Discrete-Time Systems

A discrete-time system processes a given
input sequence x[n] to generates an output
sequence y[n] with more desirable
properties

* In most applications, the discrete-time
system is a single-input, single-output
system:

Discrete— time|
| n
System yinl
Input sequence Output sequence

X[n] ——
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Discrete-Time Systems:
Examples
* 2-input, 1-output discrete-time systems -
Modulator, adder

 1-input, 1-output discrete-time systems -
Multiplier, unit delay, unit advance
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Discrete-Time Systems: Examples
* Accumulator - y[n]= ix[l]
f=—o0

= Tx71+ X[n] = yIn 1]+ ¥{n]

» The output y[n] at time instant n is the sum
of the input sample x[n] at time instant n
and the previous output y[n—1] at time
instant n—1, which is the sum of all
previous input sample values from —oo to n—1

» The system cumulatively adds, i.e., it
accumulates all input sample values
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Discrete-Time Systems:Examples

» Accumulator - Input-output relation can
also be written in the form

yinl= S X[+ X1

(=—0
= y[-1]+ Sx[¢], n>0
/=0

e The second form is used for a causal input
sequence, in which case y[-1] is called
the initial condition
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Discrete-Time Systems:Examples
¢ M-point moving-average system -
1=, S ain -k
yinl==: 2 xln—
M2
 Used in smoothing random variations in

data

« In most applications, the data x[n] is a
bounded sequence

- mm) M-point average y[n] is also a
bounded sequence
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Discrete-Time Systems:Examples

« [f there is no bias in the measurements, an
improved estimate of the noisy data is
obtained by simply increasing M

e A direct implementation of the M-point
moving average system requires M —1
additions, 1 division, and storage of M —1
past input data samples

* A more efficient implementation is
developed next
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Discrete-Time Systems:Examples
yin]= A;(Mi X[ — 01+ xln— M1~ x[n— M]J
(=0

P )
=—| Yx[n—Ll]+x[n]—x[n—M]

M o5

1 M-1
=—| Yx[n=1-0]+x[n]—x[n—M]
M /=0
Hence

ynl=y{n =11+ (x{n] - 2{n - M)
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Discrete-Time Systems:Examples

e Computation of the modified M-point
moving average system using the recursive
equation now requires 2 additions and 1
division

e An application: Consider

x[n] = s[n] + d[n],
where s[n] is the signal corrupted by a noise
d[n]
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Discrete-Time Systems:Examples
s[n]=2[n(0.9)"], d[n] - random signal
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Discrete-Time Systems:Examples

» Exponentially Weighted Running Average

Filter
ynl=oy[n—1]+x[n], O<a<l

« Computation of the running average requires
only 2 additions, 1 multiplication and storage
of the previous running average

« Does not require storage of past input data
samples
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Discrete-Time Systems:Examples

* For 0 < a <1, the exponentially weighted
average filter places more emphasis on current
data samples and less emphasis on past data
samples as illustrated below

yln]= a(oyln—2]+ x[n—11)+ x[n]
= a?y[n—2]+ax[n—1]+x[n]
= o* (ay[n—3]+ x[n—2])+ ax{n — 1]+ x{n]
= oc3y[n =31+ oc2x[n —2]+ax[n—1]+ x[n]
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Discrete-Time Systems:Examples

Linear interpolation - Employed to estimate
sample values between pairs of adjacent
sample values of a discrete-time sequence

Factor-of-4 interpolation

Copyright © 2005, S. K. Mitra




Discrete-Time Systems:
Examples
 Factor-of-2 interpolator -
yInl=x,[n]+ 3 (x,[n -1+ x,[n+1])
* Factor-of-3 interpolator -
yInl=x,[n]+ 3¢ [n 1]+ x,[n+2])
+%(xu[n - 2]+ x,[n+1])

13
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Discrete-Time Systems:
Examples
 Factor-of-2 interpolator -

Down-sampled
(256x256)

Original (512x512)
14

Interpolated (512 x 512)
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Discrete-Time Systems:

Examples

Median Filter —

e The median of a set of (2K+1) numbers is
the number such that K numbers from the
set have values greater than this number and
the other K numbers have values smaller

» Median can be determined by rank-ordering
the numbers in the set by their values and
choosing the number at the middle

15
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Discrete-Time Systems:
Examples
Median Filter —
» Example: Consider the set of numbers
{2, -3, 10, 5, -1}
 Rank-order set is given by
-3, -1, 2, 5 10}
* Hence,
med{2, -3, 10, 5 ~—1}=2

16
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Discrete-Time Systems:

Examples

Median Filter —

e Implemented by sliding a window of odd
length over the input sequence {x[n]} one
sample at a time

e Output y[n] at instant n is the median value
of the samples inside the window centered
atn

17
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Discrete-Time Systems:
Examples

Median Filter —

* Finds applications in removing additive
random noise, which shows up as sudden
large errors in the corrupted signal

 Usually used for the smoothing of signals
corrupted by impulse noise

18
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Discrete-Time Systems:

Examples
Median Filtering Example —
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Discrete-Time Systems:
Classification

 Linear System

« Shift-Invariant System
Causal System

Stable System

* Passive and Lossless Systems
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Linear Discrete-Time Systems

« Definition - If y;[n] is the output due to an
input x,[n] and y,[n] is the output due to an
input x,[n] then for an input

xX[n]=ax[n]+ B x,[n]
the output is given by
yInl=ay,[n]+ £ y,[n]

» Above property must hold for any arbitrary
constants « and B, and for all possible
inputs x,[n]and x,[n]
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Linear Discrete-Time Systems

« Accumulator -y,[n] = ixl[é], y,[n]= ixz[f]
For an input éz_w 6:_00

X[n]=ax[n]+ Bx,[n]
the output is

yinl= S(ax [+ A1)

(=—0

=a X[+ X% =a ]+ Y]
» Hence, the above system is linear
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Linear Discrete-Time Systems

= The outputs y;[nland y,[n] for inputs X[n]
and x,[n]are given by N
yinl= yi[=11+ X x[/]
=0
n
Yalnl= yo[=11+ X %, [/]

e The output y[n] for an inZESt aXq[n]+ B x,[n]
is given by

n
yInl= y[-11+ > (e x[/1+ B X2[0])
2 =0

Copyright © 2005, S. K. Mitra
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Linear Discrete-Time Systems

* Now a yi[n]+ ﬁnY2[n]

n
= a(yi[=1+ 2 xq[/]) + B(Y2[=11+ 2 Xo[0])
=0 =0

n n
= (a1 [=11+ B Yo[=1D) + (@ 2 X[ L1+ B 3 X[
=0 =0

e Thus y[nl=ay[nl+ Bys[n] if
yl-l=ay -1+ By,[-1]
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Linear Discrete-Time System

« For the causal accumulator to be linear the
condition y[-1]= e y;[-1]+ BY,[-1]
must hold for all initial conditions y[-1],
y1[-11, ¥2[-11, and all constants o and

 This condition cannot be satisfied unless the
accumulator is initially at rest with zero
initial condition

 For nonzero initial condition, the system is
nonlinear

25
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Nonlinear Discrete-Time
System
» The median filter described earlier is a
nonlinear discrete-time system

* To show this, consider a median filter with
a window of length 3
* Output of the filter for an input
{q(nl}={3, 4, 5,0<n<2
is
nlnl}={3, 4, 4,0<n<2
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Nonlinear Discrete-Time

System
* Output for an input

{[nl}={2, -1, -1,0<n<2
is
lnll={0, -1, —1,0<n<2

» However, the output for an input
{xlnl} =y lnl+ [}

Dinli=1{3, 4, 3}

is

27
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Nonlinear Discrete-Time
System

* Note
Dilnl+y[nlf={3, 3, 3}=\inl}

» Hence, the median filter is a nonlinear
discrete-time system

28
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Shift-Invariant System

For a shift-invariant system, if y;[n] is the
response to an input x[n], then the response
to an input

X[n]=%[n—ny]
is simply
y[n]=y;[n—ng]
where n, is any positive or negative integer

The above relation must hold for any
,  arbitrary input and its corresponding output

Copyright © 2005, S. K. Mitra

Shift-Invariant System

* In the case of sequences and systems with
indices n related to discrete instants of time,
the above property is called time-invariance
property

 Time-invariance property ensures that for a
specified input, the output is independent of
the time the input is being applied

30
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Shift-Invariant System

« Example - Consider the up-sampler with an
input-output relation given by
_|XIn/L], n=0,£L,£2L,.....
Xuln] _{ 0, otherwise

« For an input X;[n]= X[n—n,] the output Xy, [N]
is given by
« [n]z{xl[n/ L], n=0,£L,+2L,.....
Lu 0, otherwise
_[X[(n—=Lng)/L], n=0,£L,£2L,.....
_{ 0, otherwise
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Shift-Invariant System

» However from the definition of the up-sampler

Xy[n—ng]

_JX[(n=ng)/L], n=ng,ny£L,ng£2L,.....
- 0, otherwise

* X].,U [n]

* Hence, the up-sampler is a time-varying system

32
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Linear Time-Invariant System

 Linear Time-Invariant (LTI) System -
A system satisfying both the linearity and
the time-invariance property

» LTI systems are mathematically easy to
analyze and characterize, and consequently,
easy to design

 Highly useful signal processing algorithms
have been developed utilizing this class of
systems over the last several decades

33
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Causal System

* Ina causal system, the n,-th output sample
y[ny1depends only on input samples x[n]
for n<nyand does not depend on input
samples for n>n,

 Let yj[n] and y,[n] be the responses of a
causal discrete-time system to the inputs x;[n]
and x,[n], respectively

34
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Causal System

e Then
X[N]=X,[n] forn< N
implies also that
ya[n] = yo[n] forn<N
* For a causal system, changes in output

samples do not precede changes in the input
samples

35
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Causal System

» Examples of causal systems:
yInl=ogX[IN]+ aoX[N —1]+ azX[N — 2]+ a4 X[N - 3]
y[n]=bgx[n]+byx[n—1]+byX[n—2]
+ay[n-1]+a,y[n—2]
y[n]=y[n-1]+x[n]
» Examples of noncausal systems:
Y] = Xy [+ 2 04 [N =1]+ X, [N +1])

YIn]= Xy [N]+ 2 (xy [N =11+ X, [0+ 2])
. +§(xu[n—2]+xu[n+1])
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Causal System

A noncausal system can be implemented as
a causal system by delaying the output by
an appropriate number of samples

» For example a causal implementation of the
factor-of-2 interpolator is given by

yIn1=%,[n=1]+ 3 (xy[n - 21+ %, [n])

37
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Stable System

 There are various definitions of stability

» We consider here the bounded-input,
bounded-output (BIBO) stability

« If y[n] is the response to an input x[n] and if
X[n] < By for all values of n
then
y[n] < B, forall values of n

38
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Stable System

» Example - The M-point moving average
filter is BIBO stable:

NE
yInl= 5 2 xIn—kK]
k=0
« For a bounded input [x[n] < B, we have

L M- L M-
= > x[n—K] <o > Ixin—k]
k=0 k=0

lyin]=|;

1
< -(MB,) < B,

39
Copyright © 2005, S. K. Mitra

Passive and Lossless Systems

A discrete-time system is defined to be
passive if, for every finite-energy input x[n],
the output y[n] has, at most, the same energy,
ie.

< 2 2
>lyIn]® < Y |xIn]” <oo
N=—o0 N=—o0
 For a lossless system, the above inequality is

satisfied with an equal sign for every input
40
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Passive and Lossless Systems

» Example - Consider the discrete-time
system defined by y[n]=a x[n—N] with N
a positive integer
* |ts output energy is given by
= 2 2 & 2
2|yIn]" =le” X[x[n]
N=—o0 N=—o0
* Hence, it is a passive system if |o| <1 and is
a lossless system if ~ |a|=1
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Impulse and Step Responses

* The response of a discrete-time system to a
unit sample sequence {d[n]} is called the
unit sample response or simply, the
impulse response, and is denoted by {h[n]}

 The response of a discrete-time system to a
unit step sequence {g[n]} is called the unit
step response or simply, the step response,
and is denoted by {s[n]}

42
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Impulse Response

» Example - The impulse response of the
system

yIn]=ogX[n]+ aoX[N —1]+ agX[N — 2]+ a4 X[N = 3]
is obtained by setting x[n] = d[n] resulting
in
hin] = S[n]+ ay8[N — 1]+ a38[n — 2]+ 40N — 3]
 The impulse response is thus a finite-length
sequence of length 4 given by
{h[n]} = {0%1, ay, O3, Q)
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Impulse Response

» Example - The impulse response of the
discrete-time accumulator

n
ylnl= > x(/]

f=—0
is obtained by setting x[n] = 4[n] resulting
in
n
hin]= > 6[¢]1= uIn]

{=—c0

44
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Impulse Response

» Example - The impulse response {h[n]} of
the factor-of-2 interpolator

Y] = Xy [+ 2 (4[N =11+ X, [N +1])
* is obtained by setting x,[n]=4J[n] and is
given by
hin=8[n]+ 3 (S[n—11+ 8[n+1)
» The impulse response is thus a finite-length
sequence of length 3:

{h[n]}=1{0.5, % 0.5}

45
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Time-Domain Characterization
of LTI Discrete-Time System

* Input-Output Relationship -
A consequence of the linear, time-
invariance property is that an LTI discrete-
time system is completely characterized by
its impulse response

. ‘ Knowing the impulse response one
can compute the output of the system for
any arbitrary input

46
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Time-Domain Characterization
of LTI Discrete-Time System

o Let h[n] denote the impulse response of a
LTI discrete-time system

» We compute its output y[n] for the input:
X[n]=0.58[n+ 2] +1.58[n —1] — 8[n — 2]+ 0.755[n —5]

* As the system is linear, we can compute its
outputs for each member of the input
separately and add the individual outputs to

determine y[n]
47
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Time-Domain Characterization
of LTI Discrete-Time System

* Since the system is time-invariant

input output

d[n+2]— h[n+2]
d[n—1] > h[n-1]
d[n-2]— h[n-2]
d[n—5]— h[n-5]

48
Copyright © 2005, S. K. Mitra




Time-Domain Characterization
of LTI Discrete-Time System

* Likewise, as the system is linear
input output

0.58[n + 2] — 0.5h[n + 2]
1.58[n-1] —1.5h[n-1]
—98[n-2]—>-h[n-2]
0.758[n—5] — 0.75h[n -5]

» Hence because of the linearity property we

9€L N1 =05h[n +2]+1.5hM—1]
—h[n-2]+0.75h[n -5]
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Time-Domain Characterization
of LTI Discrete-Time System

» Now, any arbitrary input sequence x[n] can
be expressed as a linear combination of
delayed and advanced unit sample
sequences in the form

x[n]= SX[K]3[n k]
k=—c0
 The response of the LTI system to an input
X[k18[n—k] will be x[kTh[n—k]
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Time-Domain Characterization
of LTI Discrete-Time System
» Hence, the response y[n] to an input

x[n]= 3 x[K15[n K]

will be o
y[n]= k; x[k]h[n—k]

which can be alternately written as

y[n]= > xIn—kJh[k]
51 k=—o0 © 2005, S. K. Mitra

Convolution Sum

e The summation

yInl= X xIkIhn—k]= > x[n—k]h[n]
k=— k=—00
is called the convolution sum of the
sequences x[n] and h[n] and represented

compactly as
y[n] = x[n]® h[n]
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Convolution Sum
* Properties -
o Commutative property:
x[n]® h[n] = h[n]& x[n]
 Associative property :
(x[I@h[n)@y[n] = x[nl@ (h[n]@y[n])

« Distributive property :

x[]@(hin] +y[n]) = x[]@h(n] + xin]@yln]

53
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Convolution Sum

e Interpretation -

1) Time-reverse h[k] to form h[-k]

* 2) Shift h[—k]to the right by n sampling
periods if n > 0 or shift to the left by n
sampling periods if n < 0 to form h[n—k]

e 3) Form the product v[k]= x[k]h[n—K]

 4) Sum all samples of v[k] to develop the
n-th sample of y[n] of the convolution sum

Copyright © 2005, S. K. Mitra

54




Convolution Sum
» Schematic Representation -

hin—k]_vik]
n
h[—k] 2y

X[k]
» The computation of an output sample using
the convolution sum is simply a sum of
products

« Involves fairly simple operations such as
additions, multiplications, and delays

Convolution Sum

» We illustrate the convolution operation for
the following two sequences:

1, 0<n<5
x[n]= .
0, otherwise
1.8-0.3n, 0<n<5
h[n]= .
0, otherwise
* Figures on the next several slides the steps
involved in the computation of

. y[n] = x[n]@h[n]
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Convolution Sum

Plot of x[-4- k] and h[k] hlk]x[-4- k]
3

2l ﬁT@

)
©

5}
[
Amplitude

Amplitude

=
L
=~
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Convolution Sum
Plot of x[<-k]and h[k] hk]x[-4-k]
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Convolution Sum
Plot of x[-1- k] and h[k] hik]x[-1- k]
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Convolution Sum
Plot of x[0- k] and h[k] h[k]x[0- k]
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Convolution Sum

Plot of x[1- k] and h[k] hik]x[1-k]
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Convolution Sum
Plot of x[5- k] and h(k] hikIx(5- k]
15
o o2
ERn E
£ os £l
< <
) 0 10 10 0 10
k—> k—
yl5] yln]
8
6 6
o o
= =
= =
g 5
< <
63 n n
Copyright © 2005, S. K. Mitra
Convolution Sum
Plot of x[9- k] and hK] hikIx[9- k]
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Convolution Sum
Plot of x[3- k] and h[k] h[k]x[3- k]
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Convolution Sum
Plot of x[7- k] and h[k] h[k]x[7- k]
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Convolution Sum
Plot of x[10- k] and h[k] h[k]x[10- k]
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Convolution Sum

Plot of x[12- k] and h[k] hikIx[12- k]
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Convolution Sum

Plot of x[13- K] and h(k] hikIx[13-K]
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Time-Domain Characterization
of LTI Discrete-Time System

* In practice, if either the input or the impulse
response is of finite length, the convolution
sum can be used to compute the output
sample as it involves a finite sum of
products

« If both the input sequence and the impulse
response sequence are of finite length, the
output sequence is also of finite length

69
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Time-Domain Characterization
of LTI Discrete-Time System

« If both the input sequence and the impulse
response sequence are of infinite length,
convolution sum cannot be used to compute
the output

 For systems characterized by an infinite
impulse response sequence, an alternate
time-domain description involving a finite
sum of products will be considered
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Time-Domain Characterization
of LTI Discrete-Time System

» Example - Develop the sequence y[n]
generated by the convolution of the
sequences x[n] and h[n] shown below

x[n]
3

h[n]
2

71
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Time-Domain Characterization
of LTI Discrete-Time System

* As can be seen from the shifted time-
reversed version {h[n—k]} for n <0, shown
below for n=-3, for any value of the
sample index k, the k-th sample of either
{x[K]} or {h[n—K]} is zero

h[-3—Kk]
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73

Time-Domain Characterization
of LTI Discrete-Time System
* As aresult, for n <0, the product of the k-th
samples of {x[k]} and {h[n—k1} is always

zero, and hence
y[n]=0 for n<0
 Consider now the computation of y[0]
* The sequence h[—k]

{h[—k]}is shown 1
5 i }
i 4_1 2-1 01 2 3

on the right
Copyright © 2005, S. K. Mitra
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Time-Domain Characterization
of LTI Discrete-Time System

 The product sequence {x[kh[—k]} is plotted
below which has a single nonzero sample
x[0]h[0] fork =0
x[k]n[—k]
soegoToo" k

-2

« Thus y[0]=X[0]h[0] =2

Copyright © 2005, S. K. Mitra
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Time-Domain Characterization
of LTI Discrete-Time System

« For the computation of y[1], we shift {h[—k]}
to the right by one sample period to form
{h[1-k]}as shown below on the left

» The product sequence {x[k]h[L—Kk]} is

shown below on the right
h[L1—k] X[kIh[1-K]
2 0

1 543 2 -1 123
-2
Ss43 | 0001 2 3 k
-1

e Hence, y[1]=x[0]h[1]+ x[1]h[0]1 -4+0=-4

Copyright © 2005, S. K. Mitra
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Time-Domain Characterization
of LTI Discrete-Time System

* To calculate y[2], we form{h[2—k]} as
shown below on the left

* The product sequence {X[kK]n[2 K]} is
plotted below on the right

hi2-k] x[k]h[2 - k]
1 1
S k k

4 3 =2 01 23 45 3 2-1 0 | 2 3 45 6

y[2] = X[0]h[2]+ X[1]h[1]+ x[2]h[0]=0+0+1=1

Copyright © 2005, S. K. Mitra
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Time-Domain Characterization
of LTI Discrete-Time System

 Continuing the process we get

y[3]= x[0]h[3]+ x[1]h[2] + x[2]h[1] + X[3]h[O]
=2+0+0+1=3

y[4]= x[1]h[3]+ x[2]h[2]+ x[3]h[1] + X[4]h[0]
=0+0-2+3=1

y[51= X[2]h[3]+ X[3]n[2] + X[4]h[1]
=-1+0+6=5

y[6]=X[3]n[3]+ x[4]h[2]=1+0=1

y[7]1=x[4]h[3]=-3

Copyright © 2005, S. K. Mitra

Time-Domain Characterization
of LTI Discrete-Time System

 From the plot of {h[n—Kk]} for n > 7 and the
plot of {x[k]} as shown below, it can be
seen that there is no overlap between these
two sequences

e Asaresult y[n]=0 for n>7

x[K] h[8—k]
2
1 S 1

k
[ 234167891011

=2 Copyright © 2005, S. K. Mitra
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Time-Domain Characterization
of LTI Discrete-Time System

 The sequence {y[n]} generated by the
convolution sum is shown below

y[n]

79 -4
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Time-Domain Characterization
of LTI Discrete-Time System

* Note: The sum of indices of each sample
product inside the convolution sum is equal
to the index of the sample being generated
by the convolution operation

* For example, the computation of y[3] in the
previous example involves the products
x[0]h[3]. x[1]h[2], x[2]h[1], and x[3]h[0]

» The sum of indices in each of these

products is equal to 3

80
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Time-Domain Characterization
of LTI Discrete-Time System

* In the example considered the convolution
of a sequence {x[n]} of length 5 with a
sequence {h[n]} of length 4 resulted in a
sequence {y[n]} of length 8

* In general, if the lengths of the two
sequences being convolved are M and N,
then the sequence generated by the
convolution is of length M + N -1

81
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Tabular Method of

Convolution Sum Computation

e Can be used to convolve two finite-length
sequences

 Consider the convolution of {g[n]}, 0<n<3,
with {h[n]},0<n <2, generating the
sequence y[n] = g[n]® h[n]

e Samples of {g[n]} and {h[n]} are then
multiplied using the conventional
multiplication method without any carry
operation

82
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Tabular Method of
Convolution Sum Computation
n 0 1 2 3 4 5
glnl: gl0] gll] 8l2] 8l3]

hln]: h[0] h[1] h[2]

glO1A[0]  g[11A[0] g[2]A[0] g[3]h[0]
glO1Al1]  g[11A[1]  g[21A[1]  g[31A[1]
8l01A[2] g[11A[2] g[21h[2] g[3]A[2]
yink_ y[0] vl y2] Vi3] yi4] yI5]

» The samples y[n] generated by the
convolution sum are obtained by adding the
entries in the column above each sample

83
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Tabular Method of
Convolution Sum Computation
 The samples of {y[n]} are given by

¥[0]= g[0]A[0]

Y11= g[1]A[0]+ g[0JA[1]

y[21= g[21A[0]+ g[11A[1]+ g[O1A[2]
Y31 = gI31A[0]+ gl21A[1] + g[11A[2]
y[4] = g[31A[1]+ g[21h[2]

84

Copyright © 2005, S. K. Mitra

14



Tabular Method of
Convolution Sum Computation

» The method can also be applied to convolve
two finite-length two-sided sequences

* In this case, a decimal point is first placed
to the right of the sample with the time
index n = 0 for each sequence

 Next, convolution is computed ignoring the
location of the decimal point

85
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Tabular Method of
Convolution Sum Computation

« Finally, the decimal point is inserted
according to the rules of conventional
multiplication

» The sample immediately to the left of the

decimal point is then located at the time
indexn=0

86
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Convolution Using MATLAB

» The M-file conv implements the convolution
sum of two finite-length sequences

o |f a=[-2 0 1 -1 3]
b=[1 2 0 -1]
then conv (a, b) yields

[-F2 -4 1 3 1 5 1 -3]

87
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Simple Interconnection
Schemes

» Two simple interconnection schemes are:
e Cascade Connection
« Parallel Connection

88
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Cascade Connection
= —{ holn) |—{ hyin] |~

* Impulse response h[n] of the cascade of two
LTI discrete-time systems with impulse
responses hy[n] and h,[n] is given by

h[n]=hn1®h,[n]

89
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Cascade Connection

* Note: The ordering of the systems in the
cascade has no effect on the overall impulse
response because of the commutative
property of convolution

* A cascade connection of two stable systems
is stable

A cascade connection of two passive
(lossless) systems is passive (lossless)

90
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Cascade Connection

 An application is in the development of an
inverse system

« If the cascade connection satisfies the
relation
hy[n]®h,[n] =5[n]
then the LTI system hy[n] is said to be the
inverse of h,y[n] and vice-versa

91
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Cascade Connection

* An application of the inverse system
concept is in the recovery of a signal x[n]
from its distorted version R[n] appearing at
the output of a transmission channel

« If the impulse response of the channel is
known, then x[n] can be recovered by
designing an inverse system of the channel

channel , inverse system

x[n] —-{ hy[n] }ﬁ'{ h,[n] }—’ x[n]

» h(ni®h,[n] =8[n]

Copyright © 2005, S. K. Mitra

Cascade Connection

» Example - Consider the discrete-time
accumulator with an impulse response p[n]

* Its inverse system satisfy the condition
un]®h;[n] = 3[n]
* It follows from the above that h,[n]=0 for

n<0 and
h,[0]=1
n
> hy[¢]1=0 for n>1
03 1=0
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Cascade Connection

Thus the impulse response of the inverse
system of the discrete-time accumulator is
given by

ha[n] =&[n]-3[n-1]
which is called a backward difference
system

94
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Parallel Connection

* Impulse response h[n] of the parallel
connection of two LTI discrete-time
systems with impulse responses hy[n] and
h,[n] is given by

h[n]=hy[n]+ hy[n]

Copyright © 2005, S. K. Mitra
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Simple Interconnection Schemes
 Consider the discrete-time system where
hy[n]=38[n]+0.58[n —-1],
h,[n]=0.56[n]—-0.253[n 1],
hs[n] = 23[n],
h[n] =-2(0.5)"u[n]

96
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Simple Interconnection Schemes

 Simplifying the block-diagram we obtain

®
haln] + h,[n] h,[n]@® (hgn]+hy[n])

97
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Simple Interconnection Schemes

e Overall impulse response h[n] is given by
h[n]=hy[n]+ hy[n]® (hz[n]+hyln])
=hy[n]+hy[n]@hs[n]+ ho[n]@hy[n]
* Now,
h[nI®hs[n] = (G 8[n] -7 8[n - 1)@28[n]
=9[n] —%S[n -1

Copyright © 2005, S. K. Mitra

Simple Interconnection Schemes

hy[nl@hy[n] = (£8[n] - L8[n - 1)@ - 2(2)" ]
=~ uinl+ 3G tuln 1]
=~ (@)"lnl+ () uin 1]
—_(L)yn -

o Therefore @) eln)=~sln]

h[n] =§[n]+ %S[n —1]+8[n] —%S[n —1]-8[n] = 3[n]

99
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