
1

Copyright © 2005, S. K. Mitra
1

Comb FiltersComb Filters

• The simple filters discussed so far are 
characterized either by a single passband
and/or a single stopband

• There are applications where filters with 
multiple passbands and stopbands are 
required

• The comb filter is an example of such 
filters

Copyright © 2005, S. K. Mitra
2

Comb FiltersComb Filters
• In its most general form, a comb filter has a 

frequency response that is a periodic 
function of ω with a period 2π/L, where L is 
a positive integer

• If H(z) is a filter with a single passband
and/or a single stopband, a comb filter can 
be easily generated from it by replacing 
each delay in its realization with L delays 
resulting in a structure with a transfer 
function given by )()( LzHzG =
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Comb FiltersComb Filters

• If                exhibits a peak at      , then        
will exhibit L peaks at ,                      
in the frequency range

• Likewise, if                has a notch at      , 
then                will have L notches at           , 

in the frequency range
• A comb filter can be generated from either 

an FIR or an IIR prototype filter
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Comb FiltersComb Filters
• For example, the comb filter generated from       

the prototype lowpass FIR filter                 
has a transfer function

• has L notches                                    
at ω = (2k+1)π/L and L
peaks at ω = 2π k/L,
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Comb FiltersComb Filters
• For example, the comb filter generated from        

the prototype highpass FIR filter                 
has a transfer function

• has L peaks                                    
at ω = (2k+1)π/L and L
notches at ω = 2π k/L,

|)(| 1
ωjeG

)( 1
2
1 1 −− z

=)(zH1

)()()( LL zzHzG −−== 1
2
1

11

10 −≤≤ Lk , in the
frequency range

π<ω≤ 20
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

ω/π

M
ag

ni
tu

de

Comb filter from highpass prototype

Copyright © 2005, S. K. Mitra
6

Comb FiltersComb Filters

• Depending on applications, comb filters 
with other types of periodic magnitude 
responses can be easily generated by 
appropriately choosing the prototype filter

• For example, the M-point moving average 
filter

has been used as a prototype
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Comb FiltersComb Filters
• This filter has a peak magnitude at ω = 0, 

and           notches at                   ,
• The corresponding comb filter has a transfer 

function

whose magnitude has L peaks at                 ,  
and                notches at                    
, 
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• A set of digital transfer functions with 
complementary characteristics often finds 
useful applications in practice

• Four useful complementary relations are 
described next along with some applications
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

Delay-Complementary Transfer Functions
• A set of L transfer functions,             ,            

, is defined to be delay-
complementary of each other if the sum of 
their transfer functions is equal to some 
integer multiple of unit delays, i.e.,

where       is a nonnegative integer
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• A delay-complementary pair                    
can be readily designed if one of the pairs is 
a known Type 1 FIR transfer function of 
odd length

• Let            be a Type 1 FIR transfer function 
of length M = 2K+1

• Then its delay-complementary transfer 
function is given by
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Let the magnitude response of            be 
equal to           in the passband and less than 
or equal to      in the stopband where      and         

are very small numbers
• Now the frequency response of            can be 

expressed as

where            is the amplitude response
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Its delay-complementary transfer function   
has a frequency response given by

• Now, in the passband,                                 
and in the stopband,

• It follows from the above equation that in 
the stopband,                                and in the 
passband,
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• As a result,            has a complementary 
magnitude response characteristic to that of   

with a stopband exactly identical to 
the passband of           , and a passband that 
is exactly identical to the stopband of

• Thus, if            is a lowpass filter,           will 
be a highpass filter, and vice versa

)(1 zH

)(0 zH

)(0 zH

)(1 zH)(0 zH

)(0 zH

Copyright © 2005, S. K. Mitra
14

Complementary Transfer Complementary Transfer 
FunctionsFunctions

• The frequency       at which 

the gain responses of both filters are 6 dB
below their maximum values

• The frequency       is thus called the 6-dB
crossover frequency
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Example - Consider the Type 1 bandstop
transfer function

• Its delay-complementary Type 1 bandpass
transfer function is given by
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Plots of the magnitude responses of           
and               are shown below
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

Allpass Complementary Filters
• A set of M digital transfer functions,              ,   

, is defined to be allpass-
complementary of each other, if the sum of 
their transfer functions is equal to an allpass
function, i.e.,
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

Power-Complementary Transfer Functions
• A set of M digital transfer functions,              ,   

, is defined to be power-
complementary of each other, if the sum of 
their square-magnitude responses is equal to 
a constant K for all values of ω, i.e.,
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• By analytic continuation, the above 
property is equal to

for real coefficient
• Usually, by scaling the transfer functions, 

the power-complementary property is 
defined for K = 1
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• For a pair of power-complementary transfer 
functions,           and           , the frequency   
where                                                   , is 
called the cross-over frequency

• At this frequency the gain responses of both 
filters are 3-dB below their maximum 
values

• As a result,       is called the 3-dB cross-
over frequency
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Example - Consider the two transfer functions     
and            given by

where           and           are stable allpass
transfer functions

• Note that
• Hence,           and           are allpass

complementary

)(0 zH )(1 zH
)]()([)( 102

1
0 zAzAzH +=

)(0 zA )(1 zA
)]()([)( 102

1
1 zAzAzH −=

)()()( 010 zAzHzH =+
)(0 zH )(1 zH

Copyright © 2005, S. K. Mitra
22

Complementary Transfer Complementary Transfer 
FunctionsFunctions

• It can be shown that            and           are 
also power-complementary

• Moreover,            and            are bounded-
real transfer functions
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

Doubly-Complementary Transfer Functions
• A set of M transfer functions satisfying both 

the allpass complementary and the power-
complementary properties is known as a 
doubly-complementary set
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• A pair of doubly-complementary IIR 
transfer functions,           and           , with a 
sum of allpass decomposition can be simply 
realized as indicated below
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Example - The first-order lowpass transfer 
function

can be expressed as

where
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Its power-complementary highpass transfer 
function is thus given by

• The above expression is precisely the first-
order highpass transfer function described 
earlier
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Figure below demonstrates the allpass
complementary property and the power 
complementary property of              and)(zHLP

)(zHHP
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

Power-Symmetric Filters
• A real-coefficient causal digital filter with a 

transfer function H(z) is said to be a power-
symmetric filter if it satisfies the condition

where K > 0 is a constant
KzHzHzHzH =−−+ −− )()()()( 11
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• It can be shown that the gain function G(ω) 
of a power-symmetric transfer function at ω
= π is given by

• If we define                        , then it follows 
from the definition of the power-symmetric 
filter that H(z) and G(z) are power-
complementary as

constanta)()()()( 11 =+ −− zGzGzHzH
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

Conjugate Quadratic Filter
• If a power-symmetric filter has an FIR 

transfer function H(z) of order N, then the 
FIR digital filter with a transfer function

is called a conjugate quadratic filter of 
H(z) and vice-versa

)()( 11 −−= zHzzG
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• It follows from the definition that G(z) is 
also a power-symmetric causal filter

• It also can be seen that a pair of conjugate 
quadratic filters H(z) and G(z) are also 
power-complementary
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Complementary Transfer Complementary Transfer 
FunctionsFunctions

• Example - Let
• We form

• H(z) is a power-symmetric transfer 
function
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Digital TwoDigital Two--PairsPairs

• The LTI discrete-time systems considered 
so far are single-input, single-output 
structures characterized by a transfer 
function

• Often, such a system can be efficiently 
realized by interconnecting two-input, two-
output structures, more commonly called
two-pairs
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Digital TwoDigital Two--PairsPairs
• Figures below show two commonly used 

block diagram representations of a two-pair

• Here     and      denote the two outputs, and   
and       denote the two inputs, where the 

dependencies on the variable z has been 
omitted for simplicity
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Digital TwoDigital Two--PairsPairs
• The input-output relation of a digital two-

pair is given by

• In the above relation the matrix τ given by

is called the transfer matrix of the two-pair
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Digital TwoDigital Two--PairsPairs

• It follows from the input-output relation that 
the transfer parameters can be found as 
follows:
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Digital TwoDigital Two--PairsPairs
• An alternate characterization of the two-pair 

is in terms of its chain parameters as

where the matrix Γ given by

is called the chain matrix of the two-pair
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Digital TwoDigital Two--PairsPairs
• The relation between the transfer 

parameters and the chain parameters are 
given by
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TwoTwo--Pair Interconnection Pair Interconnection 
SchemesSchemes

Cascade Connection - Γ-cascade

• Here
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TwoTwo--Pair Interconnection Pair Interconnection 
SchemesSchemes

• But from figure,              and
• Substituting the above relations in the first 

equation on the previous slide and 
combining the two equations we get

• Hence,
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TwoTwo--Pair Interconnection Pair Interconnection 
SchemesSchemes

Cascade Connection - τ-cascade

• Here
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TwoTwo--Pair Interconnection Pair Interconnection 
SchemesSchemes

• But from figure,              and
• Substituting the above relations in the first 

equation on the previous slide and 
combining the two equations we get

• Hence,
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TwoTwo--Pair Interconnection Pair Interconnection 
SchemesSchemes

Constrained Two-Pair

• It can be shown that
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Algebraic Stability TestAlgebraic Stability Test
• We have shown that the BIBO stability of a 

causal rational transfer function requires 
that all its poles be inside the unit circle

• For very high-order transfer functions, it is 
very difficult to determine the pole 
locations analytically

• Root locations can of course be determined 
on a computer by some type of root finding 
algorithms
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Algebraic Stability TestAlgebraic Stability Test

• We now outline a simple algebraic test that 
does not require the determination of pole 
locations

The Stability Triangle
• For a 2nd-order transfer function the 

stability can be easily checked by 
examining its denominator coefficients
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Algebraic Stability TestAlgebraic Stability Test
• Let

denote the denominator of the transfer 
function

• In terms of its poles, D(z) can be expressed 
as

• Comparing the last two equations we get
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Algebraic Stability TestAlgebraic Stability Test
• The poles are inside the unit circle if

• Now the coefficient      is given by the 
product of the poles

• Hence we must have

• It can be shown that the second coefficient 
condition is given by

1||,1|| 21 <λ<λ
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Algebraic Stability TestAlgebraic Stability Test

• The region in the (         )-plane where the 
two coefficient condition are satisfied, 
called the stability triangle, is shown below

21,dd

Stability region
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Algebraic Stability TestAlgebraic Stability Test

• Example - Consider the two 2nd-order 
bandpass transfer functions designed 
earlier:
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Algebraic Stability TestAlgebraic Stability Test

• In the case of              , we observe that

• Since here             ,               is unstable
• On the other hand, in the case of              , 

we observe that

• Here,             and                    , and hence   
is BIBO stable
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)(" zHBP
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A General Stability Test Procedure
• Let              denote the denominator of an

M-th order causal IIR transfer function H(z):

where we assume           for simplicity
• Define an M-th order allpass transfer 

function:

)(zDM

∑ =
−= M

i
i

iM zdzD 0)(

10 =d

)(
)( 1

)( zD
zMDz

M M

M
zA

−−
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• Or, equivalently

• If we express

then it follows that

M
M

M
M

MM
MMM

zdzdzdzd
zzdzdzdd

zMA −+−
−
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−+−−
−

−
−
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= 1
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• Now for stability we must have            , 
which implies the condition

• Define

• Then a necessary condition for stability of       
, and hence, the transfer function

H(z) is given by

1|| <λi
1|| <Md

MMM dAk =∞= )(

)(zAM

12 <Mk
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• Assume the above condition holds
• We now form a new function

• Substituting the rational form of             in 
the above equation we get

)(zAM
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where

• Hence,                is an allpass function of 
order

• Now the poles      of                are given by 
the roots of the equation

oλ )(1 zAM −

11,
1 2

' −≤≤
−

−
= − Mi

d
dddd
M

iMMi
i

MkoMA 1)( =λ

)(1 zAM −
1−M
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• By assumption
• Hence
• If             is a stable allpass function, then

• Thus, if             is a stable allpass function, 
then the condition                      holds only if

12 <Mk
1|)(| >λoMA

)(zAM

⎪⎩

⎪
⎨
⎧

<>
==
><

1for,1
1for,1
1for,1

)(
z
z
z

zAM

)(zAM
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1<λo
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• Or, in other words               is a stable 
allpass function

• Thus, if             is a stable allpass function 
and            , then                is also a stable 
allpass function of one order lower

• We now prove the converse, i.e., if              
is a stable allpass function and            , then          

is also a stable allpass function

)(1 zAM −

)(1 zAM −

)(zAM
12 <Mk

)(1 zAM −

)(zAM

12 <Mk
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• To this end, we express             in terms of       

arriving at

• If       is a pole of            , then

• By assumption              holds

)(1
)()(

1
1

1
1

zAzk
zAzkzA

MM

MM
M

−
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−
−

+
+=

)(1 zAM −

)(zAM
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1 )( −=ζζ −
−

12 <Mk
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• Therefore,                              i.e.,

• The above condition implies                             
if

• Assume               is a stable allpass function
• Then                      for
• Thus, for            , we should have

1|)(| 1
1 >ζζ −

−
oMo A

)(1 zAM −

1|| ≥z
1|| ≥ζo

|||)(| 1 ooMA ζ>ζ−

1|)(| 1 >ζ− oMA
1|| ≥ζo

1)(1 ≤− zAM

1|)(| 1 ≤ζ− oMA
Copyright © 2005, S. K. Mitra

60

Algebraic Stability TestAlgebraic Stability Test

• Thus there is a contradiction
• On the other hand, if              then from            

we have
• The above condition does not violate the 

condition

1|| <ζo

|||)(| 1 ooMA ζ>ζ−

1||for1|)(| 1 <>− zzAM

1|)(| 1 >ζ− oMA
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• Thus, if             and if                is a stable 
allpass function, then            is also a stable 
allpass function

• Summarizing, a necessary and sufficient set 
of conditions for the causal allpass function  

to be stable is therefore:
(1)              , and
(2) The allpass function                is stable

)(1 zAM −
)(zAM

12 <Mk

)(zAM

)(1 zAM −

12 <Mk
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• Thus, once we have checked the condition   

, we test next for the stability of the 
lower-order allpass function

• The process is then repeated, generating a 
set of coefficients:

and a set of allpass functions of decreasing 
order:

12 <Mk
)(1 zAM −

121 ,,...,, kkkk MM −
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• The allpass function             is stable if and 

only if            for i
• Example - Test the stability of

• From H(z) we generate a 4-th order allpass
function

• Note:

12 <ik
)(zAM
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• Using

we determine the coefficients         of the 
third-order allpass function           from the 
coefficients        of          :
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1 2
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• Note:
• Following the above procedure, we derive 

the next two lower-order allpass functions:
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15
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• Note:

• Since all of the stability conditions are 
satisfied,           and hence H(z) are stable

• Note: It is not necessary to derive          
since           can be tested for stability using 
the coefficient conditions
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