Types of Transfer Functions

 The time-domain classification of an LTI
digital transfer function sequence is based
on the length of its impulse response:
- Finite impulse response (FIR) transfer
function

- Infinite impulse response (IIR) transfer
function
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Types of Transfer Functions

* In the case of digital transfer functions with
frequency-selective frequency responses,
there are two types of classifications

* (1) Classification based on the shape of the
magnitude function|H (e!®)|

* (2) Classification based on the the form of
the phase function 6(w)
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Classification Based on
Magnitude Characteristics

» One common classification is based on an
ideal magnitude response

« A digital filter designed to pass signal
components of certain frequencies without
distortion should have a frequency response
equal to one at these frequencies, and
should have a frequency response equal to
zero at all other frequencies
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Ideal Filters

» The range of frequencies where the
frequency response takes the value of one is
called the passband

 The range of frequencies where the
frequency response takes the value of zero
is called the stopband
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Ideal Filters

* Frequency responses of the four popular types
of ideal digital filters with real impulse
response coefficients are shown below:
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m alrC.

SR TS ' =

Lowpass Highpass

Hyple™ Hole™)

AL IITE

T Oy ey

- £ " 2 R el el .
5 Bandpass Bandstop
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Ideal Filters

* Lowpass filter: Passband - 0< <
Stopband - ®; <®=T
 Highpass filter: Passband - o <o<n
Stopband - 0< o < o
» Bandpass filter: Passband - oy <o <o)
Stopband - 0< o< wy and oy <O <7
Stopband - m¢ < ® < ¢
Passhand -0<w<my and oo <o<mw

Copyright © 2005, S. K. Mitra




Ideal Filters

* The frequencies o¢ , o , and o, are called
the cutoff frequencies

An ideal filter has a magnitude response
equal to one in the passband and zero in the
stopband, and has a zero phase everywhere
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Ideal Filters

* Earlier in the course we derived the inverse
DTFT of the frequency response H p (e/®)
of the ideal lowpass filter:

inmgn
hp[n]="2%" o cn<oo
7ihn

» We have also shown that the above impulse
response is not absolutely summable, and
hence, the corresponding transfer function
is not BIBO stable
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Ideal Filters

* Also, h; p[n] is not causal and is of doubly
infinite length

» The remaining three ideal filters are also

characterized by doubly infinite, noncausal
impulse responses and are not absolutely
summable

» Thus, the ideal filters with the ideal “brick

wall” frequency responses cannot be
realized with finite dimensional LTI filter
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Ideal Filters

» To develop stable and realizable transfer
functions, the ideal frequency response
specifications are relaxed by including a
transition band between the passband and
the stopband

 This permits the magnitude response to
decay slowly from its maximum value in
the passhand to the zero value in the
stopband
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Ideal Filters

» Moreover, the magnitude response is

allowed to vary by a small amount both in
the passband and the stopband

* Typical magnitude response specifications

of a lowpass filter are shown below
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Bounded Real Transfer
Functions

* A causal stable real-coefficient transfer
function H(z) is defined as a bounded real
(BR) transfer function if

|[H(e!®)|<1 forall values of

 Let x[n] and y[n] denote, respectively, the
input and output of a digital filter
characterized by a BR transfer function H(z)
with X (e!®) and Y (e!®) denoting their
DTFTs
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Bounded Real Transfer
Functions
« Then the condition |H (e/®)|<1implies that

Y (eim)\2 <|x (ejw)\2

* Integrating the above from —x to &, and
applying Parseval’s relation we get

Ylyini® < YJxing?
N=—o0 N=—o0

13
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Bounded Real Transfer
Functions

 Thus, for all finite-energy inputs, the output
energy is less than or equal to the input
energy implying that a digital filter
characterized by a BR transfer function can
be viewed as a passive structure

« If |H(e!”)|=1, then the output energy is
equal to the input energy, and such a digital
filter is therefore a lossless system
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Bounded Real Transfer
Functions

* A causal stable real-coefficient transfer
function H(z) with |H (e)®)|=1 is thus
called a lossless bounded real (LBR)
transfer function

» The BR and LBR transfer functions are the
keys to the realization of digital filters with
low coefficient sensitivity

15
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Bounded Real Transfer
Functions

» Example — Consider the causal stable IIR
transfer function

H@)=—7.
where K is a real Constant
* Its square-magnitude function is given by
K2
=1 " (11 0)2 —20.c080

0<lof<1

HE™) =H@HE)
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Bounded Real Transfer
Functions

* The maximum value of [H (e“”)Fis obtained
when 2a.cos in the denominator is a
maximum and the minimum value is
obtained when 2c.cos is a minimum

» For o > 0, maximum value of 2a.cosm is
equal to 2a at ® = 0, and minimum value is
—2aato=m

17
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Bounded Real Transfer
Functions
e Thus, the maximum value of ‘H (ej"’)‘2 is
equal to K2 /(1- o)) at @ = 0
* The maximum value can be made equal to 1
by choosing K =1-a
* Hence, -0
HE)=— "

— QO
is a BR function for o > 1

O<ax<l
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Allpass Transfer Function
Definition
e An IIR transfer function A(z) with unity
magnitude response for all frequencies, i.e.,
|A()®)P=1, forallo
is called an allpass transfer function

e An M-th order causal real-coefficient
allpass transfer function is of the form

-1 -M+1

A (Z) dM +dM_1Z +"'+d12
1+diz et dy gz M

19 1 M -1

M
M

+7

+dM 7
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Allpass Transfer Function

« If we denote the denominator polynomials
of Ay (2) as Dy (2):

DM (Z)=l+d12_1+---+ dM_lz_M+1

+dM Z_M

then it follows that Ay, (z) can be written as:

-M -1
Ay ()= D)
M .
« Note from the above that if z=rel® isa
pole of a real coefficient allpass transfer

function, then it has a zero at z = le~1¢
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Allpass Transfer Function

» The numerator of a real-coefficient allpass
transfer function is said to be the mirror-
image polynomial of the denominator, and
vice versa

« We shall use the notation Dy, (z) to denote
the mirror-image polynomial of a degree-M
polynomial Dy, (z), i.e.,

Dm (@) =2"MDy (Y
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Allpass Transfer Function
 The expression

zMp (z"l)
)=+ M- -
. - ANI ( ) DM (Z)
implies that the poles and zeros of a real-

coefficient allpass function exhibit mirror-
image symmetry in the z-plane

15]
1 - =~

ost /% \

-0.2+0.18271+04272+273
1+0.4z71+0.18272-0.2z3

A(2)= i
Eost N x /

L5
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0 1 2 3
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Allpass Transfer Function

« To show that | Ay (e°)|=1 we observe that

Ay MDDy (2)
A )=

e Therefore

Ay (2) Ay (Z—l) - 2MDy (z1) 2MDy (2)

Dwm(z) Dm(z?)

e Hence .
| €10)2 = A () (278)_,, =1
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Allpass Transfer Function

» Now, the poles of a causal stable transfer
function must lie inside the unit circle in the
z-plane

» Hence, all zeros of a causal stable allpass
transfer function must lie outside the unit
circle in a mirror-image symmetry with its
poles situated inside the unit circle

24
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Allpass Transfer Function

* Figure below shows the principal value of
the phase of the 3rd-order allpass function
—-0.2+0.18271+04272 4273

Ag(2) = 1 1 2 3
- 1+04z++0.18272-0.2z
* Note the discontinuity by the amount of 2n

in the phase 6(®)

Principal value of phase
|
|
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Allpass Transfer Function

* If we unwrap the phase by removing the
discontinuity, we arrive at the unwrapped
phase function 6 (w) indicated below

» Note: The unwrapped phase function is a
continuous function of ®

Unwrapped phase

Phase, degrees

Allpass Transfer Function

» The unwrapped phase function of any
arbitrary causal stable allpass function is a
continuous function of @

Properties

* (1) A causal stable real-coefficient allpass
transfer function is a lossless bounded real
(LBR) function or, equivalently, a causal
stable allpass filter is a lossless structure

27
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Allpass Transfer Function
* (2) The magnitude function of a stable
allpass function A(z) satisfies:
<1, for|z>1
A(z)k=1 for|z=1
>1, for|z<1
* (3) Let t(w) denote the group delay function
of an allpass filter A(z), i.e.,
(@) = - 210, (0)]
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Allpass Transfer Function

* The unwrapped phase function 6, (w) of a
stable allpass function is a monotonically
decreasing function of o so that t(w) is
everywhere positive in the range 0 < o <

 The group delay of an M-th order stable
real-coefficient allpass transfer function
satisfies: .

[t(w)do=Mn
0

29
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Allpass Transfer Function

A Simple Application

e A simple but often used application of an
allpass filter is as a delay equalizer

* Let G(2) be the transfer function of a digital
filter designed to meet a prescribed
magnitude response

e The nonlinear phase response of G(z) can be
corrected by cascading it with an allpass
filter A(z) so that the overall cascade has a
constant group delay in the band of interest
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Allpass Transfer Function

* Since |A(ej°’)|=1,we have
IG(e!”) A)=IG ()
 Overall group delay is the given by the sum
of the group delays of G(z) and A(z)

31
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Allpass Transfer Function

e Example — Figure below shows the group
delay of a 4" order elliptic filter with the
following specifications: mj =0.3m,

8,=1dB, 3;=35dB

Origial Filter

iay, samples.
T
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|
| — —
|
|- —
|
1
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|
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|
— 4
|
I
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Allpass Transfer Function
« Figure below shows the group delay of the
original elliptic filter cascaded with an 8
order allpass section designed to equalize
the group delay in the passband

Group Delay Equalized Filter
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Classification Based on Phase
Characteristics

» A second classification of a transfer
function is with respect to its phase
characteristics

* In many applications, it is necessary that the
digital filter designed does not distort the
phase of the input signal components with
frequencies in the passband

34
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Zero-Phase Transfer Function

» One way to avoid any phase distortion is to
make the frequency response of the filter
real and nonnegative, i.e., to design the
filter with a zero phase characteristic

» However, it is not possible to design a
causal digital filter with a zero phase

35
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Zero-Phase Transfer Function

« For non-real-time processing of real-valued
input signals of finite length, zero-phase
filtering can be very simply implemented by
relaxing the causality requirement

» One zero-phase filtering scheme is sketched
below

X[l vl il — H@) f—win
ufnl=v[-nl,  yInl=w{-n]
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Zero-Phase Transfer Function

* |t is easy to verify the above scheme in the
frequency domain

o Let X(el®), V(el®) U (el®),W(el®), and
Y (e)®) denote the DTFTs of x[n], v[n],
u[n], w[n], and y[n], respectively

 From the figure shown earlier and making
use of the symmetry relations we arrive at
the relations between various DTFTSs as
given on the next slide
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Zero-Phase Transfer Function

X[} vinl ] win]

uln]=v[-n],  y[n]=w[-n]
V(el®)=H(el*)X (1),  W(el®)=H(el)u )
Ul®)=v*el®),  Y(elo)=w*(el)
+ Combining the above equations we get
Y (e1°)=W*(e!®) =H *(el®)U *(e!?)
= H*(e1)V (e?) = H*(e) H(e*) X ()
» ~H(el)*X (el)
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Zero-Phase Transfer Function

e The function £i1tfilt implements the
above zero-phase filtering scheme

* In the case of a causal transfer function with
a nonzero phase response, the phase
distortion can be avoided by ensuring that
the transfer function has a unity magnitude
and a linear-phase characteristic in the
frequency band of interest
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Zero-Phase Transfer Function

» The most general type of a filter with a
linear phase has a frequency response given
by

H(ei®) =g~ ioD
which has a linear phase fromw=0to ® =
2n

« Note also ‘H(ej“’)‘zl

t(w)=D

40
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Linear-Phase Transfer

Function
 The output y[n] of this filter to an input
x[n] = Aeien s then given by
y[n]= Ae—joDgjon — pgjo(n-D)

o If x4(t) and y, (t) represent the continuous-
time signals whose sampled versions,
sampled at t = nT, are x[n] and y[n] given
above, then the delay between x, (t) and y, (t)
is precisely the group delay of amount D
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Linear-Phase Transfer
Function

* If D is an integer, then y[n] is identical to
X[n], but delayed by D samples

« If D is not an integer, y[n], being delayed by
a fractional part, is not identical to x[n]

* In the latter case, the waveform of the
underlying continuous-time output is
identical to the waveform of the underlying
continuous-time input and delayed D units

42 of time
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Linear-Phase Transfer
Function

* If it is desired to pass input signal
components in a certain frequency range
undistorted in both magnitude and phase,
then the transfer function should exhibit a
unity magnitude response and a linear-phase
response in the band of interest
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Linear-Phase Transfer
Function

* Figure below shows the frequency response
if a lowpass filter with a linear-phase
characteristic in the passband

Jfp e

L

iy w0 o :

ang iy (e
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Linear-Phase Transfer
Function

Since the signal components in the stopband
are blocked, the phase response in the
stopband can be of any shape

Example - Determine the impulse response
of an ideal lowpass filter with a linear phase
response:

HLP(ejm):{

e I, 0<|w <o
0, o<lo<mn
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Linear-Phase Transfer
Function

» Applying the frequency-shifting property of
the DTFT to the impulse response of an
ideal zero-phase lowpass filter we arrive at

sinmw;(n—n,)
h p[n]=——27
Le[n] =)

* As before, the above filter is noncausal and
of doubly infinite length, and hence,
unrealizable

—o<N<©
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Linear-Phase Transfer
Function

By truncating the impulse response to a
finite number of terms, a realizable FIR
approximation to the ideal lowpass filter
can be developed

The truncated approximation may or may
not exhibit linear phase, depending on the
value of ny chosen
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Linear-Phase Transfer
Function

If we choose n,= N/2 with N a positive
integer, the truncated and shifted
approximation

R sinw.(n—N/2)
hp[n] == 218 g<n<N
el = N T2) "

will be a length N+1 causal linear-phase
FIR filter
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Linear-Phase Transfer
Function

* Figure below shows the filter coefficients
obtained using the function sinc for two
different values of N

N=12 N=13
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Zero-Phase Response

 Because of the symmetry of the impulse
response coefficients as indicated in the two
figures, the frequency response of the
truncated approximation can be expressed as:

N . N A . . ~

Hip(el®) = Y hpnleon =e IoN2H o (o)
n=0

where H p (), called the zero-phase

response or amplitude response, is a real

function of ®
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Minimum-Phase and Maximum-
Phase Transfer Functions

» Consider the two 1st-order transfer functions:
Hi(2)=22, Hy2)="21, |a<1, <1

z+a’ ! z+a’ Al
« Both transfer functions have a pole inside the
unit circle at the same location z = —a and are

stable

* But the zero of H4(2) is inside the unit circle
at z=-b , whereas, the zero of H,(2) is at
7= —% situated in a mirror-image symmetry

51
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Minimum-Phase and Maximum-
Phase Transfer Functions

« Figure below shows the pole-zero plots of
the two transfer functions

jlmz jlmz

Re: m Rez
W .
Unit :'s(‘ck

Hq(2) Ha(2)
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Minimum-Phase and Maximum-
Phase Transfer Functions
» However, both transfer functions have an
identical magnitude function as
Hy()H(z™) = Hy(D)H, ()
 The corresponding phase functions are

joyy _ -1 sin®@ _ tan~1 sino
arg[Hl(e )]_tan b+cosm tan a+Cosm

joyy _ -1 bsin® _ a1 sino
arg[H,(e™)]=tan 1+bcos® tan = oo

53
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Minimum-Phase and Maximum-
Phase Transfer Functions
* Figure below shows the unwrapped phase

responses of the two transfer functions for
a=0.8andb=-0.5

Phase, degrees
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Minimum-Phase and Maximum-
Phase Transfer Functions
* From this figure it follows that H,(z) has
an excess phase lag with respect to Hq(z)
* The excess phase lag property of H,(z)
with respect to H4(z) can also be explained
by observing that we can write

H2(2)2b2+1=(z+bj(bz+1j

z+a z+al\z+b
—

—
H,(z) A(z)

55
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Minimum-Phase and Maximum-
Phase Transfer Functions

where A(z) =(bz+1)/(z+b) is a stable
allpass function

 The phase functions of Hq(z)and H,(z)
are thus related through
arg[H, (e’)]=arg[H, (e'*)]+arg[A(e )]
« As the unwrapped phase function of a stable
first-order allpass function is a negative
function of o, it follows from the above that
H,(z) has indeed an excess phase lag with
ss  respectto Hy(z)
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Minimum-Phase and Maximum-
Phase Transfer Functions

* Generalizing the above result, let H,,,(z) be
a causal stable transfer function with all
zeros inside the unit circle and let H(z) be
another causal stable transfer function
satisfying|H (e/) = Hp, )

 These two transfer functions are then
related through H(z) = H,(z) A(z) where
A(2) is a causal stable allpass function

57
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Minimum-Phase and Maximum-
Phase Transfer Functions

* The unwrapped phase functions of H,, (z)
and H(z) are thus related through _
arg[H (e”)] =arg[H , (e!*)] +arg[A(e )]
» H(z) has an excess phase lag with respect to
Hm(2)
A causal stable transfer function with all

zeros inside the unit circle is called a
minimum-phase transfer function

58
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Minimum-Phase and Maximum-
Phase Transfer Functions

A causal stable transfer function with all
zeros outside the unit circle is called a
maximum-phase transfer function

A causal stable transfer function with zeros
inside and outside the unit circle is called a
mixed-phase transfer function

59
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Minimum-Phase and Maximum-
Phase Transfer Functions
» Example — Consider the mixed-phase
transfer function
-1 -1
H(2) :2(1+o.3z1 )(0.4-12 1)
(1-0.2z271)(1+0.527")
* We can rewrite H(z) as
H2) = 2(1+0.3z71)(1-04z7") | 04-27"
(1-02z71+05z7" [(1-0.4z7

—
60 Minimum-phase function Allpass function
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