Least Integral-Squared Error
Design of FIR Filters

o Let Hy (ej“’) denote the desired frequency
response

» Since Hgy (e!®)is a periodic function of @
with a period 2, it can be expressed as a
Fourier series

Hg(e)®) = ¥ hy[n]e ion

where n=-o

hy[n == THg (61)ei®Mdw, —c0<n <o
2n_,
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Least Integral-Squared Error
Design of FIR Filters

« In general, Hy (e1®) is piecewise constant

with sharp transitions between bands
In which case, {hy[n]} is of infinite length
and noncausal

Objective - Find a finite-duration {h,[n]}

of length 2M+1 whose DTFT H, (e!®).
approximates the desired DTFT Hd ey in
some sense
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Least Integral-Squared Error
Design of FIR Filters

» Commonly used approximation criterion -
Minimize the integral-squared error

= L TRy - Hy 1) d

® =~ ] [Hi(e")~Hq (") do
TC—TC

where

q M q
Hi@l)= Thnfe "
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Least Integral-Squared Error
Design of FIR Filters

Using Parseval’s relation we can write

= Sfhin]-hyln)’
Z‘ht[n] hd[n]‘ + Z hd[n]+ Zhd[n]

n=M+1
It foIIows from the above that D is

minimum when h,[n] = hy[n] for—-M <n<M
= Best finite-length approximation to ideal
infinite-length impulse response in the
mean-square sense is obtained by truncation

Copyright © 2005, S. K. Mitra

Least Integral-Squared Error
Design of FIR Filters
o A causal FIR filter with an impulse response
h[n] can be derived from h,[n] by delaying:
hin]=h[n-M]
 The causal FIR filter h[n] has the same
magnitude response as h,[n] and its phase

response has a linear phase shift of ®M
radians with respect to that of h[n]
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Impulse Responses of |deal
Filters

* Ideal lowpass filter -

Hip(e! )

1 sin COC

hLP[ ] = , —00 <n<oo
« ldeal highpass filter -
Hyp(e! ) 1_& n=0
1 _ T
e [n] = sin(ocn) g

o . Town
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Impulse Responses of Ideal
Filters
* |deal bandpass filter -

Hgp(e! )

1

sin(ogpn) sin(ogh)

7N m o n#0

hgp[n] =
—Le_—C n=0
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Impulse Responses of Ideal

Filters
* ldeal bandstop filter -

Hys(c’ )

1_((Dc2;wc1)’ n=0
hgs[n]=

sin(wgn)  sin(wgon)
mh ~  mh
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Impulse Responses of |deal
Filters
* ldeal multiband filter -

J
)

Huo (') = A,
01 SO O,
k=12,...,L

> o>

L -
hy[n] = Zl(Ae - A1) _sm(nc%,_n)
=
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Impulse Responses of Ideal
Filters

« |deal discrete-time Hilbert transformer -

HHT(ejw)z{

j, —nm<w<0

-j, O<w<m

0, forn even

hyr[n]=
r 0] {Z/nn, for n odd
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Impulse Responses of Ideal
Filters
* ldeal discrete-time differentiator -

HD”:(ejw)= j(D, OS‘(D‘STC

0, n=0
hoir[n]=1cosnn | ¢
n

l
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Gibbs Phenomenon

» Gibbs phenomenon - Oscillatory behavior in
the magnitude responses of causal FIR filters
obtained by truncating the impulse response
coefficients of ideal filters

1.5

Magnitude

4
&

o
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Gibbs Phenomenon

 As can be seen, as the length of the lowpass
filter is increased, the number of ripples in
both passhand and stopband increases, with
a corresponding decrease in the ripple
widths

» Height of the largest ripples remain the
same independent of length

« Similar oscillatory behavior observed in the
magnitude responses of the truncated
13 versions of other types of ideal filters
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Gibbs Phenomenon

 Gibbs phenomenon can be explained by
treating the truncation operation as an
windowing operation:

h[n] = hq[n]-win]
* In the frequency domain
H©*) = L [Hq () ¥ (e ) do

« where H,(e!®) and ¥ (e /) are the DTFTs

of h[n] and w{n], respectively
14
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Gibbs Phenomenon

e Thus Ht(ej"’) is obtained by a periodic
continuous convolution of Hy (') with
Y(el)

15
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Gibbs Phenomenon

« If ¥(el®)is a very narrow pulse centered at
o =0 (ideally a delta function) compared to
variations in Hg (e!®), then H, (e*) will
approximate H (e!®) very closely

 Length 2M+1 of w[n] should be very large

 On the other hand, length 2M+1 of h[n]
should be as small as possible to reduce

computational complexity

16
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Gibbs Phenomenon

* A rectangular window is used to achieve
simple truncation:

wen] = 1 0<nsM
RYS70,  otherwise

* Presence of oscillatory behavior in Ht(ej“’)
is basically due to:

- 1) hy[n] is infinitely long and not absolutely
summable, and hence filter is unstable

— 2) Rectangular window has an abrupt transition

to zero
17
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Gibbs Phenomenon

« Oscillatory behavior can be explained by
examining the DTFT Wg(e') of wg[n]:

Rectangular window
30

<}
S

1 —main lobe

1 side lobe

Amplitude
=

=)

-10
-1 -0.5 0 0.5 1

ofn

o g (1) has a main lobe centered at =0
15 © Other ripples are called sidelobes
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Gibbs Phenomenon

Main lobe of Wg(e®) characterized by its
width4n/(2M +1) defined by first zero
crossings on both sides of @=0

As M increases, width of main lobe
decreases as desired

Area under each lobe remains constant
while width of each lobe decreases with an
increase inM

Ripples in H,(e!”) around the point of
discontinuity occur more closely but with
no decrease in amplitude as M increases
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Gibbs Phenomenon

» Rectangular window has an abrupt transition
to zero outside the range —M <n <M, which
results in Gibbs phenomenon in H,(e!®)

e Gibbs phenomenon can be reduced either:

(1) Using a window that tapers smoothly to
zero at each end, or

(2) Providing a smooth transition from
passband to stopband in the magnitude
specifications

Copyright © 2005, S. K. Mitra




