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Digital Filter StructuresDigital Filter Structures

• The convolution sum description of an LTI 
discrete-time system can, in principle, be 
used to implement the system

• For an IIR finite-dimensional system this 
approach is not practical as here the impulse 
response is of infinite length

• However, a direct implementation of the IIR 
finite-dimensional system is practical
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Digital Filter StructuresDigital Filter Structures

• Here the input-output relation involves a 
finite sum of products:

• On the other hand, an FIR system can be 
implemented using the convolution sum 
which is a finite sum of products:
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Digital Filter StructuresDigital Filter Structures

• The actual implementation of an LTI digital 
filter can be either in software or hardware 
form, depending on applications

• In either case, the signal variables and the 
filter coefficients cannot be represented 
with infinite precision
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Digital Filter StructuresDigital Filter Structures
• However, a direct implementation of a digital 

filter based on either the difference equation 
or the finite convolution sum may not 
provide satisfactory performance due to the 
finite precision arithmetic

• It is thus of practical interest to develop 
alternate realizations and choose the structure 
that provides satisfactory performance under 
finite precision arithmetic
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Digital Filter StructuresDigital Filter Structures
• A structural representation using 

interconnected basic building blocks is the 
first step in the hardware or software 
implementation of an LTI digital filter

• The structural representation provides the 
key relations between some pertinent 
internal variables with the input and output 
that in turn provides the key to the 
implementation
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Block Diagram RepresentationBlock Diagram Representation

• In the time domain, the input-output 
relations of an LTI digital filter is given by 
the convolution sum

or, by the linear constant coefficient 
difference equation
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Block Diagram RepresentationBlock Diagram Representation
• For the implementation of an LTI digital 

filter, the input-output relationship must be 
described by a valid computational algorithm

• To illustrate what we mean by a 
computational algorithm, consider the causal 
first-order LTI digital filter shown below 
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Block Diagram RepresentationBlock Diagram Representation

• The filter is described by the difference 
equation

• Using the above equation we can compute
y[n] for          knowing the initial condition           

and the input x[n] for           :
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Block Diagram RepresentationBlock Diagram Representation

• We can continue this calculation for any 
value of the time index n we desire

]1[]0[]1[]0[ 101 −++−−= xpxpydy
]0[]1[]0[]1[ 101 xpxpydy ++−=
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Block Diagram RepresentationBlock Diagram Representation
• Each step of the calculation requires a 

knowledge of the previously calculated 
value of the output sample (delayed value of 
the output), the present value of the input 
sample, and the previous value of the input 
sample (delayed value of the input)

• As a result, the first-order difference 
equation can be interpreted as a valid 
computational algorithm
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Basic Building BlocksBasic Building Blocks
• The computational algorithm of an LTI 

digital filter can be conveniently 
represented in block diagram form using the 
basic building blocks shown below

x[n] y[n]

w[n]

+ A
x[n] y[n]

y[n]1−zx[n]
x[n] x[n]

x[n]

Adder

Unit delay

Multiplier

Pick-off node 12
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Basic Building BlocksBasic Building Blocks

Advantages of block diagram representation
• (1) Easy to write down the computational 

algorithm by inspection
• (2) Easy to analyze the block diagram to 

determine the explicit relation between the 
output and input
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Basic Building BlocksBasic Building Blocks

• (3) Easy to manipulate a block diagram to 
derive other “equivalent” block diagrams 
yielding different computational algorithms

• (4) Easy to determine the hardware 
requirements

• (5) Easier to develop block diagram 
representations from the transfer function 
directly
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Analysis of Block DiagramsAnalysis of Block Diagrams
• Carried out by writing down the expressions 

for the output signals of each adder as a sum 
of its input signals, and developing a set of 
equations relating the filter input and output 
signals in terms of all internal signals

• Eliminating the unwanted internal variables 
then results in the expression for the output 
signal as a function of the input signal and 
the filter parameters that are the multiplier 
coefficients
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Analysis of Block DiagramsAnalysis of Block Diagrams
• Example - Consider the single-loop feedback 

structure shown below

• The output E(z) of the adder is

• But from the figure
)()()()( 2 zYzGzXzE +=

)()()( 1 zEzGzY =
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Analysis of Block DiagramsAnalysis of Block Diagrams

• Eliminating E(z) from the previous two 
equations we arrive at

which leads to
)()()()]()(1[ 121 zXzGzYzGzG =−
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Analysis of Block DiagramsAnalysis of Block Diagrams

• Example - Analyze the cascaded lattice 
structure shown below where the z-
dependence of signal variables are not 
shown for brevity
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Analysis of Block DiagramsAnalysis of Block Diagrams

• The output signals of the four adders are 
given by

• From the figure we observe

21 SXW α−=
112 SWW δ−=

213 WSW ε+=

21 SWY γ+β=
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Analysis of Block DiagramsAnalysis of Block Diagrams
• Substituting the last two relations in the first 

four equations we get

• From the second equation we get                
and from the third 

equation we get

3
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Analysis of Block DiagramsAnalysis of Block Diagrams

• Combining the last two equations we get

• Substituting the above equation in

we finally arrive at
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The DelayThe Delay--Free Loop ProblemFree Loop Problem
• For physical realizability of the digital filter 

structure, it is necessary that the block 
diagram representation contains no delay-
free loops

• To illustrate the delay-free loop problem 
consider the structure below
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The DelayThe Delay--Free Loop ProblemFree Loop Problem
• Analysis of this structure yields

which when combined results in

• The determination of the current 
value of y[n] requires the knowledge of the 
same value

][][][ nynwnu +=

])[][(][ nAunvBny +=

( )])[][(][][ nynwAnvBny ++=
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The DelayThe Delay--Free Loop ProblemFree Loop Problem
• However, this is physically impossible to 

achieve due to the finite time required to 
carry out all arithmetic operations on a 
digital machine

• Method exists to detect the presence of 
delay-free loops in an arbitrary structure, 
along with methods to locate and remove 
these loops without the overall input-output 
relation
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The DelayThe Delay--Free Loop ProblemFree Loop Problem
• Removal achieved by replacing the portion 

of the overall structure containing the delay-
free loops by an equivalent realization with 
no delay-free loops

• Figure below shows such a realization of 
the example structure described earlier
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Canonic and Canonic and NoncanonicNoncanonic
StructuresStructures

• A digital filter structure is said to be
canonic if the number of delays in the block 
diagram representation is equal to the order 
of the transfer function

• Otherwise, it is a noncanonic structure
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Canonic and Canonic and NoncanonicNoncanonic
StructuresStructures

• The structure shown below is noncanonic as 
it employs two delays to realize a first-order 
difference equation

]1[][]1[][ 101 −++−−= nxpnxpnydny
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Equivalent StructuresEquivalent Structures

• Two digital filter structures are defined to 
be equivalent if they have the same transfer 
function

• We describe next a number of methods for 
the generation of equivalent structures

• However, a fairly simple way to generate an 
equivalent structure from a given realization 
is via the transpose operation
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Equivalent StructuresEquivalent Structures

Transpose Operation
• (1)  Reverse all paths
• (2) Replace pick-off nodes by adders, and 

vice versa
• (3) Interchange the input and output nodes
• All other methods for developing equivalent 

structures are based on a specific algorithm 
for each structure
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Equivalent StructuresEquivalent Structures

• There are literally an infinite number of 
equivalent structures realizing the same 
transfer function

• It is thus impossible to develop all 
equivalent realizations

• In this course we restrict our attention to a 
discussion of some commonly used 
structures
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Equivalent StructuresEquivalent Structures

• Under infinite precision arithmetic any 
given realization of a digital filter behaves 
identically to any other equivalent structure

• However, in practice, due to the finite 
wordlength limitations, a specific 
realization behaves totally differently from 
its other equivalent realizations
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Equivalent StructuresEquivalent Structures
• Hence, it is important to choose a structure 

that has the least quantization effects when 
implemented using finite precision 
arithmetic

• One way to arrive at such a structure is to 
determine a large number of equivalent 
structures, analyze the finite wordlength
effects in each case, and select the one 
showing the least effects

32
Copyright © 2005, S. K. Mitra

Equivalent StructuresEquivalent Structures

• In certain cases, it is possible to develop a 
structure that by construction has the least 
quantization effects

• We defer the review of these structures after 
a discussion of the analysis of quantization 
effects

• Here, we review some simple realizations 
that in many applications are quite adequate
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Basic FIR Digital Filter Basic FIR Digital Filter 
StructuresStructures

• A causal FIR filter of order N is characterized 
by a transfer function H(z) given by

which is a polynomial in
• In the time-domain the input-output relation 

of the above FIR filter is given by

∑ =
−= N

n
nznhzH 0 ][)(

1−z

∑ = −= N
k knxkhny 0 ][][][

34
Copyright © 2005, S. K. Mitra

Direct Form FIR Digital Filter Direct Form FIR Digital Filter 
StructuresStructures

• An FIR filter of order N is characterized by     
N+1 coefficients and, in general, require 
N+1 multipliers and N two-input adders

• Structures in which the multiplier 
coefficients are precisely the coefficients of 
the transfer function are called direct form
structures
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Direct Form FIR Digital Filter Direct Form FIR Digital Filter 
StructuresStructures

• A direct form realization of an FIR filter can 
be readily developed from the convolution 
sum description as indicated below for N = 
4
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Direct Form FIR Digital Filter Direct Form FIR Digital Filter 
StructuresStructures

• An analysis of this structure yields

which is precisely of the form of the 
convolution sum description

• The direct form structure shown on the 
previous slide is also known as a tapped
delay line or a transversal filter

][][][][ 4433 −+−+ nxhnxh
][][][][][][][ 22110 −+−+= nxhnxhnxhny

][][][][ 4433 −+−+ nxhnxh
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Direct Form FIR Digital Filter Direct Form FIR Digital Filter 
StructuresStructures

• The transpose of the direct form structure 
shown earlier is indicated below

• Both direct form structures are canonic with 
respect to delays
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Cascade Form FIR Digital Cascade Form FIR Digital 
Filter StructuresFilter Structures

• A higher-order FIR transfer function can 
also be realized as a cascade of second-
order FIR sections and possibly a first-order 
section

• To this end we express H(z) as

where            if N is even, and               if N
is odd, with  

∏ =
−− ++= K
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Cascade Form FIR Digital Cascade Form FIR Digital 
Filter StructuresFilter Structures

• A cascade realization for N = 6 is shown 
below

• Each second-order section in the above 
structure can also be realized in the 
transposed direct form
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PolyphasePolyphase FIR StructuresFIR Structures

• The polyphase decomposition of H(z) leads 
to a parallel form structure

• To illustrate this approach, consider a causal 
FIR transfer function H(z) with N = 8: 

4321 43210 −−−− ++++= zhzhzhzhhzH ][][][][][)(
8765 8765 −−−− ++++ zhzhzhzh ][][][][
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PolyphasePolyphase FIR StructuresFIR Structures
• H(z) can be expressed as a sum of two 

terms, with one term containing the even-
indexed coefficients and the other 
containing the odd-indexed coefficients:

)][][][][][()( 8642 86420 −−−− ++++= zhzhzhzhhzH
)][][][][( 7531 7531 −−−− ++++ zhzhzhzh

)][][][][][( 8642 86420 −−−− ++++= zhzhzhzhh
)][][][][( 6421 7531 −−−− ++++ zhzhzhhz
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PolyphasePolyphase FIR StructuresFIR Structures

• By using the notation

we can express H(z) as

321
1 7531 −−− +++= zhzhzhhzE ][][][][)(
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0 86420 −−−− ++++= zhzhzhzhhzE ][][][][][)(

)()()( 2
1

12
0 zEzzEzH −+=



8

43
Copyright © 2005, S. K. Mitra

PolyphasePolyphase FIR StructuresFIR Structures

• In a similar manner, by grouping the terms 
in the original expression for H(z), we can 
reexpress it in the form

where now
)()()()( 3

2
23

1
13

0 zEzzEzzEzH −− ++=

21
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PolyphasePolyphase FIR StructuresFIR Structures

• The decomposition of H(z) in the form

or

is more commonly known as the polyphase
decomposition
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PolyphasePolyphase FIR StructuresFIR Structures

• In the general case, an L-branch polyphase
decomposition of an FIR transfer function 
of order N is of the form

where

with h[n]=0 for n > N
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PolyphasePolyphase FIR StructuresFIR Structures
• Figures below show the 4-branch, 3-branch, 

and 2-branch polyphase realization of a 
transfer function H(z)

• Note: The expression for the polyphase
components           are different in each case)(zEm
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PolyphasePolyphase FIR StructuresFIR Structures

• The subfilters in the polyphase
realization of an FIR transfer function are  
also FIR filters and can be realized using 
any methods described so far

• However, to obtain a canonic realization of 
the overall structure, the delays in all 
subfilters must be shared

)( L
m zE
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PolyphasePolyphase FIR StructuresFIR Structures
• Figure below shows a canonic realization of 

a length-9 FIR transfer function obtained 
using delay sharing
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LinearLinear--Phase FIR StructuresPhase FIR Structures
• The symmetry (or antisymmetry) property of a 

linear-phase FIR filter can be exploited to 
reduce the number of multipliers into almost 
half of that in the direct form implementations

• Consider a length-7 Type 1 FIR transfer 
function with a symmetric impulse response:

321 3210 −−− +++= zhzhzhhzH ][][][][)(
654 012 −−− +++ zhzhzh ][][][
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LinearLinear--Phase FIR StructuresPhase FIR Structures
• Rewriting H(z) in the form

we obtain the  realization shown below

)]([)]([)( 516 110 −−− +++= zzhzhzH
342 32 −−− +++ zhzzh ][)]([
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LinearLinear--Phase FIR StructuresPhase FIR Structures

• A similar decomposition can be applied to a 
Type 2 FIR transfer function

• For example, a length-8 Type 2 FIR transfer 
function can be expressed as

• The corresponding realization is shown on 
the next slide

)]([)]([)( 617 110 −−− +++= zzhzhzH

)]([)]([ 4352 32 −−−− ++++ zzhzzh
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LinearLinear--Phase FIR StructuresPhase FIR Structures

• Note: The Type 1 linear-phase structure for
a length-7 FIR filter requires 4 multipliers,
whereas a direct form realization requires 7 
multipliers
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LinearLinear--Phase FIR StructuresPhase FIR Structures

• Note: The Type 2 linear-phase structure for
a length-8 FIR filter requires 4 multipliers,
whereas a direct form realization requires 8 
multipliers

• Similar savings occurs in the realization of 
Type 3 and Type 4 linear-phase FIR filters 
with antisymmetric impulse responses


