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zz--TransformTransform
• The DTFT provides a frequency-domain 

representation of discrete-time signals and 
LTI discrete-time systems

• Because of the convergence condition, in 
many cases, the DTFT of a sequence may 
not exist

• As a result, it is not possible to make use of 
such frequency-domain characterization in 
these cases
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zz--TransformTransform
• A generalization of the DTFT defined by

leads to the z-transform
• z-transform may exist for many sequences 

for which the DTFT does not exist
• Moreover, use of z-transform techniques 

permits simple algebraic manipulations
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zz--TransformTransform
• Consequently, z-transform has become an 

important tool in the analysis and design of 
digital filters

• For a given sequence g[n], its z-transform 
G(z) is defined as

where z = Re(z) + jIm(z) is a complex 
variable
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zz--TransformTransform

• If we let               , then the z-transform 
reduces to

• The above can be interpreted as the DTFT 
of the modified sequence

• For r = 1 (i.e., |z| = 1), z-transform reduces 
to its DTFT, provided the latter exists

ω= jerz
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zz--TransformTransform
• The contour |z| = 1 is a circle in the z-plane 

of unity radius and is called the unit circle
• Like the DTFT, there are conditions on the 

convergence of the infinite series

• For a given sequence, the set R of values of 
z for which its z-transform converges is 
called the region of convergence (ROC)
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zz--TransformTransform
• From our earlier discussion on the uniform 

convergence of the DTFT, it follows that the 
series

converges if                  is absolutely 
summable, i.e., if
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zz--TransformTransform

• In general, the ROC R of a z-transform of a 
sequence g[n] is an annular region of the z-
plane:

where
• Note: The z-transform is a form of a Laurent 

series and is an analytic function at every 
point in the ROC

+− << gg RzR
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zz--TransformTransform
• Example - Determine the z-transform X(z) 

of the causal sequence                        and its 
ROC

• Now 

• The above power series converges to

• ROC is the annular region |z| > |α|
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zz--TransformTransform
• Example - The z-transform µ(z) of the unit

step sequence µ[n] can be obtained from

by setting α = 1:

• ROC is the annular region
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zz--TransformTransform

• Note: The unit step sequence µ[n] is not 
absolutely summable, and hence its DTFT 
does not converge uniformly

• Example - Consider the anti-causal 
sequence
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zz--TransformTransform
• Its z-transform is given by

• ROC is the annular region
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zz--TransformTransform

• Note: The z-transforms of the two 
sequences              and                         are 
identical even though the two parent 
sequences are different

• Only way a unique sequence can be 
associated with a z-transform is by 
specifying its ROC

]1[ −−µα− nn][nnµα
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zz--TransformTransform

• The DTFT              of a sequence g[n] 
converges uniformly if and only if the ROC 
of the z-transform G(z) of g[n] includes the 
unit circle

• The existence of the DTFT does not always 
imply the existence of the z-transform

)( ωjeG
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zz--TransformTransform
• Example - The finite energy sequence

has a DTFT given by

which converges in the mean-square sense
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zz--TransformTransform

• However,             does not have a z-transform 
as it is not absolutely summable for any value 
of r

• Some commonly used z-transform pairs are 
listed on the next slide

][nhLP
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Table 6.1:Table 6.1: Commonly UsedCommonly Used zz--
Transform PairsTransform Pairs
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Rational Rational zz--TransformsTransforms

• In the case of LTI discrete-time systems we 
are concerned with in this course, all 
pertinent z-transforms are rational functions 
of

• That is, they are ratios of two polynomials 
in      :
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Rational Rational zz--TransformsTransforms

• The degree of the numerator polynomial
P(z) is M and the degree of the denominator 
polynomial D(z) is N

• An alternate representation of a rational z-
transform is as a ratio of two polynomials in
z:
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Rational Rational zz--TransformsTransforms

• A rational z-transform can be alternately 
written in factored form as

∏
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Rational Rational zz--TransformsTransforms

• At a root           of the numerator polynomial        
, and as a result, these values of z

are known as the zeros of G(z)
• At a root           of the denominator 

polynomial                   , and as a result, 
these values of z are known as the poles of
G(z)
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Rational Rational zz--TransformsTransforms
• Consider

• Note G(z) has M finite zeros and N finite 
poles

• If N > M there are additional             zeros at
z = 0 (the origin in the z-plane)

• If N < M there are additional             poles at
z = 0
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Rational Rational zz--TransformsTransforms
• Example - The z-transform

has a zero at z = 0 and a pole at z = 1
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Rational Rational zz--TransformsTransforms

• A physical interpretation of the concepts of 
poles and zeros can be given by plotting the 
log-magnitude                        as shown on 
next slide for

)(log zG1020
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Rational Rational zz--TransformsTransforms
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Rational Rational zz--TransformsTransforms

• Observe that the magnitude plot exhibits 
very large peaks around the points              

which are the poles of
G(z)

• It also exhibits very narrow and deep wells 
around the location of the zeros at

6928040 .. jz ±=

2121 .. jz ±=
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• ROC of a z-transform is an important 
concept

• Without the knowledge of the ROC, there is 
no unique relationship between a sequence 
and its z-transform

• Hence, the z-transform must always be 
specified with its ROC
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Moreover, if the ROC of a z-transform 
includes the unit circle, the DTFT of the 
sequence is obtained by simply evaluating 
the z-transform on the unit circle

• There is a relationship between the ROC of 
the z-transform of the impulse response of a 
causal LTI discrete-time system and its 
BIBO stability
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• The ROC of a  rational z-transform is 
bounded by the locations of its poles

• To understand the relationship between the 
poles and the ROC, it is instructive to 
examine the pole-zero plot of a z-transform

• Consider again the pole-zero plot of the z-
transform µ(z) 
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• In this plot, the ROC, shown as the shaded 
area, is the region of the z-plane just outside 
the circle centered at the origin and going 
through the pole at z = 1
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - The z-transform H(z) of the 
sequence                                is given by

• Here the ROC is just outside the circle 
going through the point 60.−=z
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• A sequence can be one of the following 
types: finite-length, right-sided, left-sided
and two-sided

• In general, the ROC depends on the type of 
the sequence of interest
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - Consider a finite-length sequence
g[n] defined for                      , where M and
N are non-negative integers and

• Its z-transform is given by
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Note: G(z) has M poles at           and N poles
at z = 0

• As can be seen from the expression for
G(z), the z-transform of a finite-length 
bounded sequence converges everywhere in 
the z-plane except possibly at z = 0 and/or at

∞=z

∞=z
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - A right-sided sequence with 
nonzero sample values for is 
sometimes called a causal sequence

• Consider a causal sequence
• Its z-transform is given by
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• It can be shown that           converges 
exterior to a circle            , including the 
point

• On the other hand, a right-sided sequence  
with nonzero sample values only for           
with M nonnegative has a z-transform        
with M poles at

• The ROC of            is exterior to a circle            
, excluding the point
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - A left-sided sequence with 
nonzero sample values for is 
sometimes called a anticausal sequence

• Consider an anticausal sequence
• Its z-transform is given by
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• It can be shown that           converges 
interior to a circle             , including the 
point z = 0

• On the other hand, a left-sided sequence  
with nonzero sample values only for           
with N nonnegative has a z-transform        
with N poles at z = 0          

• The ROC of            is interior to a circle            
, excluding the point z = 0

Nn ≤

)(1 zV
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - The z-transform of a two-sided
sequence w[n] can be expressed as

• The first term on the RHS,                       , 
can be interpreted as the z-transform of a 
right-sided sequence and it thus converges 
exterior to the circle
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• The second term on the RHS,                        , 
can be interpreted as the z-transform of a left-
sided sequence and it thus converges interior 
to the circle

• If              , there is an overlapping ROC 
given by

• If              , there is no overlap and the              
z-transform does not exist
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - Consider the two-sided sequence

where α can be either real or complex
• Its z-transform is given by

• The first term on the RHS converges for        
, whereas the second term converges 

for
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• There is no overlap between these two 
regions

• Hence, the z-transform of                 does 
not exist

nnu α=][
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• The ROC of a rational z-transform cannot 
contain any poles and is bounded by the 
poles

• To show that the z-transform is bounded by 
the poles, assume that the z-transform X(z) 
has simple poles at z = α and z = β

• Assume that the corresponding sequence
x[n] is a right-sided sequence
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Then x[n] has the form

where      is a positive or negative integer
• Now, the z-transform of the right-sided 

sequence                      exists if

for some z
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• The condition

holds for            but not for
• Therefore, the z-transform of

has an ROC defined by
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Likewise, the z-transform of a left-sided 
sequence

has an ROC defined by
• Finally, for a two-sided sequence, some of 

the poles contribute to terms in the parent 
sequence for n < 0 and the other poles 
contribute to terms

( ) β<α−−µβ+α= ],[][ 21 o
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• The ROC is thus bounded on the outside by 
the pole with the smallest magnitude that 
contributes for n < 0 and on the inside by 
the pole with the largest magnitude that 
contributes for

• There are three possible ROCs of a rational 
z-transform with poles at z = α and z = β
(           )

0≥n

β<α
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ROC of a Rational ROC of a Rational 
zz--TransformTransform
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• In general, if the rational z-transform has N
poles with R distinct magnitudes, then it has    

ROCs
• Thus, there are         distinct sequences with 

the same z-transform
• Hence, a rational z-transform with a 

specified ROC has a unique sequence as its 
inverse z-transform

1+R
1+R
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• The ROC of a rational z-transform can be 
easily determined using MATLAB

determines the zeros, poles, and the gain 
constant of a rational z-transform with the 
numerator coefficients specified by the 
vector num and the denominator coefficients 
specified by the vector den

[z,p,k] = tf2zp(num,den)
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• [num,den] = zp2tf(z,p,k)
implements the reverse process

• The factored form of the z-transform can be 
obtained using sos = zp2sos(z,p,k)

• The above statement computes the 
coefficients of each second-order factor 
given as an          matrix sos6×L
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

where
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• The pole-zero plot is determined using the 
function zplane

• The z-transform can be either described in 
terms of its zeros and poles:
zplane(zeros,poles)

• or, it can be described in terms of its 
numerator and denominator coefficients:
zplane(num,den)
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ROC of a Rational ROC of a Rational 
zz--TransformTransform

• Example - The pole-zero plot of

obtained using MATLAB is shown below
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Inverse zInverse z--TransformTransform
• General Expression: Recall that, for              , 

the z-transform G(z) given by

is merely the DTFT of the modified sequence

• Accordingly, the inverse DTFT is thus given 
by

ω= jerz
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Inverse zInverse z--TransformTransform

• By making a change of variable              , 
the previous equation can be converted into 
a contour integral given by

where      is a counterclockwise contour of 
integration defined by |z| = r
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Inverse zInverse z--TransformTransform
• But the integral remains unchanged when     

is replaced with any contour C encircling 
the point z = 0 in the ROC of G(z)

• The contour integral can be evaluated using 
the Cauchy’s residue theorem resulting in

• The above equation needs to be evaluated at 
all values of n and is not pursued here
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• A rational z-transform G(z) with a causal
inverse transform g[n] has an ROC that is 
exterior to a circle

• Here it is more convenient to express G(z) 
in a partial-fraction expansion form and
then determine g[n] by summing the inverse 
transform of the individual simpler terms in 
the expansion
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• A rational G(z) can be expressed as

• If              then G(z) can be re-expressed as

where the degree of          is less than N
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• The rational function                     is called a 
proper fraction

• Example - Consider

• By long division we arrive at
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• Simple Poles: In most practical cases, the 
rational z-transform of interest G(z) is a 
proper fraction with simple poles

• Let the poles of G(z) be at           ,
• A partial-fraction expansion of G(z) is then 

of the form

kz λ= Nk ≤≤1

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ−
ρ

=
=

−

N

z
zG

1
11

)(
l l

l



11

61
Copyright © 2005, S. K. Mitra

Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• The constants      in the partial-fraction 
expansion are called the residues and are 
given by

• Each term of the sum in partial-fraction 
expansion has an ROC given by                 
and, thus has an inverse transform of the 
form

lρ

l
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• Therefore, the inverse transform g[n] of
G(z) is given by

• Note: The above approach with a slight 
modification can also be used to determine 
the inverse of a rational z-transform of a 
noncausal sequence
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• Example - Let the z-transform H(z) of a
causal sequence h[n] be given by

• A partial-fraction expansion of H(z) is then 
of the form
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• Now

and
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• Hence

• The inverse transform of the above is 
therefore given by
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• Multiple Poles: If G(z) has multiple poles, 
the partial-fraction expansion is of slightly 
different form

• Let the pole at z = ν be of multiplicity L and 
the remaining           poles be simple and at           

,
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Inverse Transform by Inverse Transform by 
PartialPartial--Fraction ExpansionFraction Expansion

• Then the partial-fraction expansion of G(z) 
is of the form

where the constants     are computed using

• The residues       are calculated as before
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PartialPartial--Fraction Expansion Fraction Expansion 
Using MATLABUsing MATLAB

• [r,p,k]= residuez(num,den)
develops the partial-fraction expansion of 
a rational z-transform with numerator and 
denominator coefficients given by vectors
num and den

• Vector r contains the residues
• Vector p contains the poles
• Vector k contains the constants lη
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PartialPartial--Fraction Expansion Fraction Expansion 
Using MATLABUsing MATLAB

• [num,den]=residuez(r,p,k)
converts a z-transform expressed in a 
partial-fraction expansion form to its 
rational form
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Inverse zInverse z--Transform via Long Transform via Long 
DivisionDivision

• The z-transform G(z) of a causal sequence
{g[n]} can be expanded in a power series in

• In the series expansion, the coefficient 
multiplying the term         is then the n-th
sample g[n]

• For a rational z-transform expressed as a 
ratio of polynomials in      , the power series 
expansion can be obtained by long division
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Inverse zInverse z--Transform via Long Transform via Long 
DivisionDivision

• Example - Consider

• Long division of the numerator by the 
denominator yields

• As a result
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Inverse zInverse z--Transform Using Transform Using 
MATLABMATLAB

• The function impz can be used to find the 
inverse of a rational z-transform G(z)

• The function computes the coefficients of 
the power series expansion of G(z)

• The number of coefficients can either be 
user specified or determined automatically
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Table 6.2:Table 6.2: zz--Transform Transform 
PropertiesProperties
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zz--Transform PropertiesTransform Properties
• Example - Consider the two-sided sequence

• Let                        and                              
with X(z) and Y(z) denoting, respectively, 
their z-transforms

• Now

and
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zz--Transform PropertiesTransform Properties
• Using the linearity property we arrive at

• The ROC of V(z) is given by the overlap 
regions of             and

• If             , then there is an overlap and the 
ROC is an annular region

• If             , then there is no overlap and V(z)
does not exist
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zz--Transform PropertiesTransform Properties
• Example - Determine the z-transform and 

its ROC of the causal sequence

• We can express x[n] = v[n] + v*[n] where

• The z-transform of v[n] is given by
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zz--Transform PropertiesTransform Properties
• Using the conjugation property we obtain 

the z-transform of v*[n] as

• Finally, using the linearity property we get

,
1

1
*1
1*)(* 12

1
12

1
−ω−− −

⋅=
α−

⋅=
zerz

zV
oj

*)(*)()( zVzVzX +=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
−

= −ω−−ω 112
1

1
1

1
1

zerzer oo jj

α>z

78
Copyright © 2005, S. K. Mitra

zz--Transform PropertiesTransform Properties
• or,

• Example - Determine the z-transform Y(z) 
and the ROC of the sequence

• We can write                                 where
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zz--Transform PropertiesTransform Properties

• Now, the z-transform X(z) of                        
is given by

• Using the differentiation property, we arrive 
at the z-transform of           as
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zz--Transform PropertiesTransform Properties

• Using the linearity property we finally 
obtain
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LTI DiscreteLTI Discrete--Time Systems in Time Systems in 
the Transform Domainthe Transform Domain

• An LTI discrete-time system is completely 
characterized in the time-domain by its 
impulse response sequence {h[n]}

• Thus, the transform-domain representation 
of a discrete-time signal can also be equally 
applied to the transform-domain 
representation of an LTI discrete-time 
system
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LTI DiscreteLTI Discrete--Time Systems in Time Systems in 
the Transform Domainthe Transform Domain

• Such transform-domain representations 
provide additional insight into the behavior 
of such systems 

• It is easier to design and implement these 
systems in the transform-domain for certain 
applications

• We consider now the use of the DTFT and 
the z-transform in developing the transform-
domain representations of an LTI system
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• In this course we shall be concerned with 
LTI discrete-time systems characterized by 
linear constant coefficient difference 
equations of the form:
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• Applying the z-transform to both sides of 
the difference equation and making use of 
the linearity and the time-invariance 
properties of Table 6.2 we arrive at

where Y(z) and X(z) denote the z-transforms 
of y[n] and x[n] with associated ROCs, 
respectively
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FiniteFinite--Dimensional LTI Dimensional LTI 
DiscreteDiscrete--Time SystemsTime Systems

• A more convenient form of the z-domain 
representation of the difference equation is 
given by
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