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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• Definition – The CTFT of a continuous-
time signal           is given by

• Often referred to as the Fourier spectrum or 
simply the spectrum of the continuous-time 
signal 
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• Definition – The inverse CTFT of a Fourier 
transform               is given by

• Often referred to as the Fourier integral
• A CTFT pair will be denoted as
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• is real and denotes the continuous-time 
angular frequency variable in radians

• In general, the CTFT is a complex function 
of       in the range

• It can be expressed in the polar form as

where

)()()( ΩθΩ=Ω aj
aa ejXjX
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• The quantity                is called the 
magnitude spectrum and the quantity           
is called the phase spectrum

• Both spectrums are real functions of 
• In general, the CTFT              exists if           

satisfies the Dirichlet conditions given on 
the next slide

Ω

)( ΩjXa
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

Dirichlet Conditions
• (a)  The signal          has a finite number of 

discontinuities and a finite number of 
maxima and minima in any finite interval

• (b) The signal is absolutely integrable, i.e.,

)(txa
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ContinuousContinuous--Time Fourier Time Fourier 
TransformTransform

• If the Dirichlet conditions are satisfied, then

converges to          at values of t except at 
values of t where          has discontinuities

• It can be shown that if          is absolutely 
integrable, then                       proving the 
existence of the CTFT

Ω∫ Ω
∞

∞−

Ω
π

dejX tj
a )(

2
1

)(txa
)(txa

)(txa
∞<Ω)( jXa



2

7
Copyright © 2005, S. K. Mitra

Energy Density SpectrumEnergy Density Spectrum

• The total energy       of a finite energy 
continuous-time complex signal          is 
given by

• The above expression can be rewritten as

∫ ⎥
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⎤
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Energy Density SpectrumEnergy Density Spectrum

• Interchanging the order of the integration 
we get
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Energy Density SpectrumEnergy Density Spectrum

• Hence

• The above relation is more commonly 
known as the Parseval’s relation for finite-
energy continuous-time signals

∫ ΩΩ=∫
∞

∞−
π

∞

∞−
djXdttx a

2
2
12 )()(

10
Copyright © 2005, S. K. Mitra

Energy Density SpectrumEnergy Density Spectrum

• The quantity                  is called the energy 
density spectrum of          and usually 
denoted as

• The energy over a specified range of 
frequencies                       can be computed 
using

2)( ΩjXa
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BandBand--limited Continuouslimited Continuous--Time Time 
SignalsSignals

• A full-band, finite-energy, continuous-time 
signal has a spectrum occupying the whole 
frequency range

• A band-limited continuous-time signal has a 
spectrum that is limited to a portion of the 
frequency range

∞<Ω<∞−

∞<Ω<∞−
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BandBand--limited Continuouslimited Continuous--Time Time 
SignalsSignals

• An ideal band-limited signal has a spectrum 
that is zero outside a finite frequency range        

, that is

• However, an ideal band-limited signal 
cannot be generated in practice

ba Ω≤Ω≤Ω
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BandBand--limited Continuouslimited Continuous--Time Time 
SignalsSignals

• Band-limited signals are classified 
according to the frequency range where 
most of the signal’s is concentrated

• A lowpass, continuous-time signal has a 
spectrum occupying the frequency range  

where       is called the 
bandwidth of the signal

∞<Ω≤Ω p pΩ
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BandBand--limited Continuouslimited Continuous--Time Time 
SignalsSignals

• A highpass, continuous-time signal has a 
spectrum occupying the frequency range  

where the bandwidth of 
the signal is from        to

• A bandpass, continuous-time signal has a 
spectrum occupying the frequency range  

where                  is 
the bandwidth
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Definition - The discrete-time Fourier
transform (DTFT)               of a sequence 
x[n] is given by

• In general,                is a complex function 
of the real variable ω and can be written as
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DiscreteDiscrete--Time Fourier Time Fourier 
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• Definition - The discrete-time Fourier
transform (DTFT)               of a sequence 
x[n] is given by

• In general,                is a complex function 
of the real variable ω and can be written as

)( ωjeX
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DiscreteDiscrete--Time Fourier Time Fourier 
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• and                  are, respectively, 
the real and imaginary parts of             , and 
are real functions of ω

• can alternately be expressed as

where

)( ωjeX
)( ωj

re eX )( ωj
im eX
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• is called the magnitude function
• is called the phase function
• Both quantities are again real functions of ω
• In many applications, the DTFT is called 

the Fourier spectrum
• Likewise,               and         are called the 

magnitude and phase spectra

)( ωjeX
)(ωθ

)( ωjeX )(ωθ
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• For a real sequence x[n], and             
are even functions of ω, whereas,               
and                 are odd functions of ω

• Note:

for any integer k
• The phase function θ(ω) cannot be 

uniquely specified for any DTFT
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Unless otherwise stated, we shall assume 
that the phase function θ(ω) is restricted to 
the following range of values:

called the principal value
π<ωθ≤π− )(
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The DTFTs of some sequences exhibit 
discontinuities of 2π in their phase 
responses

• An alternate type of phase function that is a 
continuous function of ω is often used

• It is derived from the original phase 
function by removing the discontinuities of 
2π
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The process of removing the discontinuities 
is called “unwrapping”

• The continuous phase function generated by 
unwrapping is denoted as

• In some cases, discontinuities of π may be 
present after unwrapping

)(ωθc
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Example - The DTFT of the unit sample 
sequence δ[n] is given by

• Example - Consider the causal sequence

1]0[][)( =δ=∑δ=∆ ω−∞

−∞=

ω nj

n

j ene

1],[][ <αµα= nnx n
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DiscreteDiscrete--Time Fourier Time Fourier 
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• Its DTFT is given by

as
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The magnitude and phase of the DTFT               
are shown below)5.01/(1)( ω−ω −= jj eeX
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DiscreteDiscrete--Time Fourier Time Fourier 
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• The DTFT               of a sequence x[n] is a 
continuous function of ω

• It is also a periodic function of ω with a 
period 2π:

)( ωjeX
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DiscreteDiscrete--Time Fourier Time Fourier 
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• Therefore                                       

represents the Fourier series representation 
of the periodic function

• As a result, the Fourier coefficients x[n] can 
be computed from              using the Fourier 
integral
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DiscreteDiscrete--Time Fourier Time Fourier 
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• Inverse discrete-time Fourier transform:

• Proof:
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DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The order of integration and summation can 
be interchanged if the summation inside the 
brackets converges uniformly, i.e.              
exists

• Then ∫ ω⎟
⎠
⎞

⎜
⎝
⎛ ∑
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• Now

• Hence
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• Convergence Condition - An infinite 
series of the form

may or may not converge
• Let

∑=
∞

−∞=

ω−ω

n

njj enxeX ][)(
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• Then for uniform convergence of              ,

• Now, if x[n] is an absolutely summable
sequence, i.e., if

)( ωjeX

0)()(lim =− ωω
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j
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DiscreteDiscrete--Time Fourier Time Fourier 
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• Then

• for all values of ω
• Thus, the absolute summability of x[n] is a 

sufficient condition for the existence of the 
DTFT
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• Example - The sequence                         for     
is absolutely summable as

and its DTFT              therefore converges 
to   uniformly
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• Since

an absolutely summable sequence has 
always a finite  energy

• However, a finite-energy sequence is not 
necessarily absolutely summable

,][][
2

2
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⎜
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• Example - The sequence 

has a finite energy equal to

• But, x[n] is not absolutely summable
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• To represent a finite energy sequence x[n]
that is not absolutely summable by a DTFT   

, it is necessary to consider a mean-
square convergence of             :

where

)( ωjeX
)( ωjeX
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2

=ω∫ −
π

π−

ωω

∞→
deXeX j

K
j

K

∑=
−=

ω−ω K

Kn

njj
K enxeX ][)(

38
Copyright © 2005, S. K. Mitra

DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Here, the total energy of the error

must approach zero at each value of ω as K
goes to

• In such a case, the absolute value of the 
error                                   may not go to 
zero as K goes to      and the DTFT is no 
longer bounded

∞

∞

)()( ωω − j
K

j eXeX

)()( ωω − j
K

j eXeX

39
Copyright © 2005, S. K. Mitra

DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• Example - Consider the DTFT

shown below
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⎨
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• The inverse DTFT of                   is given by

• The energy of              is given by
• is a finite-energy sequence, 

but it is not absolutely summable
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• As a result

does not uniformly converge to                 
for all values of ω, but converges to              
in the mean-square sense

)( ωj
LP eH

)( ωj
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• The mean-square convergence property of 
the sequence            can be further 
illustrated by examining the plot of the 
function

for various values of K as shown next

∑ π
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• As can be seen from these plots, independent 
of the value of K there are ripples in the plot 
of                      around both sides of the 
point

• The number of ripples increases as K
increases with the height of the largest ripple 
remaining the same for all values of K

)(,
ωj

KLP eH
cω=ω
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• As K goes to infinity, the condition

holds indicating the convergence of            
to

• The oscillatory behavior of        
approximating                  in the mean-
square sense at a point of discontinuity is 
known as the Gibbs phenomenon
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• The DTFT can also be defined for a certain 
class of sequences which are neither 
absolutely summable nor square summable

• Examples of such sequences are the unit 
step sequence µ[n], the sinusoidal sequence 

and the exponential sequence
• For this type of sequences, a DTFT 

representation is possible using the Dirac
delta function δ(ω)

)cos( φ+ω no
nAα
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• A Dirac delta function δ(ω) is a function of 
ω with infinite height, zero width, and unit 
area

• It is the limiting form of a unit area pulse 
function            as ∆ goes to zero satisfying)(ω∆p

∫ ωωδ=∫ ωω
∞

∞−

∞

∞−
∆→∆

ddp )()(lim
0

ω
2
∆− 2

∆0

∆
1

)(ω∆p
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• Example - Consider the complex exponential 
sequence

• Its DTFT is given by

where is an impulse function of ω and

nj oenx ω=][
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∞

−∞=

ω

k
o

j keX )2(2)(

)(ωδ
π≤ω≤π− o



9

49
Copyright © 2005, S. K. Mitra

DiscreteDiscrete--Time Fourier Time Fourier 
TransformTransform

• The function

is a periodic function of ω with a period 2π
and is called a periodic impulse train

• To verify that               given above is 
indeed the DTFT of                     we 
compute the inverse DTFT of
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• Thus

where we have used the sampling property 
of the impulse function )(ωδ
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Commonly Used DTFT PairsCommonly Used DTFT Pairs
Sequence DTFT
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DTFT PropertiesDTFT Properties

• There are a number of important properties 
of the DTFT that are useful in signal 
processing applications

• These are listed here without proof
• Their proofs are quite straightforward
• We illustrate the applications of some of the 

DTFT properties
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Table 3.1:Table 3.1: DTFT Properties: DTFT Properties: 
Symmetry RelationsSymmetry Relations

x[n]: A complex sequence 54
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Table 3.2:Table 3.2: DTFT Properties: DTFT Properties: 
Symmetry RelationsSymmetry Relations

x[n]: A real sequence
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Table 3.4:Table 3.4:General Properties of General Properties of 
DTFTDTFT


