Continuous-Time Fourier
Transform

* Definition — The CTFT of a continuous-
time signal x,(¢) is given by
X,(jQ) = [x, (e ™ dr
 Often referred to as the Fourier spectrum or
simply the spectrum of the continuous-time
signal
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Continuous-Time Fourier
Transform

e Definition — The inverse CTFT of a Fourier
transform X, (jQ2) is given by

xa(t)=i [X,(jQ)e’ d0
27

« Often referred to as the Fourier integral
e A CTFT pair will be denoted as

2, (0SS X, (jO)

Copyright © 2005, S. K. Mitra

Continuous-Time Fourier
Transform
* QO isreal and denotes the continuous-time
angular frequency variable in radians

* In general, the CTFT is a complex function
of Q intherange —o<Q <o

« It can be expressed in the polar form as
X, (G =X, (jEe% Y

where
0,(Q)=arg{X,(jQ)}
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Continuous-Time Fourier
Transform
* The quantity | X, (jQ)| is called the

magnitude spectrum and the quantity 8, (<)
is called the phase spectrum

« Both spectrums are real functions of Q

* In general, the CTFT X, (jQ) exists if x,(¢)
satisfies the Dirichlet conditions given on
the next slide
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Continuous-Time Fourier
Transform

Dirichlet Conditions

* (a) The signal x,(¢) has a finite number of
discontinuities and a finite number of
maxima and minima in any finite interval

« (b) The signal is absolutely integrable, i.e.,

oﬂxa(t)\dt <o

—00
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Continuous-Time Fourier
Transform
« |f the Dirichlet conditions are satisfied, then

1 Ty (o
5 1 Xa(jQ)e”"dQ

converges to ;cj(t) at values of t except at
values of t where x,(¢) has discontinuities

« It can be shown that if x,,(¢) is absolutely
integrable, then | X, (jQ)| <o proving the
existence of the CTFT
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Energy Density Spectrum

 The total energy E, of a finite energy
continuous-time complex signal x,, (¢) is
given by

Ey= T\xa(f)\zdt = Ofxa(t)x;;(t)dt

—00 —00

» The above expression can be rewritten as
€= | xa(t)[zln [ X5 jQ)ethdQ}dt
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Energy Density Spectrum

* Interchanging the order of the integration
we get

—00

Exzi [ X jﬁ){ jxa(t)e_thdt}dQ

= XX, (j)dR

2 .2
=27175_£an( jQ)"aQ
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Energy Density Spectrum

e Hence

PN e 2

[ dr =51 [1X, (G dQ

—0o0 —0o0

 The above relation is more commonly
known as the Parseval’s relation for finite-
energy continuous-time signals
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Energy Density Spectrum

 The quantity \Xa(jQ)\2 is called the energy
density spectrum of x,(¢) and usually
denoted as
S (@) =[X, (jQ)

e The energy over a specified range of
frequencies Q, <Q <Q, can be computed
using Q,

[ S5 (Q)d2

10 Q

1
X,r ﬂ
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Band-limited Continuous-Time
Signals

« A full-band, finite-energy, continuous-time
signal has a spectrum occupying the whole
frequency range —oo<Q <o

« A band-limited continuous-time signal has a
spectrum that is limited to a portion of the
frequency range —oo < Q <o

11
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Band-limited Continuous-Time
Signals
¢ An ideal band-limited signal has a spectrum

that is zero outside a finite frequency range
Q, <[Q<Q, , thatis

[0, 0<]Q<Q,
X“(JQ)‘{O, Q, <[0f<w

» However, an ideal band-limited signal
cannot be generated in practice

12
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Band-limited Continuous-Time
Signals

 Band-limited signals are classified
according to the frequency range where
most of the signal’s is concentrated

» A lowpass, continuous-time signal has a
spectrum occupying the frequency range
Q<Q <o where Qs called the
bandwidth of the signal

13
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Band-limited Continuous-Time
Signals

* A highpass, continuous-time signal has a
spectrum occupying the frequency range
0<Qp << where the bandwidth of
the signal is from Q, to o

« A bandpass, continuous-time signal has a
spectrum occupying the frequency range
0<Q, <|Q<Qy <o Where Qp —Q, is
the bandwidth

14
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Discrete-Time Fourier
Transform

+ Definition - The discrete-time Fourier
transform (DTFT) X (el®) of a sequence
x[n] is given by

X (el?)= Zx[n]e’j“’n
N=—o0

» In general, X (el®) isa complex function

of the real variable o and can be written as
X (€1°) = X e (€1°) + | Xim (€1)
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Discrete-Time Fourier
Transform

* Definition - The discrete-time Fourier
transform (DTFT) X (el®) of a sequence
x[n] is given by

X (el®) = Zx[n]e’j“’n
N=—c0

« In general, X (eJ®) isa complex function

of the real variable o and can be written as
X (€1°) = X e (€1°) + | Xim (€1°)
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Discrete-Time Fourier
Transform

© Xe(e1®) and X;p(el®) are, respectively,
the real and imaginary parts of X (e1®), and
are real functions of @

* X (el®)can alternately be expressed as
X (e®) =|X (el@)e o
where
6(w) =arg{X (e1*)}

17
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Discrete-Time Fourier
Transform

X ()]s called the magnitude function
6(w) s called the phase function

Both quantities are again real functions of ®
 In many applications, the DTFT is called
the Fourier spectrum

Likewise, ‘X(ej‘”)‘ and 6(w) are called the
magnitude and phase spectra

18
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Discrete-Time Fourier
Transform
« For a real sequence x[n],‘x(ejm)‘ and X, (e®)
are even functions of , whereas,8(w)
and X, (eJ®) are odd functions of ®

* Note: X (el®)= ‘x (ej@)‘eje(m+2nk)
=[x (el®)e i
for any integer k

. ‘ The phase function 6(w) cannot be
uniquely specified for any DTFT

19
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Discrete-Time Fourier
Transform

 Unless otherwise stated, we shall assume
that the phase function 6(w) is restricted to
the following range of values:

—-t<0(w)<m
called the principal value

20
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Discrete-Time Fourier
Transform

» The DTFTSs of some sequences exhibit
discontinuities of 27 in their phase
responses

* An alternate type of phase function that is a
continuous function of w is often used

e It is derived from the original phase
function by removing the discontinuities of
2n

21 i
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Discrete-Time Fourier
Transform

 The process of removing the discontinuities
is called “unwrapping”

 The continuous phase function generated by
unwrapping is denoted as 6, (®)

* In some cases, discontinuities of = may be
present after unwrapping

22
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Discrete-Time Fourier
Transform
o Example - The DTFT of the unit sample
sequence 8[n] is given by

AE®) = 3 8[nJe 1" = 5[0] =1

N=—o0

» Example - Consider the causal sequence

x[n]=a"u[n], |o/<1

23
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Discrete-Time Fourier
Transform
* Its DTFT is given by

X (ejw) — Zanu[n]e—jwn — zane—jmn
n=—o n=0

0 .

— —Joyn _ 1

= oe =
HEO( ) l-ae™ =

as ‘ae_jm‘z\(xkl

24 )
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Discrete-Time Fourier
Transform

 The magnitude and phase of the DTFT
X (e')=1/(1-0.5e71*) are shown below

25
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Discrete-Time Fourier
Transform

e The DTFT X(ej‘”) of a sequence x[n] is a
continuous function of ®

* Itis also a periodic function of o with a
period 27:

X (ei(mo+2ﬁk)) _ c)ZolX[n](_:fj(mOJrZTck)n

N=—c0

& —jogh,—j2mkn & —jwon j
= Y x[nJe” 1®o"e I = S x[n]e” 1" = X (e!)
n=—c0 n=—oo
26
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Discrete-Time Fourier
Transform

» Therefore
X(el*)= Y x[nJe "

N=—c0
represents the Fourier series representation
of the periodic function
 As a result, the Fourier coefficients x[n] can
be computed from X (e!®) using the Fourier
integral 17 o
x[n]== [X(e')e!"dw
2m

27 i
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Discrete-Time Fourier
Transform
* Inverse discrete-time Fourier transform:
Xin]= = [ X (e/®)ei®"dey
2m

 Proof:

x[n]—— ) ( %x[f]ej‘”ljej‘”"dm

T _g\l=—0

28
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Discrete-Time Fourier
Transform

* The order of integration and summation can
be interchanged if the summation inside the
brackets converges uniformly, i.e. X (e!®)
exists

« Then — j[ > x[(e” “"fj eloNde

-3 x[f]( ;eiw(n‘@dmj: 3 X[
f=— 21 x (=— n(n—1)
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sinm(n—1/)

Discrete-Time Fourier

Transform
* Now sinn(n—f)_{l, n=/
n(n-¢) 0, n%/
=3[n-/]
* Hence
SRRl §x[f]6[n N=xn]
E—foo ( 2)

30 )
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Discrete-Time Fourier
Transform

e Convergence Condition - An infinite
series of the form
X ()= T x[nle "
N=—o0
may or may not converge
e Let ) K )
Xk (e!)= T x[nle "
n=-—K
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Discrete-Time Fourier
Transform
e Then for uniform convergence of X (ej“’) ,

lim |X (1) - X (1) =0
K—o
» Now, if x[n] is an absolutely summable
sequence, i.e., if

S |x[n] < oo

N=—c

32
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Discrete-Time Fourier
Transform
e Then

< |xn] <o

N=—o0

X

o0 _Hf n
S x[nje !¢
n=—o0

» for all values of ®
 Thus, the absolute summability of x[n] is a

sufficient condition for the existence of the
DTFT X (e')
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Discrete-Time Fourier
Transform

+ Example - The sequence x[n]=a"u[n] for
la| <1is absolutely summable as

['e) 0 1
) \a”\u[n]= > \oc”\=—<oo
N=—o n=0 l—‘(l‘
and its DTFT X (ej“’) therefore converges

to 1/(1— ae™ ) uniformly

34
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Discrete-Time Fourier
Transform

* Since

o0 o0 2
iy <[ St

an absolutely summable sequence has
always a finite energy

» However, a finite-energy sequence is not

necessarily absolutely summable
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Discrete-Time Fourier
Transform
» Example - The sequence

1/n, n=1
”m:{ 0, n<0

has a finite energy equal to
© (1} r?
f = — =R
X né:l(nj 6
 But, x[n] is not absolutely summable

36
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Discrete-Time Fourier
Transform

* To represent a finite energy sequence x[n]
that is not absolutely summable by a DTFT
X (e!®), it is necessary to consider a mean-
square convergence of X (e’®):

n ] L2
lim | \X(elm)— xK(el‘D)\ do=0
K—w

where _ e _
X (e'*)= X x[n]e "

37 n=-K
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Discrete-Time Fourier
Transform

 Here, the total energy of the error
X (1)~ X (")
must approach zero at each value of ® as K
goes to o

* Insuch a case, the absolute value of the
error |X (e!®) - X ()| may not go to
zero as K goes to oo and the DTFT is no
longer bounded
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Discrete-Time Fourier
Transform
» Example - Consider the DTFT

HLp(e"‘”)={1’ Ospisa

0, o <|o<n
shown below
Hip(el)

[9)
39
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Discrete-Time Fourier
Transform
» Theinverse DTFT of H|p (ej‘”) is given by

heln]=_— mfcejwnd“)

1 (ej“’cn e‘j“’C”J_sinmcn

“2nl jn jn ) an

* The energy of h; p[n] is given by w./=n

. ‘ h_p[n] is a finite-energy sequence,
but it is not absolutely summable
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1 —o<N<

Discrete-Time Fourier
Transform
e As aresult

K : K sino.n _j
—jon _ e/l —jon
n:Z_:ELP[n]e n:Z_K ~n €

does not uniformly converge to H ,_p(ej"’) _
for all values of o, but converges to H p(e!)
in the mean-square sense

41
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Discrete-Time Fourier
Transform

» The mean-square convergence property of
the sequence h; p[n]can be further
illustrated by examining the plot of the
function

: K
Hpk@E)= X
n=—K

Sin®.N__j
C e Jon
mn

for various values of K as shown next
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Discrete-Time Fourier
Transform

1
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Discrete-Time Fourier
Transform

As can be seen from these plots, independent
of the value of K there are ripples in the plot
of Hyp k (e®) around both sides of the
point ® = o,

The number of ripples increases as K
increases with the height of the largest ripple
remaining the same for all values of K
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Discrete-Time Fourier
Transform
» As K goes to infinity, the condition

n f L2
lim J|Hup(€')~Hip (1) do=0
K—w ’

holds indicating the convergence of H  p y (e1*)
to Hip(e)

« The oscillatory behavior of Hp  (e*)
approximating H, p(e!®) in the mean-
square sense at a point of discontinuity is
known as the Gibbs phenomenon
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Discrete-Time Fourier

Transform

The DTFT can also be defined for a certain
class of sequences which are neither
absolutely summable nor square summable
Examples of such sequences are the unit

step sequence u[n], the sinusoidal sequence
cos(myn +¢) and the exponential sequence Aa"
For this type of sequences, a DTFT
representation is possible using the Dirac
delta function ()
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Discrete-Time Fourier

Transform
A Dirac delta function 8(w) is a function of
w with infinite height, zero width, and unit
area

* It is the limiting form of a unit area pulse
function p, (») as A goes to zero satisfying
- @ 1 | PA@
lim [p,(0)do= [3(w)do a
A—=0_, B
a04a ©

47 -2 2 '
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Discrete-Time Fourier
Transform

Example - Consider the complex exponential
sequence )

X[n] = eI®"
Its DTFT is given by

X (1) = ¥ 218(0— o, +27K)
k=—0
where 8(w) is an impulse function of » and
—MT<W, ST
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Discrete-Time Fourier
Transform
» The function

X (1) = 3 218(0— o, +27K)
k=—0
is a periodic function of @ with a period 27
and is called a periodic impulse train
« To verify that X (e1°) given above is
indeed the DTFT of x[n] =e!**" we
compute the inverse DTFT of X (1)
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Discrete-Time Fourier
Transform
e Thus

T o0 .
x[n]:—zl [ 32780 w, + 27K)e M dw
T

—nk=-00
T jon jogn
= [3(w—w,)e!"do =6l

where v;e have used the sampling property
of the impulse function &(w)

50
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Commonly Used DTFT Pairs

Sequence DTFT
on « 1
1 & Y2n8(o+21K)
k=—c0
elo 3 2n8(w -, +27K)
k=—00
n] < — + §n8 o+ 21k
W] o e+ S 2k
1
n], (o< < —F——
I (o <) o
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DTFT Properties

 There are a number of important properties
of the DTFT that are useful in signal
processing applications

These are listed here without proof
Their proofs are quite straightforward

We illustrate the applications of some of the
DTFT properties

52
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Table 3.1: DTFT Properties:
Symmetry Relations

Sequence  Discrete-Time Fourier Transform

aln] Xel™)
x[=n] Xie—Ivy
**[-n] X*(el*)
Relzlnll  Xele!®) = J{X(e/®) & X*(e=d®)
Almixlr]l Xealef) = JiX(el®) = X*(e~ oy
xgs[n] Xrelef@)
xcaln] FXim (™)

of x[n]. respectively.

53 x[n]: A complex sequence ) _
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Table 3.2: DTFT Properties:
Symmetry Relations

Note: xe[n] and xosln] denote the even and odd pants of 5[], respectively.

54 x[n]: A real sequence )
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Table 3.4:General Properties of
DTFT

Type of Property Sequence Discrete-Time Fourier Transform

&lnl Glel™)
hln] Hiel™)
Linearity wgln] + Shln) aGlel™) + gH (/™)
Time-shifting gl = ng] e iome G eiwy
Frequency-shifting el oln] G (‘_;cu m..\}
Differentiation dGiel ™y
ngla]
in frequency dia
Convolution glnl@h[n] Gielv) Hiefey
Modulation glalhln] [% Glei®) Hiel =) dg
o0 . - .
Puseval’s relation 3 glnlh*[n] = f Gl H* (/%) dao
55 me =00 .l
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