
1

Copyright © 2005 S. K. Mitra1

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• Consider a length-N sequence x[n] with an

N-point DFT X[k] where
• Represent the indices n and k as

21NNN =

⎩
⎨
⎧

−≤≤
−≤≤+= 10

10,
22
11

212 Nn
NnnnNn

⎩
⎨
⎧

−≤≤
−≤≤+= 10

10,
22
11

211 Nk
NkkNkk

Copyright © 2005 S. K. Mitra2

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• Using these index mappings we can write

as
∑=
−

=

1

0
][][

N

n

nk
NWnxkX

][][211 kNkXkX +=

∑ ∑
−

=

−

=

+++=
1

0

1

0

))((
212

2

2

1

1

211212][
N

n

N

n

kNknnN
NWnnNx

∑ ∑
−

=

−

=
+=

1

0

1

0
212

2

2

1

1

212122112112][
N

n

N

n

knNN
N

knN
N

kn
N

knN
N WWWWnnNx

Copyright © 2005 S. K. Mitra3

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms

• Since , ,
and , we have

where and

11

1

112 kn
N

knN
N WW = 22

2

221 kn
N

knN
N WW =

12121 =knNN
NW

][211 kNkX +

22

2

2

2

12
1

1

11

1

1

0

1

0
212][kn

N

N

n

kn
N

N

n

kn
N WWWnnNx∑ ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ +=

−

=

−

=

10 11 −≤≤ Nk 10 22 −≤≤ Nk

Copyright © 2005 S. K. Mitra4

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• The effect of the index mapping is to map the

1-D sequence x[n] into a 2-D sequence that
can be represented as a 2-D array with
specifying the rows and specifying the
columns of the array

• Inner parentheses of the last equation is seen
to be the set of -point DFTs of the -
columns:

1n
2n

2N1N

∑
−

= ⎩
⎨
⎧

−≤≤
−≤≤+=

1

0 22
11

21221
1

1

11
1 10

10,][],[
N

n

kn
N Nn

NkWnnNxnkG

Copyright © 2005 S. K. Mitra5

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• Note: The column DFTs can be done in

place
• Next, these row DFTs are multiplied in

place by the twiddle factors yielding

• Finally, the outer sum is the set of -point
DFTs of the columns of the array:

⎩
⎨
⎧

−≤≤
−≤≤= 10

10],,[],[~
22
11

21
12

21 Nn
NknkGWnkG kn

N

12kn
NW

∑
−

= ⎩
⎨
⎧

−≤≤
−≤≤=+

1

0 10
10,],[~][

2

2
22

1122
2

21211
N

n Nk
Nkkn

NWnkGkNkX

2N

Copyright © 2005 S. K. Mitra6

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• The row DFTs, , can again be

computed in place
• The input x[n] is entered into an array

according to the index map:

• Likewise, the output DFT samples X[k]
need to extracted from the array according
to the index map:

⎩
⎨
⎧

−≤≤
−≤≤+= 10

10,
22
11

212 Nn
NnnnNn

⎩
⎨
⎧

−≤≤
−≤≤+= 10

10,
22
11

211 Nk
NkkNkk

][211 kNkX +

2

Copyright © 2005 S. K. Mitra7

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms

• Example - Let N = 8. Choose and

• Then

for and

21 =N
42 =N

∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=+

3

0
48

1

0
22121

2

2221

1

11]4[]2[
n

nknk

n

nk WWWnnxkkX

10 1 ≤≤ k 30 2 ≤≤ k

Copyright © 2005 S. K. Mitra8

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• 2-D array representation of the input is

• The column DFTs are 2-point DFTs given
by

• These DFTs require no multiplications

⎩
⎨
⎧

≤≤
≤≤+−+= 30

10],4[)1(][],[
2
1

21221 n
knxnxnkG k

0 1 2 3

0 x[0] x[1] x[2] x[3]

1 x[4] x[5] x[6] x[7]

n1
n2

Copyright © 2005 S. K. Mitra9

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• 2-D array of row transforms is

• After multiplying by the twiddle factors
array becomes

12
8

knW

n2k1

]3,1[]2,1[]1,1[]0,1[1
]3,0[]2,0[]1,0[]0,0[0

3210

GGGG
GGGG

k1

]3,1[~]2,1[~]1,1[~]0,1[~1
]3,0[~]2,0[~]1,0[~]0,0[~0

3210

GGGG
GGGG

n2

Copyright © 2005 S. K. Mitra10

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• Note:
• Finally, the 4-point DFTs of the rows are

computed:

• Output 2-D array is given by

],[],[~
21821

12 nkGWnkG kn=

⎩
⎨
⎧

≤≤
≤≤=+ ∑

= 30
10,],[~]2[

2
1

3

0
42121

2

22
k
kWnkGkkX

n

kn

0 1 2 3

0 X[0] X[2] X[4] X[6]

1 X[1] X[3] X[5] X[7]

k1
k2

Copyright © 2005 S. K. Mitra11

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• The process illustrated is precisely the first

stage of the DIF FFT algorithm
• By choosing and , we get

the first stage of the DIT FFT algorithm
• Alternate index mappings are given by

⎩
⎨
⎧

−≤≤
−≤≤+= 10

10,
22
11

211 Nn
NnnNnn

⎩
⎨
⎧

−≤≤
−≤≤+= 10

10,
22
11

212 Nk
NkkkNk

41 =N 22 =N

Copyright © 2005 S. K. Mitra12

Prime Factor AlgorithmsPrime Factor Algorithms
• Twiddle factors can be eliminated by

defining the index mappings as

• To eliminate the twiddle factors we need to
express

⎩
⎨
⎧

−≤≤
−≤≤>+<= 10

10,
22
11

21 Nn
NnBnAnn N

⎩
⎨
⎧

−≤≤
−≤≤>+<= 10

10,
22
11

21 Nk
NkDkCkk N

22

2

11

1

2121))((nk
N

nk
N

DkCkBnAn
N WWW =++

3

Copyright © 2005 S. K. Mitra13

Prime Factor AlgorithmsPrime Factor Algorithms
• Now

• It follows from above that if

then

))((2121 DkCkBnAn
NW ++

22122111 kBDn
N

kBCn
N

kADn
N

kACn
N WWWW=

,, 12 NBDNAC NN =〉〈=〉〈

0=〉〈=〉〈 NN BCAD

22

2

11

1

2121))((kn
N

kn
N

DkCkBnAn
N WWW =++

Copyright © 2005 S. K. Mitra14

Prime Factor AlgorithmsPrime Factor Algorithms
• One set of coefficients that eliminates the

twiddle factors is given by

• Here denotes the multiplicative
inverse of reduced modulo

• If then
or, in other words where
is any integer

,, 12 NBNA ==

21
1

11
1

22 , NN NNDNNC 〉〈=〉〈= −−

2
1

1 NN 〉〈 −

1N 2N
α=〉〈 −

2
1

1 NN 1
21 =〉α〈 NN⇒

121 += βα NN β

Copyright © 2005 S. K. Mitra15

Prime Factor AlgorithmsPrime Factor Algorithms
• For example, if and , then

since
• Likewise, if , then

where is any integer
• Now,

• Similarly,

41 =N 32 =N
33 4

1 =〉〈 − 133 4 =〉⋅〈
γ=〉〈 −

1
1

2 NN 112 += δγ NN
δ

NNN NNNAC 〉〉〈⋅〈=〉〈 −)(
1

1
222

221212)1(NNNNNN NN =〉+δ〈=〉+δ〈=

NNN NNNBD 〉〉〈⋅〈=〉〈 −)(
2

1
111

112121)1(NNNNNN NN =〉+β〈=〉+β〈=

Copyright © 2005 S. K. Mitra16

Prime Factor AlgorithmsPrime Factor Algorithms
• Next,

• Likewise,

• Hence,

0)(
2

1
112 =〉α〈=〉〉〈⋅〈=〉〈 −

NNNN NNNNAD

0)(
1

1
221 =〉γ〈=〉〉〈⋅〈=〉〈 −

NNNN NNNNBC

][][21 NDkkCXkX 〉+〈=

∑ ∑ 〉+〈=
−

=

−

=

1

0

1

0
21

1

1

2

2

221112][
N

n

N

n

knN
N

knN
NN WWBnAnx

Copyright © 2005 S. K. Mitra17

Prime Factor AlgorithmsPrime Factor Algorithms
• Thus,

where

and

22
2

11
1

1

1

2

2

][
1

0

1

0
21

kn
N

kn
N

N

n

N

n
N WWBnAnx∑ ∑ 〉+〈=

−

=

−

=

22
2

2

2

1

0
12],[kn

N

N

n
WknG∑=

−

=

][21 NDkCkX 〉+〈

10,10 2211 −≤≤−≤≤ NkNk

11
1

1

1

][],[
1

0
2112

kn
N

N

n
N WBnAnxknG ∑ 〉+〈=

−

=

Copyright © 2005 S. K. Mitra18

Prime Factor AlgorithmsPrime Factor Algorithms
• Example - Let N = 12. Choose and

• Then, A = 3, B = 4, C and

• The index mappings are

41 =N
32 =N

933 4
1 =〉〈= −

444 3
1 =〉〈= −D

⎩
⎨
⎧

≤≤
≤≤

〉+〈=
20
30

,43
2

1
1221 n

n
nnn

⎩
⎨
⎧

≤≤
≤≤

〉+〈=
20
30

,49
2

1
1221 k

k
kkk

4

Copyright © 2005 S. K. Mitra19

Prime Factor AlgorithmsPrime Factor Algorithms
• 2-D array representation of input is

• 4-point transforms of the columns lead to
n2

n2
n1

]5[]1[]9[3
]2[]10[]6[2
]11[]7[]3[1
]8[]4[]0[0

210

xxx
xxx
xxx
xxx

k1

]2,3[]1,3[]0,3[3
]2,2[]1,2[]0,2[2
]2,1[]1,1[]0,1[1
]2,0[]1,0[]0,0[0

210

GGG
GGG
GGG
GGG

Copyright © 2005 S. K. Mitra20

Prime Factor AlgorithmsPrime Factor Algorithms
• Final DFT array is

• 4-point DFTs require no multiplications,
whereas the 3-point DFTs require 4
complex multiplications

• Thus, the algorithm requires 16 complex
multiplications

k2k1

]11[]7[]3[3
]2[]10[]6[2
]5[]1[]9[1
]8[]4[]0[0

210

XXX
XXX
XXX
XXX

Copyright © 2005 S. K. Mitra21

Chirp Chirp zz--Transform AlgorithmTransform Algorithm

• Let x[n] be a length-N sequence with a
Fourier transform

• We consider evaluation of M samples of
that are equally spaced in angle on the unit
circle at frequencies

where the starting frequency and the
frequency increment can be chosen
arbitrarily

10, −≤≤∆+= Mkkok ωωω

oω
ω∆

Copyright © 2005 S. K. Mitra22

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• Figure below illustrates the problem

(M 1)
 o

unit circle

z plane
Im

Re

Copyright © 2005 S. K. Mitra23

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• The problem is thus to evaluate

or, with W defined as

to evaluate

10,][)(
1

0
−≤≤∑=

−

=

− MkenxeX
N

n

njj kk ωω

ω∆−= jeW

nkN

n

njj WenxeX ok ∑=
−

=

−1

0
][)(ωω

Copyright © 2005 S. K. Mitra24

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• Using the identity

we can write

• Letting
we arrive at

2/)(2/2/1

0

222
][)(nkknnjN

n

j WWWenxeX ok −−−

=
∑= ωω

])([2
1 222 nkknnk −−+=

2/2
][][nnj Wenxng oω−=

,][)(
1

0

2/)(2/ 22
⎟
⎠
⎞

⎜
⎝
⎛
∑=
−

=

−−N

n

nkkj WngWeX kω

10 −≤≤ Mk

5

Copyright © 2005 S. K. Mitra25

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• Interchanging k and n we get

• Thus, corresponds to the
convolution of the sequence g[n] with the
sequence followed by multiplication
by the sequence as indicated below

,][)(
1

0

2/)(2/ 22
⎟
⎠
⎞

⎜
⎝
⎛
∑=
−

=

−−N

k

knnj WkgWeX nω

2/2nW
2/2nW −

)(njeX ω

x[n]
g[n]

2/2nnj We oω− 2/2nW

)(njeX ω2/2nW −

Copyright © 2005 S. K. Mitra26

Chirp Chirp zz--Transform AlgorithmTransform Algorithm

• The sequence can be thought of as a
complex exponential sequence with linearly
increasing frequency

• Such signals, in radar systems, are called
chirp signals

• Hence, the name chirp transform

2/2nW −

Copyright © 2005 S. K. Mitra27

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• For the evaluation of

the output of the system depicted earlier
need to be computed over a finite interval

• Since g[n] is a length-N sequence, only a
finite portion of the infinite length sequence

is used in obtaining the convolution
sum over the interval

,][)(
1

0

2/)(2/ 22
⎟
⎠
⎞

⎜
⎝
⎛
∑=
−

=

−−N

k

knnj WkgWeX nω

2/2nW −

10 −≤≤ Mn

Copyright © 2005 S. K. Mitra28

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• Typical signals

g[n]

n

N 1
0

W n2 /2

n
0

M 1

W -n2 /2g[n] *

0
n

Copyright © 2005 S. K. Mitra29

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• The portion of the sequence used in

obtaining the convolution sum is from the
interval

• Let

as shown below

2/2nW −

⎩
⎨
⎧ −≤≤−−=

−

otherwise,0
)1()1(,][

2/2 MnNWnh
n

11 −≤≤+− MnN

n
0 ↑↑

h[n]

1+− N 1−M
Copyright © 2005 S. K. Mitra30

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• It can be seen that

• Hence, the computation of the frequency
samples can be carried out using
an FIR filter as indicated below

where

10],[O][O][*2/*
2 −≤≤=− MnnhngWng n

10),(][−≤≤= MneXny njω

)(njeX ω

g[n]
y[n]x[n] h[n]

2/2nnj We oω− 2/2nW

6

Copyright © 2005 S. K. Mitra31

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
• Advantages -
• (1) N = M is not required as in FFT

algorithms
• (2) Neither N nor M do not have to be

composite numbers
• (3) Parameters and are arbitrary
• (4) Convolution with h[n] can be

implemented using FFT techniques

oω ω∆

Copyright © 2005 S. K. Mitra32

Chirp Chirp zz--Transform AlgorithmTransform Algorithm
g[n]

n

N 1
0

M 1

W -n2 /2g[n] *

0
n

W n2 /2

n
0

