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2Department of Eletrial and Computer Engineering, Louisiana State University, USAAbstratWe develop a geometri reassembly algorithm that omposes a3D model from its fragments. One important appliation of thiswork is skull ompletion and modeling in arheology and foren-sis. Our reassembly algorithm employs a sale-spae represen-tation of shape based on the heat kernel, whih only depends onthe intrinsi geometry of the surfaes. Partial mathing an thenbe onduted e�etively. The entire assembly pipeline has threesteps: (1) fragment-template mathing based on heat-kernel; (2)mathing re�nement based on RANSAC and assembly ompu-tation; (3) assembly re�nement using least square transforma-tion error (LSTE) of break-urves. The main ontribution ofthis paper is presenting novel algorithms for the �rst two steps.Experimental results on sanned skull fragments demonstratethe e�ay and robustness of our algorithm.1 IntrodutionThis work studies geometri algorithms to reassemble frag-mented 3D pathes. Geometri reassembly algorithms anfailitate omputer-aided data aquisition and ompletionwhen the model is not only inomplete but even frag-mented. In this projet, our goal is to explore reliableand e�etive algorithms to help reompose exavated skullfragments, whih provide important information in arhe-ology and forensi law enforement. Anthropologists anreonstrut the fae geometry from the exavated skull af-ter they lean and omplete the skull. For example, inlaw enforement, suh faial reonstrution is an impor-tant tehnique to help identify the deeased (when otherID information is not available due to environmental ero-sion or human ativities) and has been demonstrated ef-fetive in many real ases [19℄. The faial reonstrution isperformed based on the statistial tissue depth and ranio-faial anatomy. Before the tissue an be model, ompletionof the skull needs to be done, sine it is very di�ult to di-retly ondut tissue and raniofaial struture reonstru-tion when the skull is fragmented or has large regions miss-ing. A geometri modeling and proessing system that anomplete the exavated skull reliably is therefore highly de-sirable and an greatly failitate subsequent tasks.With 3D sanning tehnologies, we an san skull datainto digital forms and use geometri proessing tehnolo-gies to repair the digital model. For the model that isin one piee and is just inomplete (e.g. it has holes andraks), many model ompletion algorithms proposed inmodeling/graphis literature [14, 18, 17℄ an be used. How-ever, if the model is fragmented, we need to �rst reassemblethese sub-piees together, whih is a hallenging and less-explored problem. Two general strategies ould be usedfor reassembly: we an rely on loal properties of thesefragment themselves, or we an use a omplete templatemodel for guidane.In skull reassembly, a di�ulty of using templates isthat the geometry of skull is subtle and the template willnot be exatly the same from the fragmented subjet skull,so the registration between themmight not be always au-rate (espeially when some fragment piees are small). On

the other hand, methods based on properties of fragmentsthemselves are also nontrivial sine some parts/piees maybe missing, di�erent fragment sans have di�erent sal-ings and samplings. In this work, we make use of both ofthese strategies to ahieve a robust reassembly. The over-all pipeline is illustrated in Fig. 1. The main ontributionsare two-folded.1. We adopt a multi-sale surfae desriptor based onthe heat kernel, whih has not been used for datareassembly before. We analyze its good properties inmathing partial models to the omplete model.2. We integrate the developed methodologies into athree-step skull reassembly pipeline, and demonstratethat it is espeially suitable for this task and is moree�etive and robust than existing tehniques.2 Bakground and Related Work2.1 Template Mathing and 3D Shape DesriptorTemplate-based approahes are suitable for reassemblingfragments whose sizes are not always big and whose bound-ary geometry is worn or partially damaged. When we usea template to guide the fragment reassembly, we need tosolve a partial mathing problem, whih seeks a good map-ping from a model F to a sub-region of another model M .E�etive geometri feature extration an greatly failitatethis partial mathing problem.A geometri desriptor is usually a funtion de�ned oneah point of a model to desribe loal or global harater-isti of this model. Loal surfae normals and urve urva-tures are popular loal desriptors in 3D objet mathing[29, 25℄. This kind of desriptors is typially very easy toompute and ompare. However, for a given point in theshape, there may be many points with the indistinguish-able desriptor value. Therefore, they are usually usedtogether with a voting sheme [1℄ or with an iterative align-ment sheme to improve the disrimination ability [28℄.Sine templates and fragments might have di�erentsizes and shapes, algorithms that are not sensitive to loalgeometri variane are desirable. One ommon strategy toderive point signatures is to summarize the shape distri-bution in the neighborhood of a point. For example, spinimages [12℄ and shape ontexts [3℄ are widely used pointsignatures that fall into this ategory. The spin image ata point is a 2D histogram of the ounts of 3D points ina surrounding region, established using the loal surfaenormal as a referene for invariane. This provides a dis-riminative loal shape desriptor: points with the similarspin-image desriptors indiate highly likely similar (or-responding) regions. However, for two shapes that are notexatly the same, spin images ould be too sensitive toloal di�erene and may not orretly �nd orrespondingfeature points.On the other hand, shape desriptors that apture theglobal geometri properties, suh as Global Point Signature(GPS) [26, 23℄ are also studied. Eigenvalues of the Laplae-Beltrami operator are used together with the orrespond-ing eigenfuntions to haraterize the shape of models.1



Figure 1: Fragmented Skull Completion Pipeline. First, extrat multi-sale features on the fragments (a) and the template; seond,perform HKS mathing to obtain a superset of potential mathes (b); then, use a RANSAC �ltering to orret the mathing ()and get the rigid transformations on eah fragment; then, perform a postproessing (d) to omplete the skull through a assemblyre�nement and model repair (hole �lling) and �nally obtain the ompleted skull (e).However, pure global signature is also not suitable for han-dling fragment-template mathing, beause a sub-piee isglobally di�erent from a omplete model and suh a de-sriptor may not be applied to partial mathing diretly.Based on heat di�usion proess, the heat kernel fun-tion aptures geometrial information around a point. Thedissipating time of heat provides a natural notion of saleto desribe the neighborhood of a point. Loal shape prop-erties an be haraterized when observing this funtionwithin a small time range, while more global shape proper-ties are enoded in a larger time range [30℄. Sine the heatkernel an apture surfae geometry in a multi sale way, itis a powerful tool for data representation [33℄. For instane,it is used for designing di�usion distane [16℄, isometry-invariant hierarhial segmentation [6℄, �nding isometrimathing [22℄[27℄, shape retrieval [21℄, and so forth.2.2 Fragments AssemblyAssembling 2D fragments has been explored in omputervision �elds [11, 15℄. Papaioannou and Karabassi [24℄ de-veloped a solution for assembly of 3D objets, whih usesa omplementary surfae mathing algorithm, in onjun-tion with faet boundary urve mathing to ompute thetransformations. But a preproessing is needed to ensurethe frature faes are nearly planar and they math eahother ompletely.Cooper et al. [5℄ proposed a framework of assem-bling 3D fragments mainly based on 3D measurement andmathing of break-urve, sherd normal, et. Willis etal. [35℄ then developed this approah by using Bayesianapproah to assemble pots based on urve mathing semi-automatially. Their experiments demonstrated theseframeworks work very well on pottery assembly. Curvesan also be mathed through an optimization algorithmssuh as [32℄ that minimize the least square estimation ofpoint patterns. Unlike assembly problems of objets whihare simple in struture (like pottery), skull assembly mayneed di�erent tehniques. Without the pre-assumptionon axially symmetri and ontour smoothness, skulls havesubtle faial geometry and details. On the other hand, un-like potteries who may have various distint shapes, humanskulls have similar global geometry, therefore, a templateskull (from similar ategory of raes and ages) an be usedto assist the assembly. Yin et al.[37℄ presented an assemblyand ompletion algorithm to �rst use a template skull toperform a rough assembly then perform assembly re�ne-ment based on break urve analysis in a redued searhingspae. However, limited by the disrimination power oftheir desriptor, a very good template is needed to ensurethe robustness of the reassembly.

3 Heat Kernel Shape DesriptorIn this setion, we brie�y reap the basi theory and prop-erties of the heat kernel desriptor; then disuss why suha desriptor is ideal for this reassembly task.3.1 Mathematial BakgroundLet M be a ompat Riemannian manifold and u(x, t) bethe amount of heat at a point x ∈ M at time t. Theheat propagation over M is governed by the heat di�usionequation:
{

∂u(x,t)
∂t

= −∆u(x, t)
u(x, 0) = f(x)where ∆ is the Laplae-Beltrami operator and f(x) is theinitial temperature de�ned on M . If M has boundaries,we additionally require u to satisfy the Dirihlet boundaryondition u(x, t) = 0 for all x ∈ ∂M at all t.Given the initial funtion f , the solution to this heatequation at time t an be omputed through the heat op-erator Ht:
u(x, t) = Htf. (1)For any M , there exists a funtion ht(x, y) [8℄ that

u(x, t) =

∫

M

ht(x, y)f(y)dy. (2)The ht(x, y) satisfying this equation is alled the heat ker-nel, and its value an be thought as the amount of heatthat is transferred from point x to point y during time t.For a ompat surfae M , the heat kernel has the followingeigen-deomposition [13℄:
ht(x, y) =

∞
∑

i=0

e
−λitΦi(x)Φi(y) (3)where λ0, λ1, ... are eigenvalues and Φ0,Φ1, ... are the orre-sponding eigenfuntions of the Laplae-Beltrami operator,whih satisfy ∆MΦi = λiΦi.The Heat Kernel Signature (HKS) [30℄ is a powerfuldesriptor that haraterizes loal and global geometry ofthe surfae path entered at eah point:

ht(x) =

∞
∑

i=0

e
−λitΦi(x)

2
. (4)The HKS inherits many good properties from heat ker-nel and is therefore e�etive in desribing shapes at di�er-ent sales and identifying geometri features. For a piee-wise linear surfae mesh, HKS an be omputered from theeigen-values and eigenvetors of the mesh Laplae opertor.This omputation is detailed in [30℄. We use the sparseeigen-solver in Matlab to ompute them.2



3.2 Properties of HKS for Geometri ReassemblyThe heat kernel and heat kernel signature are desirablefor the reassembly of fragmented objets. Spei�ally, forour fragmented skull assembly, we adopt it as a reliabledesriptor for partial mathing beause it is multi-sale,informative (disriminative), and stable.3.2.1 Multi-sale Property
Figure 2: Multi-sale Property. The green point (a), onsideredin the fragment (red region) and in the whole model (yan) hasthe overlapped signature urves (b).For small values of t, the funtion ht(x, y) is mainlydetermined by a small neighborhood of x; its neighbor-hood grows to a bigger region as t inreases. The multi-sale property of the heat kernel implies, in partiular,that for small t, ht(x, y) only re�ets loal harateristiof the shape around point x, while for large values of t,
ht(x, y) aptures the global struture of M from the viewof point x. This intuition an be formalized [10℄ as: (a)For any smooth and relatively ompat domain D ⊆ M ,
limt→0 h

D
t (x, y) = hM

t (x, y); and (b) if D1 ⊆ D2 ⊆ . . . ⊆
Dn, ∪Dn

Di
= M , then limn→∞ hDn

t (x, y) = hM
t (x, y) for any

t. The expliit relationship between time and the size ofdi�usion region is also disussed in [9℄. Suppose W t
x is theBrownian motion on M starting at point x, the heat ker-nel an be viewed as the transition density funtion of theBrownian motion, and is determined by the probability of

W t
x at time t (see [9, 20℄ for details).In our fragment-template mathing problem, a pureloal desriptor an be easily a�eted by loal noise andgeometry disparity, while a global desriptor ould not tol-erate the intrinsi di�erene between a omplete templateand an inomplete fragment. Therefore, due to HKS'smulti-sale property, unlike loal desriptors suh as spinimages[12℄ or global desriptors suh as GPS[23℄, the HKSallows us to perform multi-sale omparison between di�er-ent neighboring regions of points on the same shape. Fur-thermore, the HKS of points on di�erent shapes are om-mensurable, whih allows us to perform the partial math-ing and registration even when the template and subjetfragments have di�erent subtle loal geometries. Fig. 2shows an example of HKS of the orresponding points onthe template and the fragment.3.2.2 Informative PropertySkull models have subtle and detailed geometry, a desir-able shape desriptor needs to be disriminative. Di�erentpoints from di�erent skull loations have di�erent HKS sig-natures. More rigorously, let T : M → N be a surjetivemap between two Riemannian manifolds. If hM

t (x, y) =
hN
t (T (x), T (y)) for any x, y ∈ M and any t>0, then T isan isometry [30℄.The Varadhan's Lemma [10℄ indiates that for everypair of points x, y ∈ M , the geodesi distane d2(x, y) =

Figure 3: HKS are informative. Eah point has a unique heatdi�usion urves. Di�erent points have di�erent signatures.
−4 limt→0 t log h

M
t (x, y). The informative property im-plies that the heat equation ontains all of the informa-tion about the intrinsi shape geometry and hene fullyharaterizes the shape.HKS enodes the geometri information about theneighborhoods of a point x at various sales together. Thisproperty, together with the multi-sale property whih isdisussed earlier, make HKS a suitable disriminative de-sriptor (an example shown in Fig. 3) for our mathingpurpose .3.2.3 Saling-invariant HKS Mathing

Figure 4: Normalization for Saling Transformations. (a) showsone skull with two saling, the right one is twie larger. (b)shows their HKS in the same oordinate, and () shows theresult of normalization.We onsider the heat di�usion urve under a salingtransformation of an objet. Given a model M and itssaled surfae M ′ = βM , where β is the saling fator,following eq (4), the new eigenvalues and eigenfuntionswill satisfy λ′ = β2λ and φ′ = βφ. So we have the followingequation:
h
′

t(x) =
∞
∑

i=0

e
−λitβ

2

Φi(x)
2
β
2
. (5)This means HKS hanges under the saling transformation,relating the signature h′ at time t for M ′ with the β2 timesof the signature h at time β2t for M .Fragments are sanned separately, so the sales of thesedigital models are usually inonsistent. Without a saling-invariant desriptor and mathing sheme, we need to pre-proess the original skulls. A typial approah is plaingmarkers and measure their distanes, then using these dis-tanes to re-sale all digital fragment models into oherentsizes with respet to the template model. Suh approahis tedious, error-prone, and ould ontaminate the originalskull. So we want to seek for a geometri algorithm thatan handle partial mathing between models with inon-sistent saling.Bronstein and Kokkinos [4℄ suggested a preproessingto make HKS a sale invariant vision. It is based on alogarithmially sampled sale-spae in whih shape sal-ing orresponds, up to the multipliative onstant β, to ashift. And this shift is then undone by taking the disrete-time Fourier transform and Fourier transform modulus3



Figure 5: Signatures under Di�erent Resolutions. (a,b,) showsa skull with 35k, 20k, and 10k faes, respetively. Correspondingpoints in three skulls have very similar signature urves.
Figure 6: Robustness of HKS. The green point on an inom-plete skull (a) has a similar signature (b, the blue urve) to thesignature on the ompleted skull (b, the red urve).(FTM). We adopt this approah. Fig. 4 illustrates thesale-invariant property on skulls of di�erent saling afterthe preproessing.3.2.4 StabilityBeing sanned separately, di�erent fragments may not onlyhave di�erent saling, but also have di�erent sampling andtessellations. Holes and loal noise may exist due to olu-sions, low re�etane, or other reasons. Therefore, a de-sriptor tolerating sampling resolution and geometri noiseis desirable.On disrete surfaes, [30℄ uses the mesh Laplae op-erator [2℄ to estimate the Laplae-Beltrami operator andshows that HKS is insensitive to the meshing and resolu-tions. This helps us to make our mathing insensitive todi�erent resolutions, as shown in Fig. 5.Heat kernel is stable against loal noise (e.g. small loalgeometri perturbation) due to the nature of heat di�usionproess on the manifold. The heat kernel an be onsid-ered as a Brownian motion, whih means that ht(x, y) is aweighted average possibility over all paths to reah y from
x in time t [10℄. Suppose W t

x is the Brownian motion onmanifold M , if we slightly perturb a subregion M ′ ⊂ M ,only the paths passing through M ′ will get a�eted. Thesignature is therefore relatively stable. For a perturbationapplied on a point x, the variation of HKS on x is signi�-ant for small t, but this deays as t inreases. Fig. 6 showsan example of the robustness of HKS.4 Skull Assembly PipelineGiven a set of fragments {Fi} (Fig. 7(a)), we shall om-pute transformations {Ti} that transform these fragmentsto align with a given template M . Transformed fragments
{Ti(Fi)} will then roughly reassemble the original geom-

Figure 7: Coarse Assembly. (a) shows the skull fragments (S2);(b) shows the reassembled skull after Steps (1) and (2).
Figure 8: Multi-sale Feature Detetion. The olor indiates theheat value of the point, and features are extrated in di�erentsales. (a) k = 0, (b) k = 60, () k = 100.etry of the subjet skull (Fig. 7(b)). We all this stepoarse assembly. After the oarse assembly, we further re-�ne the assembly by analyzing and mathing break bound-ary urves of fragments. The pipeline has 3 steps.(1) Detet features by analyzing the heat �eld and heatdi�usion;(2) Extrat a superset of initial mathes by HKS, thenompute a smaller set of �nal mathes from theseandidates using RANSAC, then ompute the rigidtransformations;(3) Math the break urves, re�ne the assembled frag-ments, then omplete the skull.4.1 Feature DetetionOn two given shapes M (template) and F (fragment), we�rstly ompute heat di�usion on M . A point vi is alleda feature in sale k, if F k(vi) is the loal maximum orminimum within its 2-ring region [34℄, where F k(vi) meansthe heat value of vi in sale k.In our experiments, we ompute the HKS signatureurve for eah model by uniformly sampling 100 points inthe logarithmially sale over the time interval [tmin, tmax]with tmin = 0, tmax = 4 log 10

λ2
, where λ2 is the smallesteigenvalue and k is the step. For a small k, the detetedfeatures mainly enode loal geometry while they hara-terize geometry more globally for a larger k. Therefore,long protrusions suh as tooth tips an be extrated asloal extremals in a large-sale k.Fig. 8 shows the features deteted in di�erent sales.The features deteted in the sale k = 0 are easily a�etedby noise. As k inreases, the heat �eld beomes smoothergradually. The features deteted in di�erent sales an welldepit the shape information in a multi-sale sense. In ourexperiments, we found k = 60 to be a suitable threshold(sine HKS is not sensitive to the resolution, we found kvalues between 40 and 80 all provide relatively good andsimilar results).4



Figure 9: This �gure shows the omparison proess. (a) is thefragment and (b) is the template. () plots the HKS urves ofthe orresponding points on (a) and (b); (d) illustrates theirommon portion.4.2 Coarse MathingThe oarse mathing in step 2 of our assembly pipelineontains two sub-steps, whih will be disussed in the fol-lowing subsetions.4.2.1 Initial MathingOn both template M and fragments set F = {Fi}, where
Fi are the fragments piees, we �rst put all the featuresdeteted by HKS into andidate sets, denoted as P ⊆ Fand Q ⊆M , respetively.Then for eah point pi ∈ P , we searh for its orre-sponding features qi ∈ Q. We orrespond two points iftheir HKS urves math well. We use ΦF

pi to denote theheat di�usion urve pi on F and use ΦF
pi(k) to indiate theheat value in sale k.Unlike isometri mathing [34℄[22℄, orrespondingpoints in the fragment and template may have di�erentinitial HKS and di�erent di�usion time, therefore, simpledistane suh as ∑n

k=1 ||Φ
F
pi (k) − ΦM

qi (k)|| is not suitablefor our problem.We modify the mathing of HKS and develop di�er-ent metris at a given range of sales. Firstly, to makethe time t meaningful and stable for di�erent surfaes, wenormalize the HKS of every math into a same oordinatesystem, and ompare the ommon portion. We then eval-uate the quality of the math (pi, qi) by omputing thedi�erene between Φ(pi)
F and Φ(qi)

M in their ommondi�usion time:
E(pi,qi)(k) = ||Φ

F
pi (k)− ΦM

qi (k)||, (6)where E(p(i,),qi)
(k) is a funtion to evaluate the mathing

(pi, qi) and E(p(i,),qi)
(k) indiates the di�erene in sale

k. And �nally we use the variane D(E) to evaluate thedi�erene between two HKS so as to �nd the losest urveor the best math for a given point. Fig. 9 demonstratesthis proess.After the omputation of feature points and desrip-tors, we an build an initial mathing graph, orrelatingeah feature point on M and its n most similar matheson F . In our experiments, we set N = 5. We use suha onservative threshold (whih may leads to quite a fewfalse positives, but usually guarantee at least one reliablemathing), and we will re�ne this mathing in the nextsetion. Fig. 10(a) shows an example of the result of thisstep.

4.2.2 RANSAC Re�nementThe initial mathing provides a onservative many-to-many orrespondene, where the orret math for eahpoint is inluded but many inorret mathing are also in-volved. Given suh a andidate mathing graph (typially,4 out of 5 mathes are wrong), we need a �lter to eliminatethese wrong mathes.We develop suh a �ltering sheme based on theRANSAC strategy, whih is a lassial tehniques for pa-rameter estimation that an optimize the �tting of a fun-tional desription to presented data. Rather than usingas muh as possible of the data to obtain an initial solu-tion then attempting to eliminate the invalid data points,RANSAC uses a small initial data set and enlarges this setwith onsistent data when possible [7℄[36℄. Therefore, onlya small number of random guesses to �nd a andidate set isneeded to start the proess. Intuitively, although we ouldskip the initial mathing step disussed in the previous se-tion and enumerate all possible mathes between templateand fragments and evaluate all their validity, this will leadto an ine�ient proess with big time onsumption andpoor auray.By using HKS, the approximate features an be ob-tained on the template and fragment, it is the result ofthe global similarity of skulls. Tevs et al. [31℄ developed aRANSAC subgraph extration method. We ompute theEulidean distanes of every orret mathing here (whihis enough for our problem), and the aggregate of thesedistane errors, for a orret math, yields a Gaussian dis-tribution:
p(l1, ..., ln(i,j)|mi,j) =

1

σm(2π)m/2

m
∏

k=1

exp(
lk − l

(0)
k

2σ2
), (7)where lk denotes the atual distane observed and l
(0)
k theorret distane. Then, Bayes rule is employed to omputethe probability of math mi,j being orret. p(mi,j) is theprior probability of math, whih in our ase is given bythe desriptor mathing.

p(mi,j |l1, ..., ln(i,j)) =
p(l1, ..., ln(i,j)|mi,j)p(mi,j)
∑

i,j p(l1, ..., ln(i,j)p(mi,j))
(8)Based on the above disussion, we use a RANSAC ran-domized sampling algorithm, judged by the probability, toevaluate how well the mathes preserve the Eulidean dis-tane. The algorithm is formulated as follows. Fig. 10shows an example.In: fragment F , template T , the max iteration number k,and a mathing andidate super-set C;Out: the re�ned mathing set S;0) S = ∅;1) Selet 3mathes from C randomly (whih an be usedto solve a rigid transformation) and stored in temper-ate set D;2) Enumerate eah of the rest andidates in ci ∈ Cand evaluate whether for this math, eq 8 exeedsa threshold ǫ, if so, add this math ci into D;3) Chek whether the size of D is larger than the size of

S, if so, S ← D;4) D ← ∅; Go to step 1, unless the max iteration number
k is reahed.A threshold ǫ that is not too strit is usually desirable.In our experiments, we set k = 500 and we found ǫ = 90%always leads to good results.5



Figure 10: This �gure shows input and output of the RANSAC�lter, (a) is the superset of mathes whih inludes many wrongmathes and (b) is the �nal mathes sifted by the �lter.
Figure 11: Postproessing: assembly re�nement and skull om-pletion. (a) shows the reassembled skull (S2) after rough as-sembly; (b) shows the result after break urve mathing andassembly re�nement; () is the �nal ompleted skull.4.2.3 Loal RegistrationAfter the orret mathing is omputed, we an omputethe rigid transformation Ti for eah fragment by solvingan over-determined system:
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,where Ti is the rigid transformation on Fi. As long aswe have more than 3 pairs of orresponding features, wean solve the transformation and thus reassemble the frag-ments. Fig. 7(b) shows a oarse assembly example.4.3 Postproessing and Skull CompletionWith the help of template skull, the fragments are roughlyassembled after the above steps. However, suh a oarsereassembly may not be very aurate. Gaps or interse-tions between fragments may exist in the above assemblingresult. Sometimes this is due to the geometri di�erenebetween the (fragmented) subjet skull and the templateskull. We further re�ne the reassembly by analyzing theloal geometry of these fragments, using the method in-trodued in [37℄. The rough assembly result is re�nedthrough an optimization of the least square transforma-tion error (LSTE) of break-urves. Finally, when the re-assembly is �nished. The missing or damaged regions (e.g.holes) are repaired using the inherent symmetry [37℄ of theskull. Fig. 11 shows the re�ne and ompletion proess.5 Experimental ResultsIn our experiments, all the skulls are sanned and pro-vided by forensi anthropologists. We used our assemblyalgorithm to repair four sets (two male skulls s1, s2 andtwo female skulls s3, s4) of fragmented skulls. In pra-tie, a template M is seleted from an organized skulldatabase, in whih skulls are lassi�ed by the sex, rae,age, ranial form, and et. Given an inomplete subjet

Figure 13: (s1 - s3) are the fragmented skulls. (t1) and (t2)are the templates. The di�erent oarse reassembling results areshown in (a) - (d); (e) - (h) show the results after the re�nementguided by break urve mathing.

Figure 14: Comparison of our proposed reassembly and thealgorithm of [37℄. The fragments (a) are assembled using thetemplate (b). () is the result from [37℄ and (d) is the result ofour method.

Figure 15: Reassembly of Simulated Fraturing. (a1) and (b1)are fragments partitioned from the omplete models (a2) and(b2) respetively. (a3) and (b3) are reassembled skulls; (a4)and (b4) olor-enode the reassembly errors. The red indiateslarger deviation while the blue indiates smaller errors (Min =

0.0 and Max = 3% of the length of the bounding box).6



Figure 12: The Assembly of Skull s4. (a) shows the fragments of s4 and (b) is the template. (-f) show the mathing fromfragments to the template. (g) is the oarse reassembly result (before re�nement).Table 1: Runtime Table: The fragmented skulls to be ompletedand the template skulls are listed in the olumns Subjet andTemplate, respetively. #∆(K): the number of thousand trian-gles in the mesh; #F : number of fragments; THKS : the time ofomputing HKS in seonds; TRAN : the time of RANSAC pro-ess with 500 iterations. TCom: the time of post-proessing andskull ompletion. Experimental time is measured in seonds.Skulls Temp #∆(K) #F THKS TR TCom

S1 T1 35.1 4 328.2 6.9 27.8
S1 T2 35.1 4 341.6 7.2 28.1
S2 T1 37.2 5 321.9 7.3 28.4
S2 T2 37.2 5 333.7 7.5 29.0
S3 T1 52.4 6 492.3 6.2 40.3
S3 T2 52.4 6 489.1 6.3 38.8
S4 T1 43.8 6 400.6 6.1 36.3
S4 T2 43.8 6 402.2 6.2 37.9skull, anthropologists analyze their anthropometry fea-tures (lengths/ratios of distanes between features), pre-dit whih ategory this skull belongs to, and selet atemplate skull from the same ategory as the template.We perform our assembly algorithms on a 2.4GHz desktopwith 2GB RAM. The runtime table is given in Table. 1.The assembling results of the skulls s1, s2 are shown inFig. 1 (e) and Fig. 11 (), and the assembly of the femaleskull s3 is shown in Fig. 13 (d). Fig. 12 illustrates theassembly of skull s4,In Fig. 13, we show our experiments to reassemble frag-ments using di�erent templates. For s2, we use two tem-plates t1 and t2 for the mathing. Partial mathing againstdi�erent templates leads to slightly di�erent oarse assem-bly, but after the re�nement, the results are similar. Ourentire pipeline therefore is not very sensitive to the sele-tion of templates.Fig. 14 shows the omparison between our proposedmethod and the algorithm of [37℄. Due to relatively sig-ni�ant di�erene between the subjet skull and the tem-plate, the oarse assembly of [37℄ fails and an not be �xedsuessfully by the break urve mathing. In ontrast, ourproposed approah demonstrates better reliability againstthe not-similar template and suessfully reompose thesubjet skull.In the above experiments, we only have the sannedskull fragments without the ground truth omplete skull.

We are not able to quantitatively measure the assemblyerror. We also develop experiments to evaluate our algo-rithms by intentionally breaking our omplete skulls intopiees. We then reassemble these fragments and measurethe deviation between the result and the original model.The numerial errors illustrating this auray are plottedin Fig. 15. The reonstrution error is smaller than 3%.6 ConlusionWe introdue an geometri reassembly algorithm for frag-mented skull ompletion. We employ a multi-sale de-sriptor based on heat kernel and analyze the its severaldesirable properties in geometri reassembly and in ourtask. Then we develop a partial mathing algorithm basedon this desriptor. We integrate our developed algorithminto the skull assembly pipeline, whih mainly onsistsof three omponents: mathing omputation between thefragments and template, rough assembly omputation, andmathing re�nement. The new sheme improves the e�-ay of the �rst two steps, and our rough assembly resultstherefore outperform [37℄.A limitation of the urrent assembly algorithm is inhandling tiny fragmented piees. If a tiny fragment doesnot have enough salient geometri features, then its math-ing with template is di�ult and unreliable. Right now wegive up reassembling suh fragments and rely on the sub-sequent hole �lling algorithm to repair the orrespondingmissing region. Also, re�nement guided by the break urvemathing is sometimes not reliable if the boundary is wornor partially damaged. Currently after the re�nement ofeah fragment, if the mathing error of break urves withadjaent parts is bigger than a threshold, we skip the re-�nement on this fragment and restore the assembly sug-gested by the template-subjet mathing. We will explorea better re�nement strategy to deal with this issue.7 AknowledgementsThe skull models are from LSU Forensi Anthropologyand Computer Enhanement Servies (FACES) lab, pro-vided by Warren Waggenspak from LSU Mehanial En-gineering Department. This projet is partially supportedby Louisiana Board of Regents (LA-BOR) Researh Com-petitiveness Subprogram (RCS) LEQSF(2009-12)-RD-A-06, LA-BOR PFund:NSF(2011)-PFund-236, and NationalNatural Siene Foundation of China No. 61170323. We7
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