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Least IntegralLeast Integral--Squared Error Squared Error 
Design of FIR FiltersDesign of FIR Filters

• Let                denote the desired frequency 
response

• Since               is a periodic function of       
with a period       , it can be expressed as a 
Fourier series

where
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Least IntegralLeast Integral--Squared Error Squared Error 
Design of FIR FiltersDesign of FIR Filters

• In general,               is piecewise constant 
with sharp transitions between bands

• In which case,             is of infinite length 
and noncausal

• Objective - Find a finite-duration               
of length 2M+1 whose DTFT             
approximates the desired DTFT                in 
some sense
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Least IntegralLeast Integral--Squared Error Squared Error 
Design of FIR FiltersDesign of FIR Filters

• Commonly used approximation criterion -
Minimize the integral-squared error

where
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Least IntegralLeast Integral--Squared Error Squared Error 
Design of FIR FiltersDesign of FIR Filters

• Using Parseval’s relation we can write

• It follows from the above that       is  
minimum when                      for

• Best finite-length approximation to ideal 
infinite-length impulse response in the 
mean-square sense is obtained by truncation

∑ −=Φ
∞

−∞=n
dt nhnh 2][][

∑ ∑++∑ −=
−−

−∞=

∞

+=−=

1

1

222 ][][][][
M

n Mn
dd

M

Mn
dt nhnhnhnh

Φ
][][ nhnh dt = MnM ≤≤−

⇒

5
Copyright © 2005, S. K. Mitra

Least IntegralLeast Integral--Squared Error Squared Error 
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• A causal FIR filter with an impulse response 
h[n] can be derived from          by delaying:

• The causal FIR filter h[n] has the same 
magnitude response as          and its phase 
response has a linear phase shift of           
radians with respect to that of
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Impulse Responses of Ideal Impulse Responses of Ideal 
FiltersFilters

• Ideal lowpass filter -

• Ideal highpass filter -
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Impulse Responses of Ideal Impulse Responses of Ideal 
FiltersFilters

• Ideal bandpass filter -
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Impulse Responses of Ideal Impulse Responses of Ideal 
FiltersFilters

• Ideal bandstop filter -
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Impulse Responses of Ideal Impulse Responses of Ideal 
FiltersFilters

• Ideal multiband filter -
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Impulse Responses of Ideal Impulse Responses of Ideal 
FiltersFilters

• Ideal discrete-time Hilbert transformer -
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Impulse Responses of Ideal Impulse Responses of Ideal 
FiltersFilters

• Ideal discrete-time differentiator -
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Gibbs PhenomenonGibbs Phenomenon
• Gibbs phenomenon - Oscillatory behavior in 

the magnitude responses of causal FIR filters 
obtained by truncating the impulse response 
coefficients of ideal filters
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Gibbs PhenomenonGibbs Phenomenon
• As can be seen, as the length of the lowpass

filter is increased, the number of ripples in 
both passband and stopband increases, with 
a corresponding decrease in the ripple 
widths

• Height of the largest ripples remain the 
same independent of length

• Similar oscillatory behavior observed in the 
magnitude responses of the truncated 
versions of other types of ideal filters 14
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Gibbs PhenomenonGibbs Phenomenon
• Gibbs phenomenon can be explained by 

treating the truncation operation as an 
windowing operation:

• In the frequency domain

• where               and              are the DTFTs
of         and         , respectively
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Gibbs PhenomenonGibbs Phenomenon
• Thus               is obtained by a periodic 

continuous convolution of                with
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Gibbs PhenomenonGibbs Phenomenon

• If              is a very narrow pulse centered at 
(ideally a delta function) compared to 

variations in               , then               will 
approximate                very closely

• Length 2M+1 of w[n] should be very large
• On the other hand, length 2M+1 of         

should be as small as possible to reduce 
computational complexity
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Gibbs PhenomenonGibbs Phenomenon
• A rectangular window is used to achieve 

simple truncation:

• Presence of oscillatory behavior in              
is basically due to:
– 1)             is infinitely long and not absolutely 

summable, and hence filter is unstable
– 2)  Rectangular window has an abrupt transition 

to zero
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Gibbs PhenomenonGibbs Phenomenon
• Oscillatory behavior can be explained by 

examining the DTFT                of           :

• has a main lobe centered at
• Other ripples are called sidelobes
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Gibbs PhenomenonGibbs Phenomenon
• Main lobe of                  characterized by its 

width                     defined by first zero 
crossings on both sides of

• As M increases, width of main lobe 
decreases as desired

• Area under each lobe remains constant 
while width of each lobe decreases with an 
increase in M

• Ripples in                around the point of 
discontinuity occur more closely but with 
no decrease in amplitude as M increases
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Gibbs PhenomenonGibbs Phenomenon
• Rectangular window has an abrupt transition 

to zero outside the range                      , which 
results in Gibbs phenomenon in

• Gibbs phenomenon can be reduced either:
(1) Using a window that tapers smoothly to 
zero at each end, or
(2) Providing a smooth transition from 
passband to stopband in the magnitude 
specifications
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