The Transfer Function

A generalization of the frequency response
function

 The convolution sum description of an LTI
discrete-time system with an impulse
response h[n] is given by

y[n]= > h[k]x[n—K]

k=—o0
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The Transfer Function

 Taking the z-transforms of both sides we get

Y(2)= iy[n]f”z i ( ih[k]x[n—k]]z‘”
k

N=—c0 N=—00 \ K=—00

= i h[k][ ix[n—k]z_”]
k=—0

N=—o0

_ i h[k]( ix[z]z‘(“‘OJ

k=—c0 (=—00
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The Transfer Function

« Or, Y(2)= f: h[k]( ix[é]z“}z"‘
k=—c0 {=—00

| S
X(2)

e Therefore, Y(z):( ih[k]zk]X(z)
k=—o0
| S
H(z)

e Thus, Y(2) = H@2)X(2)
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e Hence,
H(z)=Y(2)/ X(2)
 The function H(z), which is the z-transform of
the impulse response h[n] of the LTI system,

is called the transfer function or the system
function

 The inverse z-transform of the transfer
function H(z) yields the impulse response h[n]
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The Transfer Function

 Consider an LTI discrete-time system
characterized by a difference equation

Zﬁ':odky[n -k]= ZE’LO pX[n—k]

* |ts transfer function is obtained by taking
the z-transform of both sides of the above
equation M _

e« Thus H(z)= zk,\foipkz_k

2 k—odkZ
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 Or, equivalently as
M M —k
z

N N—k
zk=odkz
» An alternate form of the transfer function is
given by

po [Te@a-&2™h
do TTr @Az
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The Transfer Function

* Or, equivalently as "

H(z) = Po 0w a2 =20

do Hk:]_(z _ﬂ*k)

* &, &,...,E are the finite zeros, and
gy Agses Ay ATE the finite poles of H(z)
If N > M, there are additional (N — M) zeros
atz=0
If N < M, there are additional (M — N) poles
atz=0
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The Transfer Function
 For a causal IIR digital filter, the impulse
response is a causal sequence
e The ROC of the causal transfer function

H(Z)ZEZW—M)M

do Tz - A0
is thus exterior to a circle going through the
pole furthest from the origin

* Thus the ROC is given by |z|> ml?x\xk\
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» Example - Consider the M-point moving-
average FIR filter with an impulse response

h{n] = /M, 0<n<M -1
1 0 otherwise
« Its transfer function is then given by
M-1 _ M M _
H(z)=iZz‘”— 1-z 2 =il

M2 M-z MM (z-1)]
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The Transfer Function

* The transfer function has M zeros on the
unit circle at z =e12®/M g<k <M -1

e There are M —1 poles at z = 0 and a single

poleatz=1 M=8
e Thepoleatz=1 1T
exactly cancels the R \
zeroatz=1 N v
. . =05 \
 The ROC istheentire | . &
z-plane exceptz =0 B I AT

Real Part
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» Example - A causal LTI IIR digital filter is
described by a constant coefficient
difference equation given by

y[n]=x[n-1]-1.2x[n—2]+ x[n—3]+1.3y[n-1]
—1.04y[n-2]+0.222y[n-3]
« |ts transfer function is therefore given by
7 il e
1-1.3z71+1.04272-0.222773
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The Transfer Function
o Alternate forms:
2
H(2) = z¢-12z+1

73-1.322+1.042-0.222
_ (z-06+j0.8)(z—0.6-j0.8)
(z-0.3)(z-0.5+ j0.7)(z-0.5-j0.7)

TR
* Note: Poles farthest from : l/ N
z=0have amagnitude """ =1

L4 ROC ‘Z‘> 0_74 i 1 05 0 05 1

Real Part
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Frequency Response from

Transfer Function
« |f the ROC of the transfer function H(z)
includes the unit circle, then the frequency
response H (el®)of the LTI digital filter can
be obtained simply as follows:
H(e)®) =H(2)],_¢jo
* For a real coefficient transfer function H(z)
it can be shown that
\H(elw)\ = H(el*)H *(e1o)
=HE)HE®) =H@HEY _,,

13
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Frequency Response from

Transfer Function

For a stable rational transfer function in the

form
H(2)= poz<N v [ =40

do Hk 1(2 )

the factored form of the frequency response
is given by

H(elm)_po jo(N- M)M
O Hk 1(eJ _xk)
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Frequency Response from
Transfer Function

* It is convenient to visualize the contributions
of the zero factor (z—§)and the pole factor
(z—-2y) from the factored form of the
frequency response

» The magnitude function is given by

M Jajo _

@‘ejm(N—M)‘ [Tl - &

do

H(el®) = .
‘ ‘ Hll(\lzl‘ejm _ kk‘

15 _
Copyright © 2005, S. K. Mitra

16

Frequency Response from
Transfer Function
which reduces to
Po Haﬂzl‘ejm —&

e

do [Ty 24|

 The phase response for a rational transfer
function is of the form

argH (ej“’) arg(pg/do) +co(N M)

szarg(e‘CO &) - Zarg(el‘” M)
k=1 k=1
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Frequency Response from
Transfer Function

» The magnitude-squared function of a real-
coefficient transfer function can be
computed using

Hk L6l -g )0 -&)

of TTRu (el =1 i -2%)

po

HEy =

17 ) _
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Geometric Interpretation of
Frequency Response Computation

« The factored form of the frequency

response

H(elo) = po eio(N-M) Hk L -g)

do | DECIEE )

is convenient to develop a geometric
interpretation of the frequency response
computation from the pole-zero plot as
varies from 0 to 2z on the unit circle
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Geometric Interpretation of
Frequency Response Computation

» The geometric interpretation can be used to
obtain a sketch of the response as a function
of the frequency

* A typical factor in the factored form of the
frequency response is given by
(el —pelt)
where pel? is a zero if it is zero factor or is

a poleif it is a pole factor

19
Copyright © 2005, S. K. Mitra

20

Geometric Interpretation of
Frequency Response Computation

 As shown below in the z-plane the factor
(eJ® —peli®) represents a vector starting at
the point z = pe ¢ and ending on the unit
circle at z =gl
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Geometric Interpretation of
Frequency Response Computation

* As o is varied from 0 to 27, the tip of the
vector moves counterclockise from the
point z = 1 tracing the unit circle and back
to the pointz=1

21 i
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Geometric Interpretation of
Frequency Response Computation

 As indicated by

H(ejco)zpOI_L':/I:lejm_z"k

do/ TR e —y
the magnitude response [H (€')| at a
specific value of o is given by the product
of the magnitudes of all zero vectors
divided by the product of the magnitudes of
all pole vectors
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Frequency Response Computation
* Likewise, from

argH (e!®) =arg(pg/dg) + ®(N - M)

+ TR arg(e!® &) - ZRarg(e’ - y)

we observe that the phase response

at a specific value of w is obtained by

adding the phase of the term py/dg and the

linear-phase term @w(N — M) to the sum of

the angles of the zero vectors minus the

angles of the pole vectors
23
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Geometric Interpretation of
Frequency Response Computation
* Thus, an approximate plot of the magnitude

and phase responses of the transfer function

of an LTI digital filter can be developed by
examining the pole and zero locations

» Now, a zero (pole) vector has the smallest
magnitude when ® = ¢
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Geometric Interpretation of
Frequency Response Computation

 To highly attenuate signal components in a
specified frequency range, we need to place
zeros very close to or on the unit circle in
this range

* Likewise, to highly emphasize signal
components in a specified frequency range,
we need to place poles very close to or on
the unit circle in this range
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Stability Condition in Terms of
the Pole Locations
» A causal LTI digital filter is BIBO stable if
and only if its impulse response h[n] is
absolutely summable, i.e.,
S= Y] <eo
N=—o0
» We now develop a stability condition in

terms of the pole locations of the transfer
function H(z)
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Stability Condition in Terms of
the Pole Locations

» The ROC of the z-transform H(z) of the
impulse response sequence h[n] is defined
by values of |z| = r for which h[n]r™"is
absolutely summable

 Thus, if the ROC includes the unit circle |z
=1, then the digital filter is stable, and vice
versa
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Stability Condition in Terms of
the Pole Locations

« In addition, for a stable and causal digital
filter for which h[n] is a right-sided
sequence, the ROC will include the unit
circle and entire z-plane including the point
Z=00

* An FIR digital filter with bounded impulse
response is always stable
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Stability Condition in Terms of
the Pole Locations

 On the other hand, an IIR filter may be
unstable if not designed properly

* In addition, an originally stable IIR filter
characterized by infinite precision
coefficients may become unstable when
coefficients get quantized due to
implementation
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Stability Condition in Terms of
the Pole Locations

» Example - Consider the causal IIR transfer
function

H(z)= !

1-1.845771 +0.8505867 2

 The plot of the impulse response coefficients
is shown on the next slide
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Stability Condition in Terms of
the Pole Locations

o
0 10 20 30 40 50 60 70
Time index n

* As can be seen from the above plot, the
impulse response coefficient h[n] decays
rapidly to zero value as n increases
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Stability Condition in Terms of
the Pole Locations

 The absolute summability condition of h[n]
is satisfied

» Hence, H(z) is a stable transfer function

» Now, consider the case when the transfer
function coefficients are rounded to values
with 2 digits after the decimal point:

n 1
H(z)= = -
1-1.8527+0.85z
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Stability Condition in Terms of
the Pole Locations
A plot of the impulse response of ﬁ[n] is

shown below
]

Amplitude

10 20 30 4
33
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Stability Condition in Terms of
the Pole Locations

* In this case, the impulse response coefficient
h[n] increases rapidly to a constant value as
n increases

 Hence, the absolute summability condition of
is violated

e Thus, ﬁ(z)is an unstable transfer function

34
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Stability Condition in Terms of

the Pole Locations
 The stability testing of a lIR transfer
function is therefore an important problem
* In most cases it is difficult to compute the
infinite sum
S=>7 hinj<e
* For a causal IIR transfer function, the sum S
can be computed approximately as
Sk = Zhcolhin]

35
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Stability Condition in Terms of
the Pole Locations

e The partial sum is computed for increasing
values of K until the difference between a
series of consecutive values of Sy is
smaller than some arbitrarily chosen small
number, which is typically 10~8

* For a transfer function of very high order
this approach may not be satisfactory

» An alternate, easy-to-test, stability condition
is developed next

36
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Stability Condition in Terms of
the Pole Locations

 Consider the causal IIR digital filter with a
rational transfer function H(z) given by

_Siomz™
H@O=5N
2i=0dkZ
* Its impulse response {h[n]} is a right-sided
sequence

» The ROC of H(z) is exterior to a circle
going through the pole furthest fromz =0
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Stability Condition in Terms of
the Pole Locations

« But stability requires that {h[n]} be
absolutely summable

« This in turn implies that the DTFT H (e1®)
of {h[n]} exists

* Now, if the ROC of the z-transform H(z)
includes the unit circle, then

H(el*)=H(2)|

z=elo

38
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Stability Condition in Terms of
the Pole Locations

 Conclusion: All poles of a causal stable
transfer function H(z) must be strictly inside
the unit circle

* The stability region (shown shaded) in the

z-plane is shown below
jimz

stability region

7 Rez
39 unit circle =
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Stability Condition in Terms of
the Pole Locations
» Example - The factored form of

1
H(z) =
_ (2)= 10,8457 7+0.850586 2
is )
H(z) =

(1-0.902z71)(1-0.943z71)
which has a real pole at z =0.902 and a real
pole at z = 0.943

* Since both poles are inside the unit circle,
H(z) is BIBO stable

40
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Stability Condition in Terms of
the Pole Locations
» Example - The factored form of

A !
)
. 1-1.85771+0.85272
is . 1

H(z)

T (-2 h)a-0.85z1)
which has a real pole on the unit circle at z
= 1 and the other pole inside the unit circle
« Since both poles are not inside the unit

" circle, H(z) is unstable
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