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ComputerComputer--Aided Design of Aided Design of 
Digital FiltersDigital Filters

• The FIR filter design techniques discussed 
so far can be easily implemented on a 
computer

• In addition, there are a number of FIR filter 
design algorithms that rely on some type of 
optimization techniques that are used to 
minimize the error between the desired 
frequency response and that of the 
computer-generated filter
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ComputerComputer--Aided Design of Aided Design of 
Digital FiltersDigital Filters

• Basic idea behind the computer-based 
iterative technique

• Let              denote the frequency response 
of the digital filter H(z) to be designed 
approximating the desired frequency 
response             , given as a piecewise 
linear function of    , in some sense
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ComputerComputer--Aided Design of Aided Design of 
Digital FiltersDigital Filters

• Objective - Determine iteratively the 
coefficients of H(z) so that the difference 
between between              and              over 
closed subintervals of                  is 
minimized

• This difference usually specified as a 
weighted error function

where              is some user-specified 
weighting function
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• Chebyshev or minimax criterion -
Minimizes the peak absolute value of the 
weighted error:

where R is the set of disjoint frequency bands 
in the range                , on which             is 
defined
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Design of Design of EquirippleEquiripple
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• The linear-phase FIR filter obtained by 
minimizing the peak absolute value of

is usually called the equiripple FIR filter
• After      is minimized, the weighted error 

function E(ω) exhibits an equiripple
behavior in the frequency range R

ε
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• The general form of frequency response of a 
causal linear-phase FIR filter of length 
2M+1:

where the amplitude response           is a real 
function of

• Weighted error function is given by

where           is the desired amplitude 
response and           is a positive weighting 
function
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• Parks-McClellan Algorithm - Based on 
iteratively adjusting the coefficients of         
until the peak absolute value of E(ω) is 
minimized

• If peak absolute value of E(ω) in a band    
is     , then the absolute error 

satisfies
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• For filter design,

• is required to satisfy the above desired 
response with a ripple of          in the 
passband and a ripple of      in the stopband
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• Thus, weighting function can be chosen 
either as

or
⎩
⎨
⎧

δδ
=ω

stopbandthein,/
passbandthein,1

)(
sp

W

⎩
⎨
⎧ δδ

=ω
stopbandthein,1
passbandthein,/

)( psW

10
Copyright © 2005, S. K. Mitra

Design of Design of EquirippleEquiripple
LinearLinear--Phase FIR FiltersPhase FIR Filters

• Type 1 FIR Filter -
where

• Type 2 FIR filter -

where
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• Type 3 FIR Filter -
where

• Type 4 FIR Filter -

where
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• Amplitude response for all 4 types of linear-
phase FIR filters can be expressed as

where
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and

where
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with

, , and         , are related to b[k], 
c[k], and  d[k], respectively
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• Modified form of weighted error function

where we have used the notation
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• Optimization Problem - Determine             
which minimize the peak absolute value    
of

over the specified frequency bands
• After          has been determined, 

corresponding coefficients of the original      
are computed from which h[n] are 

determined
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• Alternation Theorem - is the best 
unique approximation of D(ω) obtained by 
minimizing peak absolute value     of       

if and only if there exist at least L+2
extremal frequencies,            
in a closed subset R of the frequency range           

such that 
and                             ,                      for all i
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• Consider a Type 1 FIR filter with an 
amplitude response           whose 
approximation error           satisfies the 
Alternation Theorem

• Peaks of           are at                              
where

• Since in the passband and stopband,            
and           are piecewise constant,
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• Using                                 , where          is 
the k-th order Chebyshev polynomial

• can be expressed as

which is an Lth-order polynomial in
• Hence,          can have at most          local 

minima and maxima inside specified 
passband and stopband
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• At bandedges,             and            ,            is 
a maximum, and hence           has extrema at 
these points

• can have extrema at           and
• Therefore, there are at most L+3 extremal

frequencies of
• For linear-phase FIR filters with K specified 

bandedges, there can be at most L+K+1
extremal frequencies
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• The set of equations

is written in a matrix form
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• The matrix equation can be solved for the 
unknowns         and     if the locations of the 
L+2 extremal frequencies are known a 
priori

• The Remez exchange algorithm is used to 
determine the locations of the extremal
frequencies

][~ ia ε
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RemezRemez Exchange AlgorithmExchange Algorithm
• Step 1: A set of initial values of extremal

frequencies are either chosen or are 
available from completion of previous stage

• Step 2:  Value of      is computed using

where
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RemezRemez Exchange AlgorithmExchange Algorithm
• Step 3: Values of           at             are then 

computed using

• Step 4: The polynomial is determined 
by interpolating the above values at the L+2
extremal frequencies using the Lagrange 
interpolation formula
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RemezRemez Exchange AlgorithmExchange Algorithm
• Step 4: The new error function

is computed at a dense set S (        ) of 
frequencies.  In practice S = 16L is adequate. 
Determine the L+2 new extremal frequencies 
from the values of           evaluated at the 
dense set of frequencies.

• Step 5: If the peak values     of           are 
equal in magnitude, algorithm has converged. 
Otherwise, go back to Step 2.
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RemezRemez Exchange AlgorithmExchange Algorithm
• Illustration of algorithm

Iteration process is            
stopped if the  
difference between 
the values of the 
peak absolute errors 
between two 
consecutive stages is 
less than a preset 
value, e.g., 610−
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RemezRemez Exchange AlgorithmExchange Algorithm
• Example - Approximate the desired 

function                               defined for the 
range                 by a linear function                      
by minimizing the peak value of the 
absolute error

• Stage 1: 
Choose arbitrarily the initial extremal points 
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• Solve the three linear equations

i.e.,

for the given extremal points yielding
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• Plot of                                                 along 

with values of error at chosen extremal
points shown below

• Note: Errors are equal in magnitude and 
alternate in sign
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• Stage 2:
• Choose extremal points where            

assumes its maximum absolute values
• These are
• New values of unknowns are obtained by 

solving

yielding
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• Plot of                                                 along 
with values of error at chosen extremal
points shown below
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RemezRemez Exchange AlgorithmExchange Algorithm
• Stage 3:
• Choose extremal points where            

assumes its maximum absolute values
• These are
• New values of unknowns are obtained by 

solving

yielding
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• Plot of                                               along 

with values of error at chosen extremal
points shown below

• Algorithm has converged as      is also the 
maximum value of the absolute error
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• Linear-phase FIR filters with  narrow 
transition bands are of very high order, and 
as a result have a very long group delay that 
is about half the filter order

• By relaxing the linear-phase requirement, it 
is possible to design an FIR filter of lower 
order thus reducing the overall group delay 
and the computational cost
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• A very simple method of minimum-phase 
FIR filter is described next

• Consider an arbitrary FIR transfer function 
of degree N:

∏
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• The mirror-image polynomial to H(z) is 
given by

• The zeros of are thus at               , i.e., 
are reciprocal to the zeros of H(z) at

)()(ˆ 1−−= zHzzH N

∏
=

−∑
=

− ξ−=−=
N

k
k

N

n

n zNhznNh
1

1

0
1 )/(][][

)(ˆ zH kz ξ= /1

kz ξ=



7

37
Copyright © 2005, S. K. Mitra

Design of MinimumDesign of Minimum--Phase Phase 
FIR FiltersFIR Filters

• As a result,

has zeros exhibiting mirror-image symmetry 
in the z-plane and is thus a Type 1 linear-
phase transfer function of order 2N

• Moreover, if H(z) has a zero on the unit 
circle,           will also have a zero on the unit 
circle at the conjugate reciprocal position

)()()(ˆ)()( 1−−== zHzHzzHzHzG N
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• Thus, unit circle zeros of G(z) occur in pairs
• On the unit circle we have

• Moreover,  the amplitude response           
has double zeros in the frequency range
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• Design Procedure –
• Step 1:  Design a Type 1 linear-phase

transfer function F(z) of degree 2N
satisfying the specifications:

• Note that F(z) has single unit circle zeros
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• Step 2:  Determine the linear-phase transfer 
function

• Its amplitude response satisfies
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• Note that G(z) has double zeros on the unit 
circle and all other zeros are situated with a 
mirror-image symmetry

• Hence, it can be expressed in the form

where             is a minimum-phase transfer 
function containing all zeros of G(z) that are 
inside the unit circle and one each of the 
unit circle double zeros
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• Step 3: Determine             from G(z) by 
applying a spectral factorization

• The passband ripple          and the stopband
ripple         of F(z) must be chosen to ensure 
that the specified passband ripple      and the 
stopband ripple        of  are satisfied)(zHm
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pδ
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• It can be shown

• An estimate of the order N of             can be 
found by first estimating the order of F(z)
and then dividing it by 2

• If the estimated order of F(z) is an odd 
integer, it should be increased by 1
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• Order Estimation -
• Kaiser’s Formula:

• Note: Filter order N is inversely 
proportional to transition band width                 
and does not depend on actual location of 
transition band
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• Hermann-Rabiner-Chan’s Formula:

where

with
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FIR Digital Filter Design Using FIR Digital Filter Design Using 
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• Formula valid for
• For             , formula to be used is obtained 

by interchanging      and
• Both formulas provide only an estimate of 

the required filter order N
• Frequency response of FIR filter designed 

using this estimated order may or may not 
meet the given specifications

• If specifications are not met, increase filter 
order until they are met

sp δ≥δ

sp δ<δ
pδ sδ
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FIR Digital Filter Design Using FIR Digital Filter Design Using 
MATLABMATLAB

• MATLAB code fragments for estimating 
filter order using Kaiser’s formula
num = - 20*log10(sqrt(dp*ds)) - 13;
den = 14.6*(Fs - Fp)/FT;
N = ceil(num/den);

• M-file remezord implements Hermann-
Rabiner-Chan’s order estimation formula
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FIR Digital Filter Design Using FIR Digital Filter Design Using 
MATLABMATLAB

• For FIR filter design using the Kaiser 
window, window order is estimated using the 
M-file kaiserord

• The M-file kaiserord can in some cases 
generate a value of N which is either greater 
or smaller than the required minimum order

• If filter designed using the estimated order N
does not meet the specifications, N should 
either be gradually increased or decreased 
until the specifications are met
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
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• The M-file remez can be used to design an 
equiripple FIR filter using the Parks-
McClellan algorithm

• Example - Design an equiripple FIR filter 
with the specifications:               kHz,         

kHz,             kHz,                dB,              
dB

• Here, and

8.0=pF
1=sF 4=TF 5.0=α p
40=αs

0559.0=δ p 01.0=δs
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• MATLAB code fragments used are
[N, fpts, mag, wt] = 

remezord(fedge, mval, dev, FT);
b = remez(N, fpts, mag, wt);
where fedge = [800   1000],
mval = [1   0], dev = [0.0559   0.01], and
FT = 4000
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• The computed gain response with the filter 
order obtained (N = 28) does not meet the 
specifications (              dB,                dB)

• Specifications are met with N = 30
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• Example - Design a linear-phase FIR 
bandpass filter of order 26 with a passband
from 0.3 to 0.5, and stopbands from 0 to 
0.25 and from 0.55 to 1

• The pertinent input data here are
N = 26
fpts = [0  0.25  0.3  0.5  0.55 1]
mag = [0  0  1  1  0  0]
wt = [1  1  1]
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• Computed gain response shown below 
where             dB,                 dB1=α p 7.18=αs
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• We redesign the filter with order increased 
to 110

• Computed gain response shown below 
where                    dB,                 dB

• Note: Increase in
order improves
gain response at the
expense of increased
computational 
complexity

2.51=αs024.0=α p
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• can be increased at the expenses of a 
larger       by decreasing the relative weight 
ratio

• Gain response of 
bandpass filter of 
order 110 obtained 
with a weight vector
[1  0.1  1]

• Now                   dB,                    dB

pα
sα

spW δδ=ω /)(

076.0=α p 86.60=αs
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• Plots of absolute error for 1st design
• Absolute error has 

same peak value in 
all bands

• As L = 13, and there 
are 4 band edges, there can be at most                

extrema
• Error plot exhibits 17 extrema
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• Absolute error has same peak value in 
all bands for the 2nd design

• Absolute error in passband of 3rd design is 
10 times the error in the stopbands
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• Example - Design a linear-phase FIR 
bandpass filter of order 60 with a passband
from 0.3 to 0.5, and stopbands from 0 to 
0.25 and from 0.6 to 1 with unequal weights

• The pertinent input data here are
N = 60
fpts = [0  0.25  0.3  0.5  0.6 1]
mag = [0  0  1  1  0  0]
wt = [1  1  0.3]
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• Plots of gain response and absolute error 
shown below
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• Response in the second transition band shows 
a peak with a value higher than that in 
passband

• Result does not contradict alternation theorem
• As N = 60, M = 30, and hence, there must be 

at least M + 2 = 32 extremal frequencies
• Plot of absolute error shows the presence of 

32 extremal frequencies
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter 
Design Using MATLABDesign Using MATLAB

• If gain response of filter designed exhibits a 
nonmonotonic behavior, it is recommended 
that either the filter order or the bandedges
or the weighting function be adjusted until a 
satisfactory gain response has been obtained

• Gain plot obtained
by moving the
second stopband
edge to 0.55
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EquirippleEquiripple FIR Differentiator FIR Differentiator 
Design Using MATLABDesign Using MATLAB

• A lowpass differentiator has a bandlimited
frequency response

where                    represents the passband
and                     represents the stopband

• For the design phase we choose

⎩
⎨
⎧
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ω≤ω≤ω
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EquirippleEquiripple FIR Differentiator FIR Differentiator 
Design Using MATLABDesign Using MATLAB

• The M-file remezord cannot be used to 
estimate the order of an FIR differentiator

• Example - Design a full-band (           ) 
differentiator of order 11

• Code fragment to use
b = remez(N, fpts, mag, ‘differentiator’);
where    N = 11

fpts = [0   1]
mag = [0   pi]

π=ωp
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EquirippleEquiripple FIR Differentiator FIR Differentiator 
Design Using MATLABDesign Using MATLAB

• Plots of magnitude response and absolute 
error

• Absolute error increases with     as the 
algorithm results in an equiripple error of 
the function ]1[ )( −ω

ωA
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EquirippleEquiripple FIR Differentiator FIR Differentiator 
Design Using MATLABDesign Using MATLAB

• Example - Design a lowpass differentiator 
of order 50 with                   and

• Code fragment to use
b = remez(N, fpts, mag, ‘differentiator’);
where    

N = 50
fpts = [0   0.4   0.45   1]
mag = [0   0.4*pi   0   0]

πω 4.0=p πω 45.0=s
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EquirippleEquiripple FIR Differentiator FIR Differentiator 
Design Using MATLABDesign Using MATLAB

• Plot of the magnitude response of the 
lowpass differentiator

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

ω/π

M
ag

ni
tu

de



12

67
Copyright © 2005, S. K. Mitra

EquirippleEquiripple FIR Hilbert Transformer FIR Hilbert Transformer 
Design Using MATLABDesign Using MATLAB

• Desired amplitude response of a bandpass
Hilbert transformer is

with weighting function

• Impulse response of an ideal Hilbert 
transformer satisfies the condition

which can be met by a Type 3 FIR filter

HLD ω≤ω≤ω=ω ,1)(

HLW ω≤ω≤ω=ω ,1)(

evenfor,0][ nnhHT =
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EquirippleEquiripple FIR Hilbert Transformer FIR Hilbert Transformer 
Design Using MATLABDesign Using MATLAB

• Example - Design a linear-phase bandpass
FIR Hilbert transformer of order 20 with      

,
• Code fragment to use

b = remez(N, fpts, mag, ‘Hilbert’);
where

N = 20
fpts = [0.1   0.9]
mag = [1   1]

π=ω 1.0L π=ω 9.0H
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EquirippleEquiripple FIR Hilbert Transformer FIR Hilbert Transformer 
Design Using MATLABDesign Using MATLAB

• Plots of magnitude response and absolute 
error
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Window Generation - Code fragments to use
w = blackman(L);
w = hamming(L);
w = hanning(L);
w = chebwin(L, Rs);
w = kaiser(L, beta);
where window length L is odd
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Example - Kaiser window design for use in a 
lowpass FIR filter design

• Specifications of lowpass filter:                 ,    
, dB

• Code fragments to use
[N, Wn, beta, ftype] = kaiserord(fpts, mag,dev);
w = kaiser(N+1, beta);
where fpts = [0.3   0.4]

mag = [1   0]
dev = [0.003162   0.003162]

π=ω 4.0s

π=ω 3.0p
50=αs 003162.0=δ⇒ s
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Plot of the gain response of the Kaiser 
window
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• M-files available are fir1 and fir2
• fir1 is used to design conventional lowpass, 

highpass, bandpass, bandstop and multiband
FIR filters

• fir2 is used to design FIR filters with 
arbitrarily shaped magnitude response

• In fir1, Hamming window is used as a 
default if no window is specified
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Example - Design using a Kaiser window a 
lowpass FIR filter with the specifications:     

,                 ,
• Code fragments to use

[N, Wn, beta, ftype] = kaiserord(fpts, mag, dev);
b = fir1(N, Wn, kaiser(N+1, beta));
where  fpts = [0.3   0.4]

mag = [1    0]
dev = [0.003162   0.003162]

π=ω 3.0p π=ω 4.0s 003162.0=δs
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Plot of gain response
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Example - Design using a Kaiser window a 
highpass FIR filter with the specifications:     

,                 ,
• Code fragments to use  
• [N, Wn, beta, ftype] = kaiserord(fpts, mag, dev);

b = fir1(N, Wn, ‘ftype’, kaiser(N+1, beta));
where  fpts = [0.4   0.55]

mag = [0    1]
dev = [0.02   0.02]

π=ω 55.0p π=ω 4.0s 02.0=δs
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Plot of gain response
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WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Example - Design using a Hamming 
window an FIR filter of order 100 with 
three different constant magnitude levels:  
0.3 in the frequency range [0, 0.28], 1.0 in 
the frequency range [0.3, 0.5], and 0.7 in the 
frequency range [0.52, 1.0]



14

79
Copyright © 2005, S. K. Mitra

WindowWindow--Based FIR Filter Based FIR Filter 
Design Using MATLABDesign Using MATLAB

• Code fragment to use
b = fir2(100, fpts, mval);
where  fpts = [0  0.28  0.3  0.5  0.52  1];

mval = [0.3  0.3  1.0  1.0  0.7  0.7];
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MinimumMinimum--Phase FIR Filter Phase FIR Filter 
Design Using MATLABDesign Using MATLAB

• The minimum-phase FIR filter design 
method outlined earlier involves the spectral 
factorization of a Type 1 linear-phase FIR
transfer function G(z) with a non-negative 
amplitude response in the form

where             contains all zeros of G(z) that 
are inside the unit circle and one each of the 
unit circle double zeros

)()()( 1−−= zHzHzzG mm
N

)(zHm

81
Copyright © 2005, S. K. Mitra

Spectral FactorizationSpectral Factorization

• We next outline the basic idea behind a 
simple spectral factorization method

• Without any loss of generality we consider 
the spectral factorization of a 6-th order 
linear-linear phase FIR transfer function 
G(z) with a non-negative amplitude 
response:
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Spectral FactorizationSpectral Factorization

• Our objective is to express the above G(z)
in the form

where

is the minimum-phase factor of G(z)

)()()( 13 −−= zHzHzzG mm

3
3

2
2

1
10

−−− +++= zazazaazHm )(
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Spectral FactorizationSpectral Factorization

• Expressing G(z) in terms of the coefficients 
of              we get

• Forming the product of the two polynomials 
given above and comparing the coefficients 
of like powers of        the product with that 
of G(z) given on the previous slide we 
arrive at 4 equations given in the next slide
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Spectral FactorizationSpectral Factorization

• The above set of equations is then solved 
iteratively using the Newton-Raphson
method
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Spectral FactorizationSpectral Factorization

• First, the initial values of      are chosen to 
ensure that              has all zeros strictly 
inside the unit circle

• Then, the coefficients     are changed by 
adding the corrections     so that the 
modified values           satisfy better the set 
of 4 equalities given in the previous slide

• The process is repeated until the iteration 
converges

ia

ia
ie

ii ea +

)(zHm
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Spectral FactorizationSpectral Factorization
• Substituting             in the 4 equations given 

earlier and expanding the products, a set of 
linear equations are obtained by eliminating 
all quadratic terms in     from the expansion

• In matrix form, these equations can be 
written as             where

ii ea +
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Spectral FactorizationSpectral Factorization
and

• The matrix A can be expressed as

,
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Spectral FactorizationSpectral Factorization
• The iteration convergence is checked at 

each step by evaluating the error term

• The error term first decreases monotonically 
and the iteration is stopped when the error 
starts increasing

• The M-file minphase.m implements the 
above spectral factorization method
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MinimumMinimum--Phase FIR Filter Phase FIR Filter 
Design Using MATLABDesign Using MATLAB

• Example – Design a minimum-phase 
lowpass FIR filter with the following 
specifications:                   ,                  ,          

dB and               dB
• Using Program 10_3.m we arrive at the 

desired filter
• Plots of zeros of G(z), zeros of            , and 

the gain response of             are shown in 
the next slide

π=ω 450.p π=ω 60.s
2=pR 26=sR

)(zHm
)(zHm
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MinimumMinimum--Phase FIR Filter Phase FIR Filter 
Design Using MATLABDesign Using MATLAB
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MaximumMaximum--Phase FIR Filter Phase FIR Filter 
Design Using MATLABDesign Using MATLAB

• A maximum-phase spectral factor of a 
linear-phase FIR filter with an impulse 
response b of even order with a non-
negative zero-phase frequency response can 
be designed by first computing its 
minimum-phase spectral factor h and the 
using the statement

G = fliplr(h)
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Design of Computationally Design of Computationally 
Efficient FIR Digital FiltersEfficient FIR Digital Filters

• As indicated earlier, the order N of a linear-
phase FIR filter is inversely proportional to 
the width ∆ω of the transition band

• Hence, in the case of an FIR filter with a 
very sharp transition, the order of the filter 
is very high

• This is particularly critical in designing very 
narrow-band or very wide-band FIR filters
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Design of Computationally Design of Computationally 
Efficient FIR Digital FiltersEfficient FIR Digital Filters

• The computational complexity of a digital 
filter is basically determined by the total 
number of multipliers and adders needed to 
implement the filter

• The direct form implementation of a linear-
phase FIR filter of order N requires, in 
general,           multipliers and N two-input 
adders

⎣ ⎦2
1+N
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Design of Computationally Design of Computationally 
Efficient FIR Digital FiltersEfficient FIR Digital Filters

• We now outline two methods of realizing 
computationally efficient linear-phase FIR 
filters

• The basic building block in both methods is 
an FIR subfilter structure with a periodic 
impulse response
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The Periodic Filter SectionThe Periodic Filter Section
• Consider a Type 1 linear-phase FIR filter 

F(z) of even degree N:

• Its delay-complementary filter E(z) is given 
by
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The Periodic Filter SectionThe Periodic Filter Section
• The transfer function H(z) obtained by 

replacing        in F(z) with      , with L being 
a positive integer, is given by

• The order of H(z) is thus NL
• A direct realization of H(z) is obtained by 

simply replacing each unit delay in the 
realization of F(z) with L unit delays

1−z Lz−
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−==
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n
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The Periodic Filter SectionThe Periodic Filter Section

• Note: The number of multiplers and delays 
in the realization of H(z) is the same as 
those in the realization of F(z)

• The transfer function H(z) has a sparse 
impulse response of length           , with      

zero-valued samples inserted between 
every consecutive pair of impulse response 
samples of F(z)

1+NL
1−L
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The Periodic Filter SectionThe Periodic Filter Section

• The parameter L is called the sparsity factor
• The relations between the amplitude 

responses of these two filters is given by

• It follows from the above that the amplitude 
response          is a period function of ω with 
a period 2π/L

)()( ω=ω LFH
((

)(ωH
(
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The Periodic Filter SectionThe Periodic Filter Section

• One period of           is obtained by 
compressing the amplitude response           
in the interval [0, 2π] to the interval          
[0, 2π/L]

• A transfer function H(z) with a frequency 
response that is a periodic function of ω
with a period 2π/L is called a periodic filter

)(ωH
(

)(ωF
(
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The Periodic Filter SectionThe Periodic Filter Section

• If F(z) is a lowpass filter with a single 
pasband and a single stopband, H(z) will be 
a multiband filter with                 pasbands
and            stopbands as shown in the next 
slide for L = 4

⎣ ⎦ 12 +/L
⎡ ⎤2/L
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The Periodic Filter SectionThe Periodic Filter Section
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The Periodic Filter SectionThe Periodic Filter Section
• Let F(z) be a lowpass filter with passband

edge at         and and stopband edge at           
, where

• Then, the passband and stopband edges of 
the first band of H(z) are at                       
and              , respectively

• The passband and stopband edges of the 
second band of H(z) are at                        
and                         , respectively, and so on 
as shown on the previous slide
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The Periodic Filter SectionThe Periodic Filter Section
• The width of the transition bands of H(z)

are                             , which is    -th of that 
of F(z)

• Likewise, the transfer function G(z) by 
replacing       in E(z) with      , is given by

• The amplitude response of G(z) is given by
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Interpolated FIR FilterInterpolated FIR Filter
• The overall filter                is designed as a 

cascade of a linear-phase FIR filter          
and another filter I(z) that suppreses the 
undesired passbands of the periodic filter 
section as shown below

• The widths of the transition band and the 
passband of the cascade are    –th of those 
of F(z)

)(zHIFIR
)( LzF

I(z))( LzF

periodic filter interpolator

L
1

105
Copyright © 2005, S. K. Mitra

Interpolated FIR FilterInterpolated FIR Filter
• The cascaded structure is called the 

interpolated finite impulse response (IFIR) 
filter, as the missing impulse response 
samples of the periodic filter section         
are being interpolated by the filter section 
I(z), called the interpolator

• As the filter F(z) determines approximately 
the shape of the amplitude response of the 
IFIR filter, it is called a shaping filter
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Interpolated FIR FilterInterpolated FIR Filter
• Design Steps –
• IFIR specifications: passband edge      , 

stopband edge      , passband ripple     , 
stopband ripple 

• Shaping filter specifications: 
passband edge             
stopband edge                                       
passband ripple       
stopband ripple 
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Interpolated FIR FilterInterpolated FIR Filter
• The interpolator I(z) has to be designed to 

preserve the passband of            in the 
frequency range              and mask the 
amplitude response of            in the 
frequency range             , where the periodic 
subfilter has unwanted passbands and 
transition bands

• This latter region is defined by
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Interpolated FIR FilterInterpolated FIR Filter
• The transition band of the interpolator is the 

frequency range

• Figure below shows the amplitude 
responses of                 and I(z)
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Interpolated FIR FilterInterpolated FIR Filter
• Summarinzing, the design specifications for 

F(z) and I(z) are as follows:
for
for
for
for

The two linear-phase FIR filters F(z) and 
I(z) can be designed using the Parks-
McClellan method
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Interpolated FIR FilterInterpolated FIR Filter
• Example – Filter specifications are as 

follows:                    ,                 ,                 ,

• It follows from the figure in Slide 101 that to 
ensure no overlaps between adjacent 
passbands of           , we should choose L to 
satisfy the condition
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Interpolated FIR FilterInterpolated FIR Filter
• For our example, this reduces to

implying  L < 5
• Hence, the largest value of L that can be 

used is L = 4, yielding an IFIR structure 
requiring the least number of multipliers

• As a result, the specifications for F(z) and 
I(z) are as given in the next slide

π−π<π 20220 .. L
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Interpolated FIR FilterInterpolated FIR Filter
• F(z):

• I(z):

• The filter orders of F(z) and I(z) obtained 
using remezord are:

Order of F(z) = 32
Order of I(z) = 43
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Interpolated FIR FilterInterpolated FIR Filter
• It can be shown that the filters F(z) and I(z)

designed using remez with the above orders 
do not lead to an IFIR design meeting the 
minimum stopband attenuation of 60 dB

• To meet the stopband specifications, the 
orders of F(z) and I(z) need to be increased 
to 33 and 46, respectively
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Interpolated FIR FilterInterpolated FIR Filter
• The pertinent gain responses of the 

redesigned IFIR filter are shown below:

• The number of multipliers needed to 
implement F(z) and hence,           is
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Interpolated FIR FilterInterpolated FIR Filter
• The number of multipliers needed to 

implement I(z) is:

• As a result, the total number of multipliers 
needed to implement                 is

• The number of multipliers needed to 
implement the direct single-stage 
implementation of the FIR filter is
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• This approach makes use of the relation 
between a periodic filter                   
generated from a Type 1 linear-phase FIR 
filter of even degree N and its delay-
complementary filter G(z) given by

• The amplitude responses of F(z), its delay-
complentary filter E(z), the periodic filter 
H(z) and its delay-complentary filter G(z)
are shown in the next slide
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

0

1
F(ω )

πω p
( F) ωs

(F )
0 ω

E(ω) = 1   F(ω)_

delay-complementary 
filter E(z)

delay-complementary 
periodic filter G(z)

periodic filter H(z)

1

0 π
0

ωs
(F )

L

ω p
( F)

L

2π
L

2π – ω p
( F)

L

2π – ωs
( F)

L

↑ ↑
2π + ωs

( F)

L

↑
ω

G(ω) = E(Lω) H(ω) = F(Lω)

118
Copyright © 2005, S. K. Mitra

FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• By selectively masking out the unwanted 
pasbands of both H(z) and G(z) by 
cascading each with appropriate masking 
filters          and         , respectively, and 
connecting the resulting cascades in prallel, 
we can design a large class of FIR filters 
with sharper transition bands

• The overall structure is then realized as 
indicated in the next slide
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Note: The delay block             can be 
realized by tapping the FIR structure 
implementing

• Also,          and          can share the same 
delay-chain if they are realized using the 
transposed direct form structure
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• The transfer function of the overall structure 
is given by

• The corresponding amplitude response is
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• The overall computational complexity is 
given by the complexities of F(z),          and

• All these three filters have wide transition 
bands and, in general, require considerably 
fewer multipliers and adders than that 
required in a direct design of the desired 
sharp cutoff filter

)(zI1
)(zI2

122
Copyright © 2005, S. K. Mitra

FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Design Objective – Given the specifications 
of               , determine the specifications of 
F(z),          and           design these 3 filters

• Design method – Illustrated for lowpass
filter design

• Two different situations may arise 
depending on how the transition band of     

is created
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Case A – Transition band of                is 
from one of the transition bands of H(z)
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Bandedges of               are related to the 
bandedges of F(z) as follows:
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Case B – Transition band of                is 
from one of the transition bands of G(z)
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• Bandedges of               are related to the 
bandedges of F(z) as follows:

• Example – Specifications for a lowpass
filter:                  ,                    ,                ,
and 
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• For designing               the optimum value 
of L is in the range

• By calculating the total number of 
multipliers needed to realize F(z),         , and   

for all possible values of L, we arrive 
at the realization requiring the least number 
of multipliers obtained for L =16 is 229
which is about 15% of that required in a 
direct single-stage realization
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FrequencyFrequency--Response Masking Response Masking 
ApproachApproach

• The gain response of the designed filter is 
shown below:
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