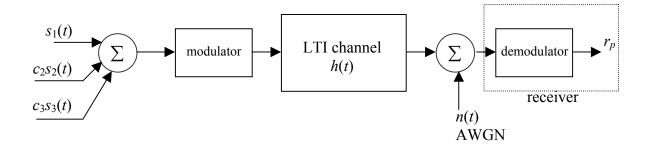
EE7000 Advanced Digital Signal Processing for Wireless Communications Homework 2

Due on March 10, 2003, by 11:40 am. (NO LATE SUBMISSION IS ALLOWED!)

1. A Multi-access BPSK communication system is depicted as below. n(t) is an additive



white Gaussian channel noise and the transmitted signal $s_k(t)$ is a BPSK rectangular pulse train such that

$$s_k(t) = \sum_{i=-\infty}^{\infty} m_{k,i} p(t-iT_b)$$
, where $m_{k,i} = \pm 1$ and $p(t) = \begin{cases} 1, & 0 \le t \le T_b \\ 0, & elsewhere \end{cases}$.

k=1,2,3 is the user index. The channel is assumed to be distortionless, i.e., $h(t) = \delta(t)$. We define two hypotheses here:

 H_0 : Hypothesis for the negative pulse to be sent by user 1.

H₁: Hypothesis for the positive pulse to be sent by user 1.

- (a) What are the a priori conditional probability density functions $f_{R|H_0}(r\,|\,H_0)$ and $f_{R|H_1}(r\,|\,H_1)$?
- (b) What is the probability density function of the observation, $f_R(r)$?
- (c) What are the a posteriori probability functions $Pr[H_0|r]$ and $Pr[H_1|r]$?
- 2. Show that r=0 is always a decision boundary for any combination of c_2 and c_3 .

$$\hat{m} = 1$$

- 3. According to a single decision rule r > 0, what is the error probability? $\hat{m} = -1$
- 4. If the channel is assumed to be a LTI system, i.e., $h(t) = \delta(t) + 0.7\delta(t-5.81T_b)$, redo the Problem 1 again.
- 5. According to the channel assumption in Problem 4, prove that r=0 is always a decision boundary for any combination of c_2 and c_3 .
- 6. According to the channel assumption in Problem 4, redo the Problem 3 again.
- 7. For a BPSK communication system, what is the relationship between the variance of minimum-mean-square-error (MMSE) channel estimator and the size of non-overlapping training sequence?
- 8. Apply Matlab simulation to verify the theoretical analysis in Problem 7.