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Digital Filter Design

 Objective - Determination of a realizable
transfer function G(z) approximating a
given frequency response specification is an
important step in the development of a
digital filter

« If an 1R filter is desired, G(z) should be a
stable real rational function

« Digital filter design is the process of
deriving the transfer function G(z)
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Digital Filter Specifications

 Usually, either the magnitude and/or the
phase (delay) response is specified for the
design of digital filter for most applications

* In some situations, the unit sample response
or the step response may be specified

* In most practical applications, the problem
of interest is the development of a realizable
approximation to a given magnitude
response specification
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Digital Filter Specifications

» We discuss in this course only the
magnitude approximation problem

 There are four basic types of ideal filters
with magnitude responses as shown below
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Digital Filter Specifications

« As the impulse response corresponding to
each of these ideal filters is noncausal and
of infinite length, these filters are not
realizable

« In practice, the magnitude response
specifications of a digital filter in the
passband and in the stopband are given with
some acceptable tolerances

« In addition, a transition band is specified
between the passhand and stopband
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Digital Filter Specifications

 For example, the magnitude response ‘G(ej“’)‘
of a digital lowpass filter may be given as
indicated below
foes|
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Digital Filter Specifications

As indicated in the figure, in the passband,
defined by 0<w< o, We require that
‘G(ej‘”)‘ =1 withanerror +5,,i.e.,

1-5, <[G(e1) <1+5,, |oj<o,

* In the stopband, defined by os < o <=, we
require that‘G(e"")‘ =0 with an error 9§,
ie., _

G(e)) <85, o <lo<n
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Digital Filter Specifications

* ®p- passband edge frequency

* o - stopband edge frequency

¢ 8, - peakripple value in the passband

* & - peak ripple value in the stopband

« Since G(e!®) is a periodic function of o,
and G(e"”)‘ of a real-coefficient digital
filter is an even function of ®

 As aresult, filter specifications are given
only for the frequency range 0<w<n
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Digital Filter Specifications

« Specifications are often given in terms of
loss function A (w) =—200g,|G(e™)| in
dB

» Peak passband ripple

a, =-20logy,(1-5,) dB

e Minimum stopband attenuation

as =—2010g:(35) dB
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Digital Filter Specifications
» Magnitude specifications may alternately be
given in a normalized form as indicated
below

L%
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Digital Filter Specifications

 Here, the maximum value of the magnitude
in the passband is assumed to be unity

* 1/\1+€g2 - Maximum passband deviation,
given by the minimum value of the
magnitude in the passband

. %\ - Maximum stopband magnitude
10
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Digital Filter Specifications

» For the normalized specification, maximum
value of the gain function or the minimum
value of the loss function is 0 dB

» Maximum passband attenuation -
tmax = 2010g;o(V1+ €2 | dB
* For 8, <<1 it can be shown that
Omax =—2010g;9(1-25,)dB

11
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Digital Filter Specifications
« In practice, passhand edge frequency F
and stopband edge frequency F; are
specified in Hz
* For digital filter design, normalized
bandedge frequencies need to be computed

from specifications in Hz using
Q, 2nF

®p =E" Frp =2nF,T
o =§;T5=2“FrFS =2nRT

12
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Digital Filter Specifications

» Example - Let F, =7 kHz, F;=3 kHz, and

F, =25 kHz
e Then
3
0, =210 _ g 661
2510
3
. =72“(3X103 ) _0.247
25x10
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Selection of Filter Type

¢ The transfer function H(z) meeting the
frequency response specifications should be
a causal transfer function

« For IIR digital filter design, the IR transfer
function is a real rational function of z™:
-1 -2 -M
_Pot Pz "+PoZ "+t PmZ
H(z)= 1 -2 N
do+diz7+dyz7“ +---+dyz
* H(z) must be a stable transfer function and
must be of lowest order N for reduced
14 COmputational complexity

M <N
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Selection of Filter Type

* For FIR digital filter design, the FIR
transfer function is a polynomial in z1
with real coefficients:

H(z) = Yhin]z™"

* For reduced computational complexity,
degree N of H(z) must be as small as
possible

* If a linear phase is desired, the filter
coefficients must satisfy the constraint:
15 h[n]=+h[N —n]
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Selection of Filter Type

» Advantages in using an FIR filter -
(1) Can be designed with exact linear phase,

(2) Filter structure always stable with
quantized coefficients

 Disadvantages in using an FIR filter - Order
of an FIR filter, in most cases, is
considerably higher than the order of an
equivalent IR filter meeting the same
specifications, and FIR filter has thus higher

computational complexity
16
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Digital Filter Design:
Basic Approaches

» Most common approach to IR filter design -
(1) Convert the digital filter specifications
into an analog prototype lowpass filter
specifications

* (2) Determine the analog lowpass filter
transfer function H,(s)

e (3) Transform H,(s) into the desired digital
transfer function G(z)
17
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Digital Filter Design:

Basic Approaches

 This approach has been widely used for the
following reasons:
(1) Analog approximation techniques are
highly advanced
(2) They usually yield closed-form
solutions
(3) Extensive tables are available for
analog filter design
(4) Many applications require digital

18 simulation of analog systems
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Digital Filter Design:

Basic Approaches
» An analog transfer function to be denoted as

P.(s)
H,(s)=22
7 D,(9)
where the subscript “a” specifically
indicates the analog domain

* A digital transfer function derived from H,(s)

shall be denoted as b
6()=2)

D(2)
19
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Digital Filter Design:

Basic Approaches

« Basic idea behind the conversion of H,(s)
into G(z) is to apply a mapping from the
s-domain to the z-domain so that essential
properties of the analog frequency response
are preserved

» Thus mapping function should be such that
— Imaginary (jQ) axis in the s-plane be
mapped onto the unit circle of the z-plane
— A stable analog transfer function be mapped
into a stable digital transfer function
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Digital Filter Design:

Basic Approaches
 FIR filter design is based on a direct
approximation of the specified magnitude
response, with the often added requirement
that the phase be linear

» The design of an FIR filter of order N may
be accomplished by finding either the
length-(N+1) impulse response samples {h[n]}
or the (N+1) samples of its frequency
response H(e!®)
21
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Digital Filter Design:
Basic Approaches

e Three commonly used approaches to FIR
filter design -

(1) Windowed Fourier series approach
(2) Frequency sampling approach
(3) Computer-based optimization methods

22
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IIR Digital Filter Design: Bilinear
Transformation Method
* Bilinear transformation -

s_2[1-2"
Tl1+2z7
» Above transformation maps a single point

in the s-plane to a unique point in the
z-plane and vice-versa

* Relation between G(z) and H,(s) isthen

iven b
W G- M), e
23 T -1
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1+z

Bilinear Transformation

« Digital filter design consists of 3 steps:

(1) Develop the specifications of H,(s) by
applying the inverse bilinear transformation
to specifications of G(z)

(2) Design H,(s)
(3) Determine G(z) by applying bilinear
transformation to H,(s)

» As a result, the parameter T has no effect on

G(z) and T = 2 is chosen for convenience
24
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Bilinear Transformation
* Inverse bilinear transformation for T=2 is
_1l+s

=1

* Fors=o,+ jQ,

; 2,02
. (1+0,)+ !QO N \2\2 _ @+ 00)2 +Qc2,
(1-00)— i (1-0,)"+9Qg

* Thus, o,=0—7=1

0, <0—z<1

G, >0—z|>1

25
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Bilinear Transformation

» Mapping of s-plane into the z-plane

A

3 -plane 2 -plane

26
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Bilinear Transformation
« For z=el® with T =2 we have
1_gdo e iol2(giol2 _g-jol2)
:1+e—jw = e—jm/Z(ejm/Z +e—jw/2)
_J2sin(w/2) _ jtan(e/2)
2cos(w/2)

or Q=tan(w/2)

27

Copyright © 2005, S. K. Mitra

Bilinear Transformation

» Mapping is highly nonlinear

» Complete negative imaginary axis in the s-
plane from Q =-w toQ =0 is mapped into
the lower half of the unit circle in the z-plane
fromz=-1toz=1

e Complete positive imaginary axis in the s-
plane from Q =0 to Q =oois mapped into the
upper half of the unit circle in the z-plane
from z=1 toz=-1

28
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Bilinear Transformation

 Nonlinear mapping introduces a distortion
in the frequency axis called frequency
warping

* Effect of warping shown below

Q Q= tan(@?)

v

29
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Bilinear Transformation
« Steps in the design of a digital filter -
(1) Prewarp(wy, ;) to find their analog
equivalents (Q,,€)
(2) Design the analog filter H,(s)
(3) Design the digital filter G(z) by applying
bilinear transformation to H,(s)

 Transformation can be used only to design
digital filters with prescribed magnitude
response with piecewise constant values

» Transformation does not preserve phase
response of analog filter

Copyright © 2005, S. K. Mitra




IIR Digital Filter Design Using

Bilinear Transformation
» Example - Consider
QC
S+Q
» Applying bilinear transformation to the above

we get the transfer function of a first-order
digital lowpass Butterworth filter

) L 0+
G(2)= Ha(S)L::l_#l A-zY)+Q,@A+z7Y

1+z™

H,(s) =

31
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lIR Digital Filter Design Using
Bilinear Transformation

* Rearranging terms we get

1-Q, 1-tan(w./2)
1+Q, 1+tan(w./2)

32
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IIR Digital Filter Design Using

Bilinear Transformation

» Example - Consider the second-order analog

notch transfer function

s%+ Q§
s?+Bs+Q2

for which |H,(jQ,)=0

Ha (i0)[=[H, (jo)[=1

» Q, is called the notch frequency
o If [HL(jQy)|=|Ha (i) =1/-/2 then

B =Q, - is the 3-dB notch bandwidth
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Ha(s) =
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IIR Digital Filter Design Using

Bilinear Transformation
e Then G(z):Ha(s)\Szﬂ
1+z7
(140 -21-0Y) 7+ 1+ Q)77
C(1+024B)-21-Q2) 7 +(1+ Q2 -B)z 2
l+a 1-2B77'+77°
2 1-28(+a)zt+az?

1+0Q3-B 1-tan(B,/2)

where o = > =
1+Q5+B 1+tan(B,/2)
B= -0 _ COS®
34 1+ QE ° Copyright © 2005, . K. Mitra

IIR Digital Filter Design Using

Bilinear Transformation
» Example - Design a 2nd-order digital notch
filter operating at a sampling rate of 400 Hz
with a notch frequency at 60 Hz, 3-dB notch
bandwidth of 6 Hz
e Thus ®,=2n(60/400)=0.3n
B,, = 2n(6/400) = 0.03x
e From the above values we get
o =0.90993

B =0.587785
35
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IIR Digital Filter Design Using
Bilinear Transformation
e Thus
6(2) = 0.954965-1.1226287 21 + 0.954965 22
1-1.1226287 271 +0.90993 72
 The gain and phase reseonses are shown below
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IIR Lowpass Digital Filter Design

Using Bilinear Transformation
« Example - Design a lowpass Butterworth
digital filter with ®, =0.25%, wg=0.557,

ap<0.5dB, and ag 215 dB

e Thus
g2 =0.1220185 A% =31.622777

. If ‘G(ejo)‘ =1 this implies
20Ioglo‘G(ej°'25”)
20I0910‘G(ej°'55“)

>-05
<-15

37
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lIR Lowpass Digital Filter Design
Using Bilinear Transformation
 Prewarping we get
O, =tan(o,/2) =tan(0.25r/2) = 0.4142136
Q, = tan(w, /2) = tan(0.557/2) =1.1708496
 The inverse transition ratio is

1_9 5 8266809
P
» The inverse discrimination ratio is

[ A2
S _1:15.841979
kg €

38
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lIR Lowpass Digital Filter Design
Using Bilinear Transformation

e Thus N =199k _ 5 eegsgq7
log,,(1/k)

* We choose N =3
 To determine Q, we use

1 1
1+(Qp Q)N 1+€°

Ha(ip)” =

39
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IR Lowpass Digital Filter Design
Using Bilinear Transformation

» We then get
Q; =1.419915(Q ) =0.588148

« 3rd-order lowpass Butterworth transfer
function for Q. =1 is

_ 1
Han () = (s+1)(s? +5s+1)

 Denormalizing to get Q_ =0.588148 we

arrive at S
H (s)=H, | —>—
a(®) a”(0.588148j
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IIR Lowpass Digital Filter Design
Using Bilinear Transformation
* Applying bilinear transformation to H,(s)
we get the desired digital transfer function
G(2) = Ha(s) s
» Magnitude and gain respolﬁées of G(z) shown
below:

0.8

Magnitude
e 2

1
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Design of lIR Highpass, Bandpass,
and Bandstop Digital Filters

* First Approach -
(1) Prewarp digital frequency specifications
of desired digital filter G, (z) to arrive at
frequency specifications of analog filter H 5 (s)
of same type
(2) Convert frequency specifications of H ()
into that of prototype analog lowpass filter
Hip(s)
(3) Design analog lowpass filter H p(S)
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Design of lIR Highpass, Bandpass,
and Bandstop Digital Filters
(4) Convert H p(s)into Hy(s) using

inverse frequency transformation used in
Step 2

(5) Design desired digital filter G (z) by
applying bilinear transformation to Hp (s)

43
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Design of lIR Highpass, Bandpass,
and Bandstop Digital Filters

 Second Approach -
(1) Prewarp digital frequency specifications
of desired digital filter Gy (z) to arrive at
frequency specifications of analog filter H (S)
of same type

(2) Convert frequency specifications of Hp (s)
into that of prototype analog lowpass filter
Hip(s)

Design of lIR Highpass, Bandpass,
and Bandstop Digital Filters

(3) Design analog lowpass filter H,(s)
(4) ConvertH p(s)into an IIR digital
transfer function G, (z) using bilinear
transformation
(5) Transform G, (z) into the desired
digital transfer function G (z)

» We illustrate the first approach

45
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lIR Highpass Digital Filter Design
 Design of a Type 1 Chebyshev IIR digital
highpass filter
* Specifications: F, =700 Hz, F; =500 Hz,
ap=1dB, as=32dB, Fy =2 kHz
» Normalized angular bandedge frequencies
oy Es 20y,
= 2nFy _ 2mx500 _ 0.5x
F 2000
46
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IR Highpass Digital Filter Design
* Prewarping these frequencies we get
Q, =tan(w,/2)=1.9626105
Q, =tan(og/2)=1.0
* For the prototype analog lowpass filter choose

Q, .
. Q.Q
e Using Q=— ZA) P we get Qg =1.962105
+ Analog lowpass filter specifications: Q, =1,

Q, =1.926105, o, =1dB, a.s =32dB

47
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IR Highpass Digital Filter Design
* MATLAB code fragments used for the design

[N, Wn] = cheblord(1, 1.9626105, 1, 32, ’s")

[B, A] = chebyl(N, 1, Wn, ’s);

[BT, AT] = Ip2hp(B, A, 1.9626105);

[num, den] = bilinear(BT, AT, 0.5);

Gain, dB

48
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IIR Bandpass Digital Filter Design

* Design of a Butterworth IIR digital bandpass
filter

* Specifications: ®p =0.45n, ®,, =0.657,
g =0.3n, w5 =0.757, ap =1dB, as=40dB
 Prewarping we get

Q =tan(wp, /2) = 0.8540807
Q) =tan(o,,/2) =1.6318517

O = tan(og /2) = 0.5095254

O, =tan(og, /2) = 2.41421356
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IIR Bandpass Digital Filter Design

Width of passband B, =Q,, -, =0.777771

05 =00, =1.393733
0,0y, =1.23010325 = 02
We therefore modify Qg so that Qgand
Q, exhibit geometric symmetry with
respect to Q2
« Weset Qg =0.5773031

« For the prototype analog lowpass filter we
choose Q, =1
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IIR Bandpass Digital Filter Design

A2 A2
 Using Q:—QpQE);Q we get

W

~ 1.393733-0.3332788
7 0.5773031x0.777771
* Specifications of prototype analog
Butterworth lowpass filter:
Q,=1,Q,=2.3617627 , o, =1 dB,
o, =400B

=2.3617627

51

Copyright © 2005, S. K. Mitra

52

lIR Bandpass Digital Filter Design
* MATLAB code fragments used for the design
[N, Wn] = buttord(1, 2.3617627, 1, 40, ’s")
[B, A] = butter(N, Wn, ’s);
[BT, AT] =1p2bp(B, A, 1.1805647, 0.777771);
[num, den] = bilinear(BT, AT, 0.5);
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IR Bandstop Digital Filter Design

¢ Design of an elliptic IIR digital bandstop filter
* Specifications: g =0.451, ©4, =0.65m,
®py = 0.3m, Opp = 0.75m, op =1dB, o, =40dB
 Prewarping we get

QO =0.8540806, O, =1.6318517,

0, =0.5095254, Q) =2.4142136
» Width of stopband By, =Qg, — Qg =0.777771
02 =0,0,, =1.393733
Q)0 =1.230103 % O3
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IR Bandstop Digital Filter Design
» We therefore modify Q ;50 that ) yand Q
e3<hibit geometric symmetry with respect to

Q5
* Weset O =0.577303

« For the prototype analog lowpass filter we
choose Q=1

. QB
e Using Q:QST& we get

_ 0.5095254x0.777771
P 1.393733-0.3332787

=0.4234126
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IIR Bandstop Digital Filter Design

* MATLAB code fragments used for the design
[N, Wn] = ellipord(0.4234126, 1, 1, 40, ’s");
[B, A] = ellip(N, 1, 40, Wn, ’s’);
[BT, AT] = Ip2bs(B, A, 1.1805647, 0.777771);
[num, den] = bilinear(BT, AT, 0.5);

55
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