z-Transform

The DTFT provides a frequency-domain
representation of discrete-time signals and
LTI discrete-time systems

Because of the convergence condition, in
many cases, the DTFT of a sequence may
not exist

As a result, it is not possible to make use of
such frequency-domain characterization in
these cases
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z-Transform
* A generalization of the DTFT defined by
X(el*)= ¥ xinle "
N=—o0
leads to the z-transform

« z-transform may exist for many sequences
for which the DTFT does not exist

» Moreover, use of z-transform techniques
permits simple algebraic manipulations
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z-Transform

Consequently, z-transform has become an
important tool in the analysis and design of
digital filters

For a given sequence g[n], its z-transform
G(2) is defined as

G(z)= Ygnz"

N=—c0
where z = Re(z) + jim(z) is a complex
variable
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z-Transform

Ifweletz=r ej‘”, then the z-transform
reduces to

G(rel®) = § g[n]r e en
N=—o0
The above can be interpreted as the DTFT
of the modified sequence {g[n]r "}
Forr=1(i.e., |z| = 1), z-transform reduces
to its DTFT, provided the latter exists
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z-Transform
The contour |z| = 1 is a circle in the z-plane
of unity radius and is called the unit circle

Like the DTFT, there are conditions on the
convergence of the infinite series
> glnjz™"
N=—0
For a given sequence, the set R of values of
z for which its z-transform converges is
called the region of convergence (ROC)
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z-Transform

e From our earlier discussion on the uniform
convergence of the DTFT, it follows that the
series

G(rel®)= S g[n]r"e N
N=—o0
converges if {g[n]r "} is absolutely
summable, i.e., if

o0

b

N=—c0

<00

glnir-

n ‘
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z-Transform

* In general, the ROC R of a z-transform of a
sequence g[n] is an annular region of the z-
plane:

Rg- <|z/<Rg+
where 0 <Rg- <Rg+ <o0

* Note: The z-transform is a form of a Laurent
series and is an analytic function at every
point in the ROC
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z-Transform

Example - Determine the z-transform X(z)
of the causal sequence x[n]=a."u[n] and its
ROC

Now X(z)= §a"p[n]z‘”=§oc”z‘”
n=0

N=—o0
The above power series converges to

X(z) =

. for ‘a z‘l‘ <1
l-az

ROC is the annular region |z| > |o/
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z-Transform

» Example - The z-transform p(z) of the unit
step sequence u[n] can be obtained from

X(z)= for ‘oc z‘l‘ <1

1-az
by setting a = 1.
1 ]
(2)=———, for|z <1l
: 1-z1 ‘ ‘
* ROC is the annular region 1<|z| < o

Copyright © 2005, S. K. Mitra

10

z-Transform

» Note: The unit step sequence p[n] is not
absolutely summable, and hence its DTFT
does not converge uniformly

Example - Consider the anti-causal
sequence

ylnl=-a"u[-n-1]
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z-Transform

* Its z-transform is given by

-1 ©
Y(2)= $-a"z""==Fa "z

n=—o m=1
-1 20 —-m_m 0(,712
=—a zyo z =- 3
m=0 l-0z
1 _
=, for ‘oc lz‘<1
l-az

« ROC is the annular region |z| <|a|

11 ) _
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z-Transform

¢ Note: The z-transforms of the two

sequences o"p[n] and —a"u[-n-1] are
identical even though the two parent
sequences are different

» Only way a unique sequence can be
associated with a z-transform is by
specifying its ROC
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z-Transform

« The DTFT G(e!®) of a sequence g[n]
converges uniformly if and only if the ROC
of the z-transform G(z) of g[n] includes the
unit circle

» The existence of the DTFT does not always
imply the existence of the z-transform

13
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z-Transform
» Example - The finite energy sequence

sinm.n
heplnl=""Fpm— —o<n<o

hasa DTFT given by
; 1, 0<lw<
HLP(er)={ of <

0, o<lo<n
which converges in the mean-square sense

14
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z-Transform

» However, h p[n] does not have a z-transform
as it is not absolutely summable for any value
of r

» Some commonly used z-transform pairs are
listed on the next slide

15 _
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Table 6.1: Commonly Used z-
Transform Pairs

Sequence z-Transform ROC

8n] 1 All values of z
] — lz] = 1

a uln) — HIER ]
I —az

1 = (reoswp)z™!
(r" cos wen)pln] —"11 |zl = r
1 = (2rcosawp)z=! +riz=2

; (r sinaw,)z ™!
(r" sinwgn)p[n] % lzl = r
1= (2rcosawg)z™! +rez™+

16
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Rational z-Transforms

* In the case of LTI discrete-time systems we
are concerned with in this course, all
pertinent z-transforms are rational functions
of 772

 That is, they are ratios of two polynomials
oL
inz™

M

P(2) _po+pyzt++pyaz M P+ pyz-
D(Z) dO+d12_l+""+delz_(N_l)+dN Z_N
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G(z)=

17

Rational z-Transforms

» The degree of the numerator polynomial
P(z) is M and the degree of the denominator
polynomial D(z) is N

 An alternate representation of a rational z-
transform is as a ratio of two polynomials in
z

M M-1
G(z)=zN-M) Poz~ + Pz~ "4+ PmaZt Pum
doZN +d12N_1+~--~+dN_1Z+dN
18
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Rational z-Transforms

* A rational z-transform can be alternately
written in factored form as

pOHyzl(l_sz_l)
do [T}, Az ™)
dOH?ﬂ(Z -4)
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G(z)=

19

Rational z-Transforms

» Ataroot z =¢, of the numerator polynomial
G(&,) =0, and as a result, these values of z
are known as the zeros of G(z)

 Ataroot z = 4, of the denominator
polynomial G(4,) — =, and as a result,

these values of z are known as the poles of
G(2)

20
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Rational z-Transforms
 Consider "
G(2y= 2N Polls(2=c)
donezl(z —2,[)
» Note G(z) has M finite zeros and N finite
poles
 |If N> M there are additional N —M zeros at
z =0 (the origin in the z-plane)
 If N < M there are additional M — N poles at
z=0

21 i
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Rational z-Transforms
» Example - The z-transform

1
H(Z)ZF’ for|z|>1

22
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Rational z-Transforms

A physical interpretation of the concepts of
poles and zeros can be given by plotting the
log-magnitude 20log;(|G(z)| as shown on
next slide for

1-24714+288272
1-0.8271+0.64272

G(z)=

23
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Rational z-Transforms

24 )
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Rational z-Transforms

 Observe that the magnitude plot exhibits
very large peaks around the points
z=0.4+ j0.6928 which are the poles of
G(2)

« |t also exhibits very narrow and deep wells
around the location of the zeros at
z=12+j12

25
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ROC of a Rational
z-Transform

* ROC of a z-transform is an important
concept

» Without the knowledge of the ROC, there is
no unique relationship between a sequence
and its z-transform

 Hence, the z-transform must always be
specified with its ROC

26
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ROC of a Rational
z-Transform

» Moreover, if the ROC of a z-transform
includes the unit circle, the DTFT of the
sequence is obtained by simply evaluating
the z-transform on the unit circle

 There is a relationship between the ROC of
the z-transform of the impulse response of a
causal LTI discrete-time system and its
BIBO stability

27 i
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ROC of a Rational
z-Transform
e The ROC of a rational z-transform is
bounded by the locations of its poles

 To understand the relationship between the
poles and the ROC, it is instructive to
examine the pole-zero plot of a z-transform

 Consider again the pole-zero plot of the z-
transform p(z)

28
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ROC of a Rational
z-Transform

12240
Repion of
cavergenie
Rez
\\ Polearz= |
Uaicircle

* In this plot, the ROC, shown as the shaded
area, is the region of the z-plane just outside
the circle centered at the origin and going
through the poleatz=1

29
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ROC of a Rational
z-Transform

« Example - The z-transform H(z) of the
sequence h[n]=(-0.6)"u[n] is given by

Ho=— - D, e |
1+0.62~ \
/>0.6 \-F\

Zeoatzel

 Here the ROC is just outside the circle
20 going through the point z=-0.6
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ROC of a Rational
z-Transform
A sequence can be one of the following
types: finite-length, right-sided, left-sided
and two-sided

* In general, the ROC depends on the type of
the sequence of interest

31
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ROC of a Rational
z-Transform

» Example - Consider a finite-length sequence
g[n] defined for —M <n< N, where M and
N are non-negative integers and |g[n] < o

e Its z-transform is given by

N N+M -M N+M-n
G(2)= Zg[n]z*"= o dIn ! 1z
n=-M z

Copyright © 2005, S. K. Mitra

ROC of a Rational
z-Transform

» Note: G(z) has M poles at z =00 and N poles
atz=0

* As can be seen from the expression for
G(2), the z-transform of a finite-length
bounded sequence converges everywhere in

the z-plane except possibly at z = 0 and/or at
Z=00

33
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ROC of a Rational
z-Transform

« Example - A right-sided sequence with
nonzero sample values for n>0 is
sometimes called a causal sequence

« Consider a causal sequence uy[n]
e Its z-transform is given by

Uy(2) = ioultn]z-"
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ROC of a Rational
z-Transform

* It can be shown that U (z) converges
exterior to a circle |z| = Ry, including the
point z =00

* On the other hand, a right-sided sequenceu,[n]
with nonzero sample values only for n>-M
with M nonnegative has a z-transform U, (z)
with M poles at z=o

» The ROC of U,(2) is exterior to a circle
|zl =R, excluding the point z = o

Copyright © 2005, S. K. Mitra
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ROC of a Rational
z-Transform

» Example - A left-sided sequence with
nonzero sample values forn<0 is
sometimes called a anticausal sequence

« Consider an anticausal sequence vy[n]
* Its z-transform is given by

0
Vi(z)= 2 w[n]z™"

N=—o0

Copyright © 2005, S. K. Mitra
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ROC of a Rational
z-Transform

It can be shown that V;(z) converges
interior to a circle |z|=Rs, including the
pointz=10

On the other hand, a left-sided sequence
with nonzero sample values only for n<N
with N nonnegative has a z-transform V,(z)
with N polesatz=0

The ROC of V,(z) is interior to a circle
|z]=Ry, excluding the point z =0
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ROC of a Rational
z-Transform

Example - The z-transform of a two-sided
sequence W[n] can be expressed as

0 ) -1
W(z)= Xwln]z™" = ZOVV[H]Z_" + 2wn]z™"

38

N=—00 N=—o0

The first term on the RHS, > w{n]z™",
can be interpreted as the z-transform of a
right-sided sequence and it thus converges
exterior to the circle |z|=Rs

Copyright © 2005, S. K. Mitra
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ROC of a Rational
z-Transform

The second term on the RHS,Z;LOOW[n]z‘",
can be interpreted as the z-transform of a left-
sided sequence and it thus converges interior
to the circle |z| = Rg

If Rg < Rg, there is an overlapping ROC
given by Rs <|z| < Rg

If Rg > Rg, there is no overlap and the
z-transform does not exist

Copyright © 2005, S. K. Mitra
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ROC of a Rational

z-Transform
Example - Consider the two-sided sequence
u[n]=a"
where a can be either real or complex
Its z-transform is given by .
U@)= Ya"z"=>a"z7"+ Y az "
n=—o0 n=0 N=-o0
The first term on the RHS converges for

|z|>]a/, whereas the second term converges
for|z/<|a]

Copyright © 2005, S. K. Mitra
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ROC of a Rational
z-Transform

There is no overlap between these two
regions

Hence, the z-transform of u[n] = " does
not exist
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ROC of a Rational
z-Transform

The ROC of a rational z-transform cannot
contain any poles and is bounded by the
poles

To show that the z-transform is bounded by
the poles, assume that the z-transform X(z)
has simple polesatz=o and z =
Assume that the corresponding sequence
X[n] is a right-sided sequence
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ROC of a Rational
z-Transform

 Then x[n] has the form
X[l = (o + 1B" Juln - No1,  [of <[p
where N, is a positive or negative integer
» Now, the z-transform of the right-sided
sequence y" p[n— N,] exists if
> ‘y”z‘”‘<oo
n=N,

43 forsomez
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ROC of a Rational
z-Transform

» The condition
5 bzt <o
n=Nq
holds for |z|>]y| but not for |z| <|y|
» Therefore, the z-transform of
x[n] = (R + B Juln—No1, o <[p]
has an ROC defined by || <|z|<

44
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ROC of a Rational
z-Transform

* Likewise, the z-transform of a left-sided
sequence
x[n]= (rl(x" + sz")H[—n -Nol, of<]B|
has an ROC defined by 0<|z|<|a]
* Finally, for a two-sided sequence, some of
the poles contribute to terms in the parent
sequence for n < 0 and the other poles

contribute to termsn >0
45
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ROC of a Rational
z-Transform

» The ROC is thus bounded on the outside by
the pole with the smallest magnitude that
contributes for n < 0 and on the inside by
the pole with the largest magnitude that
contributes forn=0

 There are three possible ROCs of a rational
z-transform with polesatz= o and z =

(o <IB)

46
Copyright © 2005, S. K. Mitra

ROC of a Rational
z-Transform

"
Im coavergencs lmz

47
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ROC of a Rational
z-Transform

* In general, if the rational z-transform has N
poles with R distinct magnitudes, then it has
R+1ROCs

 Thus, there are R +1distinct sequences with
the same z-transform

 Hence, a rational z-transform with a
specified ROC has a unique sequence as its
inverse z-transform

48
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ROC of a Rational
z-Transform

» The ROC of a rational z-transform can be
easily determined using MATLAB

[z,p,k] = tf2zp(num,den)

determines the zeros, poles, and the gain
constant of a rational z-transform with the
numerator coefficients specified by the
vector num and the denominator coefficients
specified by the vector den

49
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ROC of a Rational
z-Transform

e [num,den] = zp2tf(z,p,k)
implements the reverse process

» The factored form of the z-transform can be

obtained using sos = zp2sos(z,p, k)

» The above statement computes the

coefficients of each second-order factor
given as an L x6 matrix sos
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ROC of a Rational
z-Transform
Por b1y b @ a1 ap
SOS = b92 b}z b:zz 392 a%z 3?2
bor by by a ay ay

where

L by, +byzt+by 272
G(Z)=H 0k blk < 2k —
k=19k +&Z ~ +axZ
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ROC of a Rational
z-Transform

 The pole-zero plot is determined using the

function zplane

» The z-transform can be either described in

terms of its zeros and poles:
zplane (zeros,poles)

e 0r, it can be described in terms of its
numerator and denominator coefficients:
zplane (num, den)
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ROC of a Rational
z-Transform
» Example - The pole-zero plot of

274 +1623+4422 4567+ 32
374+323-1522+18z-12

obtained using MATLAB is shown below

G(z2)=

°// * x—pole
oo x o ) 0-zero
o

53 4 3 2 A 0 1 . _
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Inverse z-Transform

e General Expression: Recall that, for z = rel®
the z-transform G(z) given by
G(2) = Srglnlz " = X7, gln]r e o
is merely the DTFT of the modified sequence
glnpr™
 Accordingly, the inverse DTFT is thus given
by
g[n]r ™" =2ifnG(rej°°)ej°°”dm
T
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Inverse z-Transform

» By making a change of variable z = rel®
the previous equation can be converted into
a contour integral given by

g[n]=i_ [G(2) 2" dz
2mj ¢

where C'is a counterclockwise contour of
integration defined by |z| = r

55
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Inverse z-Transform

* But the integral remains unchanged when
is replaced with any contour C encircling
the point z = 0 in the ROC of G(2)

» The contour integral can be evaluated using
the Cauchy’s residue theorem resulting in
gln]= 3| residuesof G(2)z"?
at the poles inside C
 The above equation needs to be evaluated at

all values of n and is not pursued here
56
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Inverse Transform by
Partial-Fraction Expansion

* A rational z-transform G(z) with a causal
inverse transform g[n] has an ROC that is
exterior to a circle

* Here it is more convenient to express G(z)
in a partial-fraction expansion form and
then determine g[n] by summing the inverse
transform of the individual simpler terms in
the expansion

57 _
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Inverse Transform by
Partial-Fraction Expansion

« A rational G(z) can be expressed as

wo
P2 _ LicoPiZ "

G(2)= -
b@ Zi'iodif'

* If M >N then G(z) can be re-expressed as

M-N

-t R(z

G()= ) n2 +—SEZ;
=0

where the degree of P,(z) is less than N
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Inverse Transform by
Partial-Fraction Expansion
* The rational function R(z)/D(z) is called a
proper fraction
» Example - Consider
2+08z71+05272+03z7°
1+0.8271+0.2z272
By long division we arrive at

1
G(z)=-35+15271+ 5~5+12.1z :
1+0.8z7+0.22

G(z2)=

59
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Inverse Transform by
Partial-Fraction Expansion

 Simple Poles: In most practical cases, the
rational z-transform of interest G(z) is a
proper fraction with simple poles
o Let the poles of G(z) beatz=X, 1<k <N
« A partial-fraction expansion of G(z) is then
of the form
6(2)= %l[ 2 ]

iAl-r,z7t

60
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Inverse Transform by
Partial-Fraction Expansion

* The constants p, in the partial-fraction
expansion are called the residues and are
given by

P =(-2,21G(2),,
 Each term of the sum in partial-fraction
expansion has an ROC given by |z|> [z
and, thus has an inverse transform of the
form p,(A,)"pu[n]
61
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Inverse Transform by
Partial-Fraction Expansion

* Therefore, the inverse transform g[n] of
G(2) is given by

alnl= 3-p, (.)"uln]
/=1

» Note: The above approach with a slight
modification can also be used to determine
the inverse of a rational z-transform of a

noncausal sequence
62
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Inverse Transform by
Partial-Fraction Expansion

» Example - Let the z-transform H(z) of a
causal sequence h[n] be given by
2(2+2) 1+277%

H = =
& (z-0.2)(z+0.6) (1-0.2z71A+0.627})

* A partial-fraction expansion of H(z) is then
of the form

P1 P2
H(z)= +
(@) 1-02z7% 1+0627%

Copyright © 2005, S. K. Mitra
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Inverse Transform by
Partial-Fraction Expansion

e Now
142771

—(1-027"YYH(z Ry T I
p1=( MH(2) 0 1+0627° =02
and
) 1+2z7%
—(1+0.62YH(z T1-0271 T
0, = MH(@),__g6 1-0227Y,_ 46

64
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Inverse Transform by
Partial-Fraction Expansion

e Hence
275 175
1-02z7% 1+062z7°
e The inverse transform of the above is
therefore given by

h[n] = 2.75(0.2)" u[n] ~1.75(-0.6)" u[n]

H(z)=

65
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Inverse Transform by
Partial-Fraction Expansion

» Multiple Poles: If G(z) has multiple poles,
the partial-fraction expansion is of slightly
different form

* Let the pole at z = v be of multiplicity L and

the remaining N — L poles be simple and at
Z=k,,1</<N-L

66

Copyright © 2005, S. K. Mitra

11



Inverse Transform by
Partial-Fraction Expansion

 Then the partial-fraction expansion of G(z)
is of the form

M-N N-L L .
G(Z) — Z nfz_( + Z 3 + z Yi
/=0 i=1(1—

i 1-n,zt vzl
where the constants v; are computed using
1 d L—i

= = == [(1_VZ_1)LG(Z) .
(L=D(=v)""d(z7) ool

1<
 The residues p, are calculated as before
67

Yi
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Partial-Fraction Expansion
Using MATLAB

e [r,p,k]=residuez (num, den)
develops the partial-fraction expansion of
a rational z-transform with numerator and
denominator coefficients given by vectors
num and den

* Vector r contains the residues
 Vector p contains the poles
* Vector k contains the constantsz,

Copyright © 2005, S. K. Mitra

Partial-Fraction Expansion
Using MATLAB

e [num,den]=residuez(r,p, k)
converts a z-transform expressed in a
partial-fraction expansion form to its
rational form

69
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Inverse z-Transform via Long
Division

 The z-transform G(z) of a causal sequence

{g[n]} can be expanded in a power series in 2+

* In the series expansion, the coefficient
multiplying the term z™" is then the n-th
sample g[n]

* For a rational z-transform expressed as a
ratio of polynomials in 7% the power series
expansion can be obtained by long division
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Inverse z-Transform via Long

Division
» Example - Consider
1+2z71

H(z)=

1+0.4z1-0.1272

* Long division of the numerator by the
denominator yields

H(z) =1+1621-05272+042°-0.22247 7%+

e Asaresult
71{h[n]}:{% 1.6 -052 04 -0.2224 ..}, n>0

Copyright © 2005, S. K. Mitra
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Inverse z-Transform Using
MATLAB

e The function impz can be used to find the
inverse of a rational z-transform G(z)

 The function computes the coefficients of
the power series expansion of G(z)

» The number of coefficients can either be
user specified or determined automatically

Copyright © 2005, S. K. Mitra
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Table 6.2: z-Transform
~ Properties

K. Mitra
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z-Transform Properties

» Example - Consider the two-sided sequence
vn]=a"u[n]-B"u[-n-1]
o Let x[n]=a"u[n] and y[n]=—-p"u[-n—1]
with X(z) and Y(z) denoting, respectively,
their z-transforms

e Now x(7)= 1
@ l1-az?t

2>l

7 <fp

Copyright © 2005, S. K. Mitra

1
and Y(@)=—F—,
@ 1—[32‘l
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z-Transform Properties
Using the linearity property we arrive at
V(2)=X(2)+Y(2)= L T L ]

l-az— 1-pz°

The ROC of V(z) is given by the overlap
regions of |z|>|a| and |z|<|B]
If o <[B], then there is an overlap and the
ROC is an annular region |o <|z| <||

If o> [B|, then there is no overlap and V(z)
does not exist
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z-Transform Properties

» Example - Determine the z-transform and
its ROC of the causal sequence

x[n] = r"(coswyn)p[n]
» We can express x[n] = v[n] + v*[n] where
v[n] = 3reJeu[n] = Jaufn]
 The z-transform of v[n] is given by
1 1

l1-azl 2 1-rel® 771’ 1> [al=r

V(z):%- :%-

Copyright © 2005, S. K. Mitra
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z-Transform Properties
Using the conjugation property we obtain
the z-transform of v*[n] as
1

1. _ 1
2 1—(1*2_1

1-re oo 771

2/>Jof
Finally, using the linearity property we get
X(2) =V (2)+V *(z%)

V*(2%) = L

. 1 1
=J= = + -
2(1-rel®ozt 1-reloozt
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z-Transform Properties
O (@F,

X(2)= 1-(rcosmy)zt

1-(2rcosmgy)z L +r2z-2"

Z|>r

» Example - Determine the z-transform Y(z)
and the ROC of the sequence

y[n]=(n+1)a"u[n]
» We can write y[n]=nx[n]+ x[n] where
x[n] = o p[n]
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z-Transform Properties

* Now, the z-transform X(z) of x[n]=a."u[n]
is given by

1

X(z) = ,

(2) 1-az?

* Using the differentiation property, we arrive

at the z-transform of nx[n] as
_,9x(@)_ azt
dz  (l-az?d)

2>

. [2>lof
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z-Transform Properties

« Using the linearity property we finally

obtain
1 azt
Y(2)= +
(2) 1-azl (l-az1)?
_ 1
“Tar 1
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LTI Discrete-Time Systems in
the Transform Domain

» An LTI discrete-time system is completely
characterized in the time-domain by its
impulse response sequence {h[n]}

* Thus, the transform-domain representation
of a discrete-time signal can also be equally
applied to the transform-domain
representation of an LTI discrete-time
system

81 _
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LTI Discrete-Time Systems in
the Transform Domain

Such transform-domain representations
provide additional insight into the behavior
of such systems

It is easier to design and implement these
systems in the transform-domain for certain
applications

We consider now the use of the DTFT and
the z-transform in developing the transform-
domain representations of an LTI system

Copyright © 2005, S. K. Mitra

Finite-Dimensional LTI
Discrete-Time Systems

« In this course we shall be concerned with
LTI discrete-time systems characterized by
linear constant coefficient difference
equations of the form:

N M
Ydyyln—kl= Y pxin—k]
k=0 k=0

83

Copyright © 2005, S. K. Mitra

84

Finite-Dimensional LTI

Discrete-Time Systems

Applying the z-transform to both sides of
the difference equation and making use of
the linearity and the time-invariance
properties of Table 6.2 we arrive at

N M

dez’kY(z) =3 pkz’kX (2)

k=0 k=0
where Y(z) and X(z) denote the z-transforms
of y[n] and x[n] with associated ROCs,
respectively
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Finite-Dimensional LTI
Discrete-Time Systems
» A more convenient form of the z-domain
representation of the difference equation is
given by
N M
[dez‘kj\f(z){ > pkz‘kJX(z)

k=0 k=0
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