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Fixed Window FunctionsFixed Window Functions
• Using a tapered window causes the height 

of the sidelobes to diminish, with a 
corresponding increase in the main lobe 
width resulting in a wider transition at the 
discontinuity

• Hann:

• Hamming:

• Blackman:
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Fixed Window FunctionsFixed Window Functions
• Plots of magnitudes of the DTFTs of these 

windows for M = 25 are shown below:
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Fixed Window FunctionsFixed Window Functions
• Magnitude spectrum of each window 

characterized by a main lobe centered at      
ω = 0 followed by a series of sidelobes with 
decreasing amplitudes

• Parameters predicting the performance of a 
window in filter design are:

• Main lobe width
• Relative sidelobe level
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Fixed Window FunctionsFixed Window Functions

• Main lobe width - given by the 
distance between zero crossings on both 
sides of main lobe

• Relative sidelobe level - given by the 
difference in dB between amplitudes of 
largest sidelobe and main lobe
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Fixed Window FunctionsFixed Window Functions

• Observe
• Thus,
• Passband and stopband ripples are the same
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Fixed Window FunctionsFixed Window Functions

• Distance between the locations of the 
maximum passband deviation and minimum 
stopband value

• Width of transition band
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Fixed Window FunctionsFixed Window Functions

• To ensure a fast transition from passband to 
stopband, window should have a very small 
main lobe width

• To reduce the passband and stopband ripple      
δ, the area under the sidelobes should be 
very small

• Unfortunately, these two requirements are 
contradictory
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Fixed Window FunctionsFixed Window Functions

• In the case of rectangular, Hann, Hamming, 
and Blackman windows, the value of ripple  
does not depend on filter length or cutoff 
frequency      , and is essentially constant

• In addition,

where c is a constant for most practical 
purposes

M
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Fixed Window FunctionsFixed Window Functions
• Rectangular window -

dB,                 dB,
• Hann window -

dB,                 dB,
• Hamming window -

dB,                 dB,
• Blackman window -

dB,                 dB,
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Fixed Window FunctionsFixed Window Functions
• Filter Design Steps -

(1)  Set

(2)  Choose window based on specified
(3)  Estimate M using

M
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FIR Filter Design ExampleFIR Filter Design Example
• Lowpass filter of length 51 and 2/π=ωc
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FIR Filter Design ExampleFIR Filter Design Example

• An increase in the main lobe width is 
associated with an increase in the width of 
the transition band

• A decrease in the sidelobe amplitude results 
in an increase in the stopband attenuation
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Adjustable Window FunctionsAdjustable Window Functions
• Dolph-Chebyshev Window -

where

and
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Adjustable Window FunctionsAdjustable Window Functions
• Dolph-Chebyshev window can be designed 

with any specified relative sidelobe level 
while the main lobe width adjusted by 
choosing length appropriately

• Filter order is estimated using

where       is the normalized transition 
bandwidth, e.g, for a lowpass filter
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Adjustable Window FunctionsAdjustable Window Functions
• Gain response of a Dolph-Chebyshev

window of length 51 and relative sidelobe
level of 50 dB is shown below

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

ω/π

G
ai

n,
 d

B

Dolph-Chebyshev Window

16
Copyright © 2005, S. K. Mitra

Adjustable Window FunctionsAdjustable Window Functions
Properties of Dolph-Chebyshev window:
• All sidelobes are of equal height
• Stopband approximation error of filters 

designed have essentially equiripple
behavior

• For a given window length, it has the 
smallest main lobe width compared to other 
windows resulting in filters with the 
smallest transition band
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Adjustable Window FunctionsAdjustable Window Functions
• Kaiser Window -

where      is an adjustable parameter and      
is the modified zeroth-order Bessel function 
of the first kind:

• Note                 for u > 0
• In practice
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Adjustable Window FunctionsAdjustable Window Functions
• controls the minimum stopband

attenuation of the windowed filter response
• is estimated using

• Filter order is estimated using

where        is the normalized transition 
bandwidth
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FIR Filter Design ExampleFIR Filter Design Example
• Specifications:                 ,                 ,          

dB
• Thus

• Choose N = 24 implying M =12
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FIR Filter Design ExampleFIR Filter Design Example
• Hence

where w[n] is the n-th coefficient of a 
length-25 Kaiser window with
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Impulse Responses of FIR Filters Impulse Responses of FIR Filters 
with a Smooth Transitionwith a Smooth Transition

• First-order spline passband-to-stopband
transition
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Impulse Responses of FIR Filters Impulse Responses of FIR Filters 
with a Smooth Transitionwith a Smooth Transition

• Pth-order spline passband-to-stopband
transition
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LowpassLowpass FIR Filter Design FIR Filter Design 
ExampleExample

• Example
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