DTFT Properties

« Example - Determine the DTFT Y (e)®) of
y[n]=(n+Da"un], jo|<1
e Let x[n]=a"u[n], |of<1
» We can therefore write
y[n]=nx[n]+x[n]
» From Table 3.3, the DTFT of x[n] is given

2

DTFT Properties

« Using the differentiation property of the
DTFT given in Table 3.2, we observe that
the DTFT of nx[n] is given by
X (') . d 1 _ ae?
! do do\1-0e @) (1-ae1?)?
» Next using the linearity property of the
DTFT given in Table 3.4 we arrive at
ae 1© 1 1
- =+ — = -
A-ae 1?2 1-qe® (@1-ae1®)?
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Y (e1®) =

by - 1
XE)y=—=—
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DTFT Properties

Example - Determine the DTFT V (e/®) of
the sequence v[n] defined by

dov[n]+dv[n—1] = ped[n]+ p3[n —1]
From Table 3.3, the DTFT of d[n]is 1
Using the time-shifting property of the
DTFT given in Table 3.4 we observe that
the DTFT of 8[n—1] is e™! and the DTFT
of v[n—1] is e 1V (e!®)
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DTFT Properties

« Using the linearity property of Table 3.4 we
then obtain the frequency-domain
representation of

dov[n]+ dv[n—1] = pod[n]+ pyS[n —1]
as _ _ _ _
doV (e”) +die ™V (e”) = po + pe™

* Solving the above equation we get

_ - jo
v(eloy=Pot e plei_
do +de7
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Energy Density Spectrum

 The total energy of a finite-energy sequence
g[n] is given by

ng - nEm‘g[n]‘z

» From Parseval’s relation given in Table 3.4
we observe that

0 1= P2
E= 3 \g[n]\zzﬁ ] \G(el"’)\ do
=—00 —T
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Energy Density Spectrum

 The quantity
2
Sgg (@) = ‘G(ejw)‘

is called the energy density spectrum

The area under this curve in the range
—-n<o<n divided by 27 is the energy of
the sequence
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Band-limited Discrete-time
Signals

« Since the spectrum of a discrete-time signal
is a periodic function of o with a period 2,
a full-band signal has a spectrum occupying
the frequency range —n<w<mn

A band-limited discrete-time signal has a
spectrum that is limited to a portion of the
frequency range—n<w<n
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Band-limited Discrete-time
Signals
An ideal band-limited signal has a spectrum

that is zero outside a frequency range
0<w, <|o| <o, <, that is

- l, 0<lo<o
Joy _ a
X )_{0, op <|oj <

An ideal band-limited discrete-time signal
cannot be generated in practice
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Band-limited Discrete-time
Signals

* A classification of a band-limited discrete-
time signal is based on the frequency range
where most of the signal’s energy is
concentrated

* A lowpass discrete-time real signal has a

spectrum occupying the frequency range
0<|o|<®, <m and has a bandwidth of @,
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Band-limited Discrete-time
Signals

A highpass discrete-time real signal has a
spectrum occupying the frequency range
0<op <|o/<n and has a bandwidth of
Tt—O)p

A bandpass discrete-time real signal has a
spectrum occupying the frequency range
0<o_ <|o/|<oy <7 and has a bandwidth
of Oy —Op
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Band-limited Discrete-time
Signals

» Example — Consider the sequence

X[n] = (0.5)" p[n]

 Its DTFT is given below on the left along

with its magnitude spectrum shown below
on the right i

1 9
1-0.5e71® *

X (e1®) =

Magnitud

0 o0z 04 06 08 1
ol

Copyright © 2005, S. K. Mitra

12

Band-limited Discrete-time
Signals
It can be shown that 80% of the energy of

this lowpass signal is contained in the
frequency range 0 <|&<0.5081x

Hence, we can define the 80% bandwidth to
be 0.5081r radians
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Energy Density Spectrum

« Example - Compute the energy of the
sequence )
hpln] =20 oo <n<oo
e Here

) 1 co2
S|h p[n]? ~om [ ‘HLP(e]m)‘ do
TC_T[

n=—

where

HLP(ejw):{

1 O0<lo <o

0, o <|o<m
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13

14

Energy Density Spectrum
 Therefore

o ®c
Z‘hLP[n]‘Z -~ [do= 2 <o
21 _g, T

N=—o0

» Hence, h;p[n]is a finite-energy lowpass
sequence
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DTFT Computation Using
MATLAB

e The function £regz can be used to
compute the values of the DTFT of a
sequence, described as a rational function in
in the form of ) )

X (eloy = Po* pe ...+ py e‘_“”'\’|
dg+de 1+ ...+ dye 1N

at a prescribed set of discrete frequency

points o= o,
15
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16

DTFT Computation Using

MATLAB
» For example, the statement
H = fregz (num,den,w)

returns the frequency response values as a
vector H of a DTFT defined in terms of the
vectors num and den containing the
coefficients {p;} and {d;}, respectively at a
prescribed set of frequencies between 0 and
2z given by the vector w
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DTFT Computation Using
MATLAB

* There are several other forms of the
function freqgz

* Program 3_1.m in the text can be used to
compute the values of the DTFT of a real
sequence

* It computes the real and imaginary parts,
and the magnitude and phase of the DTFT

17
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DTFT Computation Using
MATLAB
» Example - Plots of the real and imaginary

parts, and the magnitude and phase of the

DTFT : -
0.008-0.033e™ 1 +0.05e 71

—0.033¢ 7132 0.008e 14
1+2.37e710 4 2.7¢71%0
+1.6e7130 1 0 41e 1%

X (€)=

are shown on the next slide
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DTFT Computation Using

Imaginary part

Amplitude
Amplitude

02 04 06 0.8 1
Copyrighy# 2005, S. K. Mitra

DTFT Computation Using
MATLAB

» Note: The phase spectrum displays a
discontinuity of 2r at ® = 0.72

« This discontinuity can be removed using the
function unwrap as indicated below

Unwrapped Phase Spectrum

P | | |
20 0 02 04 0.6 08 1
ot
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Linear Convolution Using
DTFT

» An important property of the DTFT is given
by the convolution theorem in Table 3.4

o It states that if y[n] = x[n]® h[n], then the
DTFT Y (e'*) of y[n] is given by

Y(e)) =X (e")H ()

» An implication of this result is that the
linear convolution y[n] of the sequences
x[n] and h[n] can be performed as follows:
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Linear Convolution Using
DTFT
« 1) Compute the DTFTs X (€1°) and H (e/®)
of the sequences x[n] and h[n], respectively
« 2) Formthe DTFT Y (e/®)=X (e!®)H (e1®)
« 3) Compute the IDFT y[n] of Y (/)

jo
) —{omer [y oy

ool
i T

i
&)

22
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The Unwrapped Phase
Function

* In numerical computation, when the
computed phase function is outside the
range [-m, ], the phase is computed
modulo 27, to bring the computed value to
this range

* Thus. the phase functions of some
sequences exhibit discontinuities of 2x
radians in the plot
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The Unwrapped Phase

Function

« For example, there is a discontinuity of 2x
at ® = 0.72 in the phase response below

jor_0.008-0.033¢~J9+0.057120_0.033¢13940,008¢ 14
)=

X(e - - : H
1423771042767 12041 6e 13010 41e7 14

24
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The Unwrapped Phase
Function

* In such cases, often an alternate type of
phase function that is continuous function
of w is derived from the original phase
function by removing the discontinuities of
2n

* Process of discontinuity removal is called
unwrapping the phase

» The unwrapped phase function will be

denoted as 6, (o)
25
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The Unwrapped Phase
Function

* In MATLAB, the unwrapping can be
implemented using the M-file unwrap

» The unwrapped phase function of the DTFT
of previous page is shown below

02 04 06
26 wn
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The Unwrapped Phase
Function

 The conditions under which the phase
function will be a continuous function of ®
is next derived

e Now ) .
|nX(eJ°°)=\X(eJ°J)\+ )

where .
6(w) =arg{H (e'*)}

27
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The Unwrapped Phase
Function

* If InX(e J"”) exits, then its derivative with
respect to w also exists and is given by
dinX () 1 {dx (eiw)}

do B X (ej“’) do

_ 1| dXe(e)) | dXim(e™)
X(@®)| do do

28

Copyright © 2005, S. K. Mitra

The Unwrapped Phase
Function
« From |n_x(eim)=\X(ei°’)\+ jo(w),
dInX(e')/dw is also given by
dinX (e®) _ d\X(ejm)\+ J.d 0(w)
do do do

29
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The Unwrapped Phase
Function

e Thus, d6(w)/dw is given by the imaginary
part of
1 dXe@) . dXin ()
X(e®)| do do
* Hence, )
0L py (oioyPim")
- xef o X 1)
—Xim(e )T]

30
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The Unwrapped Phase
Function

 The phase function can thus be defined
unequivocally by its derivative do(w)/dw:

®rdo
0(0) = [ dn,
0
with the constraint

0(0)=0

31
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The Unwrapped Phase
Function
 The phase function defined by

O,
d
0(0) = ([ ]dn
0
is called the unwrapped phase function of

X (ej‘*’) and it is a continuous function of ®
« =InX(e!®) exists
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The Unwrapped Phase
Function

» Moreover, the phase function will be an odd
function of o if
27
15190 4 —
= (f) [W] dn=0
« |If the above constraint is not satisfied, then
the computed phase function will exhibit
absolute jumps greater than «t

33
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The Frequency Response

» Most discrete-time signals encountered in
practice can be represented as a linear
combination of a very large, maybe infinite,
number of sinusoidal discrete-time signals
of different angular frequencies

 Thus, knowing the response of the LTI
system to a single sinusoidal signal, we can
determine its response to more complicated
signals by making use of the superposition

property
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The Frequency Response

» An important property of an LTI system is
that for certain types of input signals, called
eigen functions, the output signal is the
input signal multiplied by a complex
constant

 We consider here one such eigen function
as the input

35
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The Frequency Response

o Consider the LTI discrete-time system with

an impulse response {h[n]} shown below

X[n] yinl

* Its input-output relationship in the time-

domain is given by the convolution sum
y[nl= > h[kIx[n—K]
k=—o0

Copyright © 2005, S. K. Mitra




The Frequency Response

* If the input is of the form
x[n]=el" —co<n<o
then it follows that the output is given by
yin] = ih{k]e"“‘"‘k){ §h[k]e—iwkje;m
k=—o0

_ k=—0c0
o Let ' " _
H(el®)= Y h[kje ok
k=—0

37
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The Freguency Response

» Then we can write

y[n]=H(e!")el"
Thus for a complex exponential input signal
eJ®" | the output of an LTI discrete-time
system is also a complex exponential signal
of the same frequency multiplied by a
complex constant H (e!®)

« Thus e!®" is an eigen function of the system
38

Copyright © 2005, S. K. Mitra

The Frequency Response

 The quantity H (ej‘”) is called the frequency
response of the LTI discrete-time system

» H(e') provides a frequency-domain
description of the system

« H(e') is precisely the DTFT of the impulse
response {h[n]} of the system

39
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The Frequency Response

« H (ej“’) , in general, is a complex function
of o with a period 27
« It can be expressed in terms of its real and
imaginary parts
H(e!*) = Hee(e'”) + jHin (™)
or, in terms of its magnitude and phase,
H(e1®) = |H (1*)]e )

where )
0(w)=argH (e')

40
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The Frequency Response

* The function ‘H(e"”) is called the
magnitude response and the function 6()
is called the phase response of the LTI
discrete-time system

» Design specifications for the LTI discrete-
time system, in many applications, are
given in terms of the magnitude response or
the phase response or both

41
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The Frequency Response

* In some cases, the magnitude function is
specified in decibelsas
G(®) =20logyoH (e)) dB
where G(w) is called the gain function
» The negative of the gain function
A(0) =-G(o)
is called the attenuation or loss function

42
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The Frequency Response

» Note: Magnitude and phase functions are
real functions of w, whereas the frequency
response is a complex function of @

o If the impulse response h[n] is real then it
follows from Table 3.2 that the magnitude
function is an even function of w:

[H(e¥) =|H ()
and the phase function is an odd function of
© 0() =~0(-)

43
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The Frequency Response

o Likewise, for a real impulse response h[n],
He(e¥*)is even and H;,(e'*) is odd
» Example - Consider the M-point moving
average filter with an impulse response
gvenby = [UM, 0<n<M-1
10, otherwise
* Its frequency response is then given by
. M- .
joy_ 1 —jon
H(e™) =1 EO e
44
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The Frequency Response
* Likewise, for a real impulse response h[n],
H e (e1°)is even and Hiy,(e') is odd
» Example - Consider the M-point moving
average filter with an impulse response
givenby . _[UM, 0<n<M-1
[ ]_{ 0, otherwise
« Its frequency response is then given by
Mz_le—ju)n
n=0

HEe!?)=1
(e})=1
45
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The Frequency Response

. Or, H(e"‘”)=,$|( §0e’j°°”— fMej‘””j
n= n=

~jM
:1[ feiw”)(leiw):l_l—e -
M n=0 M l_e*J(D

_ 1 sin(Mo/2) _jm-yor2
M sin(w/2)

46
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The Frequency Response

 Thus, the magnitude response of the M-point
moving average filter is given by

1 sin(Mw/2)
M sin(w/2)
and the phase response is given by

_ [M72]
i 21)0)+1r >u (o)—zMik)
k=0

\H(eim)\=

0(w) =

47
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Frequency Response
Computation Using MATLAB

e The function fregz (h, 1,w) can be used
to determine the values of the frequency
response vector h at a set of given
frequency points w

e From h, the real and imaginary parts can be
computed using the functions real and
imag, and the magnitude and phase
functions using the functions abs and

" angle
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Frequency Response
Computation Using MATLAB

» Example - Program 3_2.m can be used to
generate the magnitude and gain responses
of an M-point moving average filter as
shown below

— M=5
o — M=i4 || 50 [\ ’\
g 0
206 2 \
S 5
S S 50
S04 2
£ -100

49 o 5

02 — M=5
DNAS] oV B
02 04 06 0.8 1 b
0%

02 04 06 08 1
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Freguency Response
Computation Using MATLAB

» The phase response of a discrete-time
system when determined by a computer
may exhibit jJumps by an amount 2x caused
by the way the arctangent function is
computed

 The phase response can be made a
continuous function of « by unwrapping the
phase response across the jumps
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Frequency Response
Computation Using MATLAB

 To this end the function unwrap can be
used, provided the computed phase is in
radians

* The jumps by the amount of 2x should not
be confused with the jumps caused by the
zeros of the frequency response as indicated
in the phase response of the moving average
filter

51
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Steady-State Response

 Note that the frequency response also
determines the steady-state response of an
LTI discrete-time system to a sinusoidal
input

« Example - Determine the steady-state
output y[n] of a real coefficient LTI
discrete-time system with a frequency
response H (e1®) for an input

x[n] = Acos(mwon+¢), —o<n<oo
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Steady-State Response

» We can express the input x[n] as
x[n]=g[n]+g*[n]
where o
g[n]= % Ae Jdg Joon
* Now the output of the system for an input
el is simply
H (ej‘”o )ejwon
53
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Steady-State Response

* Because of linearity, the response v[n] to an
input g[n] is given by
V[n] = % AeldH (e joo )ejwon

* Likewise, the output v*[n] to the input g*[n]
is

v*[n] = % AeIPH (e~ 1®0 )g=J®@on
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Steady-State Response

e Combining the last two equations we get
y[n]=v[n]+v*[n]
= % AeldH (ejwo )ejmon + % Ae—I0H (e—j‘ﬂo )e—jwon

= % A‘H (e oo )‘{e je((ﬂo)ejﬁbe j“’on+e—je(ﬂ)o)e—j¢e_jw0n}

— A‘H(e./@o )

cos(w,n +0(w,) +¢)

55
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Steady-State Response

 Thus, the output y[n] has the same sinusoidal
waveform as the input with two differences:
(1) the amplitude is multiplied by\H (el®o )\,
the value of the magnitude function at ® = o,
(2) the output has a phase lag relative to the
input by an amount 8(w,), the value of the
phase function at ® =,

56
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Response to a Causal
Exponential Sequence

» The expression for the steady-state response
developed earlier assumes that the system is
initially relaxed before the application of
the input x[n]

« In practice, excitation x[n] to a discrete-time
system is usually a right-sided sequence
applied at some sample index n=n,

» We develop the expression for the output

for such an input
57
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Response to a Causall

Exponential Sequence
« Without any loss of generality, assume x[n]=0
forn<0

e From the input-output relation
yInl= 3 hikIx[n —k]
we observe that for an input
x[n] =eleNu[n]
the output is given by
yin] - ( 3 hike o) Ju[n]

k=0
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Response to a Causal
Exponential Sequence

n . .
- or, y[n]{Zh[k]erk jelw“u[n]
k=0
e The output forn<0isy[n] =0
 The output for n>0 is given by
n . .
y[n]= ( > hlk]e~Iok je’“’”

k=0
= ( ih[k]e‘j“’k jeiwn —[ ih[k]e—iwk jeiwn

k=0 k=n+1
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Response to a Causal

Exponential Sequence

* Or,

y[n]= H (ejo)eion —( 3" hik]e-iok Jeiwn
k=n+1

* The first term on the RHS is the same as
that obtained when the input is applied at
n =0 to an initially relaxed system and is
the steady-state response:
Ysr[n]=H(el®)elen

Copyright © 2005, S. K. Mitra

60

10



Response to a Causal
Exponential Sequence

» The second term on the RHS is called the
transient response:
Yir[n]= —( Yo hik]e Jek Jej‘””
k=n+1
» To determine the effect of the above term
on the total output response, we observe
el =] Sohikle- 0 < Sk < $hikg
k=0

61 k=n+1 k=n+1
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Response to a Causal
Exponential Sequence
 For a causal, stable LTI lIR discrete-time
system, h[n] is absolutely summable
« As a result, the transient response Yy [n] is a
bounded sequence
e Moreover, as n — «,
Zokoznﬂ‘h[k]‘ -0
and hence, the transient response decays to
zero as n gets very large
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Response to a Causal
Exponential Sequence

 For acausal FIR LTI discrete-time system
with an impulse response h[n] of length
N+1, h[n]=0forn>N

 Hence, y; [n]=0forn>N -1

» Here the output reaches the steady-state
value ys [n]=H (e!®)e)®"atn=N

63
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The Concept of Filtering

» One application of an LTI discrete-time
system is to pass certain frequency
components in an input sequence without
any distortion (if possible) and to block
other frequency components

 Such systems are called digital filters and
one of the main subjects of discussion in
this course
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The Concept of Filtering

 The key to the filtering process is
T A A
x[n] = Zin [X(e')e!"dw

* It expresses an arbitrary input as a linear
weighted sum of an infinite number of
exponential sequences, or equivalently, as a
linear weighted sum of sinusoidal sequences

65
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The Concept of Filtering

Thus, by appropriately choosing the values
of the magnitude function ‘H (eJ“’)‘ of the
LTI digital filter at frequencies
corresponding to the frequencies of the
sinusoidal components of the input, some of
these components can be selectively heavily
attenuated or filtered with respect to the
others
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The Concept of Filtering

» To understand the mechanism behind the
design of frequency-selective filters,
consider a real-coefficient LTI discrete-time
system characterized by a magnitude
function

- 1L |o<o
J =~ C
‘H(e w)“{o, o <0<

67
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The Concept of Filtering

* We apply an input
X[n]= Acosayn+ Bcosw,n, O<op<me<wy<m
to this system
 Because of linearity, the output of this
system is of the form
y[n] = AlH (1) cos(wyn + 6(cay))

+ B‘H (elo2 )‘cos(wzn +6(,))
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The Concept of Filtering

* As
H(elor) =1, H(el®2) =0
the output reduces to
yIn]= AlH (eJ1) cos(eyn + 0(wy))
 Thus, the system acts like a lowpass filter

* In the following example, we consider the
design of a very simple digital filter

69

Copyright © 2005, S. K. Mitra

The Concept of Filtering

» Example - The input consists of a sum of two
sinusoidal sequences of angular frequencies
0.1 rad/sample and 0.4 rad/sample

» We need to design a highpass filter that will
pass the high-frequency component of the
input but block the low-frequency component

* For simplicity, assume the filter to be an FIR
filter of length 3 with an impulse response:
h[0]=h[2]=a,  h[1]=5

70
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The Concept of Filtering

The convolution sum description of this

filter is then given by

y[n]=h[0]x[n]+ h[L]x[n-1]+ h[2]x[n-2]
=ax[n]+px[n-1+ax[n-2]

y[n] and x[n] are, respectively, the output
and the input sequences

Design Objective: Choose suitable values
of o and B so that the output is a sinusoidal
sequence with a frequency 0.4 rad/sample
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The Concept of Filtering

* Now, the frequency response of the FIR
filter is given by
H (ei®) = h[0]+ h[1]e I® + h[2]e~12®
=o(l+e120) 4 pe-io

gloye-lo) . -
_ 20{2};—1& pe-io

= (20.cos 0+ p)e~I®

72
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The Concept of Filtering

e The magnitudg and phase functions are
H (e1®) = 20.cosw+ B
0(w) =—w

* In order to block the low-frequency
component, the magnitude function at
o = 0.1 should be equal to zero

* Likewise, to pass the high-frequency
component, the magnitude function at

® = 0.4 should be equal to one
73
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The Concept of Filtering

» Thus, the two conditions that must be

satisfied are
H(e1%%) = 2a.c0s(0.1) +B =0

‘H (eio-“)‘ =20.c0s(0.4)+p =1

* Solving the above two equations we get

o =—6.76195
B =13.456335
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The Concept of Filtering

 Thus the output-input relation of the FIR
filter is given by
y[n]=—-6.76195(x[n]+ X[n — 2])+13.456335x[n —1]
where the input is
X[n] ={cos(0.1n) + cos(0.4n) }u[n]
* Program 3_3.m can be used to verify the
filtering action of the above system

75
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The Concept of Filtering

« Figure below shows the plots generated by

running this program

e

40 100
Time index n
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The Concept of Filtering

* The first seven samples of the output are
shown below

n cos(0.lm) cos(l.4n) x[n] ¥[n]

0 1.0 1.0 20 =13.52390

1 09950041 09210609 1.9160652 13.956333

09800665 1.6767733 09210616

0.9553364 1.3176942 06967064

. 0.8918614 0.3623572
k. 25 4161468  0.4614357 —0.0292002

6 0.8253356 0.7373937  0.0879419 0.4161467
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The Concept of Filtering

From this table, it can be seen that,
neglecting the least significant digit,
y[n]=cos(0.4(n-1)) forn>2
Computation of the present value of the
output requires the knowledge of the
present and two previous input samples
Hence, the first two output samples, y[0]
and y[1], are the result of assumed zero
input sample values at n=-1and n=-2
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The Concept of Filtering

 Therefore, first two output samples
constitute the transient part of the output

Since the impulse response is of length 3,
the steady-state is reached atn =N =2

Note also that the output is delayed version
of the high-frequency component cos(0.4n)
of the input, and the delay is one sample
period
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Phase Delay

o If the input x[n] to an LTI system H (ej°°°)
is a sinusoidal signal of frequency
X[n]= Acos(wgn+¢), —co<n<o
* Then, the output y[n] is also a sinusoidal
signal of the same frequency ®, but lagging
in phase by 6(w,) radians:
y[n]= A‘ H (el )‘ cos(woN + 0(w,) + 0),
—0<N<oo
80
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Phase Delay

» We can rewrite the output expression as

cos(o)0 (n ~Tp (wg)+ ¢))

1Tp(mo) = _6(0(:)0)

yInl= AH ()

where

is called the phase delay

e The minus sign in front indicates phase lag
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Phase Delay

 Thus, the output y[n] is a time-delayed
version of the input x[n]

* In general, y[n] will not be delayed replica
of x[n] unless the phase delay tp(w,) is an
integer

==) Phase delay has a physical meaning only
with respect to the underlying continuous-

time functions associated with y[n] and x[n]
82
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Group Delay

* When the input is composed of many

sinusoidal components with different
frequencies that are not harmonically
related, each component will go through
different phase delays

* In this case, the signal delay is determined

using the group delay defined by
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Group Delay

« In defning the group delay, it is assumed
that the phase function is unwrapped so that
its derivatives exist

» Group delay also has a physical meaning
only with respect to the underlying
continuous-time functions associated with
y[n] and x[n]

84
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Phase and Group Delays

« A graphical comparison of the two types of
delays are indicated below

0()

Group delay

85
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Phase and Group Delays

Example - The phase function of the FIR
filter y[n]=ax[n]+ SX[n-1]+a x[n-2]
is 0(w)=-w

Hence its group delay is given by 14 (0) =1
verifying the result obtained earlier by
simulation
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Phase and Group Delays
» Example - For the M-point moving-average

i b= [U/M. 0Sn<M -1
-1 0, otherwise
the phase function is

o= 5, 2

+
2 M
 Hence its group delay is
Tg(0) ="+

87
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Phase and Group Delays

Physical significance of the two delays are
better understood by examining the
continuous-time case
Consider an LTI continuous-time system
with a frequency response

Ha (iQ) =[Ha (jQ)je %
and excited by a narrow-band amplitude
modulated continuous-time signal

X (t) = a(t) cos(Qt)
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Phase and Group Delays

* a(t) is a lowpass modulating signal with a
band-limited continuous-time Fourier
transform given by

AGD)|=0, >0,
and cos(€.t) is the high-frequency carrier
signal

89
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Phase and Group Delays

We assume that in the frequency range

Q. —Q, <|Q < Q¢ +Q, the frequency

response of the continuous-time system has

a constant magnitude and a linear phase:
‘Ha(jQ)‘ =‘Ha(ch)‘

02(2) = 0,(Qc) — (@ Q) 2D (Q)L%
=07, Q)+ (Q- Qc)rg e
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Phase and Group Delays

* Now, the CTFT of x,(t) is given by

. 1 . .
Xa(JQ) = (AUIQ+Qc]) + A(IQ- Q1))

* Also, because of the band-limiting
constraint X, (jQ) = 0 outside the frequency
range Q¢ —Qq <[Q < Q¢ +Q

91
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Phase and Group Delays

* As aresult, the output response y, (t) of the

LTI continuous-time system is given by
Ya(t) =alt— 74 (Qc) Joos Qg (t -1, ()

assuming |H,(jQ.)=1

* As can be seen from the above equation, the
group delay t4(€) is precisely the delay of
the envelope a(t) of the input signal X, (t) ,
whereas, the phase delay 7, (€2) is the
delay of the carrier
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Phase and Group Delays

 The figure below illustrates the effects of
the two delays on an amplitude modulated
sinusoidal signal

| Amplitude

/ o % T 1 phasedelay
Group delay 2 \

93 N Time 1
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Phase and Group Delays

» The waveform of the underlying
continuous-time output shows distortion
when the group delay is not constant over
the bandwidth of the modulated signal

« If the distortion is unacceptable, an allpass
delay equalizer is usually cascaded with the
LTI system so that the overall group delay
is approximately linear over the frequency
range of interest while keeping the
magnitude response of the original LTI
system unchanged
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Phase Delay Computation
Using MATLAB
* Phase delay can be computed using the
function phasedelay

* Figure below shows the phase delay of the
DTFT 0.1367(1—¢~12)
1-0.5335¢71¢ 40,7265~ 12¢

of
50 F_/\

-100

H(el*) =

samples

Phase delay,

95 o 0z 04 06 08 1
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Group Delay Computation
Using MATLAB

 Group delay can be computed using the

function grpdelay

« Figure below shows the group delay of the

0.1367(1—e”129)

DTFT H(ej“)): - —
1-0.5335¢1° +0.7265¢ ™!

Group delay, samples
@ s e
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