Tunable IIR Digital Filters

» We have described earlier two 1st-order and
two 2nd-order IIR digital transfer functions
with tunable frequency response
characteristics

» We shall show now that these transfer
functions can be realized easily using
allpass structures providing independent
tuning of the filter parameters
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Tunable Lowpass and
Highpass Digital Filters

» We have shown earlier that the 1st-order
lowpass transfer function

1-af 1+z771
Hip(z)==——
LP() 2 (1—(12_1J
and the 1st-order highpass transfer function
l+af 1-z71
Hup(2) ==+
Hp(2) == (1_(”_1]
are doubly-complementary pair
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Tunable Lowpass and
Highpass Digital Filters

» Moreover, they can be expressed as
Hip(2) = 1M1+ Ay(2)]
Hup (2) = S[1- A2)]

where 1

—a+2"
Z)=
. Al 1-az72 .
is a 1st-order allpass transfer function
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Tunable Lowpass and
Highpass Digital Filters

* A realization of H| p(z) and Hyp(2) based
on the allpass-based decomposition is
shown below

» The 1st-order allpass filter can be realized
using any one of the 4 single-multiplier
allpass structures described earlier
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Tunable Lowpass and
Highpass Digital Filters

* One such realization is shown below in
which the 3-dB cutoff frequency of both
lowpass and highpass filters can be varied
simultaneously by changing the multiplier
coefficient o

{Tr Hyplz)

Hypl2)
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Tunable Lowpass and
Highpass Digital Filters

* Figure below shows the composite
magnitude responses of the two filters for
two different values of o
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Tunable Bandpass and
Bandstop Digital Filters
e The 2nd-order bandpass transfer function
1-a 1-772
Hep(2)= 2 [1—[3(l+ a)zt+a sz
and the 2nd-order bandstop transfer
function

1+a 1-pzl+z72
H BS (Z) = B 1 2
2 1-Bl+o)z+az
also form a doubly-complementary pair

Copyright © 2005, S. K. Mitra

Tunable Bandpass and
Bandstop Digital Filters
 Thus, they can be expressed in the form
Hgp(2)=1[1- A, (2)]
Hps (2) = S[1+ Ay(2)]
a-Pl+a)zt+z72
1-BA+a)zt+ oz 2

is a 2nd-order allpass transfer function

where

Ay(2) =
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Tunable Bandpass and
Bandstop Digital Filters

* A realization of Hgp (z) and Hgg(z) based
on the allpass-based decomposition is
shown below

» The 2nd-order allpass filter is realized using
a cascaded single-multiplier lattice structure
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Tunable Bandpass and
Bandstop Digital Filters

» The final structure is as shown below

* In the above structure, the multiplier
controls the center frequency and the
multiplier o controls the 3-dB bandwidth
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Tunable Bandpass and
Bandstop Digital Filters

* Figure below illustrates the parametric
tuning property of the overall structure
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IIR Tapped Cascaded Lattice
Structures

Realization of an All-pole IIR Transfer
Function

» Consider the cascaded lattice structure
derived earlier for the realization of an
allpass transfer function

W W, '\
P T )
—+3 k2 1
Ay—
' by b 1
f NG -
E3 g = lg,
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IIR Tapped Cascaded Lattice
Structures

* A typical lattice two-pair here is as shown
below

Wi (2) _ W (2)
S (2) Sm(2)
* Its input-output relations are given by
Win (2) = Wi 1(2) ~ ki 2781 (2)
Sm+1(2) =k Wiy (2) + Z_1Sm (2)
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IIR Tapped Cascaded Lattice
Structures

» From the input-output relations we derive
the chain matrix description of the two-pair:
_Wi+1(2)}= 1 kzt ‘:Wi(z)}
LSia@] |k zt [LSi(@)
 The chain matrix description of the
cascaded lattice structure is therefore
[Xl(z)}: 1 kgzt| 1 kpztff1 Kzt [Wl(z)]
Yl(z) _k3 Z_l __k2 Z_l k]_ Z_l Sl(z)
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IIR Tapped Cascaded Lattice
Structures
» From the above equation we arrive at
X1(2) ={L+ [k L+ ko) + kokglz ™
+[ky + ks (1+ k)12 ™2 + k32 > YWi(2)
=@+dizt+dpz72 +d3z 3)W(2)
using the relation S;(z) =W;(z) and the

relations
ki=d;, kp=dy, kg=dg
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IIR Tapped Cascaded Lattice
Structures

* The transfer function W, (z)/ X;(z) is thus an
all-pole function with the same denominator
as that of the 3rd-order allpass function Ag(z):

Wy (z) _ 1
X1(2) 1+dizt+dz72+dgz78

16
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IIR Tapped Cascaded Lattice
Structures

Gray-Markel Method

A two-step method to realize an Mth-order
arbitrary 1R transfer function

H(z)=Py (2)/Dy (2)

 Step 1: An intermediate allpass transfer
function Ay (2) = M Dum (z‘l)/DM (2) is
realized in the form of a cascaded lattice
structure
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IIR Tapped Cascaded Lattice
Structures

* Step 2: A set of independent variables are
summed with appropriate weights to yield
the desired numerator Py, (2)

 To illustrate the method, consider the
realization of a 3rd-order transfer function

_P@ _potpztHpz i psz

H(2)= =
D3(z)  1+dzt+dyz 2 +dgz 3
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IIR Tapped Cascaded Lattice
Structures

* In the first step, we form a 3rd-order allpass
transfer function
Ag(2) =Yy(2)/ X1(2) = 2 °D3(z7)/ Dy(2)
* Realization of Ag(z) has been illustrated
earlier resulting in the structure shown below

W W, !
P e e
OO
Axl—
' by b 1
+ = t T
LT : Ts
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IIR Tapped Cascaded Lattice
Structures

 Objective: Sum the independent signal
variables Yy, S;, S,, and Sawith weights {e; }
as shown below to realize the desired
numerator Py(z)

L W, W,
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IIR Tapped Cascaded Lattice
Structures

* To this end, we first analyze the cascaded
lattice structure realizing and determine the
transfer functions S1(z)/ X1(z),S,(2)/ X1(2),
and S3(2)/ X4(z)

X,

Azh=e
Y, A By
« We have already shown
Si(2) 1
X1(z)  Di(2)
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IIR Tapped Cascaded Lattice
Structures
» From the figure it follows that
Sp(2) = (kg +27H)S1(2) = (dy +271)S,(2)

and hence
Sp(z) dy+z7

X1(z)  Ds(2)

Copyright © 2005, S. K. Mitra

23

IIR Tapped Cascaded Lattice
Structures
e In a similar manner it can be shown that
Sy(2)=(dy +dyz 1+ 2’2)81(2)

* Thus, o 9
S3(z) dy+ dlz‘1 +7

X1(2) D3(2)

* Note: The numerator of S;(z)/ X,(z) is
precisely the numerator of the allpass
transfer function A;(z) = S;(2)/W;(2)
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IIR Tapped Cascaded Lattice
Structures

¢ We now form

Yo(2) _ _ Y1(2) S3(2) S2(2) $1(2)
= +a + o +
X1 IX@ 2% 3X@ %)
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IIR Tapped Cascaded Lattice
Structures

* Substituting the expressions for the various
transfer functions in the above equation we
arrive at

-1 -2, .,-3
oaq(dz+dpz " +diz “+277)
Yo(2) +ap(d; +dlz’1+ 2’2)+a3(d1 + z’l)+a4
X1(2) Ds(2)
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IIR Tapped Cascaded Lattice
Structures

» Comparing the numerator of Y,(z)/ X{(2)
with the desired numerator P;(z) and
equating like powers of 2% we obtain

oqds +apdy + oty +ay = py
aldz + azdi +az=P

oty +ap = Py

o= P3

26
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IIR Tapped Cascaded Lattice

Structures
« Solving the above equations we arrive at
04 = P3
ap =Py -ty

a3 =p—-aqdy —ayty
ay = Po —ydz —apdy —asdy
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IIR Tapped Cascaded Lattice
Structures

» Example - Consider

Py(z) 0.44271+0.362z72+0.02773

Dy(z) 1+0.4z1+0.18272-0.2773

 The corresponding intermediate allpass
transfer function is given by

73D,(zY) ~02+0.1827140.0422 4773

H(z) =
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As(2) = =
() Ds(2) 1+0.4271+0.18272-0.273
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IIR Tapped Cascaded Lattice
Structures

* The allpass transfer function Ag(z) was
realized earlier in the cascaded lattice form
as shown below

Wy

5 W, W,
1 &y ks -k
A= k' k' *'
Y, @ = T =
1 (3 S (3 E

* In the figure,
kg=d3=-0.2, k,=d,=0.2708333
k; =d; =0.3573771
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IIR Tapped Cascaded Lattice
Structures
* Other pertinent coefficients are:
d; =0.4, d, =0.18, d3=-0.2, d, =0.4541667
Po=0, py=0.44, p, =0.36, p3=0.02,
« Substituting these coefficients in
o =P3
ap =Py —onth
az=pp-oqdy —apdy

5 ay = Po— a3 —aydy —agty
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IIR Tapped Cascaded Lattice Tapped Cascaded Lattice
Structures Realization Using MATLAB

oy =0.02, a,=0.352

- Both the pole-zero and the all-pole 1IR
a3 = 0.2765333, 04 = —0.19016 O LIS RO & 28T an e & po'e

cascaded lattice structures can be developed

* The final realization is as shown below from their prescribed transfer functions
N NCun > using the M-file tf21atc
) A B 5}: Fhe « To this end, Program 6_4 can be employed
k; =0.3573771, k, =0.2708333, k; =—0.2
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Tapped Cascaded Lattice FIR Cascaded Lattice
Realization Using MATLAB Structures
 An arbitrary Nth-order FIR transfer function
e The M-file latc2tf implements the of the form
reverse process and can be used to verify Hy (2) =1+ Zr';‘zl P,z "
the structure developed using t£21atc can be realized as a cascaded lattice structure
 To this end, Program 8_5 can be employed as shown below
Xolz :I‘>§:“:’h>{? Xpp-afz) _(::l
e e Ve Ve
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FIR Cascaded Lattice FIR Cascaded Lattice
Structures Structures
» From figure, it follows that * Denote
X (2) = Xpy_1(2) + k2 e (2 Xm (2 Y. (z
m( ) m—l( ) m . m—l( ) Hm(Z)= m( ), Gm(2)= m( )
Yo (2) = Ky X1 (2) + 274 (2) Xo(2) Xo(2)
* In matrix form the above equations can be  Then it follows from the input-output
written as relations of the m-th two-pair that
[xmmH 1 kmz-l}[ xm_l(z)] Hn(2) = Hip_1(2) + k2 *Gy_1 (2)
@] Lk 2 L ¥na(2) Gin(2) =k Hin 1(2) + 272Gy 4 (2)
. where m=1,2,...,N % 7




FIR Cascaded Lattice
Structures
» From the previous equation we observe
H(2) =1+kzt, G(2)=k+271
where we have used the facts
Ho(2) = Xo(2)/ Xo(2) =1
Go(2) =Yo(2)/ Xo(2) = Xo(2)/ Xo(2) =1
« |t follows from the above that
G(2) = 271 (zky +1) = z7IH, (z71)
emm) G,(z) is the mirror-image of Hy(z)
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FIR Cascaded Lattice
Structures

» From the input-output relations of the m-th
two-pair we obtain for m = 2:
Hy(2) = Hi(2) + k271G (2)
Gy(2) = ko Hy(2) + 272Gy (2)
* Since Hy(z) and G;(z) are 1st-order
polynomials, it follows from the above that
H,(z)and G,(z) are 2nd-order polynomials
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FIR Cascaded Lattice
Structures
* Substituting G;(z) = z7tH,(z 1) in the two
previous equations we get
Hy(2) = Hy(2) +kpz 2Hy(z7Y)
Gp(2) = ko Hy(2) +27%Hy(z7h)
¢ Now we can write
Gy(2) =kpHy(2) +272Hy(z71)
=272[ky2%Hy(2) + Hy(z )] =27?H, (27
o == G, (z) is the mirror-image of H,(2)
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FIR Cascaded Lattice
Structures

« In the general case, from the input-output
relations of the m-th two-pair we obtain
H (2) = Hp1(2) + k2 Gy 1 (2)
Gm(2) =kmHm_1(2) + Z_le—l(Z)

* It can be easily shown by induction that
Gn(2)=2""Hy,(z1), m=12,.,N-1N
o == G, (2) is the mirror-image of H,,(z)
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FIR Cascaded Lattice
Structures

 To develop the synthesis algorithm, we
express Hy,_1(z) and Gp,_1(z) in terms of
Hy,(z) and Gpy(z) form=N,N -1,...,.2,1
arriving at
1

H-1(2) = oy TN () kG ()}

Gr-1(2) =z, 5k H () + Gy ()}
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FIR Cascaded Lattice
Structures
* Substituting the expressions for

N _
HN (Z) =1+Zn:1 PnZ n
and
Gy(2)= Z_NHN(Z_I) = ZnNz‘Ole_nz_” +77N
in the first equation we get

1 o _
Hy_1(2)= W{(l —kypn)+ 2N (P —kupy_ 7"
—ky

+(pn —kn)z N3
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FIR Cascaded Lattice
Structures

* If we choose ky = py, then Hy_;1(2)
reduces to an FIR transfer function of order
N —1and can be written in the form

N-L -
Hya(z) =1+ 5 paz™"
where p;, =%, 1<n<N-1

* Continuing the abOve recursion algorithm,
all multiplier coefficients of the cascaded
lattice structure can be computed

Copyright © 2005, S. K. Mitra
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FIR Cascaded Lattice
Structures

» Example - Consider
H,(2)=1+1.2271+1.12272+0.12273-0.082*

 From the above, we observe k, = p, =—0.08

* Using

p = PiePen 1 <n<3
1-k2

we determine the coefficients of Hz(z):
p; =0.2173913, p, =1.2173913
p; =1.2173913
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FIR Cascaded Lattice
Structures

e Asaresult,

H3(z) =1+1.2173913771 +1.217391322
+0.2173913z°3

* Thus, kg = p; =0.2173913
* Using

U ph_k3pl27n 1<
=0 S8 1<n<?
Pn 1-k2

we determine the goefficients of Hy(2):
p, =10, p;=10
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FIR Cascaded Lattice
Structures
 Asaresult, Hy(z)=1+z1+2z72
 From the above, we get k, = p, =1
« The final recursion yields the last multiplier
coefficient ky = py /(1+ky)=0.5
» The complete realization is shown below

Xofz) X2

JL B
ky =0.5, ky =1, k =0.2173913, k, =—0.08
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FIR Cascaded Lattice
Realization Using MATLAB

» The M-file t £21atc can be used to
compute the multiplier coefficients of the
FIR cascaded lattice structure

* To this end Program 8 7 can be employed

» The multiplier coefficients can also be
determined using the M-file poly2rc
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