Analysis of Finite Wordlength
Effects

* |deally, the system parameters along with
the signal variables have infinite precision
taking any value between —o and oo

* In practice, they can take only discrete
values within a specified range since the
registers of the digital machine where they
are stored are of finite length

 The discretization process results in
nonlinear difference equations
characterizing the discrete-time systems
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Analysis of Finite Wordlength
Effects

» These nonlinear equations, in principle, are

almost impossible to analyze and deal with
exactly

» However, if the quantization amounts are

small compared to the values of signal
variables and filter parameters, a simpler
approximate theory based on a statistical
model can be applied
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Analysis of Finite Wordlength
Effects
» Using the statistical model, it is possible to
derive the effects of discretization and

develop results that can be verified
experimentally

* Sources of errors -
(1) Filter coefficient quantization
(2) A/ID conversion
(3) Quantization of arithmetic operations
(4) Limit cycles
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Analysis of Finite Wordlength
Effects

 Consider the first-order IIR digital filter

y[n]=ea y[n-1]+x[n]
where y[n] is the output signal and x[n] is
the input signal

* When implemented on a digital machine,

the filter coefficient o can assume only
certain discrete values g, approximating the
original design value o
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Analysis of Finite Wordlength
Effects

 The desired transfer function is
_ 1 2
H@) =~ 47 7°a
 The actual transfer function implemented is
Ny 2
H@D =75
which may be much different from the
desired transfer function H(z)
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Analysis of Finite Wordlength
Effects

 Thus, the actual frequency response may be
quite different from the desired frequency
response

* Coefficient quantization problem is similar
to the sensitivity problem encountered in
analog filter implementation
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Analysis of Finite Wordlength
Effects

» A/D Conversion Error - generated by the

filter input quantization process

« If the input sequence x[n] has been obtained

by sampling an analog signal x, (t), then the
actual input to the digital filter is

K[n] = x[n]+e[n]
where e[n] is the A/D conversion error
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Analysis of Finite Wordlength
Effects
Arithmetic Quantization Error - For the
first-order digital filter, the desired output of
the multiplier is
v[n]=ay[n-1]
Due to product quantization, the actual

output of the multiplier of the implemented
filter is

VIn] = ay[n—1] + e, [n] = v[n] +e,[n]
where e, [n] is the product roundoff error
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Analysis of Finite Wordlength
Effects

 Limit Cycles - The nonlinearity of the

arithmetic quantization process may
manifest in the form of oscillations at the
filter output, usually in the absence of input
or, sometimes, in the presence of constant
input signals or sinusoidal input signals
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Quantization Process and
Errors

Two basic types of binary representations of
data: (1) Fixed-point, and (2) Floating-point
formats

Various problems can arise in the digital
implementation of the arithmetic operations
involving the binary data

Caused by the finite wordlength limitations
of the registers storing the data and the
results of arithmetic operations
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Quantization Process and
Errors

For example in fixed-point arithmetic,
product of two b-bit numbers is 2b bits
long, which has to be quantized to b bits to
fit the prescribed wordlength of the registers
In fixed-point arithmetic, addition operation
can result in a sum exeeding the register
wordlength, causing an overflow

In floating-point arithmetic, there is no
overflow, but results of both addition and
multiplication may have to be quantized
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Quantization Process and

Errors

In both fixed-point and floating-point
formats, a negative number can be
represented in one of three different forms

Analysis of various quantization effects on
the performance of a digital filter depends on
(1) Data format (fixed-point or floating-point),

(2) Type of representation of negative numbers,

(3) Type of quantization, and

(4) Digital filter structure implementing the transfer
function
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Quantization Process and
Errors

« Since the number of all possible combinations
of the type of arithmetic, type of quantization
method, and digital filter structure is very
large, quantization effects in some selected
practical cases are discussed

 Analysis presented can be extended easily to
other cases
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Quantization Process and

Errors

 In DSP applications, it is a common practice
to represent the data either as a fixed-point
fraction or as a floating-point binary number
with the mantissa as a binary fraction

 Assume the available wordlength is (b+1)
bits with the most significant bit (MSB)
representing the sign

* Consider the data to be a (b+1)-bit fixed-
point fraction

14 Copyright © 2005 S. K. Mitra

Quantization Process and
Errors

 Representation of a general (b+1)-bit fixed-
point fraction is shown below

iyt 2™

‘ S ‘3._1‘8._2‘ e o o ‘a_b‘

» Smallest positive number that can be
represented in this format will have a least
significant bit (LSB) of 1 with remaining
bits being all 0’s
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Quantization Process and

Errors
» Decimal equivalent of smallest positive
number is & =27°
Numbers represented with (b+1) bits are
thus quantized in steps of 270 called
quantization step
An original data x represented as a (B+1)-bit
fraction is converted into a (b+1)-bit
fraction Q(x) either by truncation or
rounding
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Quantization Process and

Errors

e The quantization process for truncation or
rounding can be modeled as shown below

X— 2 — QX
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Quantization Process and
Errors

« Since representation of a positive binary
fraction is the same independent of format
being used to represent the negative binary
fraction, effect of quantization of a positive
fraction remains unchanged

 The effect of quantization on negative
fractions is different for the three different
representations
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Quantization of Fixed-Point
Numbers

 Truncation of a (B+1)-hit fixed-point
number to (b+1) bits is achieved by simply
discarding the least significant (5 —Db) bits
as shown below
27102 2-b 2B

{ {
[ Joafasl -+« Lo NS
T

To be discarded

(sfadag] « o e fay
A
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Quantization of Fixed-Point
Numbers

 Range of truncation error g = Q(x) - x
(assuming B >> b):
* Positive number and two’s complement
negative number
-0<g<0
« Sign-magnitude negative number and ones’-
complement negative number
0<g <o
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Quantization of Fixed-Point
Numbers

« Range of rounding error & =9Q(X)—x
(assuming B >> b):
« For all positive and negative numbers
) <0

254 =3
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Quantization of Floating-Point
Numbers

In floating-point format a decimal number x
is represented as x = 2E.M where E is the
exponent and M is the mantissa

Mantissa M is a binary fraction restricted to
lie in the range

<M<l
» Exponent E is either a positive or a negative
binary number
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Quantization of Floating-Point

Numbers

» The quantization of a floating-point number
is carried out only on the mantissa

» Range of relative error:
2(0-x_Q(M)-M
X M

» Two’s complement truncation

-20<&<0, x>0
0<g <26, x<0

23
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Quantization of Floating-Point
Numbers
* Sign-magnitude and ones’s complement
truncation
-20<&<0
Rounding of all numbers
-0<& <0
 Note: We consider in this course fixed-
point implementation case
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Analysis of Coefficient
Quantization Effects

« The transfer function H(z) of the digital
filter implemented with quantized
coefficients is different from the desired
transfer function H(z)

» Main effect of coefficient quantization is to
move the poles and zeros to different
locations from the original desired locations
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Analysis of Coefficient
Quantization Effects

« The actual frequency response H (e!®) is
thus different from the desired frequency
response H(e!?)

* In some cases, the poles may move outside
the unit circle causing the implemented
digital filter to become unstable even
though the original transfer function H(z) is
stable
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Analysis of Coefficient
Quantization Effects
« Effect of coefficient quantization can be
easily carried out using MATLAB

* To this end, the M-files a2dT (for
truncation) and a2dRr (for rounding) can be
used
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Coefficient Quantization Effects
On a Direct Form IR Filter

 Gain responses of a 5-th order elliptic
lowpass filter with unquantized and
quantized coefficients

Fullband Gain Response Passband Details

original - solid line, quantized - dashed line original - solid line, quantized - dashed line
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Coefficient Quantization Effects
On a Direct Form IR Filter

* Pole and zero locations of the filter with
quantized coefficients (denoted by “x” and
“0”) and those of the filter with unquantized
coefficients (denoted by “+” and “*”)
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Coefficient Quantization Effects
On a Cascade Form IIR Filter

Gain responses of a 5-th order elliptic
lowpass filter implemented in a cascade
form with unquantized and quantized

coefficients
Fullband Gain Response Passband Details
original - solid line, quantized - dashed line o Soriginal - solid line, quantized - dashed line
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Coefficient Quantization Effects
On A Direct Form FIR Filter

 Gain responses of a 39-th order equiripple
lowpass FIR filter with unquantized and
quantized coefficients

Fullband Gain Response Passband details

original - solid line, quantized - dashed line original - solid line, quantized - dashed line

0

Gain, dB
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-60
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Estimation of Pole-Zero
Displacements
* Consider an N-th degree polynomial B(z)
with simple roots:
N o, N
B(z)=2bz = [1(z-%)
i=0 k=1
with bN =1
* Roots z, of B(z) are given by
Zy = rkejgk
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Estimation of Pole-Zero

Displacements
« Effect of coefficient quantization is to
change the polynomial coefficient b; to
bi + Abi
 Thus, the polynomial B(z) after coefficient
quantization becomes

B(z)= 2(b; +Ab) 7
=0y N
=B(2)+ X (Ab)z' = [[(z-2)
k=1

i=0
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Estimation of Pole-Zero
Displacements

* 2, denotes the roots of B(z) and are the
new locations to which roots zj of B(z)
have moved

 For small changes in the coefficient values,
Z, will be close to z, and can be expressed
as

Zk =Zy +AZk = (rk +Ark)ej(9k+A9k)
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Estimation of Pole-Zero
Displacements

e If Ab; is assumed to be very small, we can
express
2 = (1 +Ark)ej‘9kejA9k = (n +AnR)A+ jAt?k)ewk
= rkej‘gk + (A + jrkAek)ejgk
neglecting higher order terms
» Then
Az = 2k - = (Ark + jrkAﬂk)ejgk
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Estimation of Pole-Zero
Displacements
» Now we can express 1/B(z) by partial-
fraction expansion as
18
B(z) «ka1z-z
where oy is the residue of 1/B(z) at the
pole z=1z,i.e.,
(Z - Zk) Ry + i
B(2) - k k
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Estimation of Pole-Zero

Displacements

 If 2, isvery close to zy, then we can write
1 &
B(Z) -1z

or
Az = py - B(Z)
* But A N_1 )
B(Z)=0=B(%)+ Eo (Ab;)(Z)'
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Estimation of Pole-Zero
Displacements
e Therefore

N-1 3 N-1 i
Azy = —Pk{ _% (Abi)(ik)'} = —Pk{ _;0 (Abi)(zk)l}

assuming that Z is very close to z
» Rewriting the above equation we get

(Ar + TrAG e =R + jxk){Ngol(Abi)(zk)‘}
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Estimation of Pole-Zero
Displacements

 Equating real and imaginary parts of the
above we arrive at
Arg = (-RyPy + X Qi) -AB =Sk - AB

N =—%(X|<Pk +ReQ)-AB =Sk .AB

where
P =[cosf, ¢ rkzcosek rkN’lcos(N—Z)Hk]
Qu =[-sind, 0 r2sing, - rNsin(N-2),]
AB=[Aby Ab Ab, - Aby_I"
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Estimation of Pole-Zero
Displacements
 The sensitivity vectors S{; and Sgk depend
only on B(z) and are independent of AB

» Once these vectors have been calculated,
pole-zero displacements for any sets of AB
can be calculated using the equations given

» Elements of AB are multiplier coefficient
changes only for the direct form realizations
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Estimation of Pole-Zero
Displacements

» Example - Consider the direct form Il
realization of

H(z)=

41 Copyright © 2005 S. K. Mitra

Estimation of Pole-Zero
Displacements
Here B(z) = 22 -Kz+Ll= (z-79)(z-125)
where 7 = rel?, Zy = re 10

» We compute .
_t-a
B(z) 2=2, 2rsind

 Therefore
AB=[AL -AK]
Qq=[-siné 0]
P, =[cosé r]
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Estimation of Pole-Zero
Displacements
* Substituting these values we get

_ -1
Ar = X, QAB = - AL

AL AK
AG=-L(X,PAB) = ;

r2tang® 2rsind

* It can be seen that the 2nd-order direct form
IR structure is highly sensitive to
coefficient quantizations for transfer
functions with poles close to 6 =0 or
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Estimation of Pole-Zero
Displacements

 Consider an arbitrary digital filter structure
with R multipliers given by
Oy k=1,2,...,R
» The multiplier coefficients «y are
multilinear functions of the coefficientsb
of the polynomial B(z)
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Estimation of Pole-Zero
Displacements

 Thus, when ¢ changes into o, + Aoy due
to coefficient quantization, the change Ab;
in the polynomial coefficient by can be
expressed as
R ob; .
Abi=27A(Zk, i=12,...,.N-1
k=100
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Estimation of Pole-Zero

Displacements
 In matrix form we have AB=CAa
where

cby oby, by
Oy Oa, oa,
L T ¢

C =| 6, oa, oa,,
by, b, by,
Oy Oa, oa,

Aal =[Aa1 A(Zz AOC3 AaR ]T
46 Copyright © 2005 S. K. Mitra

Estimation of Pole-Zero
Displacements
* Here the root displacements are given by
Ar =Sf-C-Aa
A =Sp -C-Aa.
where the sensitivity vectors Sf and S&
are as given earlier

* Note: The matrix C depends on the
structure but has to be computed only once
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Estimation of Pole-Zero
Displacements

» Example - Consider the coupled-form

structure with a transfer function given by

y2?

—(a+8)z2+ (- py)

H@)=

y[n]
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Estimation of Pole-Zero
Displacements

* If a=6=rcos@ and f=-y=rsing,
then the transfer function becomes

yz°
H@) 2% —2rcosfz + r?

» Comparing the denominator of the above
with that of the transfer function of the
direct form structure we get

K=a+06=2«a
L=as-fy=a’+p°
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Estimation of Pole-Zero
Displacements

» Taking the partials of both sides of the last
two equations we get

AL _[2rcosf 2rsinf| Aa

AK |~ 2 0 ApB

* Finally, substituting the results of the
previous example we arrive at

[ﬁz}:{ 2ir 01 ][Zrczose Zr%ne}[ﬁg}

2rftang  2rsind

50
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Estimation of Pole-Zero
Displacements

[Ar} cosd  siné [Aa]

S| e 1

AG —¢sing  1cosd | AB

 As can be seen from the above, the coupled-
form structure is less sensitive to multiplier

coefficient quantization than the direct form
structure

e or,
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A/D Conversion Noise
Analysis

» A/D converters used for digital processing
of analog signals in general employ two’s-
complement fixed-point representation to
represent the digital equivalent of the input
analog signal

« For the processing of bipolar analog signals,
the A/D converter generates a bipolar
output represented as a fixed-point signed
binary fraction

52 Copyright © 2005 S. K. Mitra
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Quantization Noise Model

 The digital sample generated by the A/D
converter is the binary representation of the
quantized version of that produced by an
ideal sampler with infinite precision

« |f the output word is of length (b+1) bits
including the sign bit, the total number of
discrete levels available for the
representation of the digital equivalent is 7
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Quantization Noise Model

» The dynamic range of the output register
depends on the binary number
representation selected for the A/D
converter

» The model of a practical A/D conversion
system is as shown below

X(t) | Ideal | x[n] ] 8In R[]
| sampler | =x_(nT) Quantizer Coder —

=Q(x[n])

54
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Quantization Noise Model

 The quantization process employed by the
quantizer can be either rounding or
truncation

» Assuming rounding is used, the input-
output characteristic of a 3-bit A/D
converter with the output in two’s-
complement form is as shown next
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Quantization Noise Model

* Input-output characteristic

{n]=Qixln]y

Fall-scale range (Rpg)——!
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Quantization Noise Model

 The binary equivalent % qlnl of the quantized
input analog sample X[n] for a two’s-
complement binary representation, is a binary
fraction in the range

—1< Req[n] <1
* ltis related to the quantized sample R[n]
through 2%In
Reqln]= 7R[ ]

FS
where Rgg denotes the full-scale range of the
A/D converter
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Quantization Noise Model
Assume the input signal has been scaled to
be in the range of +1 by dividing its
amplitude by Rgg /2, as is usually the case
The decimal equivalent of %gq[n] is then
equal to f[n]

For a (b+1)-bit bipolar A/D converter, the
total number of quantization levels is P
The full-scale range is Rgg = 2015
where & is the quantization step size
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Quantization Noise Model

For the 3-bit bipolar A/D converter, total
number of levels is 2% =8
The full-scale range is Rgg =85 with a
maximum value of Ay, =76/2 and a
minimum value of Ay, =-96/2
If the input analog sample x, (nT) is within
the full-scale range

— % <X (nT) < g
it is quantized to one of the 8 discrete levels
shown earlier
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Quantization Noise Model
In general, for a (b+1)-bit bipolar A/D
converter employing two’s-complement
representation, the full-scale range is given
by

—(2"1+) S <x (nT) < (221 -8

Denote the difference between the
quantized value Q (x[n]) = X[n] and the input
sample x[n] as the quantization error:

e[n] = Q(x[n]) - x[n] = K[n] - x[n]
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Quantization Noise Model

« It follows from the input-output
characteristic of the 3-bit bipolar A/D
converter given earlier that e[n] is in the
range s s

=Y <@
2<qm_2

assuming that a sample exactly halfway
between two levels is rounded up to the
nearest higher level and assuming that the
analog input is within the A/D converter
full-scale range
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Quantization Noise Model

« In this case, the quantization error e[n],

called the granular noise, is bounded in
magnitude according to —g <e[n]< g

A plot of the e[n] of the 3-bit A/D converter
as a function of the input sample x[n] is
shown below

mmm@mmmm
TN ONON NN
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Quantization Noise Model

» When the input analog sample is outside the

full-scale range of the A/D converter, the
magnitude of error e[n] increases linearly
with an increase in the magnitude of the
input

* In such a situation, the error e[n] is called

the saturation noise or the overload noise
as the A/D converter output is “clipped” to
the maximum value 1— 2 if the analog
input is positive or to the minimum value
—1if the analog input is negative
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Quantization Noise Model

« A clipping of the A/D converter output

causes signal distortion with highly
undesirable effects and must be avoided by
scaling down the input analog signal X, (nT)
to ensure that it remains within the A/D
converter full-scale range

» We therefore assume that input analog

samples are within the A/D converter full-
scale range and thus, there is no saturation
error
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Quantization Noise Model

» Now, the input-output characteristic of an

AJD converter is nonlinear, and the analog
input signal is not known a priori in most
cases

It is thus reasonable to assume for analysis
purposes that the error e[n] is a random
signal with a statistical model as shown

below il % sl

e[n]
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Quantization Noise Model

* For simplified analysis, the following
assumptions are made:

(1) The error sequence {e[n]} is a sample
sequence of a wide-sense stationary (WSS)
white noise process, with each sample e[n]
being uniformly distributed over the range
of the quantization error

(2) The error sequence is uncorrelated with
its corresponding input sequence {x[n]}

(3) The input sequence is a sample sequence
of a stationary random process

Copyright © 2005 S. K. Mitra
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Quantization Noise Model

* These assumptions hold in most practical
situations for input signals whose samples
are large and change in amplitude very
rapidly in time relative to the quantization
step in a somewhat random fashion

» These assumptions have also been verified
experimentally and by computer
simulations
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Quantization Noise Model

¢ The statistical model makes the analysis of
A/D conversion noise more tractable and
results derived have been found to be useful
for most applications

« If ones’-complement or sign-magnitude
truncation is employed, the quantization
error is correlated to the input signal as the
sign of each error sample e[n] is exactly
opposite to the sign of the corresponding
input sample x[n]

68
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Quantization Noise Model

* Asaresult, practical A/D converters use
either rounding or two’s-complement
truncation

 Quantization error probability density
functions p(e) for rounding and two’s-
complement truncation are as shown below

p(e) p(e)
1/ Us
-6/2 0 32 € -8 0 €
Rounding Two’s-complement truncation
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Quantization Noise Model
» Mean and variance of the error sample e[n]:

» Rounding -
m, = (5/2);(5/2) -0

o2 _(612-(-512))" 5

€ 12 12
e Two’s-complement truncation -
_0-6__5
me=-"2=-2

2 2
2 _(0-6)7 _s?
Oe 12 12
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Signal-to-Quantization Noise
Ratio

 The effect of the additive quantization noise
e[n] on the input signal x[n] is given by the
signal-to-quantization noise ratio given by

2
SNRa/p :10I0910(0’2‘j dB
el

where o4 is the input signal variance

representing the signal power and 0'e2 is
the noise variance representing the
quantization noise power
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Signal-to-Quantization Noise
Ratio

e For rounding, e[n] is uniformly distributed
inthe range (-6/2,612)

 For two’s-complement truncation, e[n] is
uniformly distributed in the range (-6,0)

* For a bipolar (b+1)-bit A/D converter

5 — 2—(b+l) RFS

e Hence 02 ~ 272b(RFS)2
T
48
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Signal-to-Quantization Noise
Ratio

2
* Therefore SNRy,p =1o|0910[22‘;f:;x)2)
FS

—6.02b+16.81—20 |og(%j dB

* This expression can be used to determine
the minimum wordlength of an A/D
converter needed to meet a specified SNR,p

* Note: SNRp,p increases by 6 dB for each

bit added to the wordlength
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Signal-to-Quantization Noise
Ratio

* For a given wordlength, the actual SNR
depends on o, , the rms value of the input
signal amplitude and the full-scale range Rgg
of the A/D converter

» Example - Determine the SNR in the digital
equivalent of an analog sample x[n] with a
zero-mean Gaussian distribution using a
(b+1)-bit A/D converter having Rgs = Koy
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Signal-to-Quantization Noise
Ratio

* Here
SNRa/p = 6.02b+16.81—20|ogm(iﬂ)
X

=6.02b +16.81-20l0g;5(K)
» Computed values of the SNR for various
values of K are as given below:

|b=7 b=9 b=11 b=13 b=15
K=4|46.91 5895 70.99 83.04 95.08
K =6|4339 5543 67.47 7951 91.56
K=8|40.89 5293 6497 77.01 89.05
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Signal-to-Quantization Noise
Ratio

The probability of a particular input analog
sample with a zero-mean Gaussian
distribution staying within the full-scale
range 2Ko, is given by

2(D(k)—l=\/§£e‘y2/2dy
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Signal-to-Quantization Noise
Ratio

» Thus, for K = 4, the probability of an analog
sample staying within the full-scale range 8o,
is 0.9544

‘ On average about 456 samples out
of 10,000 samples will fall outside the full-
scale range and be clipped

7 Copyright © 2005 S. K. Mitra

Signal-to-Quantization Noise
Ratio

 For K = 6, the probability of an analog
sample staying within the full-scale range
126, 15 0.9974

‘ On average about 26 samples out of
10,000 samples will fall outside the full-
scale range and be clipped

 In most applications, a full-scale range of
160, is more than adequate to ensure no
clipping in conversion

78
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Effect of Input Scaling on SNR

Consider the scaled input Ax[n]

* The variance of the scaled input is Azaf

* Then

SNRA/p =6.02b+16.81—-201l0g;o(K)
+20l0go(A)

* For agiven b, the SNR can be increased by
scaling up the input signal by making A > 1
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Effect of Input Scaling on SNR

 But increasing A also increases the
probability that some of the input analog
samples being outside the full-scale range
Rgs and as result, the expression for SNRy, p
no longer holds

» Moreover, the output is clipped, causing
severe distortion in the digital
representation of the input analog signal

80
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Effect of Input Scaling on SNR

A scaling down of the input analog signal
by choosing A < 1 decreases the SNR

« It is therefore necessary to ensure that the
input analog sample range matches as close
as possible to the full-scale range of the
A/D converter to get the maximum possible
SNR without any signal distortion

81 Copyright © 2005 S. K. Mitra

Propagation of Input Quantization
Noise to Digital Filter Output

 To determine the propagation of input
quantization noise to the digital filter
output, we assume that the digital filter is
implemented using infinite precision

* In practice, the quantization of arithmetic
operations generates errors inside the digital
filter structure, which also propagate to the
output and appear as noise
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Propagation of Input Quantization
Noise to Digital Filter Output
 The internal noise sources are assumed to
be independent of the input quantization
noise and their effects can be analyzed
separately and added to that due to the input

noise
» Model for the analysis of input quantization
noise:
X(n] L T R
=y[n]+v[n]

e[n]
83
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Propagation of Input Quantization
Noise to Digital Filter Output

 Because of the linearity property of the
digital filter and the assumption that x[n]
and e[n] are uncorrelated, the output §[n]of
the LTI system can thus expressed as

§[n]= y[n]+Vvin]
where y[n] is the output generated by the
unquantized input x[n] and v[n] is the output
generated by the error sequence e[n]
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Propagation of Input Quantization
Noise to Digital Filter Output

e Therefore

vIn]=h[nlee[n]= > e[mlh[n—m]
m=—o0o
e The mean m, of the output noise v[n] is

iven b i
GVENDY o, =meH (e10)
and its variance a\f is given by

27 f B
2 _ 0
ol :i_jﬂ‘H(e“”)‘ do
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Propagation of Input Quantization

Noise to Digital Filter Output

» The output noise power spectrum is given

by
Pu@) =2 H (1)

» The normalized output noise variance is

given by
avzn j \H(eJW)\ do
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Propagation of Input Quantization
Noise to Digital Filter Output

* Alternately,
2 1 -1y,-1
Oyn =27[J_§H (2)H(z )z dz
. © . .

where C is a counterclockwise contour in

the ROC of H(z)H(zY)
» An equivalent expression for the normalized

output noise variance is

2 _ 3 2
oun=_X/hIn]

N=—o0
87 Co
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Algebraic Computation of
Output Noise Variance

* In general, H(z) is a causal stable real

rational function with all poles inside the
unit circle in the z-plane

« |t can be expressed in a partial-fraction

expansion form
R
H@)=2HI@)
1=

where H;(z) is a low-order causal stable
real rational transfer function
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Algebraic Computation of
Output Noise Variance

» Substituting the partial-fraction expansion
of H(z) in

o2y = §H ()H (z Yz %z
we arrive at

R
Y fH@H, Tz dz

2 1
Oy.n _T
1/=1C

k=

|M:U
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Algebraic Computation of
Output Noise Variance

* Since Hy(z) and H,(z) are stable transfer
functions, it can be shown that

fH (2)H (2 hz7 Mz = fH, (2)H\ (2 )z "z
C C

e Thus, we can write

ol = z IR @ (" DL

R-1 R
22 > He(@H, (212 1dz
Py k+ 1C
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Algebraic Computation of
Output Noise Variance

* In most practical cases, H(z) has only
simple poles with Hy (z) being either a 1st-
order or a 2nd-order transfer function

 Typical terms in the partial-fraction
expansion of H(z) are:
Bk Ck Z+ Dk

Z=a’ 721bz+dy
* Let a typical contour integral be denoted as
1 -1y,-1
Iizz—ﬂjin(z)H((z )z dz
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Table of Typical Contour

Integrals
H, (%) )
H(@) A z‘lB—/ a, Z'Eizt;,ztll?rﬁd .
A L| 0 0
B ~ o 1 I
% ol 1, I,
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Table of Typical Contour

Integrals
* where
I, = A
— Bk Bf
T1-aa,
(¢.C,+DbD,)(-dd,)-(C,D,-D,Ccd,)b,
.= -(GD, -D,C,d,)b,
8 (1-d.d,)* +d,b? +d,b2 - (1+d,d,)bb,
|, = Bf(ck + Dka/z)
* 1+ha, +da’
_B(C,+D,a)

4
1+b,a, +d,a}
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Algebraic Computation of
Output Noise Variance

Example - Consider a first-order digital
filter with a transfer function
_ 1 2z
H@) = i 7-a
A partial-fraction expansion of H(z) is

H(z):1+%

 The two terms in the above expansion are
Hi(2)=1 H,(2)=7%,
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Algebraic Computation of
Output Noise Variance
 Therefore, the normalized output noise
variance is given by
2
2 a 1
oy =1+ ="
o 1-a? 1-a?
« If the pole is close to the unit circle, we can
write Ex\ =1-g where =0
* In which case
02 =] # =~ i
MU 1-e)? 2
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Algebraic Computation of
Output Noise Variance

 Thus, as the pole gets closer to the unit
circle, the output noise increases rapidly to
very high values approaching infinity

« For high-Q realizations, the wordlengths of
the registers storing the signal variables
should be of longer length to keep the
round-off noise below a prescribed level
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Computation of Output Noise
Variance Using MATLAB

* In the MATLAB implementation of the
algebraic method outlined earlier, the
partial-fraction expansion can be carried out
using the M-file residue

e This results in terms of the form A and

By /(z —ay) where the residues By and the
poles ay are either real or complex numbers

« For variance calculation, only the terms |,
and I, are then employed
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Computation of Output Noise
Variance Using MATLAB
 An alternative fairly simple method of

computation is based on the output noise
variance formula

o2y = Y/h[n]?
N=—o0

* For a causal stable digital filter, the impulse
response decays rapidly to zero values

» Hence we can write L
2 - 2
Oyn=S_= Z(\)h[n]\
n=l
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Computation of Output Noise
Variance Using MATLAB

* To determine an approximate value of o\f’n
the sum S is computed forL =1, 2, ..,
and the computation is stopped when

SL - SL—l <K
where k is a specified small number, which
is typically chosen as 1076
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