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Digital Processing of Digital Processing of 
ContinuousContinuous--Time SignalsTime Signals

• Digital processing of a continuous-time 
signal involves the following basic steps:
(1)  Conversion of the continuous-time 
signal into a discrete-time signal,
(2) Processing of the discrete-time signal,
(3) Conversion of the processed discrete-
time signal back into a continuous-time 
signal
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Digital Processing of Digital Processing of 
ContinuousContinuous--Time SignalsTime Signals

• Conversion of a continuous-time signal into 
digital form is carried out by an analog-to-
digital (A/D) converter

• The reverse operation of converting a 
digital signal into a continuous-time signal 
is performed by a digital-to-analog (D/A)
converter
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Digital Processing of Digital Processing of 
ContinuousContinuous--Time SignalsTime Signals

• Since the A/D conversion takes a finite 
amount of time, a sample-and-hold (S/H)
circuit is used to ensure that the analog 
signal at the input of the A/D converter 
remains constant in amplitude until the 
conversion is complete to minimize the 
error in its representation
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Digital Processing of Digital Processing of 
ContinuosContinuos--Time SignalsTime Signals

• To prevent aliasing, an analog anti-aliasing 
filter is employed before the S/H circuit

• To smooth the output signal of the D/A 
converter, which has a staircase-like 
waveform, an analog reconstruction filter
is used
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Digital Processing of Digital Processing of 
ContinuousContinuous--Time SignalsTime Signals

Complete block-diagram

• Since both the anti-aliasing filter and the 
reconstruction filter are analog lowpass
filters, we review first the theory behind the 
design of such filters

• Also, the most widely used IIR digital filter 
design method is based on the conversion of 
an analog lowpass prototype

Anti-
aliasing

filter
S/H A/D D/ADigital

processor
Reconstruction

filter
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Sampling of ContinuousSampling of Continuous--Time Time 
SignalsSignals

• As indicated earlier, discrete-time signals in 
many applications are generated by 
sampling continuous-time signals

• We have seen earlier that identical discrete-
time signals may result from the sampling 
of more than one distinct continuous-time 
function
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Sampling of ContinuousSampling of Continuous--Time Time 
SignalsSignals

• In fact, there exists an infinite number of 
continuous-time signals, which when 
sampled lead to the same discrete-time 
signal

• However, under certain conditions, it is 
possible to relate a unique continuous-time 
signal to a given discrete-time signals
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Sampling of ContinuousSampling of Continuous--Time Time 
SignalsSignals

• If these conditions hold, then it is possible 
to recover the original continuous-time 
signal from its sampled values

• We next develop this correspondence and 
the associated conditions
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Let           be a continuous-time signal that is 
sampled uniformly at t = nT, generating the 
sequence g[n] where

with T being the sampling period
• The reciprocal of T is called the sampling 

frequency , i.e.,

∞<<∞−= nnTgng a ),(][
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Now, the frequency-domain representation of      
is given by its continuos-time Fourier 

transform (CTFT):

• The frequency-domain representation of g[n]
is given by its discrete-time Fourier transform 
(DTFT):
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• To establish the relation between               
and             , we treat the sampling operation 
mathematically as a multiplication of         
by a periodic impulse train p(t):
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• p(t) consists of a train of ideal impulses 
with a period T as shown below

• The multiplication operation yields an 
impulse train:
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• is a continuous-time signal consisting 
of a train of uniformly spaced impulses with 
the impulse at t = nT weighted by the 
sampled value             of          at that instant

)(tg p

)(nTga )(tga
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• There are two different forms of              :
• One form is given by the weighted sum of 

the CTFTs of                :

• To derive the second form, we note that p(t)
can be expressed as a Fourier series:

where
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• The impulse train          therefore can be 
expressed as

• From the frequency-shifting property of the 
CTFT, the CTFT of                     is given by
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Hence, an alternative form of the CTFT of     
is given by

• Therefore,                is a periodic function of
Ω consisting of a sum of shifted and scaled 
replicas of               , shifted by integer 
multiples of       and scaled by
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• The term on the RHS of the previous 
equation for k = 0 is the baseband portion 
of , and each of the remaining terms 
are the frequency translated portions of

• The frequency range

• is called the baseband or Nyquist band
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Assume          is a band-limited signal with a 
CTFT               as shown below

• The spectrum             of p(t) having a 
sampling period               is indicated below
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Two possible spectra of               are shown 
below

)( ΩjGp
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• It is evident from the top figure on the 
previous slide that if                   , there is no 
overlap between the shifted replicas of              
generating

• On the other hand, as indicated by the figure 
on the bottom, if                   , there is an 
overlap of the spectra of the shifted replicas 
of              generating

)( ΩjGa
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain
If                   ,          can be 

recovered exactly from           by passing it 
through an ideal lowpass filter               with 
a gain T and a cutoff frequency       greater 
than       and less than                as shown 
below

mT Ω>Ω 2 )(tga
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• The spectra of the filter and pertinent 
signals are shown below
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• On the other hand, if                   , due to the 
overlap of the shifted replicas of              , 
the spectrum              cannot be separated by 
filtering to recover               because of the 
distortion caused by a part of the replicas 
immediately outside the baseband folded 
back or aliased into the baseband

mT Ω<Ω 2
)( ΩjGa

)( ΩjGa
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

Sampling theorem - Let          be a band-
limited signal with CTFT                    for

• Then          is uniquely determined by its 
samples             ,                     if

where

)(tga
0)( =ΩjGa

mΩ>Ω

)(tga
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• The condition                   is often referred to 
as the Nyquist condition

• The frequency        is usually referred to as 
the folding frequency2

TΩ

mT Ω≥Ω 2
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Given                , we can recover exactly         
by generating an impulse train                        

and then passing it through an ideal lowpass
filter               with a gain T and a cutoff 
frequency       satisfying

∑∞
−∞= −δ= n ap nTtnTgtg )()()(

)}({ nTga )(tga

)( ΩjHr
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• The highest frequency       contained in         
is usually called the Nyquist frequency
since it determines the minimum sampling 
frequency                    that must be used to 
fully recover           from its sampled version

• The frequency          is called the Nyquist
rate

mΩ

mT Ω=Ω 2
)(tga

mΩ2

)(tga
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Oversampling - The sampling frequency is 
higher than the Nyquist rate

• Undersampling - The sampling frequency is 
lower than the Nyquist rate

• Critical sampling - The sampling frequency 
is equal to the Nyquist rate

• Note: A pure sinusoid may not be 
recoverable from its critically sampled 
version

29
Copyright © 2005, S. K. Mitra

Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• In digital telephony, a 3.4 kHz signal 
bandwidth is acceptable for telephone 
conversation

• Here, a sampling rate of 8 kHz, which is 
greater than twice the signal bandwidth, is 
used
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• In high-quality analog music signal 
processing, a bandwidth of 20 kHz has been 
determined to preserve the fidelity

• Hence, in compact disc (CD) music 
systems, a sampling rate of 44.1 kHz, which 
is slightly higher than twice the signal 
bandwidth, is used
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Example - Consider the three continuous-
time sinusoidal signals:

• Their corresponding CTFTs are:

)6cos()(1 ttg π=
)14cos()(2 ttg π=
)26cos()(3 ttg π=

)]26()26([)(3 π+Ωδ+π−Ωδπ=ΩjG
)]14()14([)(2 π+Ωδ+π−Ωδπ=ΩjG

)]6()6([)(1 π+Ωδ+π−Ωδπ=ΩjG
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• These three transforms are plotted below
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• These continuous-time signals sampled at a 
rate of T = 0.1 sec, i.e., with a sampling 
frequency                  rad/sec

• The sampling process generates the 
continuous-time impulse trains,           ,           

, and
• Their corresponding CTFTs are given by

π=Ω 20T

)(1 tg p
)(2 tg p )(3 tg p

( ) 31,)(10)( ≤≤Ω−Ω=Ω ∑∞
−∞= lll k Tp kjGjG
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Plots of the 3 CTFTs are shown below
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• These figures also indicate by dotted lines 
the frequency response of an ideal lowpass
filter with a cutoff at                               and 
a gain T = 0.1

• The CTFTs of the lowpass filter output are 
also shown in these three figures

• In the case of         , the sampling rate 
satisfies the Nyquist condition, hence no 
aliasing

π=Ω=Ω 102/Tc

)(1 tg
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Moreover, the reconstructed output is 
precisely the original continuous-time 
signal

• In the other two cases, the sampling rate 
does not satisfy the Nyquist condition, 
resulting in aliasing and the filter outputs 
are all equal to cos(6πt) 
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Note: In the figure below, the impulse 
appearing at Ω = 6π in the positive 
frequency passband of the filter results from 
the aliasing of the impulse in               at

• Likewise, the impulse appearing at Ω = 6π
in the positive frequency passband of the 
filter results from the aliasing of the impulse 
in               at

)(2 ΩjG
π−=Ω 14

π=Ω 26)(3 ΩjG
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• We now derive the relation between the 
DTFT of g[n] and the CTFT of

• To this end we compare

with 

and make use of

)(tg p
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Observation: We have

or, equivalently,

• From the above observation and  
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

we arrive at the desired result given by
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• The relation derived on the previous slide 
can be alternately expressed as

• From                                

or from                  

it follows that             is obtained from         
by applying the mapping

∑ Ω−Ω= ∞
−∞=

Ω
k TaT
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Effect of Sampling in the Effect of Sampling in the 
Frequency DomainFrequency Domain

• Now, the CTFT              is a periodic 
function of Ω with a period

• Because of the mapping, the DTFT             
is a periodic function of ω with a period 2π

)( ΩjGp

)( ωjeG
TT /2π=Ω
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Recovery of the Analog SignalRecovery of the Analog Signal
• We now derive the expression for the output 

of the ideal lowpass reconstruction 
filter               as a function of the samples
g[n]

• The impulse response         of the lowpass
reconstruction filter is obtained by taking 
the inverse DTFT of              :

)( ΩjHr
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Recovery of the Analog SignalRecovery of the Analog Signal

• Thus, the impulse response is given by

• The input to the lowpass filter is the 
impulse train         :

∫∫
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Recovery of the Analog SignalRecovery of the Analog Signal

• Therefore, the output          of the ideal 
lowpass filter is given by:

• Substituting                                          in the 
above and assuming for simplicity                        

, we get
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Recovery of the Analog SignalRecovery of the Analog Signal

• The ideal bandlimited interpolation process 
is illustrated below
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Recovery of the Analog SignalRecovery of the Analog Signal
• It can be shown that when                   in

and                    for
• As a result, from

we observe

for all integer values of r in the range

2/
)sin()(

t
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r
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Ω
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Recovery of the Analog SignalRecovery of the Analog Signal

• The relation

holds whether or not the condition of the 
sampling theorem is satisfied

• However,                             for all values of
t only if the sampling frequency       satisfies 
the condition of the sampling theorem

)(][)( rTgrgrTg aa ==^

)()( rTgrTg aa =^

TΩ
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Implication of the Sampling Implication of the Sampling 
ProcessProcess

• Consider again the three continuous-time 
signals:                           ,                            , 
and

• The plot of the CTFT                of the 
sampled version           of          is shown 
below

)6cos()(1 ttg π= )14cos()(2 ttg π=
)26cos()(3 ttg π=

)(1 tg)(1 tg p

)(1 ΩjG p
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Implication of the Sampling Implication of the Sampling 
ProcessProcess

• From the plot, it is apparent that we can 
recover any of its frequency-translated 
versions                            outside the 
baseband by passing            through an ideal 
analog bandpass filter with a passband
centered at

])620cos[( tk π±
)(1 tg p

π±=Ω )620( k
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Implication of the Sampling Implication of the Sampling 
ProcessProcess

• For example, to recover the signal cos(34πt), 
it will be necessary to employ a bandpass
filter with a frequency response

where ∆ is a small number
⎩
⎨⎧=Ω)( jHr otherwise,0

)34()34(,1.0 π∆+≤Ω≤π∆−
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Implication of the Sampling Implication of the Sampling 
ProcessProcess

• Likewise, we can recover the aliased 
baseband component cos(6πt) from the 
sampled version of either           or               
by passing it through an ideal lowpass filter 
with a frequency response:

⎩
⎨⎧=Ω)( jHr otherwise,0

)6()6(,1.0 π∆+≤Ω≤π∆−

)(2 tg p )(3 tg p
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Implication of the Sampling Implication of the Sampling 
ProcessProcess

• There is no aliasing distortion unless the 
original continuous-time signal also 
contains the component cos(6πt)

• Similarly, from either             or            we 
can recover any one of the frequency-
translated versions, including the parent 
continuous-time signal         or         as the 
case may be, by employing suitable filters

)(2 tg p )(3 tg p

)(3 tg)(2 tg
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Sampling of Sampling of BandpassBandpass SignalsSignals
• The conditions developed earlier for the 

unique representation of a continuous-time 
signal by the discrete-time signal obtained 
by uniform sampling assumed that the 
continuous-time signal is bandlimited in the 
frequency range from dc to some frequency

• Such a continuous-time signal is commonly 
referred to as a lowpass signal

mΩ
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Sampling of Sampling of BandpassBandpass SignalsSignals
• There are applications where the continuous-

time signal is bandlimited to a higher 
frequency range                         with 

• Such a signal is usually referred to as the
bandpass signal

• To prevent aliasing a bandpass signal can of 
course be sampled at a rate greater than 
twice the highest frequency, i.e. by ensuring

HT Ω≥Ω 2

HL Ω≤Ω≤Ω 0>ΩL
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Sampling of Sampling of BandpassBandpass SignalsSignals

• However, due to the  bandpass spectrum of 
the continuous-time signal, the spectrum of 
the discrete-time signal obtained by sampling 
will have spectral gaps with no signal 
components present in these gaps

• Moreover, if         is very large, the sampling 
rate also has to be very large which may not 
be practical in some situations

HΩ
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Sampling of Sampling of BandpassBandpass SignalsSignals

• A more practical approach is to use under-
sampling

• Let                          define the bandwidth of 
the bandpass signal

• Assume first that the highest frequency       
contained in the signal is an integer multiple 
of the bandwidth, i.e.,

HΩ

LH Ω−Ω=∆Ω

)(∆Ω=Ω MH
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Sampling of Sampling of BandpassBandpass SignalsSignals

• We choose the sampling frequency       to 
satisfy the condition

which is smaller than          , the Nyquist
rate

• Substitute the above expression for       in

HΩ2

TΩ

MT
HΩ=∆Ω=Ω 22 )(

TΩ

( )∑
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k
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Sampling of Sampling of BandpassBandpass SignalsSignals
• This leads to

• As before,              consists of a sum of       
and replicas of              shifted by integer 
multiples of twice the bandwidth ∆Ω and
scaled by 1/T

• The amount of shift for each value of k
ensures that there will be no overlap 
between all shifted replicas        no aliasing

( )∑∞ −∞= ∆Ω−Ω=Ω k kjjGjG aTp )()( 21

)( ΩjGp
)( ΩjGa

)( ΩjGa
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Sampling of Sampling of BandpassBandpass SignalsSignals
• Figure below illustrate the idea behind

)( ΩjGa

Ω0LΩ−HΩ− HΩLΩ

)( ΩjGp
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Sampling of Sampling of BandpassBandpass SignalsSignals
• As can be seen,          can be recovered from    

by passing it through an ideal 
bandpass filter with a passband given by               

and a gain of T
• Note: Any of the replicas in the lower 

frequency bands can be retained by passing 
through bandpass filters with 

passbands , 
providing a translation to 

lower frequency ranges
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