EE 7630: Detection and Estimation Theory

Homework Two (& Quiz Two), Spring of 2007

Dr. Hsiao-Chun Wu

Due at 5:40 pm, Wednesday, March 28, 2007

1. Let

$$r_i = a + n_i, i = 1, 2, \dots, N,$$

where r_i is the *i*th observation sample, a is the unknown nonrandom parameter to be estimated and n_i is the *i*th additive noise sample. We assume that n_i are each independent Gaussian variables, $N(0, \sigma_n)$.

- (a) Derive the *a priori* density function $f_{\vec{R}|A}(\vec{r}|a)$ in terms of σ_n , a and r_i .
- (b) Obtain the maximum-likelihood estimate $\hat{a}_{ml}(\vec{r})$ according to (a).
- (c) Is the estimate $\hat{a}_{ml}(\vec{r})$ in (b) biased or unbiased? Justify it.
- (d) Calculate the Cramer-Rao lower bound for all the unbiased estimates $\hat{a}(\vec{r})$.
- (e) We construct a different estimator from $\hat{a}_{ml}(\vec{r})$ in (b) such that

$$\hat{a'}(\vec{r}) \equiv r_1.$$

First justify whether $\hat{a}'(\vec{r})$ is unbiased or not. Is this estimator more efficient than the estimator $\hat{a}_{ml}(\vec{r})$ in (b)?

2. Let

$$r_i = a + n_i, i = 1, 2, \dots, N,$$

where r_i is the *i*th observation sample, a is the unknown parameter to be estimated and n_i is the *i*th additive noise sample. We assume that a is Gaussian, $N(0, \sigma_a)$, and that n_i are each independent Gaussian variables, $N(0, \sigma_n)$.

- (a) Derive the *a priori* density function $f_{\vec{R}|A}(\vec{r}|a)$ in terms of σ_n , σ_a , a and r_i .
- (b) Derive the *a posteriori* density function $f_{A|\vec{R}}(a|\vec{r})$ in terms of σ_n , σ_a , a and r_i .
- (c) Determine the maximum a posteriori estimate $\hat{a}_{MAP}(\vec{r})$.
- (d) Is the estimate $\hat{a}_{MAP}(\vec{r})$ in (c) biased or unbiased? Justify it.
- (e) Calculate the Cramer-Rao lower bound for all the unbiased estimates $\hat{a}(\vec{r})$.