Linear-Phase FIR Transfer
Functions
e It is impossible to design an IR transfer
function with an exact linear-phase

* It is always possible to design an FIR
transfer function with an exact linear-phase
response

 Consider a causal FIR transfer function H(z)
of length N+1, i.e., of order N:

H(z) =Y  hinlz ™"
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Linear-Phase FIR Transfer
Functions

» The above transfer function has a linear
phase, if its impulse response h[n] is either
symmetric, i.e.,

h[n]=h[N -n], 0<n<N
or is antisymmetric, i.e.,
h[n]=—h[N -n], 0<n<N
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Linear-Phase FIR Transfer
Functions

« Since the length of the impulse response can
be either even or odd, we can define four
types of linear-phase FIR transfer functions

* For an antisymmetric FIR filter of odd
length, i.e., N even

h[N/2] =0
» \We examine next the each of the 4 cases
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Linear-Phase FIR Transfer
Functions
Type 1: Symmetric Impulse Response with
Odd Length
* In this case, the degree N is even
» Assume N = 8 for simplicity
* The transfer function H(z) is given by
H(z) = h[0]+h[L]z* +h[2]z~? + h[3]z "3
+h[41z7* +h[5]z° +h[6]z ¢ + h[7]z~" +h[8]z®
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* Because of symmetry, we have h[0] = h[8],
h[1] = h[7], h[2] = h[6], and h[3] = h[5]
e Thus, we can write
H(z)=h0]d+z ) +hizt+z77)
+ h[2](z‘2 + 2‘6) + h[3](z‘3 + 2‘5) + h[4]z‘4
=77Mh012* + 7 + hL B + 279
+h[21(z2 +272) + h[31(z + 1) + h[4]}
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Linear-Phase FIR Transfer
Functions
 The corresponding frequency response is
then given by
H (e1®) = e~ {2h[0]cos(4) + 2h[1] cos(3c)
+ 2h[2]cos(2w) + 2h[3]cos(w) + h[4]}
 The quantity inside the braces is a real

function of ®, and can assume positive or
negative values in the range 0 <|w|<n

Copyright © 2005, S. K. Mitra

Linear-Phase FIR Transfer
Functions
 The phase function here is given by

0(w)=—40+p
where f is either O or 7, and hence, itis a
linear function of  in the generalized sense
 The group delay is given by
do(0) _ 4

)=~

indicating a constant group delay of 4 samples
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* In the general case for Type 1 FIR filters,
the frequency response is of the form
H(e!*)=e N'?H(0)
where the amplitude response I—T(co), also
called the zero-phase response, is of the
form

H (o) = h[¥]+ zNz’Zh[g —n]cos(wn)
n=1
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o Example - Consider

Ho(2)= %[%+ R R e N +%z‘6]
which is seen to be a slightly modified
version of a length-7 moving-average FIR
filter

» The above transfer function has a
symmetric impulse response and therefore a

linear phase response
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* A plot of the magnitude response of Hq(z)
along with that of the 7-point moving-
average filter is shown below

— modified filter
moving-avera

08 — Saverage
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 Note the improved magnitude response
obtained by simply changing the first and the
last impulse response coefficients of a
moving-average (MA) filter

* It can be shown that we an express

Ho(2)= %(1+ Y 1avz vz 2427842744 7
which is seen to be a cascade of a 2-point MA
filter with a 6-point MA filter

» Thus, Hy(z) has a double zero atz=-1, i.e.,

o ©=7)
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Linear-Phase FIR Transfer
Functions
Type 2: Symmetric Impulse Response with
Even Length
* In this case, the degree N is odd
» Assume N =7 for simplicity
* The transfer function is of the form
H(z) =h[0]+h[L]z* +h[2]z~ + h[3]z "3
+ h[4]z’4 + h[5]z’5 + h[6]z’6 + h[7]z’7
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» Making use of the symmetry of the impulse
response coefficients, the transfer function
can be written as

H(z)=h[0]ld+z ) +hLizt+2z7%)
+ h[2](z‘2 + 2_5)+ h[3](z‘3 + 2‘4)
:2_7/2{h[O](Z7/2+Z_7/2)+h[1J(25/2+Z_5/2)
+h[21z¥ 2+ 273/2) + h31(22 + 27 2))
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 The corresponding frequency response is
given by
H (e1°) =717/ 2{2h[0] cos(7e) + 2h[L] cos(3)
+2h[2]cos(3®) + 2h[3]cos($)}
* As before, the quantity inside the braces is a
real function of ®, and can assume positive
or negative values in the range 0<|g<n

15 _
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 Here the phase function is given by
6(w)=—fo+p
where again f is either 0 or

* As a result, the phase is also a linear
function of  in the generalized sense

 The corresponding group delay is
w)=1
indicating a group delay of % samples
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 The expression for the frequency response
in the general case for Type 2 FIR filters is
of the form
H(e!?) =e N?H (o)
where the amplitude response is given by

- (N+1)/2
H() =2 ¥ hME- n]cos(w(n—3))
n=1

17 ) _
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Type 3: Antiymmetric Impulse Response
with Odd Length
* In this case, the degree N is even
e Assume N = 8 for simplicity
» Applying the symmetry condition we get
H(z)=z"*{h01z* - z7H+h 22 -z7%)
+h[21(z? = z272)+h[3](z-z7})}
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Functions
 The corresponding frequency response is
given by
H(e!®) = e 774 /™ 2 (2h[0]sin(4w) + 2A[1]sin(3w)
+2h[2]sin(2w) + 2h[3]sin(w)}
« It also exhibits a generalized phase response

given by
0(w)=—40+5+p

where B is either 0 or 7t
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Linear-Phase FIR Transfer
Functions
» The group delay here is
t(0) =4
indicating a constant group delay of 4 samples
* In the general case
H(el®) = jemN®/2H ()
where the amplitude response is of the form
H(w) = ZNZ/Zh[% —n]sin(wn)
20 n=1
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Type 4: Antiymmetric Impulse Response
with Even Length
* In this case, the degree N is even
» Assume N =7 for simplicity
» Applying the symmetry condition we get
H(z)=2""2(h[01(z7"% = 277/2)+ h)(2¥/2 - 27%/2)
+h(21(232 = 2732y 4 3 (Y2 - 272

21 i
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 The corresponding frequency response is
given by . .
H(e!®)=e 72/ 2 2h[0]sin(72) + 2h[1]sin(32)
+ 2h[2]sin(37°)) +2h[3]sin(9)}
* It again exhibits a generalized phase

response given by
0(0)=—to+2+p

where B is either 0 or
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Linear-Phase FIR Transfer
Functions
» The group delay is constant and is given by
t(w) =%
* In the general case we have
H(e!®) = je M/ ?H (o)
where now the amplitude response is of the
form

- (N+1)/2
H(w) =2 ¥ h[NE—n]sin(e(n -3))
n=1

23
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General Form of Frequency Response

* In each of the four types of linear-phase FIR
filters, the frequency response is of the form
H(el®) = N/2ePH (o)
» The amplitude response H (w) for each of
the four types of linear-phase FIR filters can
become negative over certain frequency

ranges, typically in the stopband

24 )
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Linear-Phase FIR Transfer
Functions
» The magnitude and phase responses of the
linear-phase FIR are given by
IH(@™)]=|H (@)
~Noyg for H(w)>0

0(w) = -NoyB—x, for H(w)<0

» The group delay in each case is

—N
2 w(0)=5
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Linear-Phase FIR Transfer
Functions

 Note that, even though the group delay is
constant, since in general |H (e!®)| is not a
constant, the output waveform is not a
replica of the input waveform

» An FIR filter with a frequency response that
is a real function of w is often called a zero-
phase filter

« Such a filter must have a noncausal impulse
response

26
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Zero Locations of Linear-
Phase FIR Transfer Functions

* Consider first an FIR filter with a symmetric
impulse response: h[n]=h[N —n]
« |ts transfer function can be written as

N N
H(z)= > hinlz" = > h[N-n]z""
n=0 n=0
By making a change of variable m=N —n,
we can write
N N N
ShIN-njz™" = Zh[m]z‘N+m =7 > h[m]z™

27 n=0 m=0 m=0
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Zero Locations of Linear-
Phase FIR Transfer Functions

* But, N m il
> mohimiz™ =H(z™)

 Hence for an FIR filter with a symmetric

impulse response of length N+1 we have
Hz)=z "HE™)

* A real-coefficient polynomial H(z)
satisfying the above condition is called a
mirror-image polynomial (MIP)

28
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Zero Locations of Linear-

Phase FIR Transfer Functions

* Now consider first an FIR filter with an
antisymmetric impulse response:

h[n]=-h[N —n]
« Its transfer function can be written as

N N
H(z)= Y h[n]z" ==> h[N-n]z""
n=0 n=0
e By making a change of variablem=N —n,
we get

N
—ShIN=-nJz " ==Y himjz VM =z NH @z L)
29 n=0 m=0
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Zero Locations of Linear-
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* Hence, the transfer function H(z) of an FIR
filter with an antisymmetric impulse
response satisfies the condition

H@)=-zNHE ™D
« A real-coefficient polynomial H(z)

satisfying the above condition is called a
antimirror-image polynomial (AIP)

30 )
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Zero Locations of Linear-
Phase FIR Transfer Functions
« |t follows from the relation H(z) = +77NH (z‘l)
that if z=¢&, isazero of H(z), sois z=1/¢,
» Moreover, for an FIR filter with a real
impulse response, the zeros of H(z) occur in
complex conjugate pairs
* Hence, a zero at z =&, is associated with a
zeroatz=¢&;

31
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Zero Locations of Linear-
Phase FIR Transfer Functions

» Thus, a complex zero that is not on the unit
circle is associated with a set of 4 zeros given

by
z=refll, 7=1etls

A zero on the unit circle appear as a pair
z=e*1?
as its reciprocal is also its complex conjugate

32
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Zero Locations of Linear-
Phase FIR Transfer Functions
* Since a zero at z =+11is its own reciprocal,

it can appear only singly
» Now a Type 2 FIR filter satisfies
Hiz)=z "Hz D
with degree N odd
« Hence H(-)=(-) NV H(-1)=-H(-1)
implying H(-1)=0, i.e., H(z) must have a
zeroatz=-1
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Zero Locations of Linear-
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* Likewise, a Type 3 or 4 FIR filter satisfies

Hz)=-zVH@zD
« Thus HO)=—-O) "H@Q)=-H®)
implying that H(z) must have a zeroatz =1

 On the other hand, only the Type 3 FIR
filter is restricted to have a zero at z=-1
since here the degree N is even and hence,
HED =~ N H(-)=-H(D

34
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Zero Locations of Linear-

Phase FIR Transfer Functions
 Typical zero locations shown below

flmz Type 1 Jimz Type 2

35
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e Summarizing

(1) Type 1 FIR filter: Either an even number
ornozerosatz=1and z=-1

(2) Type 2 FIR filter: Either an even number
or no zeros at z = 1, and an odd number of
zerosat z=-1

(3) Type 3 FIR filter: An odd number of

zerosatz=1and z=-1

36 )
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Zero Locations of Linear-
Phase FIR Transfer Functions

(4) Type 4 FIR filter: An odd number of
zeros at z = 1, and either an even number or
no zeros at z=-1

» The presence of zeros at z =1 leads to the
following limitations on the use of these
linear-phase transfer functions for designing
frequency-selective filters

37
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Zero Locations of Linear-
Phase FIR Transfer Functions

» A Type 2 FIR filter cannot be used to
design a highpass filter since it always has a
zero z=-1

* A Type 3 FIR filter has zeros at bothz =1
and z = -1, and hence cannot be used to
design either a lowpass or a highpass or a
bandstop filter

38
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Zero Locations of Linear-
Phase FIR Transfer Functions

* A Type 4 FIR filter is not appropriate to
design a lowpass filter due to the presence
ofazeroatz=1

» Type 1 FIR filter has no such restrictions
and can be used to design almost any type
of filter

39
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