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• Later in the course we shall review various 
methods of designing frequency-selective 
filters satisfying prescribed specifications

• We now describe several low-order FIR and 
IIR digital filters with reasonable selective 
frequency responses that often are 
satisfactory in a number of applications
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• FIR digital filters considered here have 
integer-valued impulse response coefficients

• These filters are employed in a number of 
practical applications, primarily because of 
their simplicity, which makes them amenable 
to inexpensive hardware implementations
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Lowpass FIR Digital Filters
• The simplest lowpass FIR digital filter is the

2-point moving-average filter given by

• The above transfer function has a zero at      
and a pole at z = 0

• Note that here the pole vector has a unity 
magnitude for all values of ω
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• On the other hand, as ω increases from 0 to 
π, the magnitude of the zero vector 
decreases from a value of 2, the diameter of
the unit circle, to 0

• Hence, the magnitude response                  is 
a monotonically decreasing function of ω
from ω = 0 to ω = π
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• The maximum value of the magnitude 
function is 1 at ω = 0, and the minimum 
value is 0 at ω = π, i.e.,

• The frequency response of the above filter 
is given by
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• The magnitude response                            
can be seen to be a monotonically 
decreasing function of ω
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• The frequency             at which

is of practical interest since here the gain      
in dB is given by

since the dc gain

cω=ω
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• Thus, the gain G(ω) at             is 
approximately 3 dB less than the gain at ω
= 0

• As a result,       is called the 3-dB cutoff 
frequency

• To determine the value of       we set

which yields

cω=ω

cω

cω

2/π=ωc
2
122

0 )2/(cos|)(| =ω=ω
c

j ceH

9
Copyright © 2005, S. K. Mitra

Simple FIR Digital FiltersSimple FIR Digital Filters

• The 3-dB cutoff frequency       can be 
considered as the passband edge frequency

• As a result, for the filter            the passband
width is approximately π/2

• The stopband is from π/2 to π
• Note: has a zero at             or ω = π,

which is in the stopband of the filter
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• A cascade of the simple FIR filter

results in an improved lowpass frequency 
response as illustrated below for a cascade
of 3 sections
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• The 3-dB cutoff frequency of a cascade of
M sections is given by

• For M = 3, the above yields
• Thus, the cascade of first-order sections 

yields a sharper magnitude response but at 
the expense of a decrease in the width of the 
passband
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• A better approximation to the ideal lowpass

filter is given by a higher-order moving-
average filter

• Signals with rapid fluctuations in sample 
values are generally associated with high-
frequency components

• These high-frequency components are 
essentially removed by an moving-average 
filter resulting in a smoother output 
waveform
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Highpass FIR Digital Filters
• The simplest highpass FIR filter is obtained 

from the simplest lowpass FIR filter by 
replacing z with

• This results in
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• Corresponding frequency response is given 

by

whose magnitude response is plotted below
)2/sin()( 2/

1 ω= ω−ω jj ejeH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

M
ag

ni
tu

de

First-order FIR highpass filter

15
Copyright © 2005, S. K. Mitra

Simple FIR Digital FiltersSimple FIR Digital Filters

• The monotonically increasing behavior of 
the magnitude function can again be 
demonstrated by examining the pole-zero 
pattern of the transfer function

• The highpass transfer function            has a 
zero at z = 1 or ω = 0 which is in the 
stopband of the filter
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• Improved highpass magnitude response can 
again be obtained by cascading several 
sections of the first-order highpass filter

• Alternately, a higher-order highpass filter of 
the form

is obtained by replacing z with        in the 
transfer function of a moving average filter
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• An application of the FIR highpass filters is 
in moving-target-indicator (MTI) radars

• In these radars, interfering signals, called 
clutters, are generated from fixed objects in 
the path of the radar beam

• The clutter, generated mainly from ground 
echoes and weather returns, has frequency 
components near zero frequency (dc)
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• The clutter can be removed by filtering the 
radar return signal through a two-pulse 
canceler, which is the first-order FIR 
highpass filter

• For a more effective removal it may be 
necessary to use a three-pulse canceler
obtained by cascading two two-pulse 
cancelers
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Lowpass IIR Digital Filters
• A first-order causal lowpass IIR digital 

filter has a transfer function given by

where |α| < 1 for stability
• The above transfer function has a zero at         

i.e., at ω = π which is in the stopband
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• has a real pole at z = α
• As ω increases from 0 to π, the magnitude 

of the zero vector decreases from a value of 
2 to 0, whereas, for a positive value of α, 
the magnitude of the pole vector increases 
from a value of          to

• The maximum value of the magnitude 
function is 1 at ω = 0, and the minimum 
value is 0 at ω = π

α−1 α+1
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• i.e.,
• Therefore,                    is a monotonically 

decreasing function of ω from ω = 0 to ω = π
as indicated below
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• The squared magnitude function is given by

• The derivative of                      with respect 
to ω is given by
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in the range                    
verifying again the monotonically decreasing 
behavior of the magnitude function

• To determine the 3-dB cutoff frequency
we set                            

in the expression for the square magnitude 
function resulting in
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or

which when solved yields

• The above quadratic equation can be solved 
for α yielding two solutions
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• The solution resulting in a stable transfer 

function              is given by

• It follows from

that              is a BR function for |α| < 1
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Highpass IIR Digital Filters
• A first-order causal highpass IIR digital filter 

has a transfer function given by

where |α| < 1 for stability
• The above transfer function has a zero at z = 1     

i.e., at ω = 0 which is in the stopband
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• Its 3-dB cutoff frequency       is given by

which is the same as that of
• Magnitude and gain responses of              

are shown below
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• is a BR function for |α| < 1
• Example - Design a first-order highpass

digital filter with a 3-dB cutoff frequency of
0.8π

• Now,                                                   and

• Therefore
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• Therefore,
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Bandpass IIR Digital Filters
• A 2nd-order bandpass digital transfer 

function is given by

• Its squared magnitude function is
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• goes to zero at ω = 0 and ω = π
• It assumes a maximum value of 1 at             , 

called the center frequency of the bandpass
filter, where

• The frequencies       and       where         
becomes 1/2 are called the 3-dB cutoff 
frequencies 
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• The difference between the two cutoff 
frequencies, assuming                  is called 
the 3-dB bandwidth and is given by

• The transfer function              is a BR 
function if |α| < 1 and |β| < 1
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• Plots of                     are shown below|)(| ωj
BP eH
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• Example - Design a 2nd order bandpass

digital filter with center frequency at 0.4π
and a 3-dB bandwidth of 0.1π

• Here
and

• The solution of the above equation yields:
α = 1.376382 and α = 0.72654253
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• The corresponding transfer functions are

and

• The poles of              are at z = 0.3671712         
and have a magnitude > 1
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• Thus, the poles of              are outside the 
unit circle making the transfer function 
unstable

• On the other hand, the poles of               are 
at z =                                          and have a 
magnitude of 0.8523746

• Hence               is BIBO stable
• Later we outline a simpler stability test
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• Figures below show the plots of the 
magnitude function and the group delay of
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Bandstop IIR Digital Filters
• A 2nd-order bandstop digital filter has a 

transfer function given by

• The transfer function              is a BR 
function if |α| < 1 and |β| < 1
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• Its magnitude response is plotted below
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• Here, the magnitude function takes the 
maximum value of 1 at ω = 0 and ω = π

• It goes to 0 at            , where      , called the
notch frequency, is given by

• The digital transfer function              is more 
commonly called a notch filter
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• The frequencies       and       where         
becomes 1/2 are called the 3-dB cutoff 
frequencies

• The difference between the two cutoff 
frequencies, assuming                  is called 
the 3-dB notch bandwidth and is given by
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Higher-Order IIR Digital Filters
• By cascading the simple digital filters 

discussed so far, we can implement digital 
filters with sharper magnitude responses

• Consider a cascade of K first-order lowpass
sections characterized by the transfer 
function
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• The overall structure has a transfer function 
given by

• The corresponding squared-magnitude 
function is given by
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• To determine the relation between its 3-dB 

cutoff frequency       and the parameter α, 
we set

which when solved for α, yields for a stable  
:
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where

• It should be noted that the expression for α
given earlier reduces to

for K = 1
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• Example - Design a lowpass filter with a 3-
dB cutoff frequency at                  using a 
single first-order section and a cascade of 4 
first-order sections, and compare their gain 
responses

• For the single first-order lowpass filter we 
have
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• For the cascade of 4 first-order sections, we 
substitute K = 4 and get

• Next we compute
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• The gain responses of the two filters are 

shown below
• As can be seen, cascading has resulted in a 

sharper roll-off in the gain response
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