Matrix Representation of Matrix Representation of

Digital Filter Structures Digital Filter Structures
« A digital filter structure can be described in * This structure, in the time-domain, is
the time-domain by a set of equations described by the set of equations
relating the output sequence to the input wy[n] = x[n] - ws[n]

sequence and, in some cases, one or more
internally generated sequences
ye q wa[n] = wy[n -1]

Consider . wy[n]=ws[n]+ew,[n]

S R ws[n] =w,[n-1]
o\ ' yInl= Awi[n] + » ws[n]
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W [n]=wi[n] -5 ws[n]

Matrix Representation of Matrix Representation of
Digital Filter Structures Digital Filter Structures
* The equations cannot be implemented in the * This ordered set of equations is said to be
order shown with each variable on the left noncomputable
side computed before the variable below is .s der th "
computed uppose we reorder these equations

ws[n] = w,[n 1]
ws[n] = w n 1]
wy[n] = X[n] - @ ws[n]
w,[n] = w4[n] - 5 wyln]

* For example, computation of wy[n]in the
1st step requires the knowledge of ws[n]
which is computed in the 5th step

* Likewise, computation of w,[n] in the 2nd

step requires the knowledge of ws[n] that is yin]= Bwaln]+y wen]
computed in the 3rd step wy[n] = ws[n]+ e w,[n]
Copyright © 2005, S. K. Mitra 4 Copyright © 2005, S. K. Mitra
Matrix Representation of Matrix Representation
31 : » A matrix representation of the first ordered
Digital Filter Structures cotof equations s
* This ordered set of equations is computable Wil rynll fo 0 0 0 —o o] W]
« In most practical applications, equations z"vﬁz} olEps o0 VW&H
describing a digital filter structure can be wyn]|=| 0 [Flo e 1 0 0 0fwyn]
put into a computable order by inspection we[n]| | 0 88 99 3 9 wslnd
» A simple way to examine the computability yin] '_0 000 0 ofwhn-1 i
of equations describing a digital filter 0000 0 0fWwhn-1
structure is by writing the equations in a 320000 \‘2’3{2:3
matrix form 00010 0fwfny]
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Matrix Representation
e In compact form
y[n] =x[n] + Fy[n] + G y[n - 1]
where
yinl=[wn] w,n] win] w,n] wn] yn]
x[n]=[xn] 0 0 0 0 oOf
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Matrix Representation

* For the computation of present value of a
particular signal variable, nonzero entries in
the corresponding rows of matrices F and G
determine the variables whose present and
previous values are needed

« If a diagonal element of F is nonzero, then
computation of present value of the
corresponding variable requires the
knowledge of its present value implying
presence of a delay-free loop

Copyright © 2005, S. K. Mitra

Matrix Representation

< Any nonzero entries in the same row above
the main diagonal of F imply that the
computation of present value of the
corresponding variable requires present
values of other variables not yet computed,
making the set of equations noncomputable

 Hence, for computability all elements of F
matrix on the diagonal and above diagonal
must be zeros

9 Copyright © 2005, S. K. Mitra

10

Matrix Representation

* In the F matrix for the first ordered set of
equations, diagonal elements are all zeros,
indicating absence of delay-free loops

» However, there are nonzero entries above
the diagonal in the first and second rows of
F indicating that the set of equations are not
in proper order for computation

Copyright © 2005, S. K. Mitra

Matrix Representation

The F matrix for the second ordered set of
equations is

0.0 0000
00 0000
F_| 0 -a~0 000
=l-s 0 170 0 0
0 y B 000
1 0 000

which is seen to satisfy the computability
condition

11 Copyright © 2005, S. K. Mitra
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Precedence Graph

» The precedence graph can be used to test
the computability of a digital filter structure
and to develop the proper ordering sequence
for a set of equations describing a
computable structure

« It is developed from the signal-flow graph
description of the digital filter structure in
which independent and dependent signal
variables are represented by nodes, and the
multiplier and delay branches are
represented by directed branches

Copyright © 2005, S. K. Mitra




Precedence Graph

» The directed branch has an attached symbol
denoting the branch gain or transmittance

* For a multiplier branch, the branch gain is
the multiplier coefficient value

* For a delay branch, the branch gain is
simply z*

13
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Precedence Graph
e The 5|gnal flow graph representatlon of

D .

is shown below
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Precedence Graph
A reduced signal-flow graph is then
developed by removing the delay branches
and all branches going out of the input node
 The reduced signal-flow graph of the example
digital filter structure is shown below

15 Copyright © 2005, S. K. Mitra

Precedence Graph

» The remaining nodes in the reduced signal-
flow graph are grouped as follows:

« All nodes with only outgoing branches are
grouped into one set labeled {N7}

* Next, the set {5} is formed containing
nodes coming in only from one or more
nodes in the set {N;} and have outgoing
branches to the other nodes

16 Copyright © 2005, S. K. Mitra

Precedence Graph

« Then, form the set {N3} containing nodes
that have branches coming in only from one
or more nodes in the sets {N; }and {N5},
and have outgoing branches to other nodes

 Continue the process until there is a set of
nodes {N; } containing only incoming
branches

 The rearranged signal-flow graph is called a
precedence graph

17 Copyright © 2005, S. K. Mitra

Precedence Graph

« Since signal variables belonging to {N7} do
not depend on the present values of other
signal variables, these variables should be
computed first

* Next, signal variables belonging to{N>}
can be computed since they depend on the
present values of signal variables contained
in {N7} that have already been computed

18
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Precedence Graph

This is followed by the computation of
signal variables in {N3}, {IN,}, etc.

Finally, in the last step the signal variables
in {2\t }are computed

This process of sequential computation
ensures the development of a valid
computational algorithm

If there is no final set {2V} }containing only

incoming branches, the digital filter
structure is noncomputable

Copyright © 2005, S. K. Mitra

Precedence Graph

« For the example precedence graph,
pertinent groupings of node variables are:

IV} ={ws[n], ws[n]}
{No}={w[n]}

W3k ={w,[n]}
{N4} ={wy[n], yIn]}

20
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Precedence Graph

 Precedence graph redrawn according to the

above groupings is as shown below

« Since the final node set {2N4} has only

incoming branches, the structure is
computable

Copyright © 2005, S. K. Mitra

Structure Verification

» A simple method to verify that the structure
developed is indeed characterized by the
prescribed transfer function H(z)

* Consider for simplicity a causal 3rd order
IIR transfer function

H(p) < P@ _ Po+piz ™+ ppz 2+ psz

(2)= - 1 = -3
D(z) 1+diz " +dyz * +dsz

« If {h[n]} denotes its impulse response, then

H(z)= Shin]z™"
n=0

3
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Structure Verification

Note P(z) = H(z)D(z2) .

which is equivalent to  pn= > h[kldn_y.dg =1

« Evaluate above convolution &im for0<n<6:

Po = h[0]

py = h[1] +h[0]d;

p2 = h[2]+h[1]d; + h[0]d,

ps = h[3]+ h[2]d; + h[1]d5 + h[0]d;
0= h[4] + h[3]d; + h[2]d + h[1]d5
0=h[5]+ h[4]d; + h[3]d, + h[2]d5
0=h[6] + h[5]d; + h[4]d, + h[3]d3

Copyright © 2005, S. K. Mitra

Structure Verification
* In matrix form we get

P F[O] 0 0 o0
h] hO] O O |,

h[2] h] h{o] O {dll

ps [=|h3]_h[2] h{] h[O]| 4
0| [h[4] ' h[3] h2] hOj g
0 | |h[5] h[4] h[3] h2][-"
0] [h[6] {h[5] h[4] h(3]

* In partitioned form above matrix equation
can be written as

24
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Structure Verification

where
ool b nfj

« Solving second equation we get
d=-Hh
* Substituting above in the first equation we

- = in)

¢ |n the case of an N-th order IIR filter, the
coefficients of its transfer function can be
determined from the first 2N+1 impulse
response samples

Copyright © 2005, S. K. Mitra
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Structure Verification

Example - Consider the causal transfer

function
246271 +3z272
H(Z)=——F—F—
@ 1+z 42272
Here

h[0]=2, h[t]=4, h[2] =5, h[3] = -3, h[4] =13

=2+4477-57%-32°+1327* +---

Hence
Po 2 0

Copyright © 2005, S. K. Mitra

Structure Verification

* Solving we get

and
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28

Structure Simulation and
Verification Using MATLAB

For computer simulation, the structure is
described in the form of a set of equations
These equations must be ordered properly
to ensure computability

The procedure is to express the output of
each adder and filter output variable in
terms of all incoming signal variables

Copyright © 2005, S. K. Mitra

Structure Simulation and
Verification Using MATLAB

« Consider the structure

w, W,
@ &
>< ><
w =

A IO 3 ey

A valid computational algorithm involving

the least number of equations is
w[n]=x[n]-aw,[n-1],
Wz[n] = Wl[n] —§W2[n _1]1
w,[n]=w,[n-1]+ew,[n],
y[n] = gwi[n]+y w,[n-1]

29 Copyright © 2005, S. K. Mitra
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Structure Simulation and
Verification Using MATLAB

This set of equations is evaluated for
increasing values of n starting atn =0

At the beginning, the initial conditions w,[-1]
and w,[-1] can be set to any desired values,
which are typically zero

From the computed impulse response
samples, the structure can be verified by
determining the transfer function

coefficients using the M-file strucver

Copyright © 2005, S. K. Mitra
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Simulation of IIR Filters

* The M-file £ilter implements the IR
filter in the transposed direct form Il
structure shown below for a 3rd order filter

 As indicated in the figure, d(1) has been
assumed to be equal to 1

Copyright © 2005, S. K. Mitra

32

Simulation of lIR Filters

Basic forms of this function are
y = filter (num,den, x)
[v,sfl=filter (num,den,x,si)
where x is the input vector, vy is the output
vector, si is the vector of initial conditions
of the delay variables, and s £ is the vector
of final values of the delay variables
For the simulation of a causal IIR filter

realized in direct form Il structure use the
M-file direct2

Copyright © 2005, S. K. Mitra

33

Simulation of IIR Filters

* For the simulation of overlap-add filtering
method use the M-file ££ft£ilt or the
second form of the M-file filter

* For the simulation of tapped cascaded
lattice filter structures, use the M-file
latcfilt

e The M-files filter, direct2 and
latcfilt can also be used to simulate
FIR filters

e The M-file £i1t£i1t implements the
zero-phase filtering

Copyright © 2005, S. K. Mitra
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Discrete Fourier Transform

Computation
The N-point DFT X[k] of a length-N
sequence X[n], 0<n< N -1, is defined by
X[kl= S oxnwf", 0<k <N -1
where L —ei2aln

Direct computation of all N samples of
{X[K]} requires N 2complex multiplications
and N(N —1)complex additions

Copyright © 2005, S. K. Mitra

35

Goertzel's Algorithm

A recursive DFT computation scheme that
makes use of the identity
obtained using the periodicity of W,\]k”

* Using this identity we can write

N-1
X[K]= X X[y’
/=0

N-1 N-1
(= /=

Copyright © 2005, S. K. Mitra

36

Goertzel's Algorithm
Define i [n]=X0_g%e[(IWy (")
Note: yy[n] is the direct convolution of the
causal sequence

vl = {0

with a causal sequence

Wyk", n>0
h[n]=1""N >
«[n] { 0, n<O0

X[K]= ykI[nl_y

0<n<N-1
n<0,n>N

Observe

Copyright © 2005, S. K. Mitra
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Goertzel's Algorithm

o z-transform of y,[n]=X)_g Xe[E]WI\]k(“"f)
yields
Xe(2)
(2) = ZOndnl}= = Hi(2)Xe()

where Hy (z) = Z{h [n]}=1/1-Wg*z 1)
and Xe(z) =Z{x[n]}
Thus, yg[n] is the output of an initially

relaxed LTI digital filter H (z) with an
input x[n] and, when n =N, yx[N]= X[K]

Copyright © 2005, S. K. Mitra

Goertzel's Algorithm

« Structural interpretation of the algorithm -

fw

x.ln] il

1[Nl =0 y[-11=0
<

Wy

 Thus a recursive DFT computation scheme
is
yk[n]= X [N]+WgKy[n-1], 0<n<N

with y, [-1]=0and x[N]=0
38
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Goertzel's Algorithm

Since a complex multiplication can be
implemented with 4 real multiplications and
2 real additions, computation of each new
value of y, [n] requires 4 real
multiplications and 4 real additions

Thus computation of X[k]=y,[N]involves
4N real multiplications and 4N real
additions

‘ Computation of all N DFT samples
requires 4N? real multiplications and 4N?
real additions

Copyright © 2005, S. K. Mitra

Goertzel's Algorithm

 Recall, direct comgutation of all N samples of
{X[Kk]} requires N“ complex multiplications
and N (N —1)complex additions

« Equivalently, direct computation of all N
samples of {X[k]} requires 4N 2 real
multiplications and N (4N —2) real additions

e Thus, Goertzel’s algorithm requires 2N more
real additions than the direct DFT
computation

40 Copyright © 2005, S. K. Mitra

41

Goertzel's Algorithm

« Algorithm can be made computationally
more efficient by observing that Hy (z) can
be rewritten as

1-wyzt

Hi(z) = K1 K1 ko1

1_WN z (1_WN zZ )(1—WNZ )

~ 1-wzt
1-2cos(2zk/N) 2+ 272
resulting in a second-order realization

Copyright © 2005, S. K. Mitra

Goertzel's Algorithm

» DFT computation equations are now

Vi [n] = Xs[n]+2cos(2nk/ N) v, [n—-1]
-v[n-2], 0<n<N

XK1= Y [N1=vi [N]-Wiv [N -1]

42
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Goertzel's Algorithm
e Computation of each sample of v, [n]
involves only 2 real multiplications and 4
real additions

Complex multiplication by Wll,‘ needs to
be performed only once at n = N

Thus, computation of one sample of X[K]
requires (2N +4) real multiplications and
(4N +4) real additions

Computation of all N DFT samples requires
2N (N +2) real multiplications and

4N (N +1) real additions

Copyright © 2005, S. K. Mitra

Goertzel's Algorithm

« In the realization of Hy_y (2), the multiplier
in the feedback path is
2c0s(2w(N —k)/N) =2cos(27k I N)
which is same as that in the realization ofH, (z)
Vn—k[n]=V[n],i.e., the intermediate
variables computed to determine X[k] can
again be used to determine X[N —K]

 Only difference between the two structures
is the feed-forward multiplier which is now
W,\Ik »that is the complex conjugate of W,\‘}

44 Copyright © 2005, S. K. Mitra

45

Goertzel's Algorithm

* Thus, computation of X[k] and X[N —K]

require 2(N+4) real multiplications and
4(N+2) real additions

e Computation of all N DFT samples require
approximately N 2 real multiplications and
approximately 2N 2 real additions

» Number of real multiplications is about one-
fourth and number of real additions is about
one-half of those needed in direct DFT
computation

Copyright © 2005, S. K. Mitra

Decimation-in-Time FFT
Algorithm

« Consider a sequence x[n] of length N =2#

* Using a 2-band polyphase decomposition
we can express its z-transform as

X(2) = Xo(2%) +27X(z%)
where

(N/2)-1 (N/2)-1
Xo(2)= X x[nlz"= X x2n]z™"
n=0 n=0
(N/2)-1 (N/2)-1
X12)= Y xhlz"= ¥ x[2n+1z7"
46 n=0 n=0
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Decimation-in-Time FFT
Algorithm
* Evaluating on the unit circle at N equally

spaced points z=Wgk,0<k<N-1, we
arrive at the N-point DFT of x[n]:

XK1= Xo[(k)n 121+ Wi Xa [k 21,

0<k<N-1

where Xg[k] and Xq[k]are the (N/2)-point
DFTs of the (N/2)-length sequences Xg[n]
and xq[n]

Copyright © 2005, S. K. Mitra

Decimation-in-Time FFT
Algorithm

_ (N/2)-1
cieXolkl= Y xo[rIWK,

=0
(N/2)—1r
- Zo x[2riwgl,, 0<k <8 -1
r=
(N/2)-1 )
Xilkl=" > xlrIWy,
r=0
(N/2)1
= 20 x[2r +1qWyk,, 0<k <8 -1
=
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Decimation-in-Time FFT
Algorithm

 Block-diagram interpretation

Xo[n]

49

N_noint| Xo[KkYn /2]

5 —point| XoltkIn/2 XIk

DFT Wk k]
N

%—point X[k 2]

DFT
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Decimation-in-Time FFT
Algorithm

 Flow-graph representation

x[0] o—~
r[2] o—ef N

o
(4] o—e]

x[6] o—et

*[1] o—uef

1[3] o—ei

[5] ol

(7] o—]
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Decimation-in-Time FFT
Algorithm

* Direct computation of the N-point DFT

requires N2 complex multiplications and
N2 —N ~ N2 complex additions

» Computation of the N-point DFT using the
modified scheme requires the computation of
two (N/2)-point DFTs that are then combined
with N complex multiplications and N
complex additions resulting in a total of
(N2/2)+ N complex multiplications and

51

approximately (N2/2) + N complex additions
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Decimation-in-Time FFT

Algorithm

« For N >3,(N%/2)+N <N?

+ Continuing the process we can express Xq[k]
and X;[k] as a weighted combination of
two (N/4)-point DFTs

« For example, we can write

XolK1= Xoo[(kn 141+ Wi 2 Xoal(K)n 4,
0<k<(N/2)-1
where Xgo[k] and Xgq[k]are the (N/4)-
point DFTs of the (N/4)-length sequences
Xoo[n]=Xg[2n] and Xp1[n] = xg[2n+1]

Copyright © 2005, S. K. Mitra

Decimation-in-Time FFT
Algorithm

* Likewise, we can express

Xq[K1= Xo[(k) 41+ Wi ;2 X1 [KK) 741,

0<k<(N/2)-1

where X;q[k] and Xy;[k]are the (N/4)-
point DFTs of the (N/4)-length sequences
X10ln] = x[2n] and xq;[n]= x[2n +1]

53
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Decimation-in-Time FFT
Algorithm

* Block-diagram representation of the two-
stage algorithm

Xol(kon /2]
%ol %00 I & point | XooKkdwsal o N\ X [K]
DFT o
W2
Xo1[N] %—point Xo1[{kInyal W,\"“
| oFT_|
X[k n 2]
@Xm[”] R point | X10[Kinyal +\
DFT K
W2
X1[n] %—point X11[{K)nsal
DFT
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Decimation-in-Time FFT
Algorithm

» Flow-graph representation

Xcol0]
10 o= X _peim: = 2 | X0]
(4] o—n] DFT | Xooll \ﬁ:\ A’“‘ X1
*{2] N s > > s A2
i b_-"fﬂx’"“ T . 12
X[6] ot Yopr [ Xl \K‘ XXA“ X031
< 5 X[3
X1 o—ef 3y o) bl " X[41
I;F"r'm Xpll] w2 ]
¥[5] o—nf 4 \E’i X[5]
) o > ST
El N - 3 el
A xum W \WQ
m 3 ° X(7]
Wy W

55

Copyright © 2005, S. K. Mitra

56

Decimation-in-Time FFT
Algorithm

In the flow-graph shown N =8

Hence, the (N/4)-point DFT here is a 2-
point DFT and no further decomposition is
possible
The four 2-point DFTs, Xj[k], i,j=01
can be easily computed
For example

X oo[k] = X[0] + WX x[4], k=01
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Decimation-in-Time FFT
Algorithm

* Corresponding flow-graph of the 2-point
DFT is shown below obtained using the
identity wk —w{N/2k

(0] XeolO)
wl-wy =1
x4 Xooll

-
wlio wi o
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Decimation-in-Time FFT
Algorithm

o Complete flow-graph of the 8-point DFT is
shown below

*[0]

X[Q]
we TN P
x[4]
Wy /Tv.

X111
wii \

x[2] =
— &
x[6]

Wy Wa

1] o o X[4]
f

x[5] o o X[5]
v < f
. ]

7 o o X[7]
Wa Wiy W
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Decimation-in-Time FFT
Algorithm

The flow-graph consists of 3 stages

First stage computes the four 2-point DFTs
Second stage computes the two 4-point DFTs
» Last stage computes the desired 8-point DFT

» The number of complex multiplications and
additions at each stage is equal to 8, the size
of the DFT

59
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Decimation-in-Time FFT
Algorithm

 Total number of complex multiplications

and additions to compute all 8 DFT samples
isequalto 8 +8+8=24= 8x3

* In the general case when N =2#, number of

stages for the computation of the (2#)-point
DFT in the fast algorithm will be #=1og, N

 Total number of complex multiplications

and additions to compute all N DFT
samples is N (log, N)

Copyright © 2005, S. K. Mitra
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Decimation-in-Time FFT
Algorithm
* In developing the count, multiplications

with W =1 and Wy)!/2=—1 have been
assumed to be complex

* Also the symmetry property of
has not been taken advantage of

» These properties can be exploited to reduce
the computational complexity further
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Decimation-in-Time FFT
Algorithm
» Examination of the flow-graph
i~ T e
o W ST SN L A
——] LN A
o IO OO
) ] T KKK \l\:
Lie ] ".\‘ W \Q' -\[0;
\('|W u_: \ILE Lol
reveals that each stage of the DFT

computation process employs the same
basic computational module
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Decimation-in-Time FFT
Algorithm
* In the basic module two output variables are
generated by a weighted combination of
two input variables as indicated below
where r=12,...,x and «,p=01,...,N -1

Wwelod W1 [0
w

WPl YrellP)
ng +(M2)

 Basic computational module is called a
butterfly computation
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Decimation-in-Time FFT
Algorithm

* Input-output relations of the basic module

are:
¥y lal = [a] + Wy ¥, [ 4]

W alfl= Y o]+ W N2y 5]

» Substituting w;*(N/2) — _w{ in the second
equation given above we get

[ 1= o] Wi, [ 4]
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Decimation-in-Time FFT
Algorithm
» Modified butterfly computation requires

only one complex multiplication as
indicated below

ol ><\If, 100

LG 7 W 1B
Wy -1

 Use of the above modified butterfly
computation module reduces the total
number of complex multiplications by 50%
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Decimation-in-Time FFT
Algorithm

* New flow-graph using the modified
butterfly computational module for N = 8

RNz N AN
S

o) X
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OXXL,

7 XM

x2]
x[6]

we
i & wa &l

i

x[51 X[3]

x[3] X[6)
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Decimation-in-Time FFT
Algorithm

» Computational complexity can be reduced
further by av0|d|ng multiplications byWN =1,
Wi 2 =-1, W74 = j, and W3N/4 = _j

» The DFT computation algorithm described
here also is efficient with regard to memory
requirements

» Note: Each stage employs the same butterfly

computation to compute ¥, ,4[e] and ¥,,41[ £]
from W, [a@]and Y, []

Copyright © 2005, S. K. Mitra

68

Decimation-in-Time FFT
Algorithm

At the end of computation at any stage,
output variables ¥, s[m] can be stored in the
same registers previously occupied by the
corresponding input variables ¥, [m]

* This type of memory location sharing is
called in-place computation resulting in
significant savings in overall memory
requirements
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Decimation-in-Time FFT
Algorithm

¢ In the DFT computation scheme outlined,
the DFT samples X[k] appear at the output
in a sequential order while the input
samples x[n] appear in a different order

BN NI/
w_ SIS

a2l X[
v w

A1) o a o .

¥[5] o

3]

71
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Decimation-in-Time FFT
Algorithm

 Thus, a sequentially ordered input x[n] must
be reordered appropriately before the fast
algorithm described by this structure can be
implemented

» To understand the input reordering scheme
represent the arguments of input samples
x[n] and their sequentially ordered new
representations ¥;[m] in binary forms
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The relations between the arguments m and
n are as follows:

m: 000 001 010 011 100 101 110 111
n: 000 100 010 110 001 101 011 111

Thus, if (b,b;b,) represents the index n of
x[n], then the sample X[b,l4by] appears at
the location m =bgbb, as ¥[bybyb,]before
the DFT computation is started

i.e., location of \Pj[m] is in bit-reversed
order from that of x[n]
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* Alternative forms of the fast DFT
algorithms can be obtained by reordering
the computations such as input in normal
order and output in bit-reversed order, and
both input and output in normal order

* The fast algorithm described assumes that
the length of x[n] is a power of 2

« Ifitis not, the length can be extended by
zero-padding and make the length a power
of 2

Copyright © 2005, S. K. Mitra
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 Even after zero-padding, the DFT
computation based on the fast algorithm
may be computationally more efficient than
a direct DFT computation of the original
shorter sequence

 The fast DFT computation schemes
described are called decimation-in-time
(DIT) fast Fourier transform (FFT)
algorithms as input x[n] is first decimated to
form a set of subsequences before the DFT
is computed

73 Copyright © 2005, S. K. Mitra

Decimation-in-Time FFT
Algorithm

 For example, the relation between x[n] and
its even and odd parts, xg[n] and xq[n],
generated by the first stage of the DIT
algorithm is given by

x[n]: x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

%[n]: x[0] x[2] x[4] x[6]
x[n]: X[ x[3] x[5] X[7]
74 Copyright © 2005, S. K. Mitra
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Likewise, the relation between x[n] and the
sequences Xoo[N] | Xga[N], X,0[Nn], and xg4[n],
generated by the two-stage decomposition
of the DIT algorithm is given by

x[n]:  x[0] x[ x[2] X[3] x[4] x[5] x[6] x[7]

Xon]:  X[0] x[4]
Xa[n]: X[2] x[6]
xp[n]: (1] x(5]
x[n]: X[3] x{7]
75 Copyright © 2005, S. K. Mitra
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The subsequences Xqo[n], %[N, X0[N], and
X;1[n] can be generated directly by a factor-
of-4 decimation process leading to a single-
stage decomposition as shown on the next
slide
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Xol{kon /21
X [N]| N _ i X k
Xn] 4 00lN] ADE'?mt 00[(Knyal D N\ X[K]
(7] Wiz
_,@Xm[n] %—point Xo1[{kInsal W,\I‘(
[Z] | oFT |
[ ]’—‘ X1[<k>QIZ]
%0 [N N point | X10[K)nyal
4] *bFT 4
W2
J—\X“[n] M—point X11[{K)n/al
11—4‘ 4DFT
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Radix-R FFT algorithm - A each stage the
decimation is by a factor of R

Depending on N, various combinations of
decompositions of X[k] can be used to
develop different types of DIT FFT
algorithms

If the scheme uses a mixture of decimations
by different factors, it is called a mixed
radix FFT algorithm
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e For N which is a composite number
expressible in the form of a product of
integers:
N=n-r--r,
total number of complex multiplications

(additions) in a DIT FFT algorithm based
ona v-stage decomposition is given by

b
i=1
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« Consider a sequence x[n] of length N = 2#
* Its z-transform can be expressed as
X(2) = X4 (2)+27N'2X;,(2)

where
(N/2)-1
Xa(@)= > xnlz™"
n=0
(N/2)-1 \ i
Xy (2) = X[=+n]z™
b@= 5 A+
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 Evaluating X(z) on the unit circle at
we get
XK= 3 X
+\?\7§N 2 /22)—1)([% + W

n=|
which can be rewritten using the identity
WI\(INIZ)k :(_1)k -

XK= 5 ]+ (D + npwe

81 n=0
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» For k even

(N/2)-1
X[2=" % (qn]+ X +nhwi™
(N/2)-1 n=0 ,
= X (dnl+x{y W7, 0<r<B-1
n=0
e For k odd 2
N/2)-1
X[2¢+1] = Zo (X[n]_x[%Jrn]) Wl\rl1(2z+1)
n=|
(N/2)-1
= 3 (dn] Y+ n)WIWT,, 0<e<N -1

n=0
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e We can write

(N/2)-1
X[20]= Y xo[n]wy?")
n=0

(N/2)-1
X[e+1=" % W@, 0<r<N-1
n=0
where
Xo[n]= (X[n]+ x5 +n]),

x[n] = (x[n]- x[% +nWy, 0<n< %—1
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e Thus X[2¢] and X[2/¢+1] are the (N/2)-
point DFTs of the length-(N/2) sequences
Xo[n] and xq[n]
 Flow-graph of the first-stage of the DFT
algorithm is shown below

s
B it s X121
T b= a1

T

s x11]

A

b un

—

wy
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 Here the input samples are in sequential
order, while the output DFT samples appear
in a decimated form with the even-indexed
samples appearing as the output of one
(N/2)-point DFT and the odd-indexed
samples appearing as the output of the other
(N/2)-point DFT

85
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We next express the even- and odd-indexed
samples of each one of the two (N/2)-point
DFTs as a sum of two (N/4)-point DFTs
Process is continued until the smallest DFTs
are 2-point DFTs
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o Complete flow-graph of the decimation-in-
frequency FFT computation scheme for N = 8

AN ANl
AN L, A
QXXL,

o= X

X[6]

Xrl]

X[5]

X[3]

X
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Computational complexity of the radix-2
DIF FFT algorithm is same as that of the
DIT FFT algorithm

Various forms of DIF FFT algorithm can
similarly be developed

The DIT and DIF FFT algorithms described
here are often referred to as the Cooley-
Tukey FFT algorithms
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Inverse DFT Computation

* An FFT algorithm for computing the DFT
samples can also be used to calculate
efficiently the inverse DFT (IDFT)

* Consider a length-N sequence x[n] with an
N-point DFT X[K]
* Recall

N-1
X[n] = % > X [kIwWg™

89
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Multiplying both sides by N and taking the
complex conjugate we get

N-1
Nx*[n]= ¥ X *[kWK
k=0

Right-hand side of above is the N-point
DFT of a sequence X*[K]

Copyright © 2005, S. K. Mitra
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Inverse DFT Computation
* Desired IDFT x[n] is then obtained as

*

= x|

* Inverse DFT computation is shown below:

ReXM} —— N-point

DFT

1
N
—{>—— Re{xinl}

Im{X[k]}%}f»

91

% Tmfx(n]}

N
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