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Stability Condition of an LTI Stability Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• BIBO Stability Condition - A discrete-
time is BIBO stable if and only if the output 
sequence {y[n]} remains bounded for all 
bounded input sequence {x[n]}

• An LTI discrete-time system is BIBO stable 
if and only if its impulse response sequence 
{h[n]} is absolutely summable, i.e.
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Stability Condition of an LTI Stability Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• Proof: Assume h[n] is a real sequence
• Since the input sequence x[n] is bounded we 

have

• Therefore
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Stability Condition of an LTI Stability Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• Thus, S <       implies                      
indicating that y[n] is also bounded

• To prove the converse, assume y[n] is 
bounded, i.e.,

• Consider the input given by
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Stability Condition of an LTI Stability Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

where sgn(c) = +1 if c > 0 and sgn(c) =      
if c < 0  and

• Note: Since , {x[n]} is obviously 
bounded

• For this input, y[n] at n = 0 is

• Therefore,                  implies S <   
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Stability Condition of an LTI Stability Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• Example - Consider a causal LTI discrete-
time system with an impulse response

• For this system

• Therefore S <      if           for which the 
system is BIBO stable

• If , the system is not BIBO stable
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Causality Condition of an LTI Causality Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• Let and          be two input sequences 
with

• The corresponding output samples at          
of an LTI system with an impulse response
{h[n]} are then given by
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Causality Condition of an LTI Causality Condition of an LTI 
DiscreteDiscrete--Time SystemTime System
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Causality Condition of an LTI Causality Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• If the LTI system is also causal, then

• As

• This implies
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Causality Condition of an LTI Causality Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• As                       for             the only way 
the condition

will hold if both sums are equal to zero, 
which is satisfied if
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Causality Condition of an LTI Causality Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• An LTI discrete-time system is causal
if and only if its impulse response {h[n]} is a 
causal sequence

• Example - The discrete-time system defined 
by

is a causal system as it has a causal impulse 
response
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Causality Condition of an LTI Causality Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• Example - The discrete-time accumulator 
defined by

is a causal system as it has a causal impulse 
response given by
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Causality Condition of an LTI Causality Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• Example - The factor-of-2 interpolator 
defined by

is noncausal as it has a noncausal impulse 
response given by
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Causality Condition of an LTI Causality Condition of an LTI 
DiscreteDiscrete--Time SystemTime System

• Note: A noncausal LTI discrete-time system 
with a finite-length impulse response can 
often be realized as a causal system by 
inserting an appropriate amount of delay

• For example, a causal version of the factor-
of-2 interpolator is obtained by delaying the 
input by one sample period:
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• An important subclass of LTI discrete-time 
systems is characterized by a linear constant 
coefficient difference equation of the form

• x[n] and y[n] are, respectively, the input and 
the output of the system

• and          are constants characterizing 
the system
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• The order of the system is given by
max(N,M), which is the order of the difference 
equation

• It is possible to implement an LTI system 
characterized by a constant coefficient 
difference equation as here the computation 
involves two finite sums of products
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• If we assume the system to be causal, then 
the output y[n] can be recursively computed 
using

provided
• y[n] can be computed for all            ,

knowing x[n] and the initial conditions
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

Based on Impulse Response Length -
• If the impulse response h[n] is of finite 

length, i.e.,

then it is known as a finite impulse
response (FIR) discrete-time system

• The convolution sum description here is
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

• The output y[n] of an FIR LTI discrete-time 
system can be computed directly from the 
convolution sum as it is a finite sum of 
products

• Examples of FIR LTI discrete-time systems 
are the moving-average system and the 
linear interpolators
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

• If the impulse response is of infinite length, 
then it is known as an infinite impulse
response (IIR) discrete-time system

• The class of IIR systems we are concerned 
with in this course are characterized by 
linear constant coefficient difference 
equations
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

• Example - The discrete-time accumulator 
defined by

is seen to be an IIR system
][]1[][ nxnyny +−=
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

• Example - The familiar numerical 
integration formulas that are used to 
numerically solve integrals of the form

can be shown to be characterized by linear 
constant coefficient difference equations, 
and hence, are examples of IIR systems
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

• If we divide the interval of integration into n
equal parts of length T, then the previous 
integral can be rewritten as

where we have set t = nT and used the 
notation
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

• Using the trapezoidal method we can write

• Hence, a numerical representation of the 
definite integral is given by
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

• Let y[n] = y(nT) and x[n] = x(nT)
• Then 

reduces to

which is recognized as the difference 
equation representation of a first-order IIR 
discrete-time system

)}())1(({))1(()(
2

nTxTnxTnynTy T +−+−=

]}1[][{]1[][
2

−++−= nxnxnyny T



5

Copyright © 2005, S. K. Mitra25

Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

Based on the Output Calculation Process
• Nonrecursive System - Here the output can 

be calculated sequentially, knowing only 
the present and past input samples

• Recursive System - Here the output 
computation involves past output samples in 
addition to the present and past input 
samples
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Classification of LTI DiscreteClassification of LTI Discrete--
Time SystemsTime Systems

Based on the Coefficients -
• Real Discrete-Time System - The impulse 

response samples are real valued
• Complex Discrete-Time System - The 

impulse response samples are complex 
valued
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Correlation of SignalsCorrelation of Signals

• There are applications where it is necessary 
to compare one reference signal with one or 
more signals to determine the similarity 
between the pair and to determine additional 
information based on the similarity
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Correlation of SignalsCorrelation of Signals

• For example, in digital communications, a 
set of data symbols are represented by a set 
of unique discrete-time sequences

• If one of these sequences has been 
transmitted, the receiver has to determine 
which particular sequence has been received 
by comparing the received signal with every 
member of possible sequences from the set
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Correlation of SignalsCorrelation of Signals
• Similarly, in radar and sonar applications, 

the received signal reflected from the target 
is a delayed version of the transmitted 
signal and by measuring the delay, one can 
determine the location of the target

• The detection problem gets more 
complicated in practice, as often the 
received signal is corrupted by additive 
random noise
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Correlation of SignalsCorrelation of Signals

Definitions
• A measure of similarity between a pair of 

energy signals, x[n] and y[n], is given by the 
cross-correlation sequence defined by 

• The parameter    called lag, indicates the 
time-shift between the pair of signals
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Correlation of SignalsCorrelation of Signals
• y[n] is said to be shifted by    samples to the 

right with respect to the reference sequence 
x[n] for positive values of   , and shifted by      
samples to the left for negative values of

• The ordering of the subscripts xy in the 
definition of           specifies that x[n] is the 
reference sequence which remains fixed in 
time while y[n] is being shifted with respect 
to x[n]
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Correlation of SignalsCorrelation of Signals
• If y[n] is made the reference signal and shift 

x[n] with respect to y[n], then the 
corresponding cross-correlation sequence is 
given by

• Thus,           is obtained by time-reversing

∑∞
−∞= −= nyx nxnyr ][][][ ll
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Correlation of SignalsCorrelation of Signals

• The autocorrelation sequence of x[n] is 
given by

obtained by setting y[n] = x[n] in the 
definition of the cross-correlation sequence

• Note:                                           , the energy 
of the signal x[n]
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Correlation of SignalsCorrelation of Signals

• From the relation                          it follows 
that                           implying that           is 
an even function for real x[n]

• An examination of                               

reveals that the expression for the cross-
correlation looks quite similar to that of the 
linear convolution

][][ ll −= xyyx rr
][][ ll −= xxxx rr ][lxxr
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Correlation of SignalsCorrelation of Signals
• This similarity is much clearer if we rewrite 

the expression for the cross-correlation as

• The cross-correlation of y[n] with the 
reference signal x[n] can be computed by 
processing x[n] with an LTI discrete-time 
system of impulse response ][ ny −

][][)]([][][ llll −=−−= ∑∞
−∞= yxnynxr nxy *

][ ny −][nx ][nrxy
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Correlation of SignalsCorrelation of Signals

• Likewise, the autocorrelation of x[n] can be 
computed by processing x[n] with an LTI 
discrete-time system of impulse response

][ nx −][nx ][nrxx

][ nx −



7

Copyright © 2005, S. K. Mitra37

Properties of Autocorrelation and Properties of Autocorrelation and 
CrossCross--correlation Sequencescorrelation Sequences

• Consider two finite-energy sequences x[n] 
and y[n]

• The energy of the combined sequence        
is also finite and 

nonnegative, i.e.,
][][ l−+ nynxa
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Properties of Autocorrelation and Properties of Autocorrelation and 
CrossCross--correlation Sequencescorrelation Sequences

• Thus

where                          and
• We can rewrite the equation on the previous 

slide as

for any finite value of a
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Properties of Autocorrelation and Properties of Autocorrelation and 
CrossCross--correlation Sequencescorrelation Sequences

• Or, in other words, the matrix

is positive semidefinite
•

or, equivalently,
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⎦
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Properties of Autocorrelation and Properties of Autocorrelation and 
CrossCross--correlation Sequencescorrelation Sequences

• The last inequality on the previous slide 
provides an upper bound for the cross-
correlation samples

• If we set y[n] = x[n], then the inequality 
reduces to

xxxxy rr E=≤ ][|][| 0l
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Properties of Autocorrelation and Properties of Autocorrelation and 
CrossCross--correlation Sequencescorrelation Sequences

• Thus, at zero lag (        ), the sample value 
of the autocorrelation sequence has its 
maximum value

• Now consider the case

where N is an integer and b > 0 is an 
arbitrary number

• In this case

0=l

xy b EE 2=

][][ Nnxbny −±=
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Properties of Autocorrelation and Properties of Autocorrelation and 
CrossCross--correlation Sequencescorrelation Sequences

• Therefore

• Using the above result in

we get

xxyx bb EEEE == 22
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][][][ 00 xxxyxx rbrrb ≤≤− l



8

Copyright © 2005, S. K. Mitra43

Correlation Computation Correlation Computation 
Using MATLABUsing MATLAB

• The cross-correlation and autocorrelation 
sequences can easily be computed using
MATLAB

• Example - Consider the two finite-length 
sequences

[ ]244121231 −−=][nx
[ ]321412 −−=][ny
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Correlation Computation Correlation Computation 
Using MATLABUsing MATLAB

• The cross-correlation sequence       
computed using Program 2_7 of text is 
plotted below
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Correlation Computation Correlation Computation 
Using MATLABUsing MATLAB

• The autocorrelation sequence           
computed using Program 2_7 is shown below

• Note: At zero lag,           is the maximum
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Correlation Computation Correlation Computation 
Using MATLABUsing MATLAB

• The plot below shows the cross-correlation 
of x[n] and                          for N = 4

• Note: The peak of the cross-correlation is 
precisely the value of the delay N
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Correlation Computation Correlation Computation 
Using MATLABUsing MATLAB

• The plot below shows the autocorrelation of
x[n] corrupted with an additive random 
noise generated using the function randn

• Note: The autocorrelation still exhibits a 
peak at zero lag
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Correlation Computation Correlation Computation 
Using MATLABUsing MATLAB

• The autocorrelation and the cross-
correlation can also be computed using the 
function xcorr

• However, the correlation sequences 
generated using this function are the time-
reversed version of those generated using
Programs 2_7 and 2_8
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Normalized Forms of Normalized Forms of 
Correlation Correlation 

• Normalized forms of autocorrelation and 
cross-correlation are given by

• They are often used for convenience in 
comparing and displaying

• Note:                   and                    
independent of the range of values of x[n]
and y[n]
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Correlation Computation for Correlation Computation for 
Power SignalsPower Signals

• The cross-correlation sequence for a pair of 
power signals, x[n] and y[n], is defined as

• The autocorrelation sequence of a power 
signal x[n] is given by

∑
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Correlation Computation for Correlation Computation for 
Periodic SignalsPeriodic Signals

• The cross-correlation sequence for a pair of 
periodic signals of period N, and ,
is defined as

• The autocorrelation sequence of a periodic 
signal         of period N is given by
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Correlation Computation for Correlation Computation for 
Periodic SignalsPeriodic Signals

• Note: Both           and           are also 
periodic signals with a period N

• The periodicity property of the 
autocorrelation sequence can be exploited to 
determine the period of a periodic signal 
that may have been corrupted by an additive 
random disturbance
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Correlation Computation for Correlation Computation for 
Periodic SignalsPeriodic Signals

• Let be a periodic signal corrupted by 
the random noise d[n] resulting in the signal

which is observed for                       where
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Correlation Computation for Correlation Computation for 
Periodic SignalsPeriodic Signals

• The autocorrelation of w[n] is given by
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Correlation Computation for Correlation Computation for 
Periodic SignalsPeriodic Signals

• In the last equation on the previous slide,     
is a periodic sequence with a period N and 
hence will have peaks at                           
with the same amplitudes as    approaches M

• As        and d[n] are not correlated, samples 
of cross-correlation sequences          and          
are likely to be very small relative to the 
amplitudes of
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Correlation Computation for Correlation Computation for 
Periodic SignalsPeriodic Signals

• The autocorrelation            of d[n] will show
a peak at = 0 with other samples having 
rapidly decreasing amplitudes with 
increasing values of

• Hence, peaks of            for > 0 are 
essentially due to the peaks of          and can 
be used to determine whether         is a 
periodic sequence and also its period N if 
the peaks occur at periodic intervals
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Correlation Computation of a Correlation Computation of a 
Periodic Signal Using MATLABPeriodic Signal Using MATLAB

• Example - We determine the period of the 
sinusoidal sequence                             ,             

corrupted by an additive 
uniformly distributed random noise of 
amplitude in the range

• Using Program 2_8 of text we arrive at the 
plot of shown on the next slide
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Correlation Computation of a Correlation Computation of a 
Periodic Signal Using MATLABPeriodic Signal Using MATLAB

• As can be seen from the plot given above, 
there is a strong peak at zero lag

• However, there are distinct peaks at lags that 
are multiples of 8 indicating the period of the 
sinusoidal sequence to be 8 as expected
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Correlation Computation of a Correlation Computation of a 
Periodic Signal Using MATLABPeriodic Signal Using MATLAB

• Figure below shows the plot of

• As can be seen           shows a very strong 
peak at only zero lag
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