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Optimum Ordering and PoleOptimum Ordering and Pole--Zero Zero 
Pairing of the Cascade Form IIR Pairing of the Cascade Form IIR 

Digital FilterDigital Filter
• There are many possible cascade 

realizations of a higher order IIR transfer 
function obtained by different pole-zero 
pairings and ordering

• Each one of these realizations will have 
different output noise power due to product 
round-offs

• It is of interest to determine the cascade 
realization with the lowest output noise 
power
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• Consider the scaled cascade structure shown 
below
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• The scaled noise transfer functions are 
given by

where
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• Output noise power spectrum due to 
product round-off is given by

• The output noise variance is thus
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• Note:      is the total number of multipliers 
connected to the   -th adder

• If products are rounded before summation

• If products are rounded after summation
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• Recall

• Thus,

• Substituting the above in 
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

we get

• The output noise variance is now given by

⎥⎦

⎤
⎢⎣

⎡
+

σ
=ω ∑

=
ω

+γγ
R j

ppR
p

o eGFkHk
H

P
1

222
12

2
)()(

l
lll

⎥⎦
⎤

⎢⎣
⎡ +

σ
=σ ∑

=
+γ

R
ppR

p

o GFkHk
H 1

2
2

22
12

2
2

l
lll

Copyright © 2005, S. K. Mitra
8

Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• The scaling transfer function           contains 
a product of section transfer functions, 

whereas, the noise transfer 
function           contains the product of 
section transfer functions

)(zFl
),(zHi

),(zHi

)(zGl

1,,2,1 −= lKi

Ri ,,1, Kll +=

Copyright © 2005, S. K. Mitra
9

Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• Thus every term in the expressions for         
and         includes the transfer functions of 
all R sections in the cascade realization

• To minimize the output noise power, the 
norms of             should be minimized for 
all values of i by appropriately pairing the 
poles and zeros
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• Pole-Zero Pairing Rule -
• First, the complex pole-pair closest to the 

unit circle should be paired with the nearest 
complex zero-pair

• Next, the complex pole-pair that is closest 
to the previous set of poles should be 
matched with its nearest complex zero-pair

• Continue this process until all poles and 
zeros have been paired
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• The suggested pole-zero pairing is likely to 
lower the peak gain of the section 
characterized by the paired poles and zeros

• Lowering of the peak gain in turn reduces 
the possibility of overflow and attenuates 
the round-off noise
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• Illustration of pole-zero pairing
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• After the appropriate pole-zero pairings 
have been made, the sections need to be 
ordered to minimize the output round-off 
noise

• A section in the front part of the cascade has 
its transfer function           appear more 
frequently in the scaling transfer 
expressions for             and)(ωγγP 2

γσ

)(zHi
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• On the other hand, a section near the output 
end of the cascade has its transfer function   

appear more frequently in the noise 
transfer function expressions

• The best locations for           obviously 
depends on the type of norms being applied 
to the scaling and noise transfer functions
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• A careful examination of the expressions 
for             and       reveals that if the            

-scaling is used, then ordering of paired 
sections does not affect too much the output 
noise power since all norms in the 
expressions are      -norms

• This fact is evident from the results of the 
two examples presented earlier
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• If       -scaling is being employed, the 
sections with the poles closest to the unit 
circle exhibit a peaking magnitude response 
and should be placed closer to the output 
end

• The ordering rule in this case is to place the 
least peaked section to the most peaked 
section starting at the input end

∞L
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Optimum Ordering and Optimum Ordering and 
PolePole--Zero PairingZero Pairing

• The ordering is exactly opposite if the 
objective is to minimize the peak noise         
and an      -scaling is used

• Ordering has no effect on the peak noise if     
-scaling is used

• The M-file zp2sos can be used to 
determine the optimum pole-zero pairing 
and ordering according the above discussed 
rule

2L
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• The output round-off noise variances of 
unscaled digital filters do not provide a 
realistic picture of the performances of 
these structures in practice

• This is due to the fact that introduction of 
scaling multipliers can increase the number 
of error sources and the gain for the noise 
transfer functions
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• Therefore the digital filter structure should 
first be scaled before its round-off noise 
performance is analyzed

• In many applications, the round-off noise 
variance by itself is not sufficient, and a 
more meaningful result is obtained by 
computing instead the signal-to-noise ratio 
(SNR) for performance evaluation
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• The computation of the SNR for the first-
and second-order IIR structures are 
considered here

• Most conclusions derived from the detailed 
analysis of these simple structures are also 
valid for more complex structures

• Methods followed here can be easily 
extended to the general case
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• Consider the causal unscaled first-order 
filter shown below

• Its output round-off noise variance was 
computed earlier and is given by
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• Assume the input x[n] to be a WSS random 
signal with a uniform probability density 
function and a variance

• The variance       of the output signal y[n]
generated by this input is then
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• The  SNR of the unscaled filter is then

• SNR is independent of α
• However, this is not a valid result since the 

adder is likely to overflow in an unscaled
structure
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• The scaled structure is shown below along 
with its round-off error analysis model 
assuming quantization after addition of all 
products
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• With the scaling multiplier present, the 
output signal power becomes

• The signal-to-noise ratio is then
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• Since the scaling multiplier coefficient K
depends on the pole location and the type of 
scaling being followed, the SNR will thus 
reflect this dependence

• The scaling transfer function is given by

with a corresponding impulse response
11

1)()( −α−
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• To guarantee no overflow, we choose

• To evaluate the SNR we need to know the 
type of input x[n] being applied

• If x[n] is uniformly distributed with                 
its variance is given by
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
LowLow--Order IIR FiltersOrder IIR Filters

• The SNR is then given by

• For a (b+1)-bit signed fraction with round-
off or two’s-complement truncation

• The SNR in dB is given by
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
FirstFirst--Order IIR FiltersOrder IIR Filters

SNR of first-order IIR filters for different  
inputs with no overflow scaling

Input type SNR Typical SNR,  dB
(b = 12, |α| = 0.95)

WSS, white
uniform density

Sinusoid, known
frequency

WSS, white Gaussian
density )9/1( 2 =xσ
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
SecondSecond--Order IIR FiltersOrder IIR Filters

• Consider the causal unscaled second-order 
IIR filter given below
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
SecondSecond--Order IIR FiltersOrder IIR Filters

• Its scaled version along with the round-off 
noise analysis model, assuming quantization 
after addition of all products, is shown 
below
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
SecondSecond--Order IIR FiltersOrder IIR Filters

• For a WSS input with a uniform probability 
density function and a variance      , the 
signal power at the output is given by

• The round-off noise power at the output is 
given by

2xσ
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SignalSignal--toto--Noise Ratio in Noise Ratio in 
SecondSecond--Order IIR FiltersOrder IIR Filters

• Thus, the signal-to-noise ratio of the scaled 
structure is given by

• The scaling transfer function F(z) is given 
by
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• If the poles of H(z) are at                , then

• Corresponding impulse response is given by
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SecondSecond--Order IIR FiltersOrder IIR Filters

• The overflow is completely eliminated if

• is difficult to compute 
analytically

• It is possible to establish some bounds on 
the summation to provide a reasonable 
estimate of the value of K
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• The magnitude response of the unscaled
second-order section to a sinusoidal input    
is given by

• But,              cannot be greater than            
as the latter is the largest possible value of 
the output y[n] for an input x[n] with
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• Moreover,

• A tighter upper bound on                   is 
given by
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• Therefore

• Bounds on the SNR for the all-pole second-
order section can also be derived for various 
types of inputs

16
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• As in the case of the first-order section, as 
the poles move closer to the unit circle         

, the gain of the filter increases
• The input signal then needs to be scaled 

down to avoid overflow while boosting the 
output round-off noise

• This type of interplay between the round-off 
noise and dynamic range is a characteristic 
of all fixed-point digital filters

1→r
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• Bounded Real Transfer Function -
• A causal stable real coefficient transfer 

function H(z) is defined to be a bounded
real (BR) function if it satisfies the 
following condition:

ω≤ω ofvaluesallfor,1)( jeH
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Bounded Real Transfer FunctionBounded Real Transfer Function
• If the input and the output to the digital 

filter are x[n] and y[n], respectively with       
and              denoting their DTFTs, 

then the equivalent condition for the BR 
property is given by

• Integrating the above from         to π, 
dividing by 2π, and applying Parseval’s
relation we get
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Bounded Real Transfer FunctionBounded Real Transfer Function
• Thus, a digital filter characterized by a BR 

transfer function is passive as, for all finite-
energy inputs,

• If 

then it is a lossless system
• A causal stable transfer function H(z) with  

is called a lossless bounded
real (LBR) transfer function

energyInputenergyOutput ≤

ω=ω ofvaluesallfor1)( jeH

1|)(| =ωjeH
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• A causal stable digital filter with a transfer 
function H(z) has low coefficient sensitivity 
in the passband if it satisfies the following 
conditions:
(1) H(z) is a bounded-real transfer function
(2) There exists a set of frequencies      at 
which
(3) The transfer function of the filter with 
quantized coefficients remains bounded real

kω
1|)(| =ωkjeH
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• Since               is bounded above by unity, the 
frequencies       must be in the passband
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• Any causal stable transfer function can be 
scaled to satisfy the first two conditions

• Let the digital filter structure N realizing 
the BR transfer function H(z) be 
characterized by R multipliers with 
coefficients 

• Let the nominal values of these multiplier 
coefficients assuming infinite precision 
realization be 0im

im
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• Because of the third condition, regardless of 
the actual values of       in the immediate 
neighborhood of their design values       , 
the actual transfer function remains BR

• Consider                 which for multiplier 
values        is equal to 1 

• The third condition implies that if the 
coefficient        is quantized, then              
can only become less than 1

im
0im

0im
|)(| kjeH ω

|)(| kjeH ω
im
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• A plot of                 will thus appear as 
indicated below

|)(| kjeH ω
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• Thus the plot of                 will have a zero-
valued slope at

• i.e.

• The first-order sensitivity of      
with respect to each multiplier coefficient     
is zero at all frequencies      where           
assumes its maximum value of unity
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• Since all frequencies      , where the 
magnitude function is exactly equal to 
unity, are in the passband of the filter and if 
these frequencies are closely spaced, it is 
expected that the sensitivity of the 
magnitude function to be very small at other 
frequencies in the passband

kω
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• A digital filter structure satisfying the 
conditions for low coefficient sensitivity is 
called a structurally bounded system

• Since the output energy of such a structure 
is also less than or equal to the input energy 
for all finite energy input signals, it is also 
called a structurally passive system
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Requirements for Requirements for 
Low Coefficient SensitivityLow Coefficient Sensitivity

• If                     , the transfer function H(z) is 
called a lossless bounded real (LBR) 
function, i.e., a stable allpass function

• An allpass realization satisfying the LBR 
condition is called a structurally lossless or 
LBR system implying that the structure 
remains allpass under coefficient 
quantization

1|)(| =ωjeH

Copyright © 2005, S. K. Mitra
52

Low Low PassbandPassband Sensitivity Sensitivity 
IIR Digital FilterIIR Digital Filter

• Let G(z) be an N-th order causal BR IIR 
transfer function given by

with a power-complementary transfer 
function H(z) given by

N
N

N
N
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Low Low PassbandPassband Sensitivity Sensitivity 
IIR Digital FilterIIR Digital Filter

• Power-complementary property implies that

• Thus, H(z) is also a BR transfer function
• We determine the conditions under which 

G(z) and H(z) can be expressed in the form

where           and           are stable allpass
functions

1|)(||)(| 22 =+ ωω jj eHeG
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Low Low PassbandPassband Sensitivity Sensitivity 
IIR Digital FilterIIR Digital Filter

•
G(z) must have a symmetric numerator, i.e.,

•
• H(z) must have an anti-symmetric 

numerator, i.e.,

)}()({)( 102
1 zAzAzG +=

)}()({)( 102
1 zAzAzH −=

nNn pp −=

nNn qq −−=



10

Copyright © 2005, S. K. Mitra
55

Low Low PassbandPassband Sensitivity Sensitivity 
IIR Digital FilterIIR Digital Filter

• Symmetric property of the numerator of 
G(z) implies

• Likewise, antisymmetric property of the 
numerator of H(z) implies

)()( 1 zPzzP N=−

)()( 1 zQzzQ N−=−
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Low Low PassbandPassband Sensitivity Sensitivity 
IIR Digital FilterIIR Digital Filter

• By analytic continuation, the power-
complementary condition can be rewritten 
as

• Substituting 

in the above we get
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Low Low PassbandPassband Sensitivity Sensitivity 
IIR Digital FilterIIR Digital Filter

• Using the relations                               and           
in the previous equation 

we get

• or, equivalently

)()( 1 zPzzP N=−

)()( 1 zQzzQ N−=−

)()()]()()()([ 1 zDzDzQzQzPzPz N −− =−
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• Using the relations                                and          
we can write

• Let                              denote the zeros of
[P(z) + Q(z)]

• Then                              are the zeros of

)()( 1−−= zPzzP N

)()( 1−−−= zQzzQ N

)]()([)()( 11 −−− +=− zQzPzzQzP N
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• is the mirror image of 
the polynomial [P(z) + Q(z)]

• From
it follows that the zeros of [P(z) + Q(z)]
inside the unit circle are also zeros of D(z), 
and the zeros of [P(z) + Q(z)] outside the 
unit circle are zeros of              , since G(z)
and H(z) are assumed to be stable functions

)( 1−zD

)]()([ zQzP −

)]()([)()( 11 −−− +=− zQzPzzQzP N
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• Let                                be the r zeros of 
[P(z) + Q(z)] inside the unit circle, and the 
remaining           zeros,                               
be outside the unit circle

• Then the N zeros of D(z) are given by

,1, rkz k ≤≤ξ=

,1, Nkrz k ≤≤+ξ=rN −
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⎪
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k
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• To identify the above zeros of D(z) with the 
appropriate allpass transfer functions            
and            we observe that these allpass
functions can be expressed as
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• Therefore, the two allpass transfer functions 
can be expressed as
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• In order to arrive at the above expressions, 
it is necessary to determine the transfer 
function H(z) that is power-complementary 
to G(z)

• Let  U(z) denote the 2N-th degree 
polynomial
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• Then

• Solving the above equation for the 
coefficients      of Q(z) we get
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• After Q(z) has been determined, we form 
the polynomial [P(z) + Q(z)], find its zeros      

, and then determine the two allpass
functions            and

• It can be shown that IIR digital transfer 
functions derived from analog Butterworth, 
Chebyshev and elliptic filters via the 
bilinear transformation can be decomposed 
into the sum of allpass functions

)(0 zA )(1 zA
kz ξ=
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• For lowpass-highpass filter pairs, the order 
N of the transfer function must be odd with 
the orders of           and           differing by 1

• For bandpass-bandstop filter pairs, the order 
N of the transfer function must be even with 
the orders of           and           differing by 2

)(0 zA )(1 zA

)(0 zA )(1 zA
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• A simple approach to identify the poles of 
the two allpass functions for odd-order 
digital Butterworth, Chebyshev, and elliptic 
lowpass or highpass transfer functions is as 
follows

• Let                                  denote the poles of 
G(z) or H(z)

10, −≤≤λ= Nkz k
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• Let       denote the angle of the pole
• Assume that the poles are numbered such 

that
• Then the poles of            are given by

and the poles of           are given by

kθ

1+θ<θ kk

kλ

k2λ

12 +λ k
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• The pole interlacing property is illustrated 
below

6λ6θ
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• Example - Consider the parallel allpass
realization of a 5-th order elliptic lowpass
filter with the specifications:                 ,              

dB, and              dB
• The transfer function obtained using 

MATLAB is given by

π=ω 4.0p
5.0=α p 40=αs

5528.040797.031295.0
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• Its parallel allpass decomposition is given 
by
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• A 5-multiplier realization using a signed 7-
bit fractional sign-magnitude representation 
of each multiplier coefficient is shown 
below
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• The gain response of the filter with infinite 
precision multiplier coefficients and that 
with quantized coefficients are shown 
below
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• Passband details of the parallel allpass
realization and a direct form realization
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