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Discrete Fourier TransformDiscrete Fourier Transform
• Definition - The simplest relation between a 

length-N sequence x[n], defined for               
, and its DTFT               is 

obtained by uniformly sampling              on 
the ω-axis between                   at ,

• From the definition of the DTFT we thus have
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Discrete Fourier TransformDiscrete Fourier Transform
• Note: X[k] is also a length-N sequence in 

the frequency domain
• The sequence X[k] is called the discrete

Fourier transform (DFT) of the sequence
x[n]

• Using the notation                          the DFT 
is usually expressed as:
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Discrete Fourier TransformDiscrete Fourier Transform
• The inverse discrete Fourier transform

(IDFT) is given by

• To verify the above expression we multiply 
both sides of the above equation by            
and sum the result from n = 0 to 1−= Nn

n
NW l

10,][1][
1

0
−≤≤∑=

−

=

− NnWkX
N

nx
N

k

kn
N

4
Copyright © 2005, S. K. Mitra

Discrete Fourier TransformDiscrete Fourier Transform

resulting in
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Discrete Fourier TransformDiscrete Fourier Transform

• Making use of the identity 

we observe that the RHS of the last 
equation is equal to

• Hence
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Discrete Fourier TransformDiscrete Fourier Transform

• Example - Consider the length-N sequence

• Its N-point DFT is given by
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Discrete Fourier TransformDiscrete Fourier Transform

• Example - Consider the length-N sequence

• Its N-point DFT is given by
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Discrete Fourier TransformDiscrete Fourier Transform

• Example - Consider the length-N sequence  
defined for

• Using a trigonometric identity we can write
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Discrete Fourier TransformDiscrete Fourier Transform
• The N-point DFT of g[n] is thus given by
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Discrete Fourier TransformDiscrete Fourier Transform

• Making use of the identity

we get
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Matrix RelationsMatrix Relations
• The DFT samples defined by

can be expressed in matrix form as

where
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Matrix RelationsMatrix Relations

and        is the           DFT matrix given byND NN ×
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Matrix RelationsMatrix Relations

• Likewise, the IDFT relation given by

can be expressed in matrix form as

where        is the IDFT matrix
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Matrix RelationsMatrix Relations
where

• Note:
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DFT Computation Using DFT Computation Using 
MATLABMATLAB

• The functions to compute the DFT and the 
IDFT are fft and ifft

• These functions make use of FFT 
algorithms which are computationally 
highly efficient compared to the direct 
computation

• Programs 5_1.m and 5_2.m illustrate the 
use of these functions
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DFT Computation Using DFT Computation Using 
MATLABMATLAB

• Example - Program 5_3.m can be used to 
compute the DFT and the DTFT of the 
sequence

as shown below
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DTFT from DFT by DTFT from DFT by 
Interpolation Interpolation 

• The N-point DFT X[k] of a length-N
sequence x[n] is simply the frequency 
samples of its DTFT              evaluated at N
uniformly spaced frequency points

• Given the N-point DFT X[k] of a length-N
sequence x[n], its DTFT               can be 
uniquely determined from X[k] 
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DTFT from DFT by DTFT from DFT by 
InterpolationInterpolation

• Thus
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DTFT from DFT by DTFT from DFT by 
InterpolationInterpolation

• To develop a compact expression for the 
sum S, let

• Then
• From the above
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DTFT from DFT by DTFT from DFT by 
InterpolationInterpolation

• Or, equivalently,

• Hence
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DTFT from DFT by DTFT from DFT by 
InterpolationInterpolation

• Therefore
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Sampling the DTFTSampling the DTFT

• Consider a sequence x[n] with a DTFT
• We sample             at N equally spaced points      

,                      developing the N
frequency samples

• These N frequency samples can be
considered as an N-point DFT Y[k] whose N-
point IDFT is a length-N sequence y[n]
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)( ωjeX

Nkk /2π=ω 10 −≤≤ Nk
)}({ kjeX ω

23
Copyright © 2005, S. K. Mitra

Sampling the DTFTSampling the DTFT

• Now

• Thus

• An IDFT of Y[k] yields
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Sampling the DTFTSampling the DTFT

• i.e.

• Making use of the identity
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Sampling the DTFTSampling the DTFT
we arrive at the desired relation

• Thus y[n] is obtained from x[n] by adding 
an infinite number of shifted replicas of
x[n], with each replica shifted by an integer 
multiple of N sampling instants, and 
observing the sum only for the interval
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Sampling the DTFTSampling the DTFT
• To apply

to finite-length sequences, we assume that 
the samples outside the specified range are 
zeros

• Thus if x[n] is a length-M sequence with
, then y[n] = x[n] for
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Sampling the DTFTSampling the DTFT
• If M > N, there is a time-domain aliasing of 

samples of x[n] in generating y[n], and x[n] 
cannot be recovered from y[n]

• Example - Let 

• By sampling its DTFT              at                     , 
and then applying a 4-point IDFT to 

these samples, we arrive at the sequence y[n]
given by

}{]}[{ 543210=nx
↑

)( ωjeX 4/2 kk π=ω
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Sampling the DTFTSampling the DTFT

,
• i.e.

{x[n]} cannot be recovered from {y[n]}

][][][][ 44 −+++= nxnxnxny 30 ≤≤ n

}{]}[{ 3264=ny
↑
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Numerical Computation of the Numerical Computation of the 
DTFT Using the DFTDTFT Using the DFT

• A practical approach to the numerical 
computation of the DTFT of a finite-length 
sequence

• Let              be the DTFT of a length-N
sequence x[n]

• We wish to evaluate              at a dense grid 
of frequencies                     ,                      ,
where M >> N:
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Numerical Computation of the Numerical Computation of the 
DTFT Using the DFTDTFT Using the DFT

• Define a new sequence

• Then
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Numerical Computation of the Numerical Computation of the 
DTFT Using the DFTDTFT Using the DFT

• Thus               is essentially an M-point DFT
of the length-M sequence

• The DFT           can be computed very 
efficiently using the FFT algorithm if M is 
an integer power of 2

• The function freqz employs this approach 
to evaluate the frequency response at a 
prescribed set of frequencies of a DTFT 
expressed as a rational function in    

)( kjeX ω

][kXe ][nxe
][kXe

ω− je
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DFT PropertiesDFT Properties

• Like the DTFT, the DFT also satisfies a 
number of properties that are useful in 
signal processing applications

• Some of these properties are essentially 
identical to those of the DTFT, while some 
others are somewhat different

• A summary of the DFT properties are given 
in tables in the following slides
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Table 5.1:Table 5.1: DFT Properties: DFT Properties: 
Symmetry RelationsSymmetry Relations

x[n] is a complex sequence
34
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Table 5.2:Table 5.2: DFT Properties: DFT Properties: 
Symmetry RelationsSymmetry Relations

x[n] is a real sequence

35
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Table 5.3:Table 5.3: General Properties General Properties 
of DFTof DFT
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Circular Shift of a SequenceCircular Shift of a Sequence

• This property is analogous to the time-
shifting property of the DTFT as given in 
Table 3.4, but with a subtle difference

• Consider length-N sequences defined for

• Sample values of such sequences are equal 
to zero for values of n < 0 and Nn ≥

10 −≤≤ Nn
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Circular Shift of a SequenceCircular Shift of a Sequence

• If x[n] is such a sequence, then for any 
arbitrary integer     , the shifted sequence

is no longer defined for the range
• We thus need to define another type of a 

shift that will always keep the shifted 
sequence in the range

][][ onnxnx −=1
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Circular Shift of a SequenceCircular Shift of a Sequence

• The desired shift, called the circular shift, 
is defined using a modulo operation:

• For            (right circular shift), the above 
equation implies

][][ Noc nnxnx 〉−〈=

0>on

⎩
⎨
⎧

+−
−=

],[
],[

][ nnNx
nnxnx
o

o
c

o
o

nn
Nnn
<≤

−≤≤
0for

1for

39
Copyright © 2005, S. K. Mitra

Circular Shift of a SequenceCircular Shift of a Sequence

• Illustration of the concept of a circular shift

][nx ]1[ 6〉−〈nx

]5[ 6〉+〈= nx ]2[ 6〉+〈= nx

]4[ 6〉−〈nx
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Circular Shift of a SequenceCircular Shift of a Sequence

• As can be seen from the previous figure, a 
right circular shift by      is equivalent to a 
left circular shift by             sample periods

• A circular shift by an integer number         
greater than N is equivalent to a circular 
shift by

on
onN −

on

Non 〉〈
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Circular ConvolutionCircular Convolution

• This operation is analogous to linear 
convolution, but with a subtle difference

• Consider two length-N sequences, g[n] and
h[n], respectively

• Their linear convolution results in a length-
sequence          given by)( 12 −N

220
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0
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Circular ConvolutionCircular Convolution
• In computing          we have assumed that 

both length-N sequences have been zero-
padded to extend their lengths to

• The longer form of           results from the 
time-reversal of the sequence h[n]  and its 
linear shift to the right 

• The first nonzero value of           is                
, and the last nonzero value 

is

12 −N

][nyL

][nyL

][nyL
][][][ 000 hgyL =

][][][ 1122 −−=− NhNgNyL
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Circular ConvolutionCircular Convolution

• To develop a convolution-like operation 
resulting in a length-N sequence          , we 
need to define a circular time-reversal, and 
then apply a circular time-shift

• Resulting operation, called a circular
convolution, is defined by
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Circular ConvolutionCircular Convolution

• Since the operation defined involves two 
length-N sequences, it is often referred to as 
an N-point circular convolution, denoted as

y[n] = g[n]    h[n]
• The circular convolution is commutative, 

i.e.
g[n]    h[n] = h[n]    g[n]

N

N N
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Circular ConvolutionCircular Convolution

• Example - Determine the 4-point circular 
convolution of the two length-4 sequences:

as sketched below

},{]}[{ 1021=ng }{]}[{ 1122=nh
↑ ↑

n
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Circular ConvolutionCircular Convolution
• The result is a length-4 sequence          

given by

• From the above we observe
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Circular ConvolutionCircular Convolution
• Likewise ∑ 〉−〈=

=

3

0
4]1[][]1[
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Circular ConvolutionCircular Convolution
and

• The circular convolution can also be 
computed using a DFT-based approach as 
indicated in Table 5.3
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Circular ConvolutionCircular Convolution
• Example - Consider the two length-4 

sequences repeated below for convenience:

• The 4-point DFT G[k] of g[n] is given by
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n
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4210 /][][][ kjeggkG π−+=
4644 32 // ][][ kjkj egeg ππ −− ++

3021 232 ≤≤++= −− kee kjkj ,// ππ
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Circular ConvolutionCircular Convolution
• Therefore

• Likewise, 

,][ 21212 −=−−=G
,][ jjjG −=+−= 1211

jjjG +=−+= 1213][

,][ 41210 =++=G

4210 /][][][ kjehhkH π−+=
4644 32 // ][][ kjkj eheh ππ −− ++

3022 232 ≤≤+++= −−− keee kjkjkj ,// πππ
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Circular ConvolutionCircular Convolution

• Hence,

• The two 4-point DFTs can also be 
computed using the matrix relation given 
earlier

,][ 611220 =+++=H

,][ 011222 =−+−=H
,][ jjjH −=+−−= 11221

jjjH +=−−+= 11223][
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Circular ConvolutionCircular Convolution
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D

is the 4-point DFT matrix4D
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• If denotes the 4-point DFT of        
then from Table 3.5 we observe

• Thus
30 ≤≤= kkHkGkYC ],[][][

][kYC ][nyC
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• A 4-point IDFT of            yields][kYC
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣
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• Example - Now let us extended the two 
length-4 sequences to length 7 by 
appending each with three zero-valued 
samples, i.e.

⎩
⎨⎧ ≤≤

≤≤= 640
30

n
nngnge ,

],[][

⎩⎨
⎧

≤≤
≤≤= 640

30
n
nnhnhe ,

],[][
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• We next determine the 7-point circular 
convolution of          and          :

• From the above

60,][][][
6

0
7 ≤≤∑ 〉−〈=

=
nmnhmgny

m
ee

][nge ][nhe

][][][][][ 61000 eeee hghgy +=

][][][][][][][][ 16253443 eeeeeeee hghghghg ++++

22100 =×== ][][ hg
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• Continuing the process we arrive at
,)()(][][][][][ 6222101101 =×+×=+= hghgy

][][][][][][][ 0211202 hghghgy ++=
,)()()( 5202211 =×+×+×=
][][][][][][][][][ 031221303 hghghghgy +++=
,)()()()( 521201211 =×+×+×+×=

][][][][][][][ 1322314 hghghgy ++=
,)()()( 4211012 =×+×+×= 58
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• As can be seen from the above that y[n] is 
precisely the sequence          obtained by a
linear convolution of g[n] and h[n]

,)()(][][][][][ 1111023325 =×+×=+= hghgy

111336 =×== )(][][][ hgy

][nyL

][nyL
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• The N-point circular convolution can be 

written in matrix form as

• Note: The elements of each diagonal of the  
matrix are equal

• Such a matrix is called a circulant matrix
NN ×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎥
⎥
⎥
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⎣

⎡

−−−

−
−−

=

− ⎥
⎥
⎥

⎦

⎤
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⎢
⎢

⎣

⎡
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]2[
]1[
]0[

]0[]3[]2[]1[

]3[]0[]1[]2[
]2[]1[]0[]1[
]1[]2[]1[]0[
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]2[
]1[
]0[
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g
g
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hNhNhNh

hhhh
hNhhh
hNhNhh
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y
y
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C

C
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• Tabular Method
• We illustrate the method by an example
• Consider the evaluation of                       

where {g[n]} and {h[n]} are length-4
sequences

• First, the samples of the two sequences are 
multiplied using the conventional 
multiplication method as shown on the next 
slide

][O][][ * ngnhny =
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][][
][][][][
][][][][][][
][][][][][][][][

][][][][][
][][][][:][

:

30
2120
121110
03020100

3210
3210

3210

hg
hghg
hghghg
hghghghg

hhhhnh
ggggng

n

][][][][][][
][][][][

][][

333231
2322

13

hghghg
hghg

hg

44〉〈 45〉〈 46〉〈

The partial products generated in the 2nd, 3rd, and 4th rows
are circularly shifted to the left as indicated above
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• The modified table after circular shifting is 

shown below

• The samples of the sequence              are 
obtained by adding the 4 partial products in 
the column above of each sample

][][][][:][
][][][][][][][][
][][][][][][][][
][][][][][][][][
][][][][][][][][

][][][][:][
][][][][:][

:

3210
30333231
21202322
12111013
03020100

3210
3210

3210

cycycycyncy
hghghghg
hghghghg
hghghghg
hghghghg

hhhhnh
ggggng

n

]}[{ nyc
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• Thus

][][][][][][][][][ 312213000 hghghghgyc +++=
][][][][][][][][][ 322310011 hghghghgyc +++=

][][][][][][][][][ 332011022 hghghghgyc +++=

][][][][][][][][][ 302112033 hghghghgyc +++=


