Basic IR Digital Filter
Structures

 The causal IIR digital filters we are
concerned with in this course are
characterized by a real rational transfer
function of zor, equivalently by a constant
coefficient difference equation

» From the difference equation representation,
it can be seen that the realization of the
causal IR digital filters requires some form
of feedback
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Basic IR Digital Filter
Structures

* An N-th order IIR digital transfer function is
characterized by 2N+1 unique coefficients,
and in general, requires 2N+1 multipliers
and 2N two-input adders for implementation

« Direct form IR filters: Filter structures in
which the multiplier coefficients are
precisely the coefficients of the transfer
function
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Direct Form lIR Digital Filter
Structures

* Consider for simplicity a 3rd-order IIR filter
with a transfer function

H(z)= P(@) _Po+ Pz + ppz %+ pyz
D(2) 1+dizt+dyz2+dgz 8

» We can implement H(z) as a cascade of two
filter sections as shown on the next slide
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Direct Form |IR Digital Filter
Structures

x@— 1@ "2 LR@ v

where

W)
X(2)
Yo _ 1 1

W(2) D(2) 1+dizt+dyz 2 +dqz72

Hi(2)= =P(2)=po+ Pz + ppz 2+ paz

H,(z)=
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Direct Form lIR Digital Filter
Structures

* The filter section H;(z) can be seen to be
an FIR filter and can be realized as shown
below
wn] = pox[n]+ pyx[n —1]+ pox[n—2]+ pax[n—3]

o
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Direct Form lIR Digital Filter
Structures

* The time-domain representation of H,(z) is

given by

y[nl=w[n]—d;y[n-1]-d,y[n-2]-d3y[n—3]
Realization of H,(z)
follows from the
above equation
and is shown on
the right

winl
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Direct Form lIR Digital Filter
Structures

* A cascade of the two structures realizing Hq(z)
and H,(z) leads to the realization of H(z)
shown below and is known as the direct
form | structure
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Direct Form lIR Digital Filter
Structures

» Note: The direct form I structure is
noncanonic as it employs 6 delays to realize
a 3rd-order transfer function

* A transpose of the direct %
. aln] = > (@ v
form | structure is shown Hm m?

on the right and is called iu u
G—<

]
the direct form I gn -
< >

=
structure
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Direct Form lIR Digital Filter
Structures

* Various other noncanonic direct form
structures can be derived by simple block
diagram manipulations as shown below

)
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Direct Form lIR Digital Filter
Structures

* Observe in the direct form structure shown
below, the signal variable at nodes @ and @
are the same, and hence the two top delays
can be shared
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Direct Form lIR Digital Filter
Structures

« Likewise, the signal variables at nodes (2
and @ are the same, permitting the sharing
of the middle two delays

* Following the same argument, the bottom
two delays can be shared

* Sharing of all delays reduces the total
number of delays to 3 resulting in a canonic
realization shown on the next slide along
with its transpose structure
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Direct Form lIR Digital Filter
Structures

a

Direct Form 11
 Direct form realizations of an N-th order IIR
transfer function should be evident

Direct Form Il ¢
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Cascade Form lIR Digital
Filter Structures

» By expressing the numerator and the
denominator polynomials of the transfer
function as a product of polynomials of
lower degree, a digital filter can be realized
as a cascade of low-order filter sections

* Consider, for example, H(z) = P(z)/D(z)
expressed as

H() = PO _ ROP@P)
D(z) Dy(2)Dy(z)Ds(2)
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Cascade Form lIR Digital
Filter Structures

» Examples of cascade realizations obtained
by different pole-zero pairings are shown
below
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Cascade Form |IR Digital
Filter Structures

» Examples of cascade realizations obtained
by different ordering of sections are shown
below

15
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Cascade Form |IR Digital
Filter Structures

 There are altogether a total of 36 different
cascade realizations of
R(@)P ()P (2)
H(z)= 122
(2) Dy(2)D,(2)Ds(2) _
based on pole-zero-pairings and ordering
 Due to finite wordlength effects, each such
cascade realization behaves differently from
others

16

Copyright © 2005, S. K. Mitra

Cascade Form lIR Digital
Filter Structures

« Usually, the polynomials are factored into a
product of 1st-order and 2nd-order
polynomials:

-1 -2
H() = po[] 1+ fiz —+ Poyz J

k 1+ alkz_l < aZkZ_Z

* In the above, for a first-order factor
az =Pk =0
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Cascade Form lIR Digital
Filter Structures
e Consider the 3rd-order transfer function

-1 -1 -2
H(Z)=p0(1+ﬂ“2 )( YA Yy J

:I-‘*'Ol:uf1 1+ alzZ_l + 0!222_2

 One possible realization is shown below

X ) e H WEp——b ¥
i By
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Cascade Form lIR Digital
Filter Structures

» Example - Direct form 1l and cascade form
realizations of
H(2)= 0.4427140.362272+0.02272
1+0.4271+0.18272-0.223

_ 0.44+0.3622’1+0.022’2)( ! )

1+0.827 1405272 104771
are shown on the next slide
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Cascade Form lIR Digital
Filter Structures

Direct form Il Cascade form

20
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Parallel Form lIR Digital Filter
Structures

* A partial-fraction expansion of the transfer
function in z7* leads to the parallel form I
structure

» Assuming simple poles, the transfer function
H(z) can be expressed as
-1
H(z)=vn + Yok +71k?
( ) 7/0 Zk:(l+a1kzl+a2k22

* In the above for a real pole g =71 =0
21
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Parallel Form |IR Digital Filter
Structures

A direct partial-fraction expansion of the
transfer function in z leads to the parallel
form 11 structure

» Assuming simple poles, the transfer function
H(z) can be expressed as
H(z) =59 + 3 -2 oud
v k 1+0t]k271+(12k272

* In the above for a real pole ayy =9 =0
22
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Parallel Form IIR Digital Filter

Structures
* The two basic parallel realizations of a 3rd-
order 1IR transfer function are shown below

Parallel form | Parallel form 11
Copyright © 2005, S. K. Mitra
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Parallel Form IIR Digital Filter
Structures
» Example - A partial-fraction expansion of

 0.4477140.362272+0.022°
H(z)= T 01872 00,3
1+0.4z27+0.1827°-0.2z

in zyields

_nE_ -1
H(z)=-01+ 0.6 + 0.5 l0.22 5
1-04z 1+0.8z277+0.5z™
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Parallel Form lIR Digital Filter
Structures

 The corresponding parallel form | realization
is shown below
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Parallel Form IIR Digital Filter
Structures
* Likewise, a partial-fraction expansion of
H(z) in z yields
024771 022714025772

H(z)= +
@) 1-0.4z71  1+0.827%+0.5272

 The corresponding
parallel form Il
realization is shown
on the right

26
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Realization Using MATLAB

» The cascade form requires the factorization
of the transfer function which can be
developed using the M-file zp2sos

e The statement sos = zp2sos(z,p, k)
generates a matrix sos containing the
coefficients of each 2nd-order section of the
equivalent transfer function H(z) determined
from its pole-zero form

27
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Realization Using MATLAB

e sos isan Lx6 matrix of the form

Por P11 P21 dop dyp dpg
sos=|Po2 P12 P22 do2 dip dpo

p(;L pil_ IO.2|_ d(;L dil_ d'2L

whose i-th row contains the coefficients{p;,}
and {d;,}, of the the numerator and
denominator polynomials of the i-th 2nd-

28 order section
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Realization Using MATLAB

* L denotes the number of sections
e The form of the overall transfer function is
given by
= ) — L Poi+ Pzt + ppiz 2
e El A El doj + 0z +dpz 72
» Program 6_1 can be used to factorize an
FIR and an IIR transfer function
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Realization Using MATLAB

 Note: An FIR transfer function can be
treated as an IIR transfer function with a
constant numerator of unity and a
denominator which is the polynomial
describing the FIR transfer function
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Realization Using MATLAB

« Parallel forms | and Il can be developed
using the functions residuez and
residue, respectively

» Program 6_2 uses these two functions
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Realization of Allpass Filters

* An M-th order real-coefficient allpass
transfer function Ay, (2) is characterized by
M unique coefficients as here the numerator
is the mirror-image polynomial of the
denominator

» Adirect form realization of Ay, (z) requires
2M multipliers

* Objective - Develop realizations of Ay (z)
requiring only M multipliers
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Realization Using Multiplier
Extraction Approach

* Now, an arbitrary allpass transfer function
can be expressed as a product of 2nd-order
and/or 1st-order allpass transfer functions

» We consider first the minimum multiplier
realization of a 1st-order and a 2nd-order
allpass transfer functions
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First-Order Allpass Structures

« Consider first the 1st-order allpass transfer
function given by

» We shall realize the above transfer function
in the form a structure containing a single
multiplier d; as shown below

; 37
d
i L

X2

34
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First-Order Allpass Structures

» We express the transfer function Ay(z) =Y4/ Xy
in terms of the transfer parameters of the
two-pair as tiotorth gy (tygtoy —tiotor)

— 1202141 M1 —Y1\11t22 —4 221
M@=ty + 1-dityy 1-ditp,
A comparison of the above with

-1
A1(Z) _ di+z :

1+dyz™

yields
-1 -1
tll =7, t22 ==7", I:1]_t22 _t12t21 =-1
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First-Order Allpass Structures

« Substituting t,, = z%and t,, =—z*in
tiytpp —totp; =—1 we get
t12t21 = 1— 2_2
 There are 4 possible solutions to the above
equation:
Type 1A tll S Z_l, t22 =—Z_1, t12 21— 2_2, t21 :l
Type 1B:
tll = Zil, t22 = —Zil, t12 =1+ Zil, t21 =1- Zil
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First-Order Allpass Structures

C Type 1At . tll = Z_l, t22 = —Z_l, t12 ::L t21 =1- 2_2
e Type 1B;:
=27ty =—
» We now develop the two-pair structure for
the Type 1A allpass transfer function

Z_l, t12 Zl—Z_l, t21 =1+ Z_l
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First-Order Allpass Structures

» From the transfer parameters of this allpass
we arrive at the input-output relations:

Y, =X, -271X,
Y =2 X+ A-27)X, =77, + X,
* A realization of the above two-pair is
sketched below

X, —E) N [ k@,
l 2
5] x
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First-Order Allpass Structures

* By constraining the X,, Y, terminal-pair
with the multiplier dy, we arrive at the
Type 1A allpass filter structure shown

40

First-Order Allpass Structures

« In asimilar fashion, the other three single-
multiplier first-order allpass filter structures
can be developed as shown below

X D 5 Y,
dy
A
- Y-
)

Type 1A
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below
Type 1A
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Second-Order Allpass
Structures

* A 2nd-order allpass transfer function is
characterized by 2 unique coefficients

* Hence, it can be realized using only 2
multipliers

» Type 2 allpass transfer function:
1,,-2
An(2) = dydy+dyz7+2

1+ dlz‘1 + dldzz‘2
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Type 2 AIIpass Structures
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Type 3 Allpass Structures

» Type 3 allpass transfer function:
dy+dyz 14272

As(2)=
3 1+ dlzil ahy d2272
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Type 3 Allpass Structures
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Realization Using Multiplier
Extraction Approach

» Example - Realize
_ -1 -2, -3
A3(Z)= O.2+O;:1LSZ +0;4;z +zﬁ3
1+0.427140.18272-0.27
_ (—0.4+z"l)(0.5+0.82_1+z"2)
o (1-0.4271)1+0.8271+0.527%)
A 3-multiplier cascade realization of the
above allpass transfer function is shown

below ;
® : Hv i u et
-04 Ay
< @<
! O~ —P—0
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Realization Using Two-Pair
Extraction Approach

* The stability test algorithm described earlier
in the course also leads to an elegant
realization of an Mth-order allpass transfer
function

 The algorithm is based on the development
of a series of (m—21)th-order allpass transfer
functions Ay_1(z) from an mth-order allpass
transfer function A, (z)form=M,M -1...1

Copyright © 2005, S. K. Mitra

Realization Using Two-Pair
Extraction Approach

2 m

> [l A+ 17 T +dg_pz 24 etdyz MV 7”
An(2)= ) 2 ~(m-1) —m
14+diz7+dpz S+ +dp 42 +dpz
e We use the recursion
— i A@D=kny m=M,M-1...1
2)=17 s )
An-(2) Farayere
where k;, = Ay () =d,
* It has been shown earlier that Ay, (2)is
stable if and only if

k<1 form=M,M-1..1
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Realization Using Two-Pair
Extraction Approach

* If the allpass transfer function A,,_;(z) is
expressed in the form

1(2)= =
An-1(2) 1+diz’1+---+dr},_zz’(m 2)err'n,l

then the coefficients of A,_4(z)are simply
related to the coefficients of A (z) through
di' — di —dmdm
1-d2

dr‘n—l+dr'n—zZ_1+---+diz‘(”‘-2>+Z—(rn—1)
Z—(m—l)

, 1<i<m-1
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Realization Using Two-Pair
Extraction Approach

» To develop the realization method we
express Ay (z) in terms of A,_4(2):
k +z"1A,n_ (2)
7)=_—m il
An( ) 1+kmz’1Am_1(z)

» We realize Ay, (z)in the form shown below
Y2

X1 tyy t
11 tp
’—Y> I:t21 tzz:l An-1(2)
o  A@ ! Xa
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Realization Using Two-Pair
Extraction Approach

* The transfer function Ap,(z)=Y;/X; of the
constrained two-pair can be expressed as

A (2)= t11—(tatar —totr1) A1 (2)
m 1- tZZAm—l(Z)

e Comparing the above with

k +z’1A,n, (2)
7)=_m 1
An(@) 1+Kyz  Ag 4 (2)
we arrive at the two-pair transfer parameters
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Realization Using Two-Pair
Extraction Approach

iy =Kp, to= —ka_l
bty —tiolyy =—7-
« Substituting t;; = ky and tyy = —ky,z > in the
equation above we get
tiotyy = (1—k2)z ™t
* There are a number of solutions for t;, and
Loy
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Realization Using Two-Pair
Extraction Approach

» Some possible solutions are given below:
tig =K, top = —KmZ 5 tip =27, tyy =1-K§
tiy =K. tyy =—kpz L, tp =A—kp)z ™ty =1+ kpy
tiy =K. top ==Kz %, 1y =mz4, 1= m

tll = km, t22 = —kmz_l, t12 = (1—kr%)z_1, t21 :1

52
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Realization Using Two-Pair

Extraction Approach

* Consider the solution

tig =K tor =—KnZ ™, tip =(1-kg)z ™, ty =1

* Corresponding input-output relations are
Yy =k Xq + (1-k2)z271X,
Y, = X; —kpnz X,

* A direct realization of the above equations

leads to the 3-multiplier two-pair shown on
the next slide
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Realization Using Two-Pair
Extraction Approach

X

® ¥,
*n‘ -
Y N ] S

 The transfer parameters
tig =K. thy ==Kz tip = (A—Kp)Z ™ tpy =1+kp,
lead to the 4-multiplier two-pair structure
shown below ek
Xy LD ¥,
¥, (<] ey

Ty " Copyright © 2005, S. K. Mitra
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Realization Using Two-Pair
Extraction Approach

* Likewise, the transfer parameters

-1 2,1 2
tl].:km’ t22=—kmz ,t12= 1—kmz ,t21= 1—km

lead to the 4-multiplier two-pair structure

shown below
Xy D—® ¥y
"q-llf
¥y e—De—<] o e—xs
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Realization Using Two-Pair
Extraction Approach
» A 2-multiplier realization can be derived by
manipulating the input-output relations:
Y, =k Xy —(A—k2)z7X,
Y, = X; —kpnz X,
» Making use of the second equation, we can
rewrite the first equation as
Yl = ka2 + 271X2
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Realization Using Two-Pair
Extraction Approach
A direct realization of
Y, =k Yo + 271X,
Y, = X; —kpnz X,
lead to the 2-multiplier two-pair structure,
known as the lattice structure, shown below

X
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Realization Using Two-Pair

Extraction Approach

« Consider the two-pair described by

ti = Km» top =—KmZz 2, o = A=Kz ™8, tyy =1+kp,

« Its input-output relations are given by
Yy =k Xg +@—Kp)Z X5
Y, = A+ Ky) Xy —kz 21X,

 Define
Vp =k (X -2 )X,

58

Copyright © 2005, S. K. Mitra

Realization Using Two-Pair
Extraction Approach

» We can then rewrite the input-output
relations as Y; =V; +2 21X, and Y, = X; +V4

 The corresponding 1-multiplier realization
is shown below
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Realization Using Two-Pair
Extraction Approach

» An mth-order allpass transfer function Ay(2)
is then realized by constraining any one of
the two-pairs developed earlier by the
(m—1Dth-order allpass transfer function Ay_1(2)

60
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Realization Using Two-Pair
Extraction Approach
 The process is repeated until the
constraining transfer function is Ay(z) =1

» The complete realization of Ay (z) based on
the extraction of the two-pair lattice is
shown below
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Realization Using Two-Pair
Extraction Approach

It follows from our earlier discussion that
Ay (2) is stable if the magnitudes of all
multiplier coefficients in the realization are
lessthan 1, i.e., |ky|<1form=M,M -1...1
The cascaded lattice allpass filter structure
requires 2M multipliers

A realization with M multipliers is obtained if
instead the single multiplier two-pair is used
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Realization Using Two-Pair
Extraction Approach
o Example - Realize
~0.2+0.18271+04772+773

1+0.4271+0.18272-0.2773
3

Ag(2)=

_d3+ dzz‘l + dlz‘2 +7
1+ dlz‘1+d22‘2 +d3z‘3
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Realization Using Two-Pair
Extraction Approach

We first realize A(z) in the form of a

lattice two-pair characterized by the
multiplier coefficient k3 =d3 =-0.2

and constrained by a 2nd-order allpass A,(z)
as indicated below
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Realization Using Two-Pair
Extraction Approach

* The allpass transfer function A,(z) is of the

form dy+diz L4772

A2(Z) S
1+d1271+d2272

* |ts coefficients are given by

'+ dy—dgd 0.4-(-0.2)(0.18
'+ _dp—dsd; _ 0.18-(-0.2)(04
dy =g oge =0.2708333
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Realization Using Two-Pair
Extraction Approach

Next, the allpass A,(z) is realized as a
lattice two-pair characterized by the
multiplier coefficient k, = d, =0.2708333
and constrained by an allpass Ay(z) as
indicated below

ks =-0.2, kp=0.2708333
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Realization Using Two-Pair
Extraction Approach
* The allpass transfer function Ay(z) is of the
form (2)= dy+zt
Al : _1+ di'z"1
* It coefficient is given by

v di—dody  dy _ 0.4541667
17 1-(dy)?  1+d, 1.2708333

=0.3573771
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Realization Using Two-Pair
Extraction Approach

* Finally, the allpass A(z) is realized as a
lattice two-pair characterized by the
multiplier coefficient k; =d; =0.3573771
and constrained by an allpass Ay(z) =1as
indicated below

W3 W,
%< i
CEEIN \
; =[5

kg =-0.2, A (2)
k, =0.2708333, k; =0.3573771
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Cascaded Lattice Realization
Using MATLAB

e The M-file poly2rc can be used to realize
an allpass transfer function in the cascaded
lattice form

 To this end Program 8_4 can be employed

69
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