
1

Copyright © 2005, S. K. Mitra1

Matrix Representation of Matrix Representation of 
Digital Filter StructuresDigital Filter Structures

• A digital filter structure can be described in 
the time-domain by a set of equations 
relating the output sequence to the input 
sequence and, in some cases, one or more 
internally generated sequences

• Consider

Copyright © 2005, S. K. Mitra2

Matrix Representation of Matrix Representation of 
Digital Filter StructuresDigital Filter Structures

• This structure, in the time-domain, is 
described by the set of equations

]1[][ 45 −= nwnw

][][][ 51 nwnxnw α−=
][][][ 312 nwnwnw δ−=

]1[][ 23 −= nwnw
][][][ 234 nwnwnw ε+=

][][][ 51 nwnwny γβ +=

Copyright © 2005, S. K. Mitra3

Matrix Representation of Matrix Representation of 
Digital Filter StructuresDigital Filter Structures

• The equations cannot be implemented in the 
order  shown with each variable on the left 
side computed before the variable below is 
computed

• For example, computation of           in the 
1st step requires the knowledge of           
which is computed in the 5th step

• Likewise, computation of            in the 2nd 
step requires the knowledge of           that is 
computed in the 3rd step

][1 nw
][5 nw

][2 nw
][3 nw

Copyright © 2005, S. K. Mitra4

Matrix Representation of Matrix Representation of 
Digital Filter StructuresDigital Filter Structures

• This ordered set of equations is said to be 
noncomputable

• Suppose we reorder these equations
]1[][ 23 −= nwnw
]1[][ 45 −= nwnw

][][][ 51 nwnxnw α−=
][][][ 312 nwnwnw δ−=

][][][ 51 nwnwny γβ +=
][][][ 234 nwnwnw ε+=

Copyright © 2005, S. K. Mitra5

Matrix Representation of Matrix Representation of 
Digital Filter StructuresDigital Filter Structures

• This ordered set of equations is computable
• In most practical applications, equations 

describing a digital filter structure can be 
put into a computable order by inspection

• A simple way to examine the computability 
of equations describing a digital filter 
structure is by writing the equations in a 
matrix form

Copyright © 2005, S. K. Mitra6

Matrix RepresentationMatrix Representation
• A matrix representation of the first ordered 

set of equations is

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

γβ

ε

δ−
α−

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

][
][
][
][
][
][

0000
000000
00010
000000
00001
00000

0
0
0
0
0

][

][
][
][
][
][
][

5
4
3
2
1

5
4
3
2
1

ny
nw
nw
nw
nw
nwnx

ny
nw
nw
nw
nw
nw

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−
−
−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

]1[
]1[
]1[
]1[
]1[
]1[

000000
001000
000000
000010
000000
000000

5

4

3

2

1

ny
nw
nw
nw
nw
nw



2

Copyright © 2005, S. K. Mitra7

Matrix RepresentationMatrix Representation
• In compact form

y[n] = x[n] + F y[n] + G y[n - 1]
where

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000
001000
000000
000010
000000
000000

G,

0000
000000
00010
000000
00001
00000

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

γβ

ε

δ
α

F

[ ]Tnynwnwnwnwnwn ][][][][][][][ 54321=y

[ ]Tnxn 00000][][ =x

Copyright © 2005, S. K. Mitra8

Matrix RepresentationMatrix Representation
• For the computation of present value of a 

particular signal variable, nonzero entries in 
the corresponding rows of matrices F and G
determine the variables whose present and 
previous values are needed

• If a diagonal element of F is nonzero, then 
computation of present value of the 
corresponding variable requires the 
knowledge of its present value implying 
presence of a delay-free loop

Copyright © 2005, S. K. Mitra9

Matrix RepresentationMatrix Representation
• Any nonzero entries in the same row above 

the main diagonal of F imply that the 
computation of present value of the 
corresponding variable requires present 
values of other variables not yet computed, 
making the set of equations noncomputable

• Hence, for computability all elements of F
matrix on the diagonal and above diagonal 
must be zeros

Copyright © 2005, S. K. Mitra10

Matrix RepresentationMatrix Representation

• In the F matrix for the first ordered set of 
equations, diagonal elements are all zeros, 
indicating absence of delay-free loops

• However, there are nonzero entries above 
the diagonal in the first and second rows of 
F indicating that the set of equations are not 
in proper order for computation

Copyright © 2005, S. K. Mitra11

Matrix RepresentationMatrix Representation
• The F matrix for the second ordered set of 

equations is

which is seen to satisfy the computability 
condition

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−=

00001
0000
00010
00000
000000
000000

ε
βγ

δ
αF

Copyright © 2005, S. K. Mitra12

Precedence GraphPrecedence Graph
• The precedence graph can be used to test 

the computability of a digital filter structure 
and to develop the proper ordering sequence 
for a  set of equations describing a 
computable structure

• It is developed from the signal-flow graph
description of the digital filter structure in 
which independent and dependent signal 
variables are represented by nodes, and the 
multiplier and delay branches are 
represented by directed branches



3

Copyright © 2005, S. K. Mitra13

Precedence GraphPrecedence Graph

• The directed branch has an attached symbol 
denoting the branch gain or transmittance

• For a multiplier branch, the branch gain is 
the multiplier coefficient value

• For a delay branch, the branch gain is 
simply 1−z

Copyright © 2005, S. K. Mitra14

Precedence GraphPrecedence Graph
• The signal-flow graph representation of

is shown below

Copyright © 2005, S. K. Mitra15

Precedence GraphPrecedence Graph
• A reduced signal-flow graph is then 

developed by removing the delay branches 
and all branches going out of the input node

• The reduced signal-flow graph of the example 
digital filter structure is shown below

Copyright © 2005, S. K. Mitra16

Precedence GraphPrecedence Graph

• The remaining nodes in the reduced signal-
flow graph are grouped as follows:

• All nodes with only outgoing branches are 
grouped into one set labeled

• Next, the set           is formed containing 
nodes coming in only from one or more 
nodes in the set           and have outgoing 
branches to the other nodes

{ }1N
{ }2N

{ }1N

Copyright © 2005, S. K. Mitra17

Precedence GraphPrecedence Graph
• Then, form the set            containing nodes 

that have branches coming in only from one 
or more nodes in the sets          and           , 
and have outgoing branches to other nodes

• Continue the process until there is a set of 
nodes            containing only incoming 
branches

• The rearranged signal-flow graph is called a
precedence graph

{ }2N{ }1N

{ }3N

}{ fN

Copyright © 2005, S. K. Mitra18

Precedence GraphPrecedence Graph

• Since signal variables belonging to           do 
not depend on the present values of other 
signal variables, these variables should be 
computed first

• Next, signal variables belonging to           
can be computed since they depend on the 
present values of signal variables contained 
in             that have already been computed

}{ 1N

}{ 1N

}{ 2N



4

Copyright © 2005, S. K. Mitra19

Precedence GraphPrecedence Graph
• This is followed by the computation of 

signal variables in           ,            , etc.
• Finally, in the last step the signal variables 

in           are computed
• This process of sequential computation 

ensures the development of a valid 
computational algorithm

• If there is no final set           containing only 
incoming branches, the digital filter 
structure is noncomputable

}{ 3N }{ 4N

}{ fN

}{ fN

Copyright © 2005, S. K. Mitra20

Precedence GraphPrecedence Graph

• For the example precedence graph, 
pertinent groupings of node variables are:

]}[],[{}{ 531 nwnw=N
]}[{}{ 12 nw=N
]}[{}{ 23 nw=N

]}[],[{}{ 44 nynw=N

Copyright © 2005, S. K. Mitra21

Precedence GraphPrecedence Graph
• Precedence graph redrawn according to the 

above groupings is as shown below

• Since the final node set            has  only 
incoming branches, the structure is 
computable

}{ 4N

Copyright © 2005, S. K. Mitra22

Structure VerificationStructure Verification
• A simple method to verify that the structure 

developed is indeed characterized by the 
prescribed transfer function H(z)

• Consider for simplicity a causal 3rd order 
IIR transfer function

• If {h[n]} denotes its impulse response, then

3
3

2
2

1
1

3
3

2
2

1
10

1)(
)()( −−−

−−−

+++
+++

==
zdzdzd
zpzpzpp

zD
zPzH

∑=
∞

=

−

0
][)(

n

nznhzH

Copyright © 2005, S. K. Mitra23

Structure VerificationStructure Verification
• Note     P(z) = H(z)D(z)

which is equivalent to
• Evaluate above convolution sum for               : 

1,][ 0
0

== ∑
=

− ddkhp
n

k
knn

]0[0 hp =
11 ]0[]1[ dhhp +=

212 ]0[]1[]2[ dhdhhp ++=
3213 ]0[]1[]2[]3[ dhdhdhhp +++=
321 ]1[]2[]3[]4[0 dhdhdhh +++=
321 ]2[]3[]4[]5[0 dhdhdhh +++=
321 ]3[]4[]5[]6[0 dhdhdhh +++=

60 ≤≤ n

Copyright © 2005, S. K. Mitra24

Structure VerificationStructure Verification
• In matrix form we get

• In partitioned form above matrix equation 
can be written as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

3

2

1
3

2

1

0

1

]3[]4[]5[]6[
]2[]3[]4[]5[
]1[]2[]3[]4[
]0[]1[]2[]3[

0]0[]1[]2[
00]0[]1[
000]0[

0
0
0 d

d
d

hhhh
hhhh
hhhh
hhhh

hhh
hh

h

p
p
p
p

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

dHh

H

0

p
L

M
LLLL

1

2

1



5

Copyright © 2005, S. K. Mitra25

Structure VerificationStructure Verification
where

• Solving second equation we get

• Substituting above in the first equation we 
get

• In the case of an N-th order IIR filter, the 
coefficients of its transfer function can be 
determined from the first 2N+1 impulse 
response samples

,1
1 ⎥⎦

⎤
⎢⎣
⎡= dHp [ ] ⎥⎦

⎤
⎢⎣
⎡= dHh0 1

2

hHd 1
2
−−=

⎥⎦
⎤

⎢⎣
⎡
−= − hHHp 1

2
1

1

Copyright © 2005, S. K. Mitra26

Structure VerificationStructure Verification
• Example - Consider the causal transfer 

function

• Here

• Hence

L++−−+=
++
++

= −−−−
−−

−−
4321

21

21

133542
21
362)( zzzz
zz
zzzH

13]4[,3]3[,5]2[,4]1[,2]0[ =−=−=== hhhhh

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

12

1

0

1

5313
453
245
024
002

0
0 d

dp
p
p

Copyright © 2005, S. K. Mitra27

Structure VerificationStructure Verification

• Solving we get

and

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡−

⎥⎦
⎤

⎢⎣
⎡

−−
−=⎥⎦

⎤
⎢⎣
⎡ −

2
1

13
3

53
45 1

2
1

d
d

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

3
6
2

2
1
1

245
024
002

2

1

0

p
p
p

Copyright © 2005, S. K. Mitra28

Structure Simulation and Structure Simulation and 
Verification Using MATLABVerification Using MATLAB

• For computer simulation, the structure is 
described in the form of a set of equations

• These equations must be ordered properly 
to ensure computability

• The procedure is to express the output of 
each adder and filter output variable in 
terms of all incoming signal variables

Copyright © 2005, S. K. Mitra29

Structure Simulation and Structure Simulation and 
Verification Using MATLABVerification Using MATLAB

• Consider the structure

• A valid computational algorithm involving 
the least number of equations is

],1[][][ 41 −−= nwnxnw α
],1[][][ 212 −−= nwnwnw δ
],[]1[][ 224 nwnwnw ε+−=

]1[][][ 41 −+= nwnwny γβ
Copyright © 2005, S. K. Mitra30

Structure Simulation and Structure Simulation and 
Verification Using MATLABVerification Using MATLAB

• This set of equations is evaluated for 
increasing values of n starting at n = 0

• At the beginning, the initial conditions          
and              can be set to any desired values, 
which are typically zero

• From the computed impulse response 
samples, the structure can be verified by 
determining the transfer function 
coefficients using the M-file strucver

]1[2 −w
]1[4 −w



6

Copyright © 2005, S. K. Mitra31

Simulation of IIR FiltersSimulation of IIR Filters
• The M-file filter implements the IIR 

filter in the transposed direct form II 
structure shown below for a 3rd order filter

• As indicated in the figure, d(1) has been 
assumed to be equal to 1

Copyright © 2005, S. K. Mitra32

Simulation of IIR FiltersSimulation of IIR Filters
• Basic forms of this function are

y = filter(num,den,x)

[y,sf]=filter(num,den,x,si)
where x is the input vector, y is the output 
vector, si is the vector of initial conditions 
of the delay variables, and sf is the vector 
of final values of the delay variables

• For the simulation of a causal IIR filter 
realized in direct form II structure use the 
M-file direct2

Copyright © 2005, S. K. Mitra33

Simulation of IIR FiltersSimulation of IIR Filters
• For the simulation of overlap-add filtering 

method use the M-file fftfilt or the 
second form of the M-file filter

• For the simulation of tapped cascaded 
lattice filter structures, use the M-file
latcfilt

• The M-files filter, direct2 and 
latcfilt can also be used to simulate 
FIR filters

• The M-file filtfilt implements the 
zero-phase filtering

Copyright © 2005, S. K. Mitra34

Discrete Fourier Transform Discrete Fourier Transform 
ComputationComputation

• The N-point DFT X[k] of a length-N
sequence x[n],                     , is defined by

where

• Direct computation of all N samples of 
{X[k]} requires complex multiplications 
and                complex additions

10 −≤≤ Nn
10,][][ 1

0 −≤≤= ∑ −
= NkWnxkX N

n
kn
N

)1( −NN

Nj
N eW /2π−=

2N

Copyright © 2005, S. K. Mitra35

Goertzel’sGoertzel’s AlgorithmAlgorithm
• A recursive DFT computation scheme that 

makes use of the identity

obtained using the periodicity of
• Using this identity we can write

nk
NW −

1=−kN
NW

∑=
−

=

1

0
][][

N k
NWxkX

l

ll

∑ ∑==
−

=

−

=

−−− 1

0

1

0

)(][][
N N Nk

N
k
N

kN
N WxWxW

l l

ll ll

Copyright © 2005, S. K. Mitra36

Goertzel’sGoertzel’s AlgorithmAlgorithm
• Define
• Note:            is the direct convolution of the 

causal sequence

with a causal sequence

• Observe

∑= =
−−n nk

Nek Wxny 0
)(][][ l
ll

][nyk

⎩⎨
⎧

≥<
−≤≤= Nnn

Nnnxnxe ,0,0
10],[][

⎩
⎨
⎧

<
≥=

−

0,0
0,][

n
nWnh

kn
Nk

Nnk nykX == ][][



7

Copyright © 2005, S. K. Mitra37

Goertzel’sGoertzel’s AlgorithmAlgorithm
• z-transform of

yields

where                       
and

• Thus,            is the output of an initially 
relaxed LTI digital filter            with an 
input and, when n = N,

∑= =
−−n nk

Nek Wxny 0
)(][][ l
ll

)1/(1]}[{)( 1−−−== zWnhzH k
Nkk Z

]}[{)( nxzX ee Z=

)()(
1

)(]}[{)( 1 zXzH
zW

zXnyzY ekk
N

e
kk =

−
== −−Z

][nyk

][][ kXNyk =
)(zHk

][nxe
Copyright © 2005, S. K. Mitra38

Goertzel’sGoertzel’s AlgorithmAlgorithm
• Structural interpretation of the algorithm -

• Thus a recursive DFT computation scheme 
is

with                   and

NnnyWnxny k
k

Nek ≤≤−+= − 0],1[][][

0]1[ =−ky 0][ =Nxe

Copyright © 2005, S. K. Mitra39

Goertzel’sGoertzel’s AlgorithmAlgorithm
• Since a complex multiplication can be 

implemented with 4 real multiplications and 
2 real additions, computation of each new 
value of           requires 4 real 
multiplications and 4 real additions

• Thus computation of                        involves 
4N real multiplications and 4N real 
additions

Computation of all N DFT samples 
requires          real multiplications and         
real additions

][][ NykX k=

][nyk

24N 24N

Copyright © 2005, S. K. Mitra40

Goertzel’sGoertzel’s AlgorithmAlgorithm
• Recall, direct computation of all N samples of 

{X[k]} requires complex multiplications 
and                complex additions

• Equivalently, direct computation of all N
samples of {X[k]} requires real 
multiplications and                   real additions

• Thus, Goertzel’s algorithm requires 2N more 
real additions than the direct DFT 
computation

2N
)1( −NN

)24( −NN

24N

Copyright © 2005, S. K. Mitra41

Goertzel’sGoertzel’s AlgorithmAlgorithm
• Algorithm can be made computationally 

more efficient by observing that             can 
be rewritten as

resulting in a second-order realization

)1)(1(
1

1
1)( 11

1

1 −−−

−

−− −−
−

=
−

=
zWzW

zW
zW

zH k
N

k
N

k
N

k
N

k

21

1

)/2cos(21
1

−−

−

+−
−

=
zzNk

zW k
N

π

)(zHk

Copyright © 2005, S. K. Mitra42

Goertzel’sGoertzel’s AlgorithmAlgorithm

• DFT computation equations are now
]1[)/2cos(2][][ −π+= nvNknxnv kek

Nnnvk ≤≤−− 0],2[
]1[][][][ −−== NvWNvNykX k

k
Nkk



8

Copyright © 2005, S. K. Mitra43

Goertzel’sGoertzel’s AlgorithmAlgorithm
• Computation of each sample of

involves only 2 real multiplications and 4
real additions

• Complex multiplication by           needs to 
be performed only once at n = N

• Thus, computation of one sample of X[k]
requires                 real multiplications and      

real additions
• Computation of all N DFT samples requires        

real multiplications and                  
real additions

k
NW

)42( +N
)44( +N

)1(4 +NN
)2(2 +NN

][nvk

Copyright © 2005, S. K. Mitra44

Goertzel’sGoertzel’s AlgorithmAlgorithm
• In the realization of               , the multiplier 

in the feedback path is

which is same as that in the realization of
i.e., the intermediate 

variables computed to determine X[k] can 
again be used to determine

• Only difference between the two structures 
is the feed-forward multiplier which is now 

that is the complex conjugate of

)(zH kN−

)(zHk

)/2cos(2)/)(2cos(2 NkNkN ππ =−

],[][ nvnv kkN =−

][ kNX −

,k
NW − k

NW

Copyright © 2005, S. K. Mitra45

Goertzel’sGoertzel’s AlgorithmAlgorithm
• Thus, computation of X[k] and              

require 2(N+4) real multiplications and 
4(N+2) real additions

• Computation of all N DFT samples require 
approximately       real multiplications and 
approximately         real additions

• Number of real multiplications is about one-
fourth and number of real additions is about 
one-half of those needed in direct DFT 
computation

][ kNX −

2N
22N

Copyright © 2005, S. K. Mitra46

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Consider a sequence x[n] of length
• Using a 2-band polyphase decomposition 

we can express its z-transform as

where
)()()( 2

1
12

0 zXzzXzX −+=

∑=∑=
−

=

−−

=

− 1)2/(

0

1)2/(

0
00 ]2[][)(

N

n

nN

n

n znxznxzX

∑ +=∑=
−

=

−−

=

− 1)2/(

0

1)2/(

0
11 ]12[][)(

N

n

nN

n

n znxznxzX

µ= 2N

Copyright © 2005, S. K. Mitra47

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Evaluating on the unit circle at N equally 
spaced points                                         we 
arrive at the N-point DFT of x[n]:

where            and           are the (N/2)-point 
DFTs of the (N/2)-length sequences        
and

,10, −≤≤= − NkWz k
N

],[][][ 2/12/0 N
k
NN kXWkXkX 〉〈+〉〈=

10 −≤≤ Nk
][0 kX ][1 kX

][1 nx
][0 nx

Copyright © 2005, S. K. Mitra48

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• i.e.,

10,]2[
1)2/(

0 22/ −≤≤= ∑
−

=

N

r

Nrk
N kWrx

∑
−

=
=

1)2/(

0
2/00 ][][

N

r

rk
NWrxkX

∑
−

=
=

1)2/(

0
2/11 ][][

N

r

rk
NWrxkX

10,]12[
1)2/(

0
22/ −≤≤+= ∑

−

=

N

r

Nrk
N kWrx



9

Copyright © 2005, S. K. Mitra49

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Block-diagram interpretation

k
NW

2

2

z
point2 −

N

DFT

point2 −
N

DFT +][nx ][kX
][0 nx

][1 nx ][ 2/1 NkX 〉〈

][ 2/0 NkX 〉〈

k
NW

Copyright © 2005, S. K. Mitra50

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Flow-graph representation

Copyright © 2005, S. K. Mitra51

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Direct computation of the N-point DFT 
requires       complex multiplications and              

complex additions
• Computation of the N-point DFT using the 

modified scheme requires the computation of 
two (N/2)-point DFTs that are then combined 
with N complex multiplications and N
complex additions resulting in a total of                

complex multiplications and              
approximately complex additions

2N
22 NNN ≈−

NN +)2/( 2

NN +)2/( 2
Copyright © 2005, S. K. Mitra52

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• For
• Continuing the process we can express         

and             as a weighted combination of 
two (N/4)-point DFTs

• For example, we can write

where              and            are the (N/4)-
point DFTs of the (N/4)-length sequences            

and

22 )2/(,3 NNNN <+≥

][1 kX
][0 kX

],[][][ 4/012/4/000 N
k
NN kXWkXkX 〉〈+〉〈=

1)2/(0 −≤≤ Nk
][00 kX ][01 kX

]2[][ 000 nxnx = ]12[][ 001 += nxnx

Copyright © 2005, S. K. Mitra53

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Likewise, we can express

where              and            are the (N/4)-
point DFTs of the (N/4)-length sequences            

and

],[][][ 4/112/4/101 N
k
NN kXWkXkX 〉〈+〉〈=

1)2/(0 −≤≤ Nk
][10 kX ][11 kX

]12[][ 111 += nxnx]2[][ 110 nxnx =

Copyright © 2005, S. K. Mitra54

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Block-diagram representation of the two-
stage algorithm

k
NW

2

z
point4 −N

DFT

point4 −N

DFT +][nx ][kX
][00 nx

][01 nx ][ 4/01 NkX 〉〈

][ 4/00 NkX 〉〈

k
NW 2/

k
NW2

2

z
point4 −N

DFT

point4 −N

DFT +
][10 nx

][11 nx ][ 4/11 NkX 〉〈

][ 4/10 NkX 〉〈

k
NW 2/

+

z

22

2

][0 nx

][1 nx

][ 2/0 NkX 〉〈

][ 2/1 NkX 〉〈

k
NW



10

Copyright © 2005, S. K. Mitra55

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Flow-graph representation

Copyright © 2005, S. K. Mitra56

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• In the flow-graph shown N =8
• Hence, the (N/4)-point DFT here is a 2-

point DFT and no further decomposition is 
possible

• The four 2-point DFTs,                              
can be easily computed

• For example
1,0],4[]0[][ 200 =+= kxWxkX k

1,0,],[ =jikXij

Copyright © 2005, S. K. Mitra57

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Corresponding flow-graph of the 2-point 
DFT is shown below obtained using the 
identity kN

N
k WW )2/(

2 =

Copyright © 2005, S. K. Mitra58

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Complete flow-graph of the 8-point DFT is 
shown below

Copyright © 2005, S. K. Mitra59

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• The flow-graph consists of 3 stages
• First stage computes the four 2-point DFTs
• Second stage computes the two 4-point DFTs
• Last stage computes the desired 8-point DFT
• The number of complex multiplications and 

additions at each stage is equal to 8, the size 
of the DFT

Copyright © 2005, S. K. Mitra60

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Total number of complex multiplications 
and additions to compute all 8 DFT samples 
is equal to 8 + 8 + 8 = 24 = 

• In the general case when             , number of 
stages for the computation of the (     )-point 
DFT in the fast algorithm will be

• Total number of complex multiplications 
and additions to compute all N DFT 
samples is )(log2 NN

µ2

µ2=N

N2log=µ

38×



11

Copyright © 2005, S. K. Mitra61

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• In developing the count, multiplications 
with              and                      have been 
assumed to be complex

• Also the symmetry property of

has not been taken advantage of
• These properties can be exploited to reduce 

the computational complexity further

10 =NW 12/ −=N
NW

k
N

kN
N WW −=+)2/(

Copyright © 2005, S. K. Mitra62

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Examination of the flow-graph

reveals that each stage of the DFT 
computation process employs the same 
basic computational module

Copyright © 2005, S. K. Mitra63

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• In the basic module two output variables are 
generated by a weighted combination of 
two input variables as indicated below
where                      and

• Basic computational module is called a 
butterfly computation

µ,,2,1 K=r 1,,1,0, −=βα NK

Copyright © 2005, S. K. Mitra64

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Input-output relations of the basic module 
are:

• Substituting                              in the second 
equation given above we get

][][][1 βαα rNrr W Ψ+Ψ=Ψ +
l

][][][ )2/(
1 βαβ r

N
Nrr W Ψ+Ψ=Ψ +

+
l

][][][1 βαβ rNrr W Ψ−Ψ=Ψ +
l

ll
N

N
N WW −=+ )2/(

Copyright © 2005, S. K. Mitra65

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Modified butterfly computation requires 
only one complex multiplication as 
indicated below

• Use of the above modified butterfly 
computation module reduces the total 
number of complex multiplications by 50%

Copyright © 2005, S. K. Mitra66

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• New flow-graph using the modified 
butterfly computational module for N = 8



12

Copyright © 2005, S. K. Mitra67

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Computational complexity can be reduced 
further by avoiding multiplications by            ,  

,                  ,  and
• The DFT computation algorithm described 

here also is efficient with regard to memory 
requirements

• Note: Each stage employs the same butterfly 
computation to compute               and            
from            and

10 =NW
12/ −=N

NW jW N
N =4/ jW N

N −=4/3

][1 α+Ψr ][1 β+Ψr
][βrΨ][αrΨ

Copyright © 2005, S. K. Mitra68

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• At the end of computation at any stage,         
output variables              can be stored in the 
same registers previously occupied by the 
corresponding input variables

• This type of memory location sharing is 
called in-place computation resulting in 
significant savings in overall memory 
requirements

][1 mr+Ψ

][mrΨ

Copyright © 2005, S. K. Mitra69

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• In the DFT computation scheme outlined, 
the DFT samples X[k] appear at the output 
in a sequential order while the input 
samples x[n] appear in a  different order

Copyright © 2005, S. K. Mitra70

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Thus, a sequentially ordered input x[n] must 
be reordered appropriately before the fast 
algorithm described by this structure can be 
implemented

• To understand the input reordering scheme 
represent the arguments of input samples 
x[n] and their sequentially ordered new 
representations             in binary forms][1 mΨ

Copyright © 2005, S. K. Mitra71

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• The relations between the arguments m and 
n are as follows:

• Thus, if (         ) represents the index n of 
x[n], then the sample                 appears at 
the location                   as                   before 
the DFT computation is started

• i.e., location of            is in bit-reversed
order from that of x[n]

111011101001110010100000:
111110101100011010001000:

n
m

012 bbb
][ 012 bbbx

210 bbbm = ][ 2101 bbbΨ

][1 mΨ

Copyright © 2005, S. K. Mitra72

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Alternative forms of the fast DFT 
algorithms can be obtained by reordering 
the computations such as input in normal 
order and output in bit-reversed order, and 
both input and output in normal order

• The fast algorithm described assumes that 
the length of x[n] is a power of 2

• If it is not, the length can be extended by 
zero-padding and make the length a power 
of 2



13

Copyright © 2005, S. K. Mitra73

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Even after zero-padding, the DFT 
computation based on the fast algorithm 
may be computationally more efficient than 
a direct DFT computation of the original 
shorter sequence

• The fast DFT computation schemes 
described are called decimation-in-time
(DIT) fast Fourier transform (FFT) 
algorithms as input x[n] is first decimated to 
form a set of subsequences before the DFT 
is computed

Copyright © 2005, S. K. Mitra74

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• For example, the relation between x[n] and 
its even and odd parts,           and          , 
generated by the first stage of the DIT 
algorithm is given by

]7[]5[]3[]1[:][
]6[]4[]2[]0[:][

]7[]6[]5[]4[]3[]2[]1[]0[:][

1

0
xxxxnx
xxxxnx

xxxxxxxxnx

][0 nx ][1 nx

Copyright © 2005, S. K. Mitra75

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Likewise, the relation between x[n] and the 
sequences           ,           ,          , and          , 
generated by the two-stage decomposition 
of the DIT algorithm is given by

][00 nx ][01 nx ][11 nx][10 nx

]7[]3[:][
]5[]1[:][
]6[]2[:][
]4[]0[:][

]7[]6[]5[]4[]3[]2[]1[]0[:][

11

10

01

00

xxnx
xxnx
xxnx
xxnx

xxxxxxxxnx

Copyright © 2005, S. K. Mitra76

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• The subsequences           ,           ,          , and         
can be generated directly by a factor-

of-4 decimation process leading to a single-
stage decomposition as shown on the next 
slide

][00 nx ][01 nx ][10 nx
][11 nx

Copyright © 2005, S. K. Mitra77

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

+ ][kX

][ 4/01 NkX 〉〈

][ 4/00 NkX 〉〈

k
NW 2/

+

][ 4/11 NkX 〉〈

][ 4/10 NkX 〉〈

k
NW 2/

+

][ 2/0 NkX 〉〈

][ 2/1 NkX 〉〈

k
NW

k
NW

4 point4 −N

DFT

point4 −N

DFT
][nx

][00 nx

][01 nx

k
NW4

4 point4 −N

DFT

point4 −N

DFT
][10 nx

][11 nx

z

4

z

z

Copyright © 2005, S. K. Mitra78

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• Radix-R FFT algorithm - A each stage the 
decimation is by a factor of R

• Depending on N, various combinations of 
decompositions of X[k] can be used to 
develop different types of DIT FFT 
algorithms

• If the scheme uses a mixture of decimations 
by different factors, it is called a mixed 
radix FFT algorithm



14

Copyright © 2005, S. K. Mitra79

DecimationDecimation--inin--Time FFT Time FFT 
AlgorithmAlgorithm

• For N which is a composite number 
expressible in the form of a product of 
integers:

total number of complex multiplications 
(additions) in a DIT FFT algorithm based 
on a     -stage decomposition is given byν

νrrrN L21 ⋅=

Nr
i

i ⎟
⎠
⎞

⎜
⎝
⎛
∑ −
=

ν
ν

1
Copyright © 2005, S. K. Mitra80

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• Consider a sequence x[n] of length
• Its z-transform can be expressed as

where

µ2=N

)()()( 2/ zXzzXzX b
N

a
−+=

∑
−

=

−=
1)2/(

0
][)(

N

n

n
a znxzX

∑
−

=

−+=
1)2/(

0 2
][)(

N

n

nN
b znxzX

Copyright © 2005, S. K. Mitra81

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• Evaluating X(z) on the unit circle at            
we get

which can be rewritten using the identity         
as

∑=
−

=

1)2/(

0
][][

N

n

nk
NWnxkX

∑ ++
−

=

1)2/(

0 2
)2/( ][

N

n

nk
N

NkN
N WnxW

nk
N

N

n

Nk WnxnxkX ∑ +−+=
−

=

1)2/(

0 2
])[)1(][(][

kkN
NW )1()2/( −=

Copyright © 2005, S. K. Mitra82

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• For k even

• For k odd

ll n
N

N

n

N WnxnxX 21)2/(

0 2
])[][(]2[ ∑ ++=

−

=
10,])[][(

22/
1)2/(

0 2
−≤≤∑ ++=

−

=

Nn
N

N

n

N Wnxnx ll

10,])[][(
22/

1)2/(

0 2
−≤≤∑ +−=

−

=

Nn
N

n
N

N

n

N WWnxnx ll

)12(1)2/(

0 2
])[][(]12[ +−

=
∑ +−=+ ll n

N
N

n

N WnxnxX

Copyright © 2005, S. K. Mitra83

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• We can write

where

)2(
1)2/(

0
0 ][]2[ ll n

N

N

n
WnxX ∑

−

=
=

10,][]12[
2

)2(1)2/(

0
1 −≤≤∑=+

−

=

Nn
N

N

n
WnxX ll l

]),[][(][
20 nxnxnx N ++=

10,])[][(][
221 −≤≤+−= Nn

N
N nWnxnxnx

Copyright © 2005, S. K. Mitra84

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• Thus             and                 are the (N/2)-
point DFTs of the length-(N/2) sequences           

and
• Flow-graph of the first-stage of the DFT 

algorithm is shown below

]2[ lX ]12[ +lX

][0 nx ][1 nx



15

Copyright © 2005, S. K. Mitra85

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• Here the input samples are in sequential 
order, while the output DFT samples appear 
in a decimated form with the even-indexed 
samples appearing as the output of one 
(N/2)-point DFT and the odd-indexed 
samples appearing as the output of the other 
(N/2)-point DFT

Copyright © 2005, S. K. Mitra86

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• We next express the even- and odd-indexed 
samples of each one of the two (N/2)-point 
DFTs as a sum of two (N/4)-point DFTs

• Process is continued until the smallest DFTs
are 2-point DFTs

Copyright © 2005, S. K. Mitra87

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• Complete flow-graph of the decimation-in-
frequency FFT computation scheme for N = 8

Copyright © 2005, S. K. Mitra88

DecimationDecimation--inin--Frequency Frequency 
FFT AlgorithmFFT Algorithm

• Computational complexity of the radix-2
DIF FFT algorithm is same as that of the 
DIT FFT algorithm

• Various forms of DIF FFT algorithm can 
similarly be developed

• The DIT and DIF FFT algorithms described 
here are often referred to as the Cooley-
Tukey FFT algorithms

Copyright © 2005, S. K. Mitra89

Inverse DFT ComputationInverse DFT Computation

• An FFT algorithm for computing the DFT 
samples can also be used to calculate 
efficiently the inverse DFT (IDFT)

• Consider a length-N sequence x[n] with an 
N-point DFT X[k]

• Recall

∑=
−

=

−1

0
][1][

N

k

nk
NWkX

N
nx

Copyright © 2005, S. K. Mitra90

Inverse DFT ComputationInverse DFT Computation

• Multiplying both sides by N and taking the 
complex conjugate we get

• Right-hand side of above is the N-point 
DFT of a sequence X*[k]

∑=
−

=

1

0
][*][*

N

k

nk
NWkXnNx



16

Copyright © 2005, S. K. Mitra91

Inverse DFT ComputationInverse DFT Computation
• Desired IDFT x[n] is then obtained as

• Inverse DFT computation is shown below:

*
][*1][

1

0 ⎭
⎬
⎫

⎩
⎨
⎧
∑=
−

=

N

k

nk
NWkX

N
nx

{X[k]}Re Re {x[n]}

Im{x[n]}Im {X[k]}
1−

N
1−

N
1

N-point
DFT


