Introduction to Computer Graphics: Geometric Processing and Modeling

Instructor:	Prof. Xin Li <u>xinli@lsu.com</u> <u>xinli_xmu@163.com</u>									
Lectures:	Mon:	10:10 – 11:50am	@海韵教学楼 207							
Labs:	Wed:	2:30 – 5:25pm	@ 海韵实验楼 305							

Course Synopsis

- What is this course about?
 - Concepts, algorithms, programming in 3D Graphics and Geometric Modeling
 - About representing, rendering, analyzing, and manipulating 3D shapes and scenes
- Topics:
 - Basic Computer Graphics pipeline
 - Basic OpenGL programming for 3D Graphics
 - Basic Geometric Computing for 3D Computer Graphics
 - Modeling (representing + analyzing) 3D Shapes and their applications

Workload

Reading

- No required textbook
- Please follow the lecture and course slides closely
- Learn OpenGL following the online tutorial
- Do necessary research and online search to solve problems in your homework implementation

Programming

- 4 programming homework projects
- You are expected to finish the homework by every Wednesday

Grading

- Homework (100%)
 - Homework 1 (20%)
 - Homework 2 (20%)
 - Homework 3 (30%)
 - Homework 4 (30%)

Prerequisites and Requirements

- Basic linear algebra, calculus
- C/C++ programming background
 - Some starter codes will be provided in C++ for homework projects
- Self-learning:
 - Objective Oriented Programming in C/C++ (to understand homework starter codes)
 - OpenGL Programming

Be comfortable in read/writing C++ codes such as the following:

```
class TriangleMesh {
public:
```

};

struct Point { double x, y, z;};
struct Face { int pt_ids[3]; };

```
TriangleMesh(void){}
~TriangleMesh(void){}
```

void loadMesh(char *filename);

Point * vertexList; Face * faceList; Codes often written in Object-Oriented Programming style

Be comfortable in read/writing C++ codes such as the following:

#include <vector>
class TriangleMesh{
public:
 struct Point { double x, y, z;};

};

struct Form { double x, y, 2,} struct Face { int pt_ids[3]; };

TriangleMesh (void){}

~ TriangleMesh (void){}

void loadMesh(char *filename);

std::vector<Point> vertexList; std::vector<Face> faceList; Sometimes you will see codes written using Standard Template Library (STL)

What is Computer Graphics?

The creation of, manipulation of, analysis of, and interaction with pictorial representations of objects and data using computers. -- Dictionary of Computing

A picture is worth a thousand words.

It looks like a swirl. There are smaller swirls at the edges. It has different shades of red at the outside, and is mostly green at the inside. The smaller swirls have purple highlights. The green has also different shades. Each small swirl is composed of even smaller ones. The swirls go clockwise. Inside the object, there are also red highlights. Those have different shades of red also. The green shades vary in a fan, while the purple ones are more uni-color. The green shades get darker towards the outside of the fan ...

Why Computer Graphics?

CG techniques utilized in various scientific, engineering, and entertainment tasks:

- CAD/CAGD/CAM: to digitize the world + simulate the scientific phenomena and engineering manufacturing
- ❑ Visualization: CG has become the dominant form of computer output → help better display/analyse scientific phenomena/discoveries
- 3D Computer Vision and AI: teach computer to understand captured images/videos better

And many more...

Movies

- CG has been changing Special Effects in the Movie Industry (Billions of dollars spent)
- Physically based animation makes them realistic

Video Games

- Important driving force
- Realistic rendering + interactive animations
- Try to avoid heavy computation and use various CG tricks

Somatosensory Video Games

Microsoft XBox360 Kinect games

Computer Aided Design/Manufacturing

Significant impacts on the design process:

- Mechanical, electronic design (executed entirely on computer environments)
- Architectural & product design (being migrated to computer environments)

Interactive design/visualization \rightarrow assist modeling

Simulating their behavior in the virtual environment

Scientific Simulation for Education

Scientific Visualization for Discovery

- Scientific data representation
- Picture vs. stream of numbers
- CG Techniques for visualization → contour plots, color en-coding, constant value surface rendering, custom shapes...

Predicted molecular structures

Display of a 2D slice through the total electron density of C-60; Created by Cary Sandvig of SGI

Social Media Visualization

Computer-assisted Medicine

- Aid in clinical analysis/diagnosis
- Virtual medical training and educations

Computer-assisted Medicine

3D Body Scanning and Posture/Motion Analysis

Real-time Human Body Scan

Reconstructed Digital Model

Scanning system developed by LSU GVC group and used in Baton Rouge Pennington Biomedical Research Center.

Digital body shape measurement for diabetes disease monitoring and analysis.

Navigation, Urban Security...

Google Earth

Navigation, Urban Security...

Simulate/visualize/predict the propagation of airborne contaminants in virtual Manhattan

Virtual/Mixed Reality

 Computer-aided Virtual Environment (CAVE)

Virtual/Mixed Reality

- CAVE, Interactive modeling
- Virtual walkthroughs (training pilots, surgeons...)

From Computer Desktop Encyclopedia Reproduced with permission. © 1997 Fakespace Systems Inc.

Textile/Cosmetics Industry

- Virtual fashion design
- Real-time cloth animation
- Web-based virtual tryon applications

Computer Art

• Digital Painting, Digital Sculpting, Digital Calligraphy

And more ...

3D Graphics Pipeline

25

. . .

Acquiring 3D Digital Models

- Manual Design
 - interactive design and editing (AutoCad,3DMax)
 - sketch-based modeling
- Mathematical Description
- Scanning

Acquiring 3D Digital Models

- Manual Design
- Mathematical Description
- Scanning
 - By camera: image based reconstruction
 - By laser scanner: with depth

Representation of 3D Objects

- A brief overview of common 3D representation techniques
- Polygonal Representation
- Space Subdivision Technique
- Spline Function
- Implicit Function Representation
- M-Representation (Medial Axis)
- Other Methods
 - Constructive Solid Geometry (CSG) Representation
 - GC (Generalized Cones, Generalized Cylinders)
 - Spatial Decomposition (Spherical harmonics, Zernike...)
 - Overlapping Spheres

• ...

Representation of 3D Objects

A brief overview of representation techniques we will go over this semester

How do we choose a suitable representation?

- the nature of the object
- the particular geometric computation we need to apply
- □ the application

→ will explain later with details through each individual representation scheme and its suitable applications

Polygonal (Triangular) Mesh

- Objects ← a mesh of planar triangular (polygonal) facets
 - can represent an object to different accuracy levels

- Pro: A ubiquitous representation in Computer Graphics
 - Easy to generate and process
 - With effective algorithm for rendering (machine-oriented rep.)
 - Other rep. (CSG, splines, voxels...) \rightarrow mesh for rendering
- Con: accuracy, often unstructural
 - Faceted rep. VS curved surfaces: different continuity condition
 - Constructing methods matter \rightarrow mesh quality

Triangular Mesh

Surface shapes can be triangulated

Polygonal approximation of surfaces:

2D shape or 3D surface can be approximated with locally linear polygons. To improve accuracy (visual or numerical approximation quality), we only need to increase the number of edges

Tetrahedral Mesh

• Solid shapes can be tetrahedralized

Polyhedra approximation of solid geometric data

3D volumetric data (3-manifold) can be approximated with locally linear polyhedra. To improve accuracy (visual or numerical approximation quality), we only need to increase the number of edges

Polygonal Mesh

- Quad-Mesh
- Triangle Mesh
- A Mesh = {Vertex Positions, Connectivity, Additional Attributes}

Vertex	1 (0.6	036	570	07	2	Ο.	461	131	59	89	5	Ο.	070)38	05	983	1	
Vertex	2 (0.6	024	590	13	5	Ο.	475	508	90	13	6	Ο.	071	.34	50	983	2	
Vertex	3 (0.6	083	189	84	5	Ο.	488	388	99	92	2	Ο.	077	'35	79	031	2	
Vertex	4 (0.6	116	340	16	0	. 5	039	942	01	28	0	. 0	809	985	20	339	I	
Vertex	5 (0.6	236	299	87	2	Ο.	509	972	90	27	7	Ο.	094	12	53	006	5	
Vertex	6 (0.6	335	800	29	0	. 5	194	160	02	24	0	. 1	063	394	00	04		
Vertex	7 (0.6	350	849	86	7	Ο.	527	720	89	83	9	Ο.	110	85	80	008		
Vertex	8 (0.6	459	569	93	1	Ο.	530)80	39	78	4	Ο.	124	176	10	003		
Vertex	9 (0.6	456	980	10	9	Ο.	544	166	19	98	7	Ο.	132	242	90	037		
Vertex	10	Ο.	656	657	99	38	0	. 54	120	47	02	38	0	.14	65	27	007	2	
Vertex	11	Ο.	662	971	01	97	0	. 54	443	32	98	11	0	.15	586	65	001	4	
Vertex	12	Ο.	671	701	01	4	Ο.	541	138	30	28	0	. 1	747	25	99	45		
Vertex	13	Ο.	674	642	02	64	0	. 54	151	53	97	55	0	.18	851	66	001	3	
Vertex	14	Ο.	682	568	01	37	0	. 54	124	50	01	08	0	. 20	67	24	003		
Vertex	15	Ο.	688	479	00	63	0	. 54	114	11	99	59	0	. 23	314	35	999	3	
Vertex	16	Ο.	693	583	01	16	0	. 54	139	41	97	46	0	. 25	590	88	009	6	
Vertex	17	Ο.	698	175	01	31	0	. 54	125	44	00	73	0	. 28	317	02	995	3	
Vertex	18	Ο.	702	636	00	35	0	. 53	316	51	97	37	0	. 29	960	68	996	2	
Vertex	19	Ο.	705	850	00	51	0	. 52	267	26	00	75	0	. 30	85	48	003	4	
Vertex	20	Ο.	709	549	00	98	0	. 53	337	79	02	51	0	. 32	253	61	996	9	
Vertex	21	Ο.	710	446	00	01	0	. 53	344	94	99	61	0	. 32	296	00	989	8	
Vertex	22	Ο.	715	843	97	55	0	. 52	286	11	00	44	0	.34	63	56	004	5	
Vertex	23	Ο.	723	783	01	62	0	. 51	44	05	01	21	0	.36	689	01	014	3	
Vertex	24	Ο.	728	240	01	31	0	. 50)28	94	99	76	0	. 38	327	37	994	2	

Polygonal Mesh

- Quad-Mesh
- Triangle Mesh
- A Mesh = {Vertex Positions, Connectivity, Additional Attributes}

Vertex Normal, Edge length, face area, any scalar/vector fields...

Vertex 1 123.472 75.6855 171.207 {rgb=(0.0207186 0.0137227 0.0205335) normal= Vertex 2 129.905 75.6904 169.427 {rgb=(0.0899862 0.0721164 0.0482489) normal= 135.957 75.6998 168.927 {rgb=(0.117921 0.0953541 0.0583396) normal=(-Vertex 3 138.285 75.7013 168.438 {rgb=(0.110971 0.0836528 0.0614068) normal=(-Vertex 4 Vertex 5 140.444 75.6976 166.931 {rgb=(0.102124 0.0731135 0.0495221) normal=(-123.505 76.1939 169.629 {rgb=(0.0622525 0.0450163 0.0267677) normal= Vertex 6 Vertex 7 125.371 76.192 169.316 {rgb=(0.172941 0.14031 0.111185) normal=(-0.07 Vertex 8 127.986 76.192 168.729 {rgb=(0.233185 0.19088 0.142915) normal=(-0.11 Vertex 9 131.737 76.2069 168.147 {rgb=(0.23693 0.191725 0.141712) normal=(-0.0507257 -0.894431 -0.44432) Vertex 10 136.328 76.1993 167.518 [rgb=(0.249965 0.209907 0.160202) normal=(-0.098178 -0.914369 -0.392798)] Vertex 11 140.936 76.2291 165.272 {rgb=(0.243799 0.201224 0.15178^g) normal=(-0.233659 -0.915351 -0.327925)} Vertex 12 142.15 76.1638 164.365 {rgb=(0.213539 0.175771 0.135716) normal=(-0.192717 -0.928922 -0.316173)} Vertex 13 145.563 76.1924 162.923 {rgb=(0.234091 0.189093 0.142723) normal=(-0.0974924 -0.936706 -0.336269)} Vertex 14 150.893 76.1359 162.13 {rgb=(0.233473 0.189348 0.145252) normal=(-0.0397114 -0.933055 -0.357534)} Vertex 15 151.397 76.1899 162.135 {rgb=(0.170212 0.132446 0.0934432) normal=(-0.0345978 -0.9314 -0.36235)} $152.895 76.2002 161.741 \{ rgb = (0.216202 0.174615 0.141327) normal = (-0.160623 - 0.883519 - 0.439993) \}$ Vertex 16

CSG Representation

- Polygonal Mesh \rightarrow machine-oriented representation
- CSG \rightarrow user-oriented representation
 - store the "logic of the shape"
- A CSG modeling system
 - = {building blocks, Boolean operations}

{union, subtract, intersect}

Widely used in 3DMax, Maya... as their modeling scheme:Support user-interventionGood for simple shapes

Space Subdivision Representation

- Not explicitly represents the geometric object
- But consider the space the object occupy

an octree rep.

- a hierarchical tree built by sequential subdivision of occupied cells
- Widely used for complicated scenes that need faster processing and lower accuracy
- e.g. Collision detection in realtime simulation or animation

Implicit Representation

- Usually Compact
- Good for modeling shapes with closed-form expression
- Good for processing with topological changes
 - Simulation

. . .

Reconstruction (Hole-filling)

Spline

- Exact analytical rep.
- Support interactive shape editing
- Compact rep.

M-Representation

Popular for animation, used in Maya, 3DMax

Models

- may still be represented as triangle meshes ,
- □ but their movement driven by M-rep

Consider vertices on the boundary surface (skin), their deformations are induced by the deformation of skeleton

- A skeleton is a 1-D graph, each node represents a joint
- □ The deformation of the skeleton → the transformation of joints

Resources

Reference books (optional) :

- 1. OpenGL Programming Guide (the Red Book) http://www.glprogramming.com/red/
- 2. 3D Computer Graphics by Alan Watt. Addison-Wesley.
- 3. Computer Graphics: Principles and Practice by James Foley, Andries van Dam, Steven Feiner, John

Hughes. Addison-Wesley.

To do research in CG:

What math is important for Computer Graphics? (by Greg Turk)