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Tunable IIR Digital FiltersTunable IIR Digital Filters

• We have described earlier two 1st-order and 
two 2nd-order IIR digital transfer functions 
with tunable frequency response 
characteristics

• We shall show now that these transfer 
functions can be realized easily using 
allpass structures providing independent 
tuning of the filter parameters
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Tunable Tunable LowpassLowpass and and 
HighpassHighpass Digital FiltersDigital Filters

• We have shown earlier that the 1st-order 
lowpass transfer function 

and the 1st-order highpass transfer function  

are doubly-complementary pair
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Tunable Tunable LowpassLowpass and and 
HighpassHighpass Digital FiltersDigital Filters

• Moreover, they can be expressed as

where

is a 1st-order allpass transfer function
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Tunable Tunable LowpassLowpass and and 
HighpassHighpass Digital FiltersDigital Filters

• A realization of              and               based 
on the allpass-based decomposition is 
shown below

• The 1st-order allpass filter can be realized 
using any one of the 4 single-multiplier 
allpass structures described earlier
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Tunable Tunable LowpassLowpass and and 
HighpassHighpass Digital FiltersDigital Filters

• One such realization is shown below in 
which the 3-dB cutoff frequency of both 
lowpass and highpass filters can be varied 
simultaneously by changing the multiplier 
coefficient α
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Tunable Tunable LowpassLowpass and and 
HighpassHighpass Digital FiltersDigital Filters

• Figure below shows the composite 
magnitude responses of the two filters for 
two different values of α
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Tunable Tunable BandpassBandpass and and 
BandstopBandstop Digital FiltersDigital Filters

• The 2nd-order bandpass transfer function 

and the 2nd-order bandstop transfer 
function

also form a doubly-complementary pair
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Tunable Tunable BandpassBandpass and and 
BandstopBandstop Digital FiltersDigital Filters

• Thus, they can be expressed in the form

where

is a 2nd-order allpass transfer function
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Tunable Tunable BandpassBandpass and and 
BandstopBandstop Digital FiltersDigital Filters

• A realization of              and               based 
on the allpass-based decomposition is 
shown below

• The 2nd-order allpass filter is realized using 
a cascaded single-multiplier lattice structure
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Tunable Tunable BandpassBandpass and and 
BandstopBandstop Digital FiltersDigital Filters

• The final structure is as shown below

• In the above structure, the multiplier β
controls the center frequency and the 
multiplier α controls the 3-dB bandwidth
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Tunable Tunable BandpassBandpass and and 
BandstopBandstop Digital FiltersDigital Filters

• Figure below illustrates the parametric 
tuning property of the overall structure
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

Realization of an All-pole IIR Transfer 
Function

• Consider the cascaded lattice structure 
derived earlier for the realization of an 
allpass transfer function
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• A typical lattice two-pair here is as shown 
below

• Its input-output relations are given by
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• From the input-output relations we derive 
the chain matrix description of the two-pair:

• The chain matrix description of the 
cascaded lattice structure is therefore
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• From the above equation we arrive at

using the relation                        and the 
relations
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• The transfer function                      is thus an 
all-pole function with the same denominator 
as that of the 3rd-order allpass function          :
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

Gray-Markel Method
• A two-step method to realize an Mth-order 

arbitrary IIR transfer function

• Step 1: An intermediate allpass transfer 
function                                                    is 
realized in the form of a cascaded lattice 
structure
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• Step 2: A set of independent variables are 
summed with appropriate weights to yield 
the desired numerator

• To illustrate the method, consider the 
realization of a 3rd-order transfer function
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• In the first step, we form a 3rd-order allpass
transfer function

• Realization of           has been illustrated 
earlier resulting in the structure shown below
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• Objective: Sum the independent signal 
variables     ,     ,     , and     with weights          
as shown below to realize the desired 
numerator
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• To this end, we first analyze the cascaded 
lattice structure realizing and determine the 
transfer functions                     ,                     , 
and

• We have already shown
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• From the figure it follows that

and hence
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• In a similar manner it can be shown that

• Thus,

• Note: The numerator of                     is 
precisely the numerator of the allpass
transfer function
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• We now form
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• Substituting the expressions for the various 
transfer functions in the above equation we 
arrive at
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• Comparing the numerator of                    
with the desired numerator          and 
equating like powers of        we obtain
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• Solving the above equations we arrive at
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'
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• Example - Consider

• The corresponding intermediate allpass
transfer function is given by
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• The allpass transfer function           was 
realized earlier in the cascaded lattice form 
as shown below

• In the figure,
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• Other pertinent coefficients are:

• Substituting these coefficients in

4541667.0,2.0,18.0,4.0 '
1321 =−=== dddd

,02.0,36.0,44.0,0 3210 ==== pppp

31 p=α

"'
13223104 dddp αααα −−−=

'
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1122 dp αα −=
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IIR Tapped Cascaded Lattice IIR Tapped Cascaded Lattice 
StructuresStructures

• The final realization is as shown below

352.0,02.0 21 =α=α
19016.0,2765333.0 43 −=α=α

2.0,2708333.0,3573771.0 321 −=== kkk
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Tapped Cascaded Lattice Tapped Cascaded Lattice 
Realization Using MATLABRealization Using MATLAB

• Both the pole-zero and the all-pole IIR 
cascaded lattice structures can be developed 
from their prescribed transfer functions 
using the M-file tf2latc

• To this end, Program 6_4 can be employed
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Tapped Cascaded Lattice Tapped Cascaded Lattice 
Realization Using MATLABRealization Using MATLAB

• The M-file latc2tf implements the 
reverse process and can be used to verify 
the structure developed using tf2latc

• To this end, Program 8_5 can be employed
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• An arbitrary Nth-order FIR transfer function 
of the form 

can be realized as a cascaded lattice structure 
as shown below
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• From figure, it follows that

• In matrix form the above equations can be 
written as

where
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• Denote

• Then it follows from the input-output 
relations of the m-th two-pair that
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• From the previous equation we observe

where we have used the facts

• It follows from the above that

• is the mirror-image of
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• From the input-output relations of the m-th
two-pair we obtain for m = 2:

• Since           and           are 1st-order 
polynomials, it follows from the above that  

and           are 2nd-order polynomials
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• Substituting                                 in the two 
previous equations we get

• Now we can write

• is the mirror-image of
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• In the general case, from the input-output 
relations of the m-th two-pair we obtain

• It can be easily shown by induction that

• is the mirror-image of
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• To develop the synthesis algorithm, we 
express               and                in terms of         

and             for                           
arriving at
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• Substituting the expressions for

and

in the first equation we get
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• If we choose               , then               
reduces to an FIR transfer function of order 

and can be written in the form

where
• Continuing the above recursion algorithm, 

all multiplier coefficients of the cascaded 
lattice structure can be computed
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• Example - Consider

• From the above, we observe
• Using

we determine the coefficients of           :
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FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• As a result,

• Thus,
• Using

we determine the coefficients of           :

21
3 2173913.12173913.11)( −− ++= zzzH

32173913.0 −+ z
2173913.0'33 == pk

)(2 zH
21,2

3

'23'

1
" ≤≤=

−
− − np

k
pkp

n
nn

0.1,0.1 "1"2 == pp
Copyright © 2005, S. K. Mitra46

FIR Cascaded Lattice FIR Cascaded Lattice 
StructuresStructures

• As a result,
• From the above, we get 
• The final recursion yields the last multiplier 

coefficient
• The complete realization is shown below
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FIR Cascaded Lattice FIR Cascaded Lattice 
Realization Using MATLABRealization Using MATLAB

• The M-file tf2latc can be used to 
compute the multiplier coefficients of the 
FIR cascaded lattice structure

• To this end Program 8_7 can be employed
• The multiplier coefficients can also be 

determined using the M-file poly2rc


