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@ To explore reliable and effective algorithms to help . (T’ P
geometric reassembly of the fragmented model. u s
v

@ Current Matching Algorithm

@ Poor effect for template based assembly problem.
< Sensitive to local noise.

@ Proposed Approach

@ Effective and robust in matching partial models to the
complete model.
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@ 3D Shape Descriptor:
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Local Point Signature. [G. Barequet and M. Sharir 1994], [F.Stein and G. Medioni 1992],
[Ruiz-Correa et al 2001]

Spin Image. [Johnson and Hebert 1999], [S. Belonie et al 2002]

Global Point Signature. [Raif M. Rustamov 2007], [Ovsjanikov M et al 2008]

@ Fragments Assembly:
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Assembling virtual pots from 3D measurements of their fragments. [Cooper et al 2001]
Bayesian Assembly of 3D Axially Symmetric Shapes from Fragments. [Willis and
Cooper 2004]

Feature-based Part Retrieval for Interactive 3D Reassembly. [Parikh et al 2007]

Skull Assembly and Completion using Template-based Surface Matching. [Wei et al
2011]

An Automatic Assembly and Completion Framework for Fragmented Skulls [Yin et al
2011]
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Backgrounds

Challenges

@ Subtle geometry.
@ Inconsistent scale and resolution.
@ Not exactly the same between fragments and template.
v

Desirable Signature

@ Multi-scale signature.
Scale-invariance and resolution-invariance signature.
Robust to noise.

Efficient to compute.

9
9
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@ Easy to compare and implement.
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Heat Kernel Shape Descriptor

M is a compact Riemannian manifold, and u(x, t) is the amount of heat at a point
x € M at time t. The heat propagation over M is governed by the heat diffusion
equation:

MY — _ Au(x, t)
{ u(?‘, 0) = f(x) )

For any M, there exists a function h¢(x,y) that
(1) = [ Pxy))ay. @

And the heat kernel has the following eigen-decomposition:

he(x,y) =D e M (x)di(y) ®)

i=0




Algorithm

Heat Kernel Signature

Heat kernel signature is a powerful descriptor that characterizes local and global
geometry of the surface patch centered at each point:

oo}

he(x) = > e Ma(x)?. @)

i=0

In the discrete setting, heat kernel signature can be computed from the eigen-values
and eigen-vectors of the mesh Laplace opertor.

(a) (b)

Figure : Each point has a unique heat diffusion curves. Different points have different signatures.
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Properties of HKS

Multi-scale P ty

Current state:
@ Local descriptor — can be easily affected by local noise and geometry disparity.

@ Global descriptor — could not tolerate the intrinsic difference between a
complete template and an incomplete fragment.

For the function hy(x,y):
@ A small t — reflects characteristic of a small neighborhood of x
@ Astincreases — its neighborhood grows to a bigger region.

()

Figure : The green point (a), considered in the fragment (red region) and in the whole model (cyan)

has the overlapped signature curves (b). B



Properties of HK

Scale-invariance Pr

Current state:

@ Fragments are scanned separately — the scales of these digital models are
usually inconsistent —» need to preprocess the original skulls — tedious,
error-prone, and could contaminate the original skull

A Scale-invariance descriptor

@ Based on a logarithmically sampled scale-space and Fourier transform modulus
(FTM), HKS can be modified to a scale invariant vision using the approach
proposed in [Bronstein, M.M. CVPR 2010].

) (c)

Figure : (a) shows one skull with two scaling, the right one is twice larger. (b) shows their HKS in
the same coordinate, and (c) shows the result of normalization.
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Properties of HK

Robustness P ty

Current state:
@ Scanned separately — different sampling and tessellations
@ Occlusions and low reflectance — Holes and local noise

A stable descriptor

@ Heat kernel signature is stable against local noise (e.g. small local geometric
perturbation) due to the nature of heat diffusion process on the manifold.

(a) ()

Figure : The green point on an incomplete skull (a) has a similar signature (b, the blue curve) to the
signature on the completed skull (b, the red curve).
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Algorithm Pipeline
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Fragmented Skull Assembling

@ In: A set of fragments s; and template t.

@ Out: A set of rigid transformations T; (applied on s;), so that the arrangement of
all fragments in world coordinates well approximates t.
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Step 1 - Feature Detection

@ In: A set of fragments s; and template t.
@ Out: Fragments and template with feature points.

Feature Extraction

@ Feature: A point with a local maximum or minimum heat kernel value.
@ Step k:

9 Range from 0 - 100 (Sampled following in the log scale)

@ A small k: Mainly encode local geometry.

@ A large k: Characterize more global geometry.

9 In our experiments, we usually use k = 60.

K

MY

Figure : The color indicates the heat value of the point, and features are extracted in different
scales. (a) k =0, (b) k = 60, (c) k = 100.
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Implement

Matching

@ In: HKS on fragments and template feature points.
@ Out: Correspondence from fragments to the template.

Sub-step 1: Initial Matching

The most possible many-to-many mapping
(evaluate the difference between two HKS)
is the coarse correspondence.
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Step 2 - Coarse Matching

Sub-step 2: Local Refinement

Given such a candidate matching graph, we need a filter to eliminate these wrong
matches.

We develop such a filtering scheme based on the RANSAC strategy to exact a most
isometric sub-set.

Figure : (a) is the superset of matches which includes many wrong matches and (b) is the final
matches sifted by the filter.
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Step 2 - Coarse Matching

Sub-step 3: Local Registration

After the correct matching is computed, we can compute the rigid transformation T; for
each fragment by solving an over-determined system:

P,Q a,
T;‘ pi i q)?
o g7

Figure : p; and q;: the feature point on
fragment and on template.
T;: the rigid transformation on fragment.

Figure : A coarse assembly example
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Implement

@ In: The assembled skull with damage regions, and a template.
@ Out: A repaired skull.

Global Position Optimization

We further refine the reassembly through an optimization of the least square
transformation error (LSTE) of break-curves.[Yin et al. ICCV 2011]

(@) (b) (©

Figure : (a) shows the reassembled skull after rough assembly; (b) shows the result after break
curve matching and assembly refinement; (c) is the final completed skull.
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Step 3 - Skull Completion

Skull completion

We use a template based and a symmetry based completion to fix the damaged
method.[Li et al. 2011]

< 9 l)
Figure : Use a non-rigid registration Figure : Symmetry detection on model
computation to map the template (cyan) with big missing regions (left) and a
to subject (white). completed skull (right)
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Experimental Results

NO. #A (K) #F Tiixs Tean Teom
1 37.2. 6 343.5. 6.3. 29.6.
2 438. 6 400.6. 6.1 37.2.

Figure : #A(K): the number of thousand triangles in the mesh; #F: number of fragments; Tyks:
the time of computing HKS in seconds; Tran: the time of RANSAC process with 500 iterations.
Tcom: the time of post-processing and skull completion. Experimental time is measured in seconds.
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Comparison Experiment

o= .
155 Verioh
[Yin et al ICCV2011] Proposed method

Figure : Comparison of our proposed reassembly and the algorithm of [Yin et al. ICCV 2011]. The
fragments (white) are assembled using the template (cyan), bottom left is the result of our previous
method and bottom right is the result of our method.
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Completion in Various Cases
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Figure : (sl - s3) are the fragmented skulls. (t1) and (t2) are the templates. The different coarse
reassembling results are shown in (a) - (d);
(e) - (h) show the results after the refinement guided by break curve matching.
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Conclusion

@ Shape Descriptor:

@ Use a multi-scale descriptor based on heat kernel for data reassembly.

@ Analyze its several desirable properties in geometric reassembly and in our task.
@ Skull Assembling:

@ Develop a robust and efficient partial matching algorithm based on this descriptor.
@ Integrate the developed methodologies into a three-step skull reassembly pipeline.
@ The new algorithm demonstrated to have better efficacy than existing techniques.
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Conclusion

@ The skull models are from LSU Forensic Anthropology and Computer
Enhancement Services (FACES) lab, provided by Warren Waggenspack from LSU
Mechanical Engineering Department.

@ This project is partially supported by Louisiana Board of Regents (LA-BOR)
Research Competitiveness Subprogram (RCS) LEQSF(2009-12)-RD-A-06,
LA-BOR PFund:NSF(2011)-PFund-236, and National Natural Science Foundation
of China No. 61170323.

@ We thank the anonymous reviewers for their constructive comments.
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