Discrete Fourier Transform

« Definition - The simplest relation between a
length-N sequence x[n], defined for
0<n<N-1,andits DTFT X(e!*) is
obtained by uniformly sampling X (e!®) on
the w-axis between 0< @ < 27 at oy = 2nk/N,
0<k<N-1

From the definition of the DTFT we thus have

. N-1 .
XTk]= X(e/® _ —jann/N,
(=X = snle

0<k<N-1
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Discrete Fourier Transform

» Note: X[K] is also a length-N sequence in
the frequency domain

» The sequence X[K] is called the discrete
Fourier transform (DFT) of the sequence

x[n]
« Using the notation Wy, =e ™2™/ the DFT
is usually expressed as:
N-1
X[k]= ¥ x[n]W\", 0<k <N -1
n=0
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Discrete Fourier Transform

The inverse discrete Fourier transform
(IDFT) is given by

x[n]_— z X[k]W‘k" 0<n<N-1

To verify the above expression we multiply
both sides of the above equation by W,["
and sum the result fromn=0to n=N -1
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Discrete Fourier Transform

resulting in
N-1 i N2l Nt )
Sx[NWN =20 = D) XKW Wy
n=0 n=0\ N k=0
N-IN-1
L 3 X[k kon
n=| Ok 0
1 NG —(k—¢
N, Z Z X [k W =on
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Discrete Fourier Transform

. Making use of the identity
N- = integer
—(k=0n _ N, for k—¢=rN, I aninteg
nzow {O otherwise
we observe that the RHS of the last
equation is equal to X [¢]
e Hence 4

3 X[WE" = X[4]
n=0
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Discrete Fourier Transform

» Example - Consider the length-N sequence

il n=0
X[”]‘{o, 1<n<N-1

* Its N-point DFT is given by
N-1 . .
X[kl= Y x[n]Wy" = x[0Wy =1

n=0
0<k<N-1
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Discrete Fourier Transform
» Example - Consider the length-N sequence
L n=m
yinl= 0, 0<sn<m-1Lm+1<n<N-1
* Its N-point DFT is given by
N-1
YIkl= 3 yinWg" = yimwy™ =Wy

n=0
0<k<N-1
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Discrete Fourier Transform

» Example - Consider the length-N sequence
defined for 0<n<N -1
g[n]=cos(2xrn/N), 0<r<N-1

« Using a trigonometric identity we can write
gln]= %(ej2nrn/N +e—j2nm/N]
= %(WIQ’" + W,C"]
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Discrete Fourier Transform

» The N-point DFT of g[n] is thus given by

N-1 “
Glk]l= 2. glnWy

n=0
N-1 N-1
Z;( S W r-on Ly Wf&nk)n)
n=0 n=0
0<k<N-1
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Discrete Fourier Transform

» Making use of the identity

Nz—:lw_(k_/{)n _{N’for k—¢=rN, r aninteger
5 =

0, otherwise
n=0
we get
N/2, fork=r
Glk]=<N/2, fork=N-r
0, otherwise
0<k<N-1

10
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Matrix Relations
e The DFT samples defined by

N-1
X[k]= ¥ x[n]W\", 0<k<N-1
n=0

can be expressed in matrix form as
X=Dpx
where
X=[X[0] X[] - X[N-1]]"
X=[x[0] X[1] - [N —1]]"
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Matrix Relations

and Dy is the N x N DFT matrix given by

11 L e L

1 W wg o wiv P
Dy=|1 W wy e wiND

, N-1 2N-D) N-1)2

1w wgND W (D

12
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Matrix Relations

o Likewise, the IDFT relation given by
| N2 L
x[n]=ﬁ > X[k]WN ,0<n<N-1
k=0

can be expressed in matrix form as
x=DyX
where Dy is the N x N IDFT matrix
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Matrix Relations

where
1 1 1 1
-1 -2 —~(N-1
1 Wy Wy e WD
Dr_\l1= 1 W’\—Iz W|\T4 ) WI\TZ(N—I)
' ~(N-1 _2(N-1 . ~(N-1)2
1 WN( ) WN (N-1) . WN( )
e Note: 1
D=~ Dy
N =N

14
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DFT Computation Using
MATLAB

 The functions to compute the DFT and the

IDFT are £ft and i fft

» These functions make use of FFT

algorithms which are computationally
highly efficient compared to the direct
computation

e Programs 5_1.mand 5_2.m illustrate the

use of these functions
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DFT Computation Using

MATLAB

o Example - Program 5_3.m can be used to
compute the DFT and the DTFT of the
sequence

X[n]=cos(6nn/16), 0<n<15
as shown below

o indicates DFT samples

Magnitude

8
6)
4
2|

16 02 04 0.6 08 1
Normalized angular frequency
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DTFT from DFT by
Interpolation

* The N-point DFT X[K] of a length-N

sequence x[n] is simply the frequency
samples of its DTFT X (e!®) evaluated at N
uniformly spaced frequency points

o=, =2nk/N, 0<k<N-1

* Given the N-point DFT X[k] of a length-N

sequence x[n], its DTFT X (e') can be
uniquely determined from X[k]
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DTFT from DFT by
Interpolation
e Thus
. N-1 .
X(e¥*®)= Y x[n]e” 1"
n=0

N-1 N-1 .
= L xtawgr e
n=0LN k=0

_1 Nz‘lx [k]Nz‘le—j(m—znk/ N)n
N k=0 n=0

=
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DTFT from DFT by
Interpolation

» To develop a compact expression for the
sum 'S, let
r=
* Then S=yNGr"
» From the above
rS=yN r" =14+ 3N+ N 1

=yNA N _1=s4+rN

= i(@=27k/N)

19
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DTFT from DFT by
Interpolation
* Or, equivalently,
S—rS=(@1-r)S=1-rN

e Hence )
1_rN 1_e*j(0JN*2TCk)

T lor e llo-(2nk/N)]

. ((nN —ZTckj
_ g~ Il@=27k/ N)II(N-1)/2]

Sin
_\ 2 )
(mN 2nkj
sin| ———
2N
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DTFT from DFT by
Interpolation
* Therefore

X (e1®)

. (oN —27k
Nt sinf ———— )
X[K] 2 .~ Il(@-2nk/N)I[(N-1)/2]

k=0 Sin(mN —Zﬁkj
2N

Z\r—\

21
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Sampling the DTFT

 Consider a sequence x[n] with a DTFT X (ej‘”)

» We sample X (e!®)at N equally spaced points
oy =27nk/ N, 0<k <N —1developing the N
frequency samples {X (e’“¢)}

e These N frequency samples can be
considered as an N-point DFT Y[k] whose N-
point IDFT is a length-N sequence y[n]
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Sampling the DTFT

X(el)= Tx[1e

{=—o0

e Thus Y[k]= x(ejmk)= X(ejZTtk/N)

e Now

_ %X[f]esznkzm

{=—0

* An IDFT of Y[k] yields
1 N-1 —n
y[n]=—= % Y[k]Wy
N k=0
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= IXAW
f=—0
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Sampling the DTFT

N-1 o
.ie _1 P2 3 XIAWE Wik
k 0 /=—0

ZX[£]|: ZW k(n— f):|

—00
. Making use of the |dent|ty
—k(n-ry _ |1 forr=n+mN
N Z Wi {O, otherwise
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Sampling the DTFT

we arrive at the desired relation

yinl= > x(n+mN], 0<n<N-1
m=—o0
 Thus y[n] is obtained from x[n] by adding
an infinite number of shifted replicas of
x[n], with each replica shifted by an integer
multiple of N sampling instants, and

observing the sum only for the interval

0<n<N-1
25
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Sampling the DTFT
e To apply
y[n]= ix[n+mN], 0<n<N-1

m=—o0
to finite-length sequences, we assume that
the samples outside the specified range are
Zeros

e Thus if x[n] is a length-M sequence with
M <N, theny[n] =x[n] for 0<n<N -1

26
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Sampling the DTFT

o If M >N, there is a time-domain aliasing of
samples of x[n] in generating y[n], and x[n]
cannot be recovered from y[n]

e Example - Let{x[n]}={0 1 2 3 4 5}
T

+ By sampling its DTFT X (e!?) at o, =2nk/4,
0 <k <3and then applying a 4-point IDFT to
these samples, we arrive at the sequence y[n]
given by

27
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Sampling the DTFT

y[n]=x[n]+x[n+4]+x[n—-4],0<n<3

" e =14 6 2 3

‘ {x[n]} cannot be recovered from {y[n]}

28
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Numerical Computation of the
DTFT Using the DFT

* A practical approach to the numerical
computation of the DTFT of a finite-length
sequence

« Let X (e!®) be the DTFT of a length-N
sequence x[n]

« We wish to evaluate X (') at a dense grid
of frequencies @, =2nk/M, 0<k <M -1,
where M >> N:

29
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Numerical Computation of the

DTFT Using the DFT
X (e)) = '\lz_lx[n]e‘j‘"kn = Nz_lx[n]e‘jznk"”‘"
n=0 n=0

 Define a new sequence
X[n], 0<n<N-1
Xe[n]=
0, N<n<M-1
e Then

. M-1 .
[0 —j2mnkn/M
X(@*)= % x,[nle”’
30 n=0
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Numerical Computation of the
DTFT Using the DFT

* Thus X (e1*)is essentially an M-point DFT
Xe[K] of the length-M sequence X,[n]

» The DFT X,[k] can be computed very
efficiently using the FFT algorithm if M is
an integer power of 2

» The function fregz employs this approach
to evaluate the frequency response at a
prescribed set of frequencies of a DTFT
expressed as a rational function in e~
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DFT Properties

* Like the DTFT, the DFT also satisfies a
number of properties that are useful in
signal processing applications

» Some of these properties are essentially
identical to those of the DTFT, while some
others are somewhat different

» A summary of the DFT properties are given
in tables in the following slides

Table 5.1: DFT Properties:
Symmetry Relations

Length-N Sequence

N-point DFT

" of X[k]. respectively
S @ cComplex SeqUENCe  copyright © 2008, s. K. Mitra

% Ci ht © 2005, S.
Table 5.2: DFT Properties:
Symmetry Relations
“:n.ulh-.\ Slulul'nfe : ::.;jlmm']; -
34 N

x[n] is a real sequence
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Table 5.3: General Properties
of DFT

Type of Property Length-N Sequence Nepoint DFT

ln] GIK)
Al HIk)

alGlk] + BH(E]
Wi Gk ]
Gk = kalw]
Nel(-kinl
GlE# (k]

y M=t
¥ E Glm)H [k —m)y]
=

N=1 N-1
-~ 3 1 3
Parseval's relation efa]l* = — [
Parseval's relation 3 latalt = 5 3 UKL
LE k=0
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Circular Shift of a Sequence

* This property is analogous to the time-
shifting property of the DTFT as given in
Table 3.4, but with a subtle difference

 Consider length-N sequences defined for
0<n<N-1
» Sample values of such sequences are equal
to zero for valuesof n<0andn=N
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Circular Shift of a Sequence

« If x[n] is such a sequence, then for any
arbitrary integer n,, the shifted sequence
X [N]=X[N—ny]
is no longer defined for the range0<n< N -1
» We thus need to define another type of a

shift that will always keep the shifted
sequence intherange0<n<N -1

37
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Circular Shift of a Sequence

The desired shift, called the circular shift,

is defined using a modulo operation:
Xe[n]=Xx[(n—ny)n ]

For n, >0 (right circular shift), the above

equation implies

x.[]= X[n—ny], forny,<n<N-1
C XN =ny +n], forO<n<n,
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Circular Shift of a Sequence

« |llustration of the concept of a circular shift

[

dellll o Llllel,
x[n] X(n—1)g] XL(n - 4)5]
—X(n+5)] = x(n+2)g]

39
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Circular Shift of a Sequence

As can be seen from the previous figure, a
right circular shift by n, is equivalent to a
left circular shift by N —n, sample periods

A circular shift by an integer number n,
greater than N is equivalent to a circular
shiftby (ny)n

Copyright © 2005, S. K. Mitra

Circular Convolution

* This operation is analogous to linear
convolution, but with a subtle difference

 Consider two length-N sequences, g[n] and
h[n], respectively

 Their linear convolution results in a length-
(2N —1)sequence y, [n]given by

N-1
y [nl= > glmlh[n—-m], 0<n<2N-2
4 -0
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Circular Convolution

In computing y, [n]we have assumed that
both length-N sequences have been zero-
padded to extend their lengths to 2N -1

The longer form of y [n] results from the
time-reversal of the sequence h[n] and its
linear shift to the right

The first nonzero value of y_[n] is
y [0]= g[0]h[0], and the last nonzero value
is y_[2N —2]=g[N —1]h[N —1]
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Circular Convolution

» To develop a convolution-like operation
resulting in a length-N sequence yc[n], we
need to define a circular time-reversal, and
then apply a circular time-shift

* Resulting operation, called a circular
convolution, is defined by

ye[n]= Ng_:g[m]h[<n—m>N], 0<n<N-1

43
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Circular Convolution

« Since the operation defined involves two
length-N sequences, it is often referred to as
an N-point circular convolution, denoted as

y[n] = g[nj@h[n]

* The circular convolution is commutative,

i.e.
g[nl®@h[n] = h[n]®g[n]
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Circular Convolution

» Example - Determine the 4-point circular
convolution of the two length-4 sequences:

{gln}=1 2 0 1}, fhin)}={2 2 1 1}
T T

as sketched below

T L

12 3

45
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Circular Convolution

* The result is a length-4 sequence y[n]
given by

Y] = g @h[n] = 3. glmlhL(n - m,],

m=0
0<n<3
* From the above we observe

Yool Solmlhi-m).]

= g[0]h[0] + g[]h[3] + g[2]h[2] + g[3]h([1]
=(1x2)+(2xD)+(0x1)+(Ax2)=6
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Circular Convolution
+ Likewise yc[t]= ¥ g[mIh[d-m),]
m=0

= g[0]h[1]+ g[1]h[0]+ g[2]h[3]+ g[3]h[2]
=(x2)+(2x2)+(0x1) +(Ax1) =7

yc[2]=m§:Og[m1h[<2—m>4]

= g[01h[2]+ g[1]h[1]+ g[2]h[0]+ g[3]h[3]
=(1Ix1) +(2x2)+(0x2) + (1x1) =6

47
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Circular Convolution

and
ycl3l= mgog[ml h[(3—m),]

= g[0]h[3]+ g[1]h[2]+ g[2]h[1] + g[3]h[O]
=(1x1)+(2x1)+(0x2)+(Ax2)=5

0

ye[n]

¢ The circular convoIUt\ion can also be
computed using a DFT-based approach as
indicated in Table 5.3
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Circular Convolution

» Example - Consider the two length-4
sequences repeated below for convenience:

1" The”

12 01

» The 4-point DFT G[k] of g[n] is given by
GIk]=g[0] + g[je 27/
. g[z]e—j47zk/4 + 9[3]e—j67rk/4
=142 7K/2 4 o7 137K/2 gy <3

49
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Circular Convolution

e Therefore G[0]=1+2+1=4,
Gll]=1-j2+j=1-],
G[2]=1-2-1=-2,
G[3]=1+j2—-j=1+]

* Likewise,
H[K] = h[0]+ h[1]e”127k/4
+h[2]efl4”k/4+h[3]6716”k/4
=24 2e717KI2  gink | o=J37KI2 g <) <3

Copyright © 2005, S. K. Mitra

50

Circular Convolution

e Hence, H[0]=2+2+1+1=6,
Hl]=2-j2-1+ j=1—]j,
H[2]=2-2+1-1=0,
H[3]=2+j2-1-j=1+]

 The two 4-point DFTs can also be

computed using the matrix relation given
earlier

51
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Circular Convolution

Circular Convolution

¢ If Yc[k] denotes the 4-point DFT of yc[n]
then from Table 3.5 we observe

Yc[k]=GIk]H[K], 0<k<3

e Thus
Yc[O]| [GIOIH[O] 24
Yelll |_| GIIHMI |_| - j2
Ycl[2]| | GI2]H[2] 0
Yc[31] | GI3IHI3] j2

53

Gloj]] [olof] 1 1 1 1T1] [ 4
Gl |_p |9 |_(1 -1 =1 J}2|_1-]
Gl2]|” "4 g[21| |1 -1 1 -1]0|"|-2
G[3] ] | 9[3] 1 j -1 -j|1 1+
H[O]] o] 11 1 1702 6
HIU | _p (hitl |1 -0 -1 j|2|_|1-]
H[2] 4h21 11 -1 1 -11 0
H[3] | h@E]] (1§ -1 -] [1+]
s, Dy lis the 4-point DFT matrix 7
Circular Convolution
* A 4-point IDFT of Y [Kk] yields
yc 0] Yc (0]
Yelll| _1 s Yelll
yel21| 4 4 Yel2]
yc 3] Ycl[3]
1 1 1 17 24 6
R I S e VA
T4l -1 1 -1 0 6
1 —-j -1 j| j2 5

54
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Circular Convolution

» Example - Now let us extended the two
length-4 sequences to length 7 by
appending each with three zero-valued
samples, i.e.

_Jg[n], 0<n<3
ge[”]‘{ 0, 4<n<6

_[h[n], 0<n<3
he[”]‘{ 0, 4<n<6
55
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Circular Convolution

» We next determine the 7-point circular
convolution of ge[n]and hy[n]:

¥irl= Salmihln-m;], 0<ns<s
» From the above y[0]= g,[0]h.[0]+ gc[1lh.[6]
+ 0el3lhe[4]+ ge[41Ne [3]+ e [SIhe [2]+ ge [6]1Ne [1]
=g[0]h[0]=1%x2=2
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Circular Convolution

 Continuing the process we arrive at
y[1]= g[0]h[1]+ g[1]h[0] = (1x 2) +(2x 2) = 6,
y[2]= g[0]h[2]+ g[1]h[1]+ g[2]h[O]
=(Ix1)+(2x2)+(0x2)=5,
y[3]= g[0]h[3]+ g[1]h[2]+ g[2]h[1] + g[3]h[O]
=(AxD)+(2x1) +(0x2)+(1x2) =5,

y[4]=g[1]h[3]+ g[2]h[2]+ g[3]h[1]
57 =(2xD)+(0x1)+(Ax2)=4,
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Circular Convolution
y[51= g[2]h[3]+ g[3]n[2] = (0x1) +(Ix1) =1,
y[6]=g[3]h[3]=(1x1)=1
 As can be seen from the above that y[n] is

precisely the sequence Yy, [n]obtained by a
linear convolution of g[n] and h[n]

yL[n]

58
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Circular Convolution

e The N-point circular convolution can be
written in matrix form as

yc[0] h[0] h[N-1] h[N-2] -- h@1 glo]
yelll h[1] h[0]  h[N-1] --- h[2]| o[l]
yel2l |=| h2l b hiO] - b3 gl2]

yo[N-11| [h[N-1] h[N-2] h[N-3] - h[0] ]| g[N-1]

* Note: The elements of each diagonal of the
N x N matrix are equal

¢ Such a matrix is called a circulant matrix

59
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Circular Convolution

 Tabular Method
» We illustrate the method by an example

* Consider the evaluation of y[n]=h[n]® g[n]
where {g[n]} and {h[n]} are length-4
sequences

* First, the samples of the two sequences are
multiplied using the conventional
multiplication method as shown on the next
slide

60
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Circular Convolution

n: 1 2 3 4) , (5)4 (6)4
g[nl:  9[0] g[1] g[2] q[3 N N N
hin]  h{0] il h2] h(3

g[0]Jh[0] g[1Ih[0] g[2]h[0] g[3]n[0]

— g[o]h[1] g[ih[1]  g[2]n[1] ~QI3MIIL:
— < g[olh[2] g[1]h[2] |:G[2Th[2T: 9{3]h[2l7,‘_ L
g[0]h[3] |l TIR[31: G 2Hh3E Aal3ThI3L:

The partial products generated in the 2nd, 31 and 4% rows
are circularly shifted to the left as indicated above
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Circular Convolution

» The modified table after circular shifting is
shown below

n: 0 1 2 3

glnl  g[o0] g[1] 9[2] 93]

h[n]: h[0] h[1] h[2] h[3]
g[oTh[0] g[1In[0] g[2]n[0] g[3]h[0]

g[3]1h[1] g[olh[1] g[1]nh[1] g[2]h[1]

gl2]h[2] g[3]h[2] g[0]h[2] g[1]n[2]
g[11h(3] gl21h[3] g[3]h[3] g[0]h[3]

yelnI ycl0] yelll yel2] yc[3]
 The samples of the sequence{y.[n]} are

obtained by adding the 4 partial products in
the column above of each sample
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Circular Convolution
e Thus
Yc[0]= g[0]n[0] + g[3]h[1]+ g[2]h[2] + g[1]h[3]
ye[1l= g[1]n[0]+ g[0]h[1] + g[3]h[2]+ g[2]h(3]
Ye[2]= g[2]h[0] + g[1]n[1] + g[O]h[2] + g[3]h([3]
Yc[3]1= g[3]n[0]+ g[2]h[1] + g[1]h[2] + g[O]h[3]
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