primitives

3) *Go through “mesh→read()” method, to see

how the halfedge data structure is constructed

from indexed vertex-face table.

Some 3D Models in Polygonal Meshes

 “m” format

 Some models (with “.mesh” or “.m” as extension)

 A small openGL viewer “MViewer.exe” (you can drag your downloaded “.m”

file into it directly)

 “obj” format

 Two models with .obj extension

 You will be asked to write a program similar to “Mviewer” in homework 1

and 2

 Many 3D shapes/data available online (but in various formats):

 Stanford 3D Scanning Repository:

http://graphics.stanford.edu/data/3Dscanrep/

 Aim@Shape Repository: http://shapes.aim-at-shape.net/index.php

 Google 3D warehouse

http://graphics.stanford.edu/data/3Dscanrep/
http://shapes.aim-at-shape.net/index.php

