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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Signals represented as sequences of 
numbers, called samples

• Sample value of a typical signal or sequence 
denoted as x[n] with n being an integer in 
the range 

• x[n] defined only for integer values of n and 
undefined for noninteger values of n

• Discrete-time signal represented by {x[n]}

∞≤≤∞− n
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Discrete-time signal may also be written as 
a sequence of numbers inside braces:

• In the above,
etc. 
• The arrow is placed under the sample at 

time index n = 0

},9.2,7.3,2.0,1.1,2.2,2.0,{]}[{ KK −−=
↑

nx

,2.0]1[ −=−x ,2.2]0[ =x ,1.1]1[ =x
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Graphical representation of a discrete-time 
signal with real-valued samples is as shown 
below:
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• In some applications, a discrete-time 
sequence {x[n]} may be generated by 
periodically sampling a continuous-time 
signal          at uniform intervals of time)(txa
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Here, n-th sample is given by

• The spacing T between two consecutive 
samples is called the sampling interval or 
sampling period

• Reciprocal of sampling interval T, denoted 
as       , is called the sampling frequency:

),()(][ nTxtxnx anTta == = KK ,1,0,1,2, −−=n

TF

T
FT

1=
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Unit of sampling frequency is cycles per 
second, or hertz (Hz), if T is in seconds

• Whether or not the sequence {x[n]} has 
been obtained by sampling, the quantity 
x[n] is called the n-th sample of the 
sequence

• {x[n]} is a real sequence, if the n-th sample 
x[n] is real for all values of n

• Otherwise, {x[n]} is a complex sequence
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• A complex sequence {x[n]} can be written 
as                                                where 

and            are the real and imaginary 
parts of x[n]

• The complex conjugate sequence of {x[n]}
is given by

• Often the braces are ignored to denote a 
sequence if there is no ambiguity

][nxre ][nxim

]}[{]}[{]}[{ nxjnxnx imre +=

]}[{]}[{]}[*{ nxjnxnx imre −=
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Example - is a real 
sequence

• is a complex sequence
• We can write

where

}.{cos]}[{ nnx 250=

}{]}[{ . njeny 30=

}.sin.{cos]}[{ njnny 3030 +=

}.{sin}.{cos njn 3030 +=
}.{cos]}[{ nnyre 30=
}.{sin]}[{ nnyim 30=
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Example -

is the complex conjugate sequence of {y[n]}
• That is,

}{}.{sin}.{cos]}[{ . njenjnnw 303030 −=−=

]}[*{]}[{ nynw =
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Two types of discrete-time signals:
- Sampled-data signals in which samples 
are continuous-valued
- Digital signals in which samples are 
discrete-valued

• Signals in a practical digital signal 
processing system are digital signals 
obtained by quantizing the sample values 
either by rounding or truncation

Copyright © 2005, S. K. Mitra11

DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Example -
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• A discrete-time signal may be a finite-
length or an infinite-length sequence

• Finite-length (also called finite-duration or 
finite-extent) sequence is defined only for a 
finite time interval:
where                  and               with

• Length or duration of the above finite-
length sequence is

21 NnN ≤≤

1N<∞− ∞<2N 21 NN ≤

112 +−= NNN



Copyright © 2005, S. K. Mitra13

DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Example - is a finite-
length sequence of length

is an infinite-length sequence

432 ≤≤−= nnnx ,][
8134 =+−− )(

nny 40.cos][ =
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• A length-N sequence is often referred to as 
an N-point sequence

• The length of a finite-length sequence can 
be increased by zero-padding, i.e., by 
appending it with zeros
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Example -

is a finite-length sequence of length 12 
obtained by zero-padding
with 4 zero-valued samples

⎩
⎨
⎧

≤≤
≤≤−=
850
432

n
nnnxe ,

,][

432 ≤≤−= nnnx ,][
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• A right-sided sequence x[n] has zero-
valued samples for

• If             a right-sided sequence is called a 
causal sequence

,01 ≥N

1Nn <

n
N1

A right-sided sequence

Copyright © 2005, S. K. Mitra17

DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• A left-sided sequence x[n] has zero-valued 
samples for

• If             a left-sided sequence is called a 
anti-causal sequence

2Nn >

,02 ≤N

2N
n

A left-sided sequence

Copyright © 2005, S. K. Mitra18

DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• Size of a Signal
Given by the norm of the signal
L -norm

where p is a positive integer

p

p

n

p
p nxx

/1

][ ⎟
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∑=
∞

−∞=
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

• The value of p is typically 1 or 2 or

L -norm

is the root-mean-squared (rms) value of 
{x[n]}

2

2x

∞
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation
L -norm

is the mean absolute value of {x[n]}

L -norm
is the peak absolute value of {x[n]}, i.e.

1 1x

∞

maxxx =∞

∞x
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DiscreteDiscrete--Time Signals:Time Signals:
TimeTime--Domain RepresentationDomain Representation

Example
• Let {y[n]}, , be an approximation of

{x[n]},
• An estimate of the relative error is given by the 

ratio of the L -norm of the difference signal and 
the L -norm of {x[n]}: 
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Operations on SequencesOperations on Sequences

• A single-input, single-output discrete-time 
system operates on a sequence, called the 
input sequence, according some prescribed 
rules and develops another sequence, called 
the output sequence, with more desirable 
properties

x[n] y[n]
Input sequence Output sequence

Discrete-time
system

Copyright © 2005, S. K. Mitra23

Operations on SequencesOperations on Sequences

• For example, the input may be a signal 
corrupted with additive noise

• Discrete-time system is designed to 
generate an output by removing the noise 
component from the input

• In most cases, the operation defining a 
particular discrete-time system is composed 
of some basic operations
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Basic OperationsBasic Operations

• Product (modulation) operation:

– Modulator

• An application is in forming a finite-length 
sequence from an infinite-length sequence 
by multiplying the latter with a finite-length 
sequence called an window sequence

• Process called windowing

×x[n] y[n]

w[n]
][][][ nwnxny ⋅=
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Basic OperationsBasic Operations

• Addition operation:

– Adder

• Multiplication operation

– Multiplier

][][][ nwnxny +=

A
x[n] y[n] ][][ nxAny ⋅=

x[n] y[n]

w[n]

+
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Basic OperationsBasic Operations

• Time-shifting operation:
where N is an integer

• If N > 0, it is delaying operation
– Unit delay

• If N < 0, it is an advance operation

– Unit advance

][][ Nnxny −=

y[n]x[n] z

1−z y[n]x[n] ][][ 1−= nxny

][][ 1+= nxny
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Basic OperationsBasic Operations

• Time-reversal (folding) operation:

• Branching operation:  Used to provide 
multiple copies of a sequence

][][ nxny −=

x[n] x[n]

x[n]
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Basic OperationsBasic Operations

• Example - Consider the two following 
sequences of length 5 defined for               :

• New sequences generated from the above 
two sequences by applying the basic 
operations are as follows:

40 ≤≤ n
}{]}[{ 09643 −=na

}{]}[{ 35412 −−=nb
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Basic OperationsBasic Operations

• As pointed out by the above example, 
operations on two or more sequences can be 
carried out if all sequences involved are of 
same length and defined for the same range 
of the time index n

}{]}[][{]}[{ 0452446 −−=⋅= nbnanc
}{]}[][{]}[{ 341035 −−=+= nbnand

}..{]}[{]}[{ 05139654
2
3 −== nane
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Basic OperationsBasic Operations

• However if the sequences are not of same 
length, in some situations, this problem can 
be circumvented by appending zero-valued 
samples to the sequence(s) of smaller 
lengths to make all sequences have the same 
range of the time index

• Example - Consider the sequence of length 
3 defined for               : }{]}[{ 312 −−=nf20 ≤≤ n
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Basic OperationsBasic Operations

• We cannot add the length-3 sequence            
to the length-5 sequence {a[n]} defined 
earlier

• We therefore first append             with 2
zero-valued samples resulting in a length-5
sequence

• Then

]}[{ nf

]}[{ nf

}{]}[{ 00312 −−=nfe

}09351{]}[{]}[{]}[{ −=+= nfnang e
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Basic OperationsBasic Operations
Ensemble Averaging
• A very simple application of the addition 

operation in improving the quality of 
measured data corrupted by an additive 
random noise

• In some cases, actual uncorrupted data 
vector s remains essentially the same from 
one measurement to next

Copyright © 2005, S. K. Mitra33

Basic OperationsBasic Operations

• While the additive noise vector is random 
and not reproducible

• Let      denote the noise vector corrupting 
the i-th measurement of the uncorrupted 
data vector s:

id

ii dsx +=
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Basic OperationsBasic Operations

• The average data vector, called the 
ensemble average, obtained after K
measurements is given by

• For large values of K,          is usually a 
reasonable replica of the desired data vector 
s

avex
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Basic OperationsBasic Operations
• Example
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Basic OperationsBasic Operations

• We cannot add the length-3 sequence            
to the length-5 sequence {a[n]} defined 
earlier

• We therefore first append             with 2
zero-valued samples resulting in a length-5
sequence

• Then

]}[{ nf

]}[{ nf

}{]}[{ 00312 −−=nfe

}09351{]}[{]}[{]}[{ −=+= nfnang e



Copyright © 2005, S. K. Mitra37

Combinations of Basic Combinations of Basic 
OperationsOperations

• Example -

]3[]2[]1[][][ 4321 −+−+−+= nxnxnxnxny αααα
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Sampling Rate AlterationSampling Rate Alteration
• Employed to generate a new sequence y[n]

with a sampling rate        higher or lower 
than that of the sampling rate        of a given 
sequence x[n]

• Sampling rate alteration ratio is

• If R > 1, the process called interpolation
• If R < 1, the process called decimation

TF
'

TF

T

T
F
FR

'
=
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Sampling Rate AlterationSampling Rate Alteration

• In up-sampling by an integer factor L > 1,
equidistant zero-valued samples are 

inserted by the up-sampler between each 
two consecutive samples of the input 
sequence x[n]:

1−L

⎩
⎨
⎧ ±±=

=
otherwise,0

,2,,0],/[
][

LLLnLnx
nxu

L][nx ][nxu
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Sampling Rate AlterationSampling Rate Alteration

• An example of the up-sampling operation
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Sampling Rate AlterationSampling Rate Alteration

• In down-sampling by an integer factor 
M > 1, every M-th samples of the input 
sequence are kept and            in-between 
samples are removed:

1−M

][][ nMxny =

][nx ][nyM
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Sampling Rate AlterationSampling Rate Alteration

• An example of the down-sampling 
operation
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Conjugate-symmetric sequence:

If x[n] is real, then it is an even sequence
][*][ nxnx −=

An even sequence
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Conjugate-antisymmetric sequence:

If x[n] is real, then it is an odd sequence
][*][ nxnx −−=

An odd sequence
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• It follows from the definition that for a 
conjugate-symmetric sequence {x[n]}, x[0]
must be a real number

• Likewise, it follows from the definition that 
for a conjugate anti-symmetric sequence 
{y[n]}, y[0] must be an imaginary number

• From the above, it also follows that for an 
odd sequence {w[n]}, w[0] = 0
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Any complex sequence can be expressed as 
a sum of its conjugate-symmetric part and 
its conjugate-antisymmetric part:

where
][][][ nxnxnx cacs +=

( )][*][][ 2
1 nxnxnxcs −+=

( )][*][][ 2
1 nxnxnxca −−=
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Example - Consider the length-7 sequence 
defined for                  :

• Its conjugate sequence is then given by

• The time-reversed version of the above is

},,,,,,{]}[{ 32652432410 jjjjjng −−−−+−+=

},,,,,,{]}[*{ 32652432410 jjjjjng +−+−−−=

},,,,,,{]}[*{ 04132246523 jjjjjng −−−++−=−

↑

↑

↑

33 ≤≤− n
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Therefore 

• Likewise

• It can be easily verified that                         
and

]}[*][{]}[{ ngngngcs −+=
2
1

]}[*][{]}[{ ngngngca −−=
2
1

}.,.,..,,..,.,.{ 51505151251515051 jjjjj −−−−−−+−=

}.,.,..,,..,.,.{ 5135054534545335051 jjjj −−−+−+=
↑

↑
][*][ ncsgncsg −=

][*][ ncagncag −−=
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Any real sequence can be expressed as a 
sum of its even part and its odd part:

where
][][][ nxnxnx odev +=

( )][][][ 2
1 nxnxnxev −+=

( )][][][ 2
1 nxnxnxod −−=
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• A length-N sequence x[n], 
can be expressed as
where

is the periodic conjugate-symmetric part
and

is the periodic conjugate-antisymmetric
part

,10 −≤≤ Nn
][][][ nxnxnx pcapcs +=

( ),][*][][ Npca nxnxnx 〉〈−−= 2
1 ,10 −≤≤ Nn

( ),][*][][ Npcs nxnxnx 〉〈−+= 2
1 ,10 −≤≤ Nn
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• For a real sequence, the periodic conjugate-
symmetric part, is a real sequence and is 
called the periodic even part

• For a real sequence, the periodic conjugate-
antisymmetric part, is a real sequence and is 
called the periodic odd part

][nxpe

][nxpo

Copyright © 2005, S. K. Mitra52

Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• A length-N sequence x[n] is called a 
periodic conjugate-symmetric sequence if

and is called a periodic conjugate-
antisymmetric sequence if

][*][*][ nNxnxnx N −=〉〈−=

][*][*][ nNxnxnx N −−=〉〈−−=
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• A finite-length real periodic conjugate-
symmetric sequence is called a symmetric 
sequence

• A finite-length real periodic conjugate-
antisymmetric sequence is called a
antisymmetric sequence
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Example - Consider the length-4 sequence 
defined for               :

• Its conjugate sequence is given by

• To determine the modulo-4 time-reversed 
version                     observe the following:

30 ≤≤ n
},,,{]}[{ 65243241 jjjjnu −−−+−+=

},,,{]}[*{ 65243241 jjjjnu +−+−−−=

]}[*{ 4〉〈−nu
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Hence

4100 4 juu −==〉〈− ][*][*
6531 4 juu +−==〉〈− ][*][*

2422 4 juu +==〉〈− ][*][*
3213 4 juu −−==〉〈− ][*][*

},,,{]}[*{ 322465414 jjjjnu −−++−−=〉〈−
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Classification of Sequences Classification of Sequences 
Based on SymmetryBased on Symmetry

• Therefore

• Likewise

]}[*][{]}[{ 42
1 〉〈−+= nununupcs

]}[*][{]}[{ 42
1 〉〈−−= nununupca

}..,,..,{ 5453454531 jj −−+−=

}..,,..,{ 5151251514 jjj −−−−=
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Classification of Sequences Classification of Sequences 
Based on PeriodicityBased on Periodicity

• A sequence          satisfying
is called a periodic sequence with a period N
where N is a positive integer and k is any 
integer

• Smallest value of N satisfying
is called the fundamental period

][~ nx ][~][~ kNnxnx +=

][~][~ kNnxnx +=
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Classification of Sequences Classification of Sequences 
Based on PeriodicityBased on Periodicity

• Example -

• A sequence not satisfying the periodicity 
condition is called an aperiodic sequence
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Classification of Sequences:Classification of Sequences:
Energy and Power SignalsEnergy and Power Signals

• Total energy of a sequence x[n] is defined by

• An infinite length sequence with finite sample 
values may or may not have finite energy

• A finite length sequence with finite sample 
values has finite energy

∑=
∞

−∞=n
nx 2

x ][ε
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Classification of Sequences:Classification of Sequences:
Energy and Power SignalsEnergy and Power Signals

• The average power of an aperiodic
sequence is defined by

• Define the energy of a sequence x[n] over a 
finite interval                     as

∑=
−=

+∞→

K

KnKK
nxP 2

12
1

x ][lim

KnK ≤≤−

∑=
−=

K

Kn
Kx nx 2

, ][ε
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Classification of Sequences:Classification of Sequences:
Energy and Power SignalsEnergy and Power Signals

• Then

• The average power of a periodic sequence     
with a period N is given by

• The average power of an infinite-length 
sequence may be finite or infinite

KxKKxP .12
1lim ε+∞→

=

∑
−

=
=

1

0

21 N

n
Nx nxP ][~

][~ nx
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Classification of Sequences:Classification of Sequences:
Energy and Power SignalsEnergy and Power Signals

• Example - Consider the causal sequence 
defined by

• Note: x[n] has infinite energy
• Its average power is given by
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Classification of Sequences:Classification of Sequences:
Energy and Power SignalsEnergy and Power Signals

• An infinite energy signal with finite average 
power is called a power signal
Example - A periodic sequence which has a 
finite average power but infinite energy

• A finite energy signal with zero average 
power is called an energy signal
Example - A finite-length sequence which 
has finite energy but zero average power
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Other Types of ClassificationsOther Types of Classifications

• A sequence x[n] is said to be bounded if

• Example - The sequence                           is a 
bounded sequence as

∞<≤ xBnx ][

nnx π= 3.0cos][

13.0cos][ ≤π= nnx
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Other Types of ClassificationsOther Types of Classifications
• A sequence x[n] is said to be absolutely

summable if

• Example - The sequence                  

is an absolutely summable sequence as

∑ ∞<
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Other Types of ClassificationsOther Types of Classifications

• A sequence x[n] is said to be square-
summable if

• Example - The sequence

is square-summable but not absolutely 
summable

∑ ∞<
∞

−∞=n
nx 2][

n
nnh π= 4.0sin][
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Basic SequencesBasic Sequences

• Unit sample sequence -

• Unit step sequence -
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Basic SequencesBasic Sequences
• Real sinusoidal sequence -

where A is the amplitude,      is the angular
frequency, and    is the phase of x[n]
Example -

)cos(][ φ+ω= nAnx o

oω
φ
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Basic SequencesBasic Sequences
• Exponential sequence -

where A and     are real or complex numbers
• If we write  

then we can express

where

,][ nAnx α= ∞<<∞− n
α

,)( oo je ω+σ=α ,φ= jeAA

],[][][ )( nxjnxeeAnx imre
njj oo +== ω+σφ

),cos(][ φ+ω= σ neAnx o
n

re
o

)sin(][ φ+ω= σ neAnx o
n

im
o
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Basic SequencesBasic Sequences
• and of a complex exponential 

sequence are real sinusoidal sequences with 
constant             , growing              , and 
decaying               amplitudes for n > 0

][nxre ][nxim

( )0=σo ( )0>σo
( )0<σo

njnx )exp(][ 612
1 π+−=
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Basic SequencesBasic Sequences
• Real exponential sequence -

where A and α are real numbers
,][ nAnx α= ∞<<∞− n
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Basic SequencesBasic Sequences
• Sinusoidal sequence                         and 

complex exponential sequence              
are periodic sequences of period N if 
where N and  r are positive integers

• Smallest value of N satisfying
is the fundamental period of the sequence

• To verify the above fact, consider

)cos( φ+ω nA o
)exp( njB oω

rNo π=ω 2

rNo π=ω 2

)cos(][1 φ+ω= nnx o
))(cos(][2 φ++ω= Nnnx o
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Basic SequencesBasic Sequences

• Now

which will be equal to                                 
only if

and
• These two conditions are met if and only if

or                  

))(cos(][2 φ++ω= Nnnx o

NnNn oooo ωφ+ω−ωφ+ω= sin)sin(cos)cos(
][)cos( 1 nxno =φ+ω

0sin =ω No 1cos =ω No

rNo π=ω 2 r
N

o
=ω

π2
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Basic SequencesBasic Sequences

• If              is a noninteger rational number, then 
the period will be a multiple of

• Otherwise, the sequence is aperiodic
• Example - is an aperiodic

sequence

oωπ/2
oωπ/2

)3sin(][ φ+= nnx
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Basic SequencesBasic Sequences

• Here

• Hence period for r = 0
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Basic SequencesBasic Sequences

• Here

• Hence for r = 1                     
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Basic SequencesBasic Sequences

• Property 1 - Consider                             and 
with                    and  

where k is any positive 
integer 

• If                          then x[n] = y[n]

• Thus, x[n] and y[n] are indistinguishable

)exp(][ 1njnx ω=
)exp(][ 2njny ω= π<ω≤ 10

)1(22 2 +π<ω≤π kk

,212 kπ+ω=ω
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Basic SequencesBasic Sequences

• Property 2 - The frequency of oscillation of
increases as      increases from 0

to π, and then decreases as      increases from       
to

• Thus, frequencies in the neighborhood of   
are called low frequencies, whereas, 

frequencies in the neighborhood of            are 
called high frequencies

)cos( nA oω oω
oω

π π2

π=ω
0=ω
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Basic SequencesBasic Sequences

• Because of Property 1, a frequency       in 
the neighborhood of ω = 2π k is 
indistinguishable from a frequency               
in the neighborhood of ω = 0
and a frequency      in the neighborhood of      

is indistinguishable from a 
frequency                         in the 
neighborhood of ω = π

oω

ko π−ω 2

oω

)12( +π−ω ko

)12( +π=ω k
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Basic SequencesBasic Sequences
• Frequencies in the neighborhood of ω = 2π k

are usually called low frequencies
• Frequencies in the neighborhood of              

ω = π (2k+1) are usually called high 
frequencies

• is a low-
frequency signal

• is a high-
frequency signal

)9.1cos()1.0cos(][1 nnnv π=π=

)2.1cos()8.0cos(][2 nnnv π=π=
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Basic SequencesBasic Sequences
• An arbitrary sequence can be represented in 

the time-domain as a weighted sum of some 
basic sequence and its delayed (advanced) 
versions

]2[]1[5.1]2[5.0][ −−−++= nnnnx δδδ
]6[75.0]4[ −+−+ nn δδ
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The Sampling ProcessThe Sampling Process
• Often, a discrete-time sequence x[n] is 

developed by uniformly sampling a 
continuous-time signal           as indicated 
below

• The relation between the two signals is

)(txa

),()(][ nTxtxnx anTta == = KK ,2,1,0,1,2, −−=n
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The Sampling ProcessThe Sampling Process
• Time variable t of         is related to the time 

variable n of x[n] only at discrete-time 
instants      given by

with                 denoting the sampling 
frequency and

denoting the sampling angular 
frequency

)(txa

TT
n

n
F
nnTt

Ω
π=== 2

nt

TFT /1=

TT Fπ=Ω 2
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The Sampling ProcessThe Sampling Process
• Consider the continuous-time signal

• The corresponding discrete-time signal is

where
is the normalized digital angular frequency 
of x[n]

)cos()2cos()( φ+Ω=φ+π= tAtfAtx oo

)2cos()cos(][ φ+
Ω

Ωπ=φ+Ω= nAnTAnx
T

o
o

)cos( φ+ω= nA o

ToToo Ω=ΩΩπ=ω /2
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The Sampling ProcessThe Sampling Process

• If the unit of sampling period T is in 
seconds

• The unit of normalized digital angular 
frequency        is radians/sample

• The unit of normalized analog angular 
frequency        is radians/second

• The unit of analog frequency       is hertz
(Hz)

oω

oΩ

of
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The Sampling ProcessThe Sampling Process
• The three continuous-time signals

of frequencies 3 Hz, 7 Hz, and 13 Hz, are 
sampled at a sampling rate of 10 Hz, i.e. 
with T = 0.1 sec. generating the three 
sequences

)6cos()(1 ttg π=
)14cos()(2 ttg π=
)26cos()(3 ttg π=

)6.2cos(][3 nng π=
)6.0cos(][1 nng π= )4.1cos(][2 nng π=
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The Sampling ProcessThe Sampling Process
• Plots of these sequences (shown with circles) 

and their parent time functions are shown 
below:

• Note that each sequence has exactly the same 
sample value for any given n
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The Sampling ProcessThe Sampling Process
• This fact can also be verified by observing that

• As a result, all three sequences are identical 
and it is difficult to associate a unique 
continuous-time function with each of these 
sequences

( ) )6.0cos()6.02(cos)4.1cos(][2 nnnng π=π−π=π=

( ) )6.0cos()6.02(cos)6.2cos(][3 nnnng π=π+π=π=
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The Sampling ProcessThe Sampling Process

• The above phenomenon of a continuous-
time signal of higher frequency acquiring 
the identity of a sinusoidal sequence of 
lower frequency after sampling is called
aliasing
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The Sampling ProcessThe Sampling Process
• Since there are an infinite number of 

continuous-time signals that can lead to the 
same sequence when sampled periodically, 
additional conditions need to imposed so 
that the sequence                              can 
uniquely represent the parent continuous-
time signal

• In this case,           can be fully recovered 
from {x[n]}

)}({]}[{ nTxnx a=

)(txa

)(txa
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The Sampling ProcessThe Sampling Process
• Example - Determine the discrete-time

signal v[n] obtained by uniformly sampling 
at a sampling rate of 200 Hz the continuous-
time signal

• Note:          is composed of 5 sinusoidal 
signals of frequencies 30 Hz, 150 Hz, 170
Hz, 250 Hz and 330 Hz

)340cos(2)300sin(3)60cos(6)( ttttva π+π+π=
)660sin(10)500cos(4 tt π+π+

)(tva
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The Sampling ProcessThe Sampling Process

• The sampling period is
• The generated discrete-time signal v[n] is 

thus given by

sec005.0
200
1 ==T

)7.1cos(2)5.1sin(3)3.0cos(6][ nnnnv π+π+π=

)()( )3.02(cos2)5.02(sin3)3.0cos(6 nnn π−π+π−π+π=

)3.3sin(10)5.2cos(4 nn π+π+

)()( )7.04(sin10)5.02(cos4 nn π−π+π+π+
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The Sampling ProcessThe Sampling Process

• Note: v[n] is composed of 3 discrete-time 
sinusoidal signals of normalized angular 
frequencies: 0.3π, 0.5π, and 0.7π

)5.0cos(4)3.0cos(2)5.0sin(3)3.0cos(6 nnnn π+π+π−π=
)7.0sin(10 nπ−

)7.0sin(10)6435.05.0cos(5)3.0cos(8 nnn π−+π+π=
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The Sampling ProcessThe Sampling Process

• Note: An identical discrete-time signal is 
also generated by uniformly sampling at a
200-Hz sampling rate the following 
continuous-time signals:

)140sin(10)6435.0100cos(5)60cos(8)( ttttaw π−+π+π=

)260sin(10)100cos(4)60cos(2)( ttttag π+π+π=
)700sin(3)460cos(6 tt π+π+
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The Sampling ProcessThe Sampling Process

• Recall

• Thus if                  , then the corresponding 
normalized digital angular frequency       of 
the discrete-time signal obtained by 
sampling the parent continuous-time 
sinusoidal signal will be in the range

• No aliasing

T

o
o Ω

Ωπ=ω 2

oω
oT Ω>Ω 2

π<ω<π−
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The Sampling ProcessThe Sampling Process
• On the other hand, if                  , the

normalized digital angular frequency will 
foldover into a lower digital frequency           

in the range                        
because of aliasing

• Hence, to prevent aliasing, the sampling 
frequency        should be greater than 2
times the frequency       of the sinusoidal 
signal being sampled

oT Ω<Ω 2

π<ω<π−π〉ΩΩπ〈=ω 2/2 Too

TΩ
oΩ
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The Sampling ProcessThe Sampling Process

• Generalization: Consider an arbitrary 
continuous-time signal           composed of a 
weighted sum of a number of sinusoidal 
signals

• can be represented uniquely by its 
sampled version {x[n]} if the sampling 
frequency        is chosen to be greater than 2 
times the highest frequency contained in

)(txa

)(txa

TΩ

)(txa
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The Sampling ProcessThe Sampling Process

• The condition to be satisfied by the 
sampling frequency to prevent aliasing is 
called the sampling theorem

• A formal proof of this theorem will be 
presented later


