
1

1
Copyright © 2005, S. K. Mitra

Types of Transfer FunctionsTypes of Transfer Functions

• The time-domain classification of an LTI 
digital transfer function sequence is based 
on the length of its impulse response:
- Finite impulse response (FIR) transfer 
function
- Infinite impulse response (IIR) transfer 
function
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Types of Transfer FunctionsTypes of Transfer Functions
• In the case of digital transfer functions with 

frequency-selective frequency responses, 
there are two types of classifications

• (1) Classification based on the shape of the 
magnitude function

• (2) Classification based on the the form of 
the phase function θ(ω)

|)(| ωjeH
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Classification Based on Classification Based on 
Magnitude CharacteristicsMagnitude Characteristics

• One common classification is based on an 
ideal magnitude response

• A digital filter designed to pass signal 
components of certain frequencies without 
distortion should have a frequency response 
equal to one at these frequencies, and 
should have a frequency response equal to 
zero at all other frequencies

4
Copyright © 2005, S. K. Mitra

Ideal FiltersIdeal Filters

• The range of frequencies where the 
frequency response takes the value of one is 
called the passband

• The range of frequencies where the 
frequency response takes the value of zero
is called the stopband
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Ideal FiltersIdeal Filters
• Frequency responses of the four popular types 

of ideal digital filters with real impulse 
response coefficients are shown below:

Lowpass Highpass

Bandpass Bandstop 6
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Ideal FiltersIdeal Filters
• Lowpass filter: Passband -

Stopband -
• Highpass filter: Passband -

Stopband -
• Bandpass filter: Passband -

Stopband -
• Bandstop filter: Stopband -

Passband -
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Ideal FiltersIdeal Filters

• The frequencies      ,       , and        are called 
the cutoff frequencies

• An ideal filter has a magnitude response 
equal to one in the passband and zero in the 
stopband, and has a zero phase everywhere

cω 1cω 2cω
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Ideal FiltersIdeal Filters
• Earlier in the course we derived the inverse 

DTFT of the frequency response                
of the ideal lowpass filter:

• We have also shown that the above impulse 
response is not absolutely summable, and 
hence, the corresponding transfer function 
is not BIBO stable
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Ideal FiltersIdeal Filters
• Also,             is not causal and is of doubly 

infinite length
• The remaining three ideal filters are also 

characterized by doubly infinite, noncausal
impulse responses and are not absolutely 
summable

• Thus, the ideal filters with the ideal “brick
wall” frequency responses cannot be 
realized with finite dimensional LTI filter

][nhLP
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Ideal FiltersIdeal Filters
• To develop stable and realizable transfer 

functions, the ideal frequency response 
specifications are relaxed by including a 
transition band between the passband and
the stopband

• This permits the magnitude response to 
decay slowly from its maximum value in 
the passband to the zero value in the 
stopband
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Ideal FiltersIdeal Filters
• Moreover, the magnitude response is 

allowed to vary by a small amount both in 
the passband and the stopband

• Typical magnitude response specifications 
of a lowpass filter are shown below
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Bounded Real Transfer Bounded Real Transfer 
FunctionsFunctions

• A causal stable real-coefficient transfer 
function H(z) is defined as a bounded real
(BR) transfer function if

• Let x[n] and y[n] denote, respectively, the 
input and output of a digital filter 
characterized by a BR transfer function H(z)
with              and              denoting their 
DTFTs

)( ωjeX )( ωjeY

1|)(| ≤ωjeH for all values of ω
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Bounded Real Transfer Bounded Real Transfer 
FunctionsFunctions

• Then the condition                    implies that

• Integrating the above from         to π, and 
applying Parseval’s relation we get

1|)(| ≤ωjeH
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Bounded Real Transfer Bounded Real Transfer 
FunctionsFunctions

• Thus, for all finite-energy inputs, the output 
energy is less than or equal to the input 
energy implying that a digital filter 
characterized by a BR transfer function can 
be viewed as a passive structure

• If                    , then the output energy is 
equal to the input energy, and such a digital 
filter is therefore a lossless system

1|)(| =ωjeH
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Bounded Real Transfer Bounded Real Transfer 
FunctionsFunctions

• A causal stable real-coefficient transfer 
function H(z) with                     is thus 
called a lossless bounded real (LBR)
transfer function

• The BR and LBR transfer functions are the 
keys to the realization of digital filters with 
low coefficient sensitivity

1|)(| =ωjeH

16
Copyright © 2005, S. K. Mitra

Bounded Real Transfer Bounded Real Transfer 
FunctionsFunctions

• Example – Consider the causal stable IIR 
transfer function

where K is a real constant
• Its square-magnitude function is given by

10
1 1

<α<
α−

= − ,)(
z

KzH

ωα−α+
== ω=

−ω

cos)(
)()()(

21 2

2
12 KzHzHeH jez

j

17
Copyright © 2005, S. K. Mitra

Bounded Real Transfer Bounded Real Transfer 
FunctionsFunctions

• The maximum value of               is obtained 
when                in the denominator is a 
maximum and the minimum value is 
obtained when               is a minimum

• For α > 0, maximum value of               is 
equal to 2α at ω = 0, and minimum value is 

at ω = π

2
)( ωjeH

ωαcos2

ωαcos2

ωαcos2

α− 2

18
Copyright © 2005, S. K. Mitra

Bounded Real Transfer Bounded Real Transfer 
FunctionsFunctions

• Thus, the maximum value of                 is 
equal to                     at ω = 0

• The maximum value can be made equal to 1
by choosing

• Hence,

is a BR function for α > 1
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AllpassAllpass Transfer FunctionTransfer Function
Definition
• An IIR transfer function A(z) with unity 

magnitude response for all frequencies, i.e.,

is called an allpass transfer function
• An M-th order causal real-coefficient 

allpass transfer function is of the form

ω=ω allfor,1|)(| 2jeA
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AllpassAllpass Transfer FunctionTransfer Function
• If we denote the denominator polynomials 

of             as            :

then it follows that             can be written as:

• Note from the above that if               is a 
pole of a real coefficient allpass transfer 
function, then it has a zero at 

)(zDM)(zAM
M

M
M

MM zdzdzdzD −+−
−

− ++++= 1
1

1
11 ...)(

)(zAM

)(
)()(

zD
zDz

M
M

M
M

zA
1−−

±=
φ= jrez

φ−= j
r ez 1

21
Copyright © 2005, S. K. Mitra

AllpassAllpass Transfer FunctionTransfer Function

• The numerator of a real-coefficient allpass
transfer function is said to be the mirror-
image polynomial of the denominator, and 
vice versa

• We shall use the notation              to denote 
the mirror-image polynomial of a degree-M
polynomial             , i.e.,
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AllpassAllpass Transfer FunctionTransfer Function
• The expression                                     

implies that the poles and zeros of a real-
coefficient allpass function exhibit mirror-
image symmetry in the z-plane
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AllpassAllpass Transfer FunctionTransfer Function

• To show that                       we observe that

• Therefore

• Hence
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AllpassAllpass Transfer FunctionTransfer Function

• Now, the poles of a causal stable transfer 
function must lie inside the unit circle in the
z-plane

• Hence, all zeros of a causal stable allpass
transfer function must lie outside the unit 
circle in a mirror-image symmetry with its 
poles situated inside the unit circle
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AllpassAllpass Transfer FunctionTransfer Function
• Figure below shows the principal value of 

the phase of the 3rd-order allpass function

• Note the discontinuity by the amount of 2π
in the phase θ(ω)
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AllpassAllpass Transfer FunctionTransfer Function
• If we unwrap the phase by removing the 

discontinuity, we arrive at the unwrapped 
phase function            indicated below

• Note: The unwrapped phase function is a 
continuous function of ω

)(ωθc

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

ω/π

P
ha

se
, d

eg
re

es

Unwrapped phase

27
Copyright © 2005, S. K. Mitra

AllpassAllpass Transfer FunctionTransfer Function

• The unwrapped phase function of any 
arbitrary causal stable allpass function is a 
continuous function of ω

Properties
• (1) A causal stable real-coefficient allpass

transfer function is a lossless bounded real 
(LBR) function or, equivalently, a causal 
stable allpass filter is a lossless structure
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AllpassAllpass Transfer FunctionTransfer Function
• (2) The magnitude function of a stable 

allpass function A(z) satisfies:

• (3) Let τ(ω) denote the group delay function
of an allpass filter A(z), i.e.,
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AllpassAllpass Transfer FunctionTransfer Function

• The unwrapped phase function           of a 
stable allpass function is a monotonically 
decreasing function of ω so that τ(ω) is
everywhere positive in the range 0 < ω < π

• The group delay of an M-th order stable 
real-coefficient allpass transfer function 
satisfies:
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AllpassAllpass Transfer FunctionTransfer Function
A Simple Application
• A simple but often used application of an 

allpass filter is as a delay equalizer
• Let G(z) be the transfer function of a digital 

filter designed to meet a prescribed 
magnitude response

• The nonlinear phase response of G(z) can be 
corrected by cascading it with an allpass
filter A(z) so that the overall cascade has a 
constant group delay in the band of interest
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AllpassAllpass Transfer FunctionTransfer Function

• Since                    , we have

• Overall group delay is the given by the sum 
of the group delays of G(z) and A(z)                 

1|)(| =ωjeA
|)(||)()(| ωωω = jjj eGeAeG

G(z) A(z)
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AllpassAllpass Transfer FunctionTransfer Function
• Example – Figure below shows the group 

delay of a 4th order elliptic filter with the 
following specifications:                 ,               
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AllpassAllpass Transfer FunctionTransfer Function
• Figure below shows the group delay of the 

original elliptic filter cascaded with an 8th

order allpass section designed to equalize 
the group delay in the passband
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Classification Based on Phase Classification Based on Phase 
CharacteristicsCharacteristics

• A second classification of a transfer 
function is with respect to its phase 
characteristics

• In many applications, it is necessary that the 
digital filter designed does not distort the 
phase of the input signal components with 
frequencies in the passband
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ZeroZero--Phase Transfer FunctionPhase Transfer Function

• One way to avoid any phase distortion is to 
make the frequency response of the filter 
real and nonnegative, i.e., to design the 
filter with a zero phase characteristic

• However, it is not possible to design a 
causal digital filter with a zero phase
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ZeroZero--Phase Transfer FunctionPhase Transfer Function

• For non-real-time processing of real-valued 
input signals of finite length, zero-phase 
filtering can be very simply implemented by 
relaxing the causality requirement

• One zero-phase filtering scheme is sketched 
below

x[n] v[n] u[n] w[n]H(z) H(z)

][][],[][ nwnynvnu −=−=
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ZeroZero--Phase Transfer FunctionPhase Transfer Function

• It is easy to verify the above scheme in the 
frequency domain

• Let             ,              ,             ,             , and
denote the DTFTs of x[n], v[n],

u[n], w[n], and y[n], respectively
• From the figure shown earlier and making 

use of the symmetry relations we arrive at 
the relations between various DTFTs as 
given on the next slide

)( ωjeX )( ωjeV )( ωjeU )( ωjeW
)( ωjeY

38
Copyright © 2005, S. K. Mitra

ZeroZero--Phase Transfer FunctionPhase Transfer Function

• Combining the above equations we get

x[n] v[n] u[n] w[n]H(z) H(z)

][][],[][ nwnynvnu −=−=
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ZeroZero--Phase Transfer FunctionPhase Transfer Function

• The function filtfilt implements the 
above zero-phase filtering scheme

• In the case of a causal transfer function with 
a nonzero phase response, the phase 
distortion can be avoided by ensuring that 
the transfer function has a unity magnitude 
and a linear-phase characteristic in the 
frequency band of interest
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ZeroZero--Phase Transfer FunctionPhase Transfer Function

• The most general type of a filter with a 
linear phase has a frequency response given 
by

which has a linear phase from ω = 0 to ω = 
2π

• Note also

Djj eeH ω−ω =)(

1)( =ωjeH
D=ωτ )(
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• The output y[n] of this filter to an input
is then given by

• If          and          represent the continuous-
time signals whose sampled versions, 
sampled at t = nT, are x[n] and y[n] given 
above, then the delay between          and              
is precisely the group delay of amount D

njAenx ω=][
)(][ DnjnjDj AeeAeny −ωωω− ==
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• If D is an integer, then y[n] is identical to 
x[n], but delayed by D samples

• If D is not an integer, y[n], being delayed by 
a fractional part, is not identical to x[n]

• In the latter case, the waveform of the 
underlying continuous-time output is 
identical to the waveform of the underlying 
continuous-time input and delayed D units 
of time
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• If it is desired to pass input signal 
components in a certain frequency range 
undistorted in both magnitude and phase, 
then the transfer function should exhibit a 
unity magnitude response and a linear-phase 
response in the band of interest
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• Figure below shows the frequency response 
if a lowpass filter with a linear-phase 
characteristic in the passband
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• Since the signal components in the stopband
are blocked, the phase response in the 
stopband can be of any shape

• Example - Determine the impulse response 
of an ideal lowpass filter with a linear phase 
response:
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• Applying the frequency-shifting property of 
the DTFT to the impulse response of an 
ideal zero-phase lowpass filter we arrive at

• As before, the above filter is noncausal and 
of doubly infinite length, and hence, 
unrealizable
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• By truncating the impulse response to a 
finite number of terms, a realizable FIR 
approximation to the ideal lowpass filter 
can be developed

• The truncated approximation may or may 
not exhibit linear phase, depending on the 
value of      chosenon
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• If we choose = N/2 with N a positive 
integer, the truncated and shifted 
approximation

will be a length N+1 causal linear-phase 
FIR filter

on
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LinearLinear--Phase Transfer Phase Transfer 
FunctionFunction

• Figure below shows the filter coefficients 
obtained using the function sinc for two 
different values of N
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ZeroZero--Phase ResponsePhase Response

• Because of the symmetry of the impulse 
response coefficients as indicated in the two 
figures, the frequency response of the 
truncated approximation can be expressed as:

where              , called the zero-phase 
response or amplitude response, is a real 
function of ω
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• Consider the two 1st-order transfer functions:

• Both transfer functions have a pole inside the 
unit circle at the same location            and are 
stable

• But the zero of            is inside the unit circle  
at             , whereas, the zero of            is at 

situated in a mirror-image symmetry 
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• Figure below shows the pole-zero plots of 
the two transfer functions

)(1 zH )(2 zH
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• However, both transfer functions have an 
identical magnitude function as

• The corresponding phase functions are
)()()()( 1

22
1

11
−− = zHzHzHzH

ω+
ω−

ω+
ω−ω −= cos

sin1
cos

sin1
1 tantan)](arg[ ab

jeH

ω+
ω−

ω+
ω−ω −= cos

sin1
cos1

sin1
2 tantan)](arg[ ab

bjeH

54
Copyright © 2005, S. K. Mitra

MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• Figure below shows the unwrapped phase 
responses of the two transfer functions for
a = 0.8 and b = 5.0−
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• From this figure it follows that            has 
an excess phase lag with respect to

• The excess phase lag property of            
with respect to           can also be explained 
by observing that we can write
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

where                                     is a stable 
allpass function

• The phase functions of           and               
are thus related through

• As the unwrapped phase function of a stable 
first-order allpass function is a negative 
function of ω, it follows from the above that 

has indeed an excess phase lag with 
respect to

)/()()( bzbzzA ++= 1
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• Generalizing the above result, let             be 
a causal stable transfer function with all 
zeros inside the unit circle and let H(z) be 
another causal stable transfer function 
satisfying

• These two transfer functions are then 
related through                                 where 
A(z) is a causal stable allpass function

)(zHm
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• The unwrapped phase functions of           
and H(z) are thus related through

• H(z) has an excess phase lag with respect to

• A causal stable transfer function with all 
zeros inside the unit circle is called a
minimum-phase transfer function

)(zHm
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)](arg[)](arg[)](arg[ ωωω += jj
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• A causal stable transfer function with all 
zeros outside the unit circle is called a
maximum-phase transfer function

• A causal stable transfer function with zeros 
inside and outside the unit circle is called a
mixed-phase transfer function
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MinimumMinimum--Phase and MaximumPhase and Maximum--
Phase Transfer FunctionsPhase Transfer Functions

• Example – Consider the mixed-phase 
transfer function

• We can rewrite H(z) as
).)(.(
).)(.()(
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