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CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• Consider a length-N sequence x[n] with an 

N-point DFT X[k] where
• Represent the indices n and k as
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CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• Using these index mappings we can write

as
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• Since                           ,                           ,   
and                        , we have

where                        and
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CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• The effect of the index mapping is to map the 

1-D sequence x[n] into a 2-D sequence that 
can be represented as a 2-D array with  
specifying the rows and      specifying the 
columns of the array

• Inner parentheses of the last equation is seen 
to be the set of     -point DFTs of the      -
columns:
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• Note: The column DFTs can be done in 

place
• Next, these row DFTs are multiplied in 

place by the twiddle factors           yielding

• Finally, the outer sum is the set of      -point 
DFTs of the columns of the array:
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• The row DFTs,                      , can again be 

computed in place
• The input x[n] is entered into an array 

according to the index map:

• Likewise, the output DFT samples X[k]
need to extracted from the array according 
to the index map:
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• Example - Let N = 8.  Choose             and

• Then

for                and
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• 2-D array representation of the input is

• The column DFTs are 2-point DFTs given 
by

• These DFTs require no multiplications
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• 2-D array of row transforms is

• After multiplying by the twiddle factors 
array becomes
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• Note:
• Finally, the 4-point DFTs of the rows are 

computed:

• Output 2-D array is given by

],[],[~
21821

12 nkGWnkG kn=

⎩
⎨
⎧

≤≤
≤≤=+ ∑

= 30
10,],[~]2[

2
1

3

0
42121

2

22
k
kWnkGkkX

n

kn

0 1 2 3

0 X[0] X[2] X[4] X[6]

1 X[1] X[3] X[5] X[7]

k1
k2

Copyright © 2005 S. K. Mitra11

CooleyCooley--TukeyTukey FFT AlgorithmsFFT Algorithms
• The process illustrated is precisely the first 

stage of the DIF FFT algorithm
• By choosing              and             , we get 

the first stage of the DIT FFT algorithm
• Alternate index mappings are given by
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• Twiddle factors can be eliminated by 

defining the index mappings as

• To eliminate the twiddle factors we need to 
express
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• Now

• It follows from above that if

then
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• One set of coefficients that eliminates the 

twiddle factors is given by

• Here                 denotes the multiplicative
inverse of        reduced modulo

• If                         then
or, in other words                          where            
is any integer
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• For example, if             and            ,  then

since
• Likewise, if                       , then                    

where      is any integer
• Now,

• Similarly,
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• Next,

• Likewise,

• Hence,
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• Thus,

where

and
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• Example - Let N = 12.  Choose               and

• Then, A = 3, B = 4, C and  

• The index mappings are 
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• 2-D array representation of input is

• 4-point transforms of the columns lead to
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• Final DFT array is

• 4-point DFTs require no multiplications, 
whereas the 3-point DFTs require 4
complex multiplications

• Thus, the algorithm requires 16 complex 
multiplications
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Chirp Chirp zz--Transform AlgorithmTransform Algorithm

• Let x[n] be a length-N sequence with a 
Fourier transform

• We consider evaluation of M samples of      
that are equally spaced in angle on the unit 
circle at frequencies

where the starting frequency       and the 
frequency increment         can be chosen 
arbitrarily
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• Figure below illustrates the problem
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• The problem is thus to evaluate

or, with W defined as

to evaluate
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• Using the identity

we can write

• Letting
we arrive at
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• Interchanging k and n we get

• Thus,                 corresponds to the 
convolution of the sequence g[n] with the 
sequence               followed by multiplication 
by the sequence              as indicated below
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• The sequence              can be thought of as a 
complex exponential sequence with linearly 
increasing frequency

• Such signals, in radar systems, are called 
chirp signals

• Hence, the name chirp transform
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• For the evaluation of

the output of the system depicted earlier 
need to be computed over a finite interval

• Since g[n] is a length-N sequence, only a 
finite portion of the infinite length sequence  

is used in obtaining the convolution 
sum over the interval
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• Typical signals
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• The portion of the sequence               used in 

obtaining the convolution sum is from the 
interval

• Let 

as shown below
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• It can be seen that

• Hence, the computation of the frequency 
samples                can be carried out using 
an FIR filter as indicated below

where
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• Advantages -
• (1)  N = M is not required as in FFT 

algorithms
• (2)  Neither N nor M do not have to be 

composite numbers
• (3)  Parameters        and        are arbitrary
• (4) Convolution with h[n] can be 

implemented using FFT techniques

oω ω∆
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