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Basic IIR Digital Filter Basic IIR Digital Filter 
StructuresStructures

• The causal IIR digital filters we are 
concerned with in this course are 
characterized by a real rational transfer 
function of       or, equivalently by a constant 
coefficient difference equation

• From the difference equation representation, 
it can be seen that the realization of the 
causal IIR digital filters requires some form 
of feedback

1−z
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Basic IIR Digital Filter Basic IIR Digital Filter 
StructuresStructures

• An N-th order IIR digital transfer function is 
characterized by 2N+1 unique coefficients, 
and in general, requires 2N+1 multipliers 
and 2N two-input adders for implementation

• Direct form IIR filters: Filter structures in 
which the multiplier coefficients are 
precisely the coefficients of the transfer 
function
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• Consider for simplicity a 3rd-order IIR filter 
with a transfer function

• We can implement H(z) as a cascade of two 
filter sections as shown on the next slide
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

where
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• The filter section            can be seen to be 
an FIR filter and can be realized as shown 
below
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• The time-domain representation of            is 
given by

Realization of                                            
follows from the                                         
above equation                                               
and is shown on                                              
the right
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• A cascade of the two structures realizing      
and            leads to the realization of           
shown below and is known as the direct 
form I structure
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• Note: The direct form I structure is 
noncanonic as it employs 6 delays to realize 
a 3rd-order transfer function

• A transpose of the direct
form I structure is shown 
on the right and is called 
the direct form I 
structure

t
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• Various other noncanonic direct form 
structures can be derived by simple block 
diagram manipulations as shown below
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• Observe in the direct form structure shown 
below, the signal variable at nodes      and   
are the same, and hence the two top delays 
can be shared

1 '1
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• Likewise, the signal variables at nodes       
and       are the same, permitting the sharing 
of the middle two delays

• Following the same argument, the bottom 
two delays can be shared

• Sharing of all delays reduces the total 
number of delays to 3 resulting in a canonic 
realization shown on the next slide along 
with its transpose structure
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Direct Form IIR Digital Filter Direct Form IIR Digital Filter 
StructuresStructures

• Direct form realizations of an N-th order IIR 
transfer function should be evident

Direct Form II Direct Form II t
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Cascade Form IIR Digital Cascade Form IIR Digital 
Filter StructuresFilter Structures

• By expressing the numerator and the 
denominator polynomials of the transfer 
function as a product of polynomials of 
lower degree, a digital filter can be realized 
as a cascade of low-order filter sections

• Consider, for example, H(z) = P(z)/D(z) 
expressed as
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Cascade Form IIR Digital Cascade Form IIR Digital 
Filter StructuresFilter Structures

• Examples of cascade realizations obtained 
by different pole-zero pairings are shown 
below
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Cascade Form IIR Digital Cascade Form IIR Digital 
Filter StructuresFilter Structures

• Examples of cascade realizations obtained 
by different ordering of sections are shown 
below
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Cascade Form IIR Digital Cascade Form IIR Digital 
Filter StructuresFilter Structures

• There are altogether a total of 36 different 
cascade realizations of

based on pole-zero-pairings and ordering
• Due to finite wordlength effects, each such 

cascade realization behaves differently from 
others
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Cascade Form IIR Digital Cascade Form IIR Digital 
Filter StructuresFilter Structures

• Usually, the polynomials are factored into a 
product of 1st-order and 2nd-order 
polynomials:

• In the above, for a first-order factor
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Cascade Form IIR Digital Cascade Form IIR Digital 
Filter StructuresFilter Structures

• Consider the 3rd-order transfer function

• One possible realization is shown below
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Cascade Form IIR Digital Cascade Form IIR Digital 
Filter StructuresFilter Structures

• Example - Direct form II and cascade form
realizations of

are shown on the next slide
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Cascade Form IIR Digital Cascade Form IIR Digital 
Filter StructuresFilter Structures

Direct form II Cascade form
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Parallel Form IIR Digital Filter Parallel Form IIR Digital Filter 
StructuresStructures

• A partial-fraction expansion of the transfer 
function in        leads to the parallel form I
structure

• Assuming simple poles, the transfer function
H(z) can be expressed as

• In the above for a real pole
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Parallel Form IIR Digital Filter Parallel Form IIR Digital Filter 
StructuresStructures

• A direct partial-fraction expansion of the 
transfer function in z leads to the parallel 
form II structure

• Assuming simple poles, the transfer function
H(z) can be expressed as

• In the above for a real pole
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Parallel Form IIR Digital Filter Parallel Form IIR Digital Filter 
StructuresStructures

• The two basic parallel realizations of a 3rd-
order IIR transfer function are shown below

Parallel form I Parallel form II
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Parallel Form IIR Digital Filter Parallel Form IIR Digital Filter 
StructuresStructures

• Example - A partial-fraction expansion of

in       yields
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Parallel Form IIR Digital Filter Parallel Form IIR Digital Filter 
StructuresStructures

• The corresponding parallel form I realization 
is shown below
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Parallel Form IIR Digital Filter Parallel Form IIR Digital Filter 
StructuresStructures

• Likewise, a partial-fraction expansion of 
H(z) in z yields

• The corresponding                               
parallel form II
realization is shown
on the right
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Realization Using MATLABRealization Using MATLAB
• The cascade form requires the factorization 

of the transfer function which can be 
developed using the M-file zp2sos

• The statement sos = zp2sos(z,p,k)
generates a matrix sos containing the
coefficients of each 2nd-order section of the 
equivalent transfer function H(z) determined 
from its pole-zero form 
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Realization Using MATLABRealization Using MATLAB

• sos is an          matrix of the form

whose i-th row contains the coefficients        
and         , of the the numerator and 
denominator polynomials of the i-th 2nd-
order section
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Realization Using MATLABRealization Using MATLAB

• L denotes the number of sections
• The form of the overall transfer function is 

given by

• Program 6_1 can be used to factorize an 
FIR and an IIR transfer function
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Realization Using MATLABRealization Using MATLAB

• Note: An FIR transfer function can be 
treated as an IIR transfer function with a 
constant numerator of unity and a 
denominator which is the polynomial 
describing the FIR transfer function
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Realization Using MATLABRealization Using MATLAB

• Parallel forms I and II can be developed 
using the functions residuez and
residue, respectively

• Program 6_2 uses these two functions
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Realization of Realization of AllpassAllpass FiltersFilters
• An M-th order real-coefficient allpass

transfer function             is characterized by 
M unique coefficients as here the numerator 
is the mirror-image polynomial of the 
denominator

• A direct form realization of             requires
2M multipliers

• Objective - Develop realizations of          
requiring only M multipliers
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Realization Using Multiplier Realization Using Multiplier 
Extraction ApproachExtraction Approach

• Now, an arbitrary allpass transfer function 
can be expressed as a product of 2nd-order 
and/or 1st-order allpass transfer functions

• We consider first the minimum multiplier 
realization of a 1st-order and a 2nd-order 
allpass transfer functions
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FirstFirst--Order Order AllpassAllpass StructuresStructures
• Consider first the 1st-order allpass transfer 

function given by

• We shall realize the above transfer function 
in the form a structure containing a single 
multiplier      as shown below1d
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FirstFirst--Order Order AllpassAllpass StructuresStructures

• We express the transfer function                   
in terms of the transfer parameters of the 
two-pair as

• A comparison of the above with                  

yields
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FirstFirst--Order Order AllpassAllpass StructuresStructures

• Substituting               and                  in              
we get

• There are 4 possible solutions to the above 
equation:
Type 1A:
Type 1B:
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FirstFirst--Order Order AllpassAllpass StructuresStructures

• Type 1A  :
• Type 1B  :

• We now develop the two-pair structure for 
the Type 1A allpass transfer function
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FirstFirst--Order Order AllpassAllpass StructuresStructures

• From the transfer parameters of this allpass
we arrive at the input-output relations:

• A realization of the above two-pair is 
sketched below
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FirstFirst--Order Order AllpassAllpass StructuresStructures

• By constraining the      ,       terminal-pair 
with the multiplier     , we arrive at the
Type 1A allpass filter structure shown 
below

2X 2Y
1d

Type 1A
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FirstFirst--Order Order AllpassAllpass StructuresStructures
• In a similar fashion, the other three single-

multiplier first-order allpass filter structures 
can be developed as shown below

Type 1B Type 1At

Type 1Bt
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SecondSecond--Order Order AllpassAllpass
StructuresStructures

• A 2nd-order allpass transfer function is 
characterized by 2 unique coefficients

• Hence, it can be realized using only 2
multipliers

• Type 2 allpass transfer function:
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Type 2 Type 2 AllpassAllpass StructuresStructures
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Type 3 Type 3 AllpassAllpass StructuresStructures

• Type 3 allpass transfer function:
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Type 3 Type 3 AllpassAllpass StructuresStructures
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Realization Using Multiplier Realization Using Multiplier 
Extraction ApproachExtraction Approach

• Example - Realize

• A 3-multiplier cascade realization of the 
above allpass transfer function is shown 
below
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• The stability test algorithm described earlier 
in the course also leads to an elegant 
realization of an Mth-order allpass transfer 
function

• The algorithm is based on the development 
of a series of            th-order allpass transfer 
functions               from an mth-order allpass
transfer function           for 
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)(zAm 11 ,...,, −= MMm

Copyright © 2005, S. K. Mitra47

Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Let

• We use the recursion

where
• It has been shown earlier that            is 

stable if and only if
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• If the allpass transfer function              is 
expressed in the form

then the coefficients of              are simply 
related to the coefficients of            through
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• To develop the realization method we 
express           in terms of              :

• We realize           in the form shown below
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• The transfer function                         of the 
constrained two-pair can be expressed as

• Comparing the above with

we arrive at the two-pair transfer parameters
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Substituting              and                       in the 
equation above we get

• There are a number of solutions for      and
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Some possible solutions are given below:
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Consider the solution

• Corresponding input-output relations are

• A direct realization of the above equations 
leads to the 3-multiplier two-pair shown on 
the next slide
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• The transfer parameters

lead to the 4-multiplier two-pair structure 
shown below
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Likewise, the transfer parameters

lead to the 4-multiplier two-pair structure 
shown below
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• A 2-multiplier realization can be derived by 
manipulating the input-output relations:

• Making use of the second equation, we can 
rewrite the first equation as
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• A direct realization of

lead to the 2-multiplier two-pair structure,
known as the lattice structure, shown below
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Consider the two-pair described by

• Its input-output relations are given by

• Define
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• We can then rewrite the input-output 
relations as                           and

• The corresponding 1-multiplier realization 
is shown below
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• An mth-order allpass transfer function        
is then realized by constraining any one of 
the two-pairs developed earlier by the        

th-order allpass transfer function)( 1−m

)(zAm

)(zAm 1−
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• The process is repeated until the 
constraining transfer function is

• The complete realization of             based on 
the extraction of the two-pair lattice is 
shown below
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• It follows from our earlier discussion that      
is stable if the magnitudes of all 

multiplier coefficients in the realization are 
less than 1, i.e.,             for

• The cascaded lattice allpass filter structure 
requires 2M multipliers

• A realization with M multipliers is obtained if 
instead the single multiplier two-pair is used

1<|| mk 11 ,...,, −= MMm
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Example - Realize
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• We first realize           in the form of a 
lattice two-pair characterized by the 
multiplier coefficient                                  
and constrained by a 2nd-order allpass
as indicated below
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• The allpass transfer function           is of the 
form

• Its coefficients are given by
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Next, the allpass is realized as a 
lattice two-pair characterized by the 
multiplier coefficient                                
and constrained by an allpass as 
indicated below

)(2 zA

)(1 zA
2708333.0'

22 == dk

,2.03 −=k 2708333.02=k
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• The allpass transfer function           is of the 
form

• It coefficient is given by
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Realization Using TwoRealization Using Two--Pair Pair 
Extraction ApproachExtraction Approach

• Finally, the allpass is realized as a 
lattice two-pair characterized by the 
multiplier coefficient                                
and constrained by an allpass as 
indicated below

)(1 zA

1)(0 =zA
3573771.0"

11 == dk

,2.03 −=k
,2708333.02 =k 3573771.01 =k

)(2 zA )(1 zA

)(3 zA
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Cascaded Lattice Realization Cascaded Lattice Realization 
Using MATLABUsing MATLAB

• The M-file poly2rc can be used to realize 
an allpass transfer function in the cascaded 
lattice form

• To this end Program 8_4 can be employed


