Comb Filters

The simple filters discussed so far are
characterized either by a single passbhand
and/or a single stopband

There are applications where filters with
multiple passbands and stopbands are
required

The comb filter is an example of such
filters
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Comb Filters

* In its most general form, a comb filter has a
frequency response that is a periodic
function of w with a period 2n/L, where L is
a positive integer

« If H(2) is a filter with a single passband
and/or a single stopband, a comb filter can
be easily generated from it by replacing
each delay in its realization with L delays
resulting in a structure with a transfer
function given by G(z) = H(z")
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Comb Filters

If |H (e)®)| exhibits a peak at w,, then [G(e )|
will exhibit L peaks at mpk/L,0<k <L -1

in the frequency range 0 < w < 2r

Likewise, if |H (e1°)| has a notch at ©p s

then |G(e!®)| will have L notches at aok/L,
0<k<L-1linthe frequency range 0 < w < 2m
A comb filter can be generated from either

an FIR or an IR prototype filter
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Comb Filters

« For example, the comb filter generated from
the prototype lowpass FIR filter Hy(z) =
1(1+ 7Yy hasa transfer function

Go(2)=Ho(z") =1+ ™)
* |Go(e¥®)| has L notches
at o = (2k+1)x/L and L.
peaks at o = 2w k/L,
0<k<L-1,inthe

frequency range
0<w<2rm

Comb filter from lowpass prototype
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Comb Filters

For example, the comb filter generated from

the prototype highpass FIR filter H;(z) =

1(1 A ) has a transfer function
G(2)=HyzH=1a-27H

G, (e®)| has L peaks 1
ato = (2k+L)n/Land L |
notches at = 2n k/L, .,,
0<k<L-1,inthe Eod
frequency range .
0<w<2n

Comb filter from highpass prototype
T
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Comb Filters

 Depending on applications, comb filters
with other types of periodic magnitude
responses can be easily generated by
appropriately choosing the prototype filter

» For example, the M-point moving average
filter

H(z)=-LZ
(@)= M (- z’l)

has been used as a prototype
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Comb Filters

* This filter has a peak magnitude at @ = 0,
and M —1notches at o =2rn//M, 1</ <M -1

 The corresponding comb filter has a transfer
function "
_ 1-z
Cle= M@z 1)
whose magnitude has L peaks at o = 2nk/L,
0<k<L-1and L(M -1) notches at

o=2nk/LM,1<k < L(M —1)
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Complementary Transfer
Functions

A set of digital transfer functions with
complementary characteristics often finds
useful applications in practice

Four useful complementary relations are
described next along with some applications
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Complementary Transfer

Functions
Delay-Complementary Transfer Functions
* A set of L transfer functions,{H;(z)},

0<i<L-1 isdefined to be delay-
complementary of each other if the sum of
their transfer functions is equal to some
integer multiple of unit delays, i.e.,

L1
2 Hi(@)=pz™, B0
i-0

o Where n, is a nonnegative integer
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Complementary Transfer
Functions

* A delay-complementary pair{Hq(z),H(2)}

can be readily designed if one of the pairs is
a known Type 1 FIR transfer function of
odd length

* Let Hy(z) be a Type 1 FIR transfer function

of length M = 2K+1

 Then its delay-complementary transfer

function is given by
Hy(z)=27K —Hy(2)
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Complementary Transfer
Functions

* Let the magnitude response of Hy(z) be
equal to 1+ 6, in the passband and less than
or equal to & in the stopband where &, and
&4 are very small numbers

 Now the frequency response of H(z) can be
expressed as o
Ho(e)?) =e X®Hy (o)
where ﬂo(w) is the amplitude response
11
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Complementary Transfer
Functions

* |ts delay-complementary transfer function

H;(z) has a frequency response given by
Hy(e12) =6 IK°H, (0) = e~ K01 - Ho(w)]

« Now, in the passband, 1-8 , < Hg (@) <1+3,

and in the stopband, — 385 < Hg (o) <3

« |t follows from the above equation that in

the stopband, -3, < Hy(w) <8, and in the
passband, 1-8¢ < Hj(m) <1+ 5,
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Complementary Transfer
Functions

 Asaresult, Hi(z) has a complementary
magnitude response characteristic to that of
Ho(z) with a stopband exactly identical to
the passhand of Hg(z), and a passband that
is exactly identical to the stopband of Hg(z)

e Thus, if Hy(2) is a lowpass filter, Hy(z) will
be a highpass filter, and vice versa
13
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Complementary Transfer
Functions
* The frequency o, at which
|:|0(030) = |:|1((’°o) =05

the gain responses of both filters are 6 dB
below their maximum values

* The frequency o, is thus called the 6-dB
crossover frequency

14
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Complementary Transfer
Functions
« Example - Consider the Type 1 bandstop

transfer function
Hps(2) = &+ 272 (1- 427245274 4528 - 47104 7712)

« Its delay-complementary Type 1 bandpass
transfer function is given by

Hgp(2) =271% —Hgs(2)
=L (-272)%A+4272 45274 45278 147710+ 7712)

15
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Complementary Transfer
Functions

* Plots of the magnitude responses of Hgg(2)
and Hgp(z) are shown below
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Complementary Transfer
Functions

Allpass Complementary Filters

« A set of M digital transfer functions,{H;(z)},
0<i<M -1, is defined to be allpass-
complementary of each other, if the sum of
their transfer functions is equal to an allpass
function, i.e.,

M-1
Y Hi(2)=A@)
i=0
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Complementary Transfer
Functions

Power-Complementary Transfer Functions

* A set of M digital transfer functions,{H;(z)},
0<i<M -1, is defined to be power-
complementary of each other, if the sum of
their square-magnitude responses is equal to
a constant K for all values of m, i.e.,

M-1 2
Y Hiel) =K, forallo
i=0

18
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Complementary Transfer
Functions

By analytic continuation, the above
property is equal to

M -1
Y H()H;(z ) =K, for all ®
i-0

for real coefficient H;(z)

» Usually, by scaling the transfer functions,
the power-complementary property is

defined forK =1

19
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Complementary Transfer
Functions

* For a pair of power-complementary transfer
functions,H(z) and Hy(z), the frequency o,
where |H(e1%)|? =|H;(e)®0)|2 = 0.5, is
called the cross-over frequency

* At this frequency the gain responses of both
filters are 3-dB below their maximum
values

* Asaresult, o, is called the 3-dB cross-

over frequency
20
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Complementary Transfer
Functions
» Example - Consider the two transfer functions
Hq(z) and Hq(z) given by
Ho(2) =3[ A(2) + A (2)]
Hy(2) =3[ A(2) - A(2)]
where Ay(z) and A (z) are stable allpass
transfer functions
* Note that Hy(z) + H1(2) = Ay(2)
* Hence, Hg(z) and Hy(z)are allpass
complementary

21
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Complementary Transfer
Functions

It can be shown that Hy(z) and Hq(z) are
also power-complementary

Moreover, Hq(z) and Hy(z) are bounded-
real transfer functions

22
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Complementary Transfer
Functions

Doubly-Complementary Transfer Functions

A set of M transfer functions satisfying both
the allpass complementary and the power-
complementary properties is known as a
doubly-complementary set

23
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Complementary Transfer
Functions

A pair of doubly-complementary 1IR
transfer functions,Hq(z) and Hy(z), with a
sum of allpass decomposition can be simply
realized as indicated below

12 P
D40

Yo(2)

X(z)

Y1(2)
H1(2) = X3

Copyright © 2005, S. K. Mitra

Ho(z) =
24




Complementary Transfer

Functions
» Example - The first-order lowpass transfer

function . B
Hip(0) =42 22

l-az™

can be expressed as

Hip (@) =3(1,257 - LA + A2)]

az!

where

Complementary Transfer
Functions

* |ts power-complementary highpass transfer
function is thus given by

Hip (2) = 5[A0(2) - A(2)] = %(1_ Lz*llj

l-az™
_lraf 177
2 \1-azt

» The above expression is precisely the first-
order highpass transfer function described
earlier

26
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Complementary Transfer

Functions

* Figure below demonstrates the allpass
complementary property and the power
complementary property of H| p(z) and
Hup(2)

& & oy oy
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Complementary Transfer
Functions

Power-Symmetric Filters

« A real-coefficient causal digital filter with a
transfer function H(z) is said to be a power-
symmetric filter if it satisfies the condition

H()H@E Y +H(2)H (-2 =K
where K > 0 is a constant

28
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Complementary Transfer
Functions
* It can be shown that the gain function G(®)
of a power-symmetric transfer function at @
= m is given by
10log;p K -3 dB
* If we define G(z) = H(-z), then it follows
from the definition of the power-symmetric
filter that H(z) and G(z) are power-
complementary as
H(z)H(z %) +G(2)G(z ) = a constant
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Complementary Transfer
Functions

Conjugate Quadratic Filter
* If a power-symmetric filter has an FIR
transfer function H(z) of order N, then the
FIR digital filter with a transfer function
G(2)=zH(E™
is called a conjugate quadratic filter of
H(z) and vice-versa

30
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Complementary Transfer
Functions

* It follows from the definition that G(z) is
also a power-symmetric causal filter

* It also can be seen that a pair of conjugate
quadratic filters H(z) and G(z) are also
power-complementary
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Complementary Transfer
Functions
« Example - Let H(z)=1-2z"1+622+3z73
* We form
H@)H@E Y +H(2)H (2
=(1- 227146272+ 32’3)(1— 27+62% + 323)
+(+ 227146772 —32_3)(1+ 22+62° —323)
= (323 +47+50+4z77" +32‘3)
+(-323-4z+50-471-327%) =100
e > H(z) is a power-symmetric transfer
32 function
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Digital Two-Pairs

e The LTI discrete-time systems considered
so far are single-input, single-output
structures characterized by a transfer
function

 Often, such a system can be efficiently
realized by interconnecting two-input, two-
output structures, more commonly called
two-pairs
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Digital Two-Pairs

* Figures below show two commonly used
block diagram representations of a two-pair

Xi—1 _’YZ Xy — _’Yl

Y1<— 4—)(2 X2—> —>Y2

* Here Y; and Y, denote the two outputs, and
X, and X, denote the two inputs, where the
dependencies on the variable z has been

omitted for simplicity

34
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Digital Two-Pairs

* The input-output relation of a digital two-
pair is given by

i a
Yol [tr B Xp
* In the above relation the matrix t given by
s t12:|
T =
|:t21 ty2
is called the transfer matrix of the two-pair
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Digital Two-Pairs

« It follows from the input-output relation that
the transfer parameters can be found as

follows:
Y. Y,
ty =t , v
X1 Xp=0 X2 X;=0
{1 S L2 -2
Xlx,=0 Xalx,=0

36
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Digital Two-Pairs

 An alternate characterization of the two-pair
is in terms of its chain parameters as

X1 =[ A B} Y,
Y, C DJ X,
where the matrix " given by
_[A B
r-c 3]
is called the chain matrix of the two-pair
37
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Digital Two-Pairs

 The relation between the transfer
parameters and the chain parameters are
given by
. .C, _AD-BC 1 _C
1= = e = e =y
acl po_l2 c_t p_tola—haly
ty’ thy’ thy’ ty1
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Two-Pair Interconnection

Schemes
Cascade Connection - I'-cascade
. Y, Y .
SHEEL—— e
'« | |C D i = C D X
Yl X2 Yl 2

" i ol
KH@ 3’1&2;}
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Two-Pair Interconnection
Schemes
« But from figure, X; =Y, and Y; = X,
* Substituting the above relations in the first

equation on the previous slide and
combining the two equations we get

FEERIEIN

* Hence,

B gHgi gi}[@i‘. g‘.’.}
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Two-Pair Interconnection
Schemes

Cascade Connection - t-cascade
_ Yy Xq

X1 [ty [t 1|
X,— [t too] | Ll ol Yy,
2 Y; X; 2

. Here Yl}: tiy tﬁ}{xl}
LYo] [t1 tao ]l X2

n Yo ] [tr T2 X2
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Two-Pair Interconnection
Schemes
« But from figure, X; =Y; and X5 =Y,
« Substituting the above relations in the first

equation on the previous slide and
combining the two equations we get

S Sl 1
Yol L1 toltar o] Xo
e Hence,
{tn t12:| _ |:till.ll th }{tﬁ tll2:|
By ol |ty th |ty t
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Two-Pair Interconnection
Schemes
Constrained Two-Pair

Xy —] Y,
v
H@) iz "%
* |t can be shown that
H(2) _n_C+D:G(@
X; A+B-G(2)
:tll+M
1—t22(3(2)

43
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Algebraic Stability Test

» We have shown that the BIBO stability of a
causal rational transfer function requires
that all its poles be inside the unit circle

« For very high-order transfer functions, it is
very difficult to determine the pole
locations analytically

« Root locations can of course be determined
on a computer by some type of root finding
algorithms

44
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Algebraic Stability Test

» We now outline a simple algebraic test that
does not require the determination of pole
locations

The Stability Triangle

 For a 2nd-order transfer function the
stability can be easily checked by
examining its denominator coefficients

45
Copyright © 2005, S. K. Mitra

Algebraic Stability Test
e Let
D(z) =1+dy;zt+dyz2
denote the denominator of the transfer
function

« In terms of its poles, D(z) can be expressed
as
D(z) = - Mz ) (L-Apz ) =1— (A +Ap) 2L+ Aghp272

» Comparing the last two equations we get
di=-(A+22), dy=2ph;
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Algebraic Stability Test

The poles are inside the unit circle if
Il <L |2gl<1

Now the coefficient d, is given by the
product of the poles
» Hence we must have

ldy|<1
It can be shown that the second coefficient
condition is given by

|dy|<1+d,

47
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Algebraic Stability Test

* The region in the (dq,d,)-plane where the
two coefficient condition are satisfied,
called the stability triangle, is shown below

4,

48 Stability region
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Algebraic Stability Test

» Example - Consider the two 2nd-order
bandpass transfer functions designed
earlier:

_ .2
Hip(2) = ~0.18819 1z

1-0.7343424271 +1.376387 2

1-7z72

Hpp(2)=0.13673 - ,
1-0.533531z1 +0.72654253z2 "

49
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Algebraic Stability Test

In the case of Hgp(z), we observe that
d; =-0.7343424, d, =1.3763819
Since here |d,| >1, Hgp(z) is unstable

On the other hand, in the case of Hgp(2),
we observe that
d; =—-0.53353098, d, =0.726542528

Here,|d,|<1 and |dy|<1+d,, and hence
Hgp(2) is BIBO stable
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Algebraic Stability Test

A General Stability Test Procedure

 Let Dy (2) denote the denominator of an
M-th order causal IIR transfer function H(z):

M
Dwm (2) = Zi:odiz :
where we assume dg =1 for simplicity
* Define an M-th order allpass transfer
function:
7 Mby; (z7h)

AM(Z)=W

51
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Algebraic Stability Test

« Or, equivalently
Ay (2) = dy +dy g2 HHdy oz 24tz M2
M rdz Tdpr 2 dy gz M dy M

M

* If we express

Dw (2) =TT -2z
then it follows that

dy = COM M2
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Algebraic Stability Test

» Now for stability we must have |Aj| <1,
which implies the condition |[dy | <1

* Define
km = Au () =dy
» Then a necessary condition for stability of
A (2), and hence, the transfer function
H(z) is given by
kg <1
53
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Algebraic Stability Test

« Assume the above condition holds
* We now form a new function
AM_l(Z)z{AM(z)—kM }z{AM(z)—dM }
1-ky A (@] [1-duAu (@)
* Substituting the rational form of Ay (z) in
the above equation we get
dpy g +0py oz ttdyz=(M=2) 1 7=(M D)
1+dyz 1tdpy 2~ M- dyy 4z~ (M-D)

Am -1(2) =
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Algebraic Stability Test

where
g 2 Ji—dmdmi
'o1-d3
Hence, Ay _1(z) is an allpass function of
order M -1
Now the poles A, of Ay _1(z) are given by
the roots of the equation

Av (ko)zﬁ

, 1<isM-1
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Algebraic Stability Test

By assumption k¢, <1
Hence |Ay (Ao)|>1
If Ay (z) is a stable allpass function, then
<1, for|z/>1
Ay (z)3=1, for|z|=1
>1, for|z|<1
Thus, if Ay (2) is a stable allpass function,

then the condition | Ay (A,)| >1 holds only if
Aol <1
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Algebraic Stability Test

Or, in other words Ay, _1(z)is a stable
allpass function

Thus, if Ay (2) is a stable allpass function
and k2 <1, then Ay _;(2) is also a stable
allpass function of one order lower

We now prove the converse, i.e., if Ay_1(2)
is a stable allpass function and k,f,l <1, then
Ay (2)is also a stable allpass function
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Algebraic Stability Test

To this end, we express Ay (z) in terms of
Ay _1(2)arriving at
kv +2 7 Au1(2)
)y ="M — M=t/
A (2) 1+kyp ztA 4(2)
If &, isapole of Ay (2), then

ot Aw-1(Co) =—¢

By assumption k2, <1 holds
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Algebraic Stability Test

Therefore, |5t Aw 1 (Go)l>1 ie.,

| Am —1(o)I>Col
The above condition implies | Ay _1(Eo)|>1
if [Gol21
Assume Ay, _1(z) is a stable allpass function
Then |Ay _1(2) <1 for|z|>1
Thus, for |£,| =1, we should have

|Am-1(Go) <1
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Algebraic Stability Test

Thus there is a contradiction
On the other hand, if |,/ <1 then from
[Ap_1(2)|>1  for |z]<1

we have |Ay _1(Go)|>1
The above condition does not violate the

condition | Ay _1(Eo)l >[Col

Copyright © 2005, S. K. Mitra
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Algebraic Stability Test

 Thus, if k,%,l <land if Ay _1(2) is astable
allpass function, then Ay, (z)is also a stable
allpass function

» Summarizing, a necessary and sufficient set
of conditions for the causal allpass function
A (2) to be stable is therefore:

(1) k& <1 ,and
(2) The allpass function Ay, _41(z) is stable
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Algebraic Stability Test

 Thus, once we have checked the condition
kg <1, we test next for the stability of the

lower-order allpass function Ay _1(2)

» The process is then repeated, generating a
set of coefficients:

Knp s K- Ko Kq

and a set of allpass functions of decreasing
order:

Aw (2), A -1(2),-, Ao (2), A(2), Ag(2) =1
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Algebraic Stability Test

e The allpass function Ay, (z) is stable if and

only if k <1fori
» Example - Test the stability of
H@D) = 7o
47%+32°+22°+z7+1
e From H(z) we generate a 4-th order allpass
function
AL(2) = F P52 42t dgz®edpz2dyz el
4 24432%+122417241 © 2%4dy28+dyz2+dgz+d,

e * Note: ky = Ay(c0) =dy =7 <1
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Algebraic Stability Test
 Using
di —d4dy
1-d?
we determine the coefficients {d;} of the
third-order allpass function As(z) from the
coefficients {d;} of A4(z):
Ay(2) = d3z3+dyz2+dyz+1 234224l

3.4 7244, B 1,2,2,.1
diz3+dyz2+dgz+1 +Hel t5l+is

di = , 1<i<3

64
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Algebraic Stability Test

. Note:k?:As(oo):dé=%<1 .
 Following the above procedure, we derive
the next two lower-order allpass functions:

79 2 159
+1597 41
A (Z) 224 224

159, . 19
2? * 242t 2

58741

Aﬂ_( ) 101~  —

7+ 53
101

65 _
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Algebraic Stability Test

* Note: ky=Ay(w)=2L0<1

_ 53
kl = Ag_(OO) = ﬁl <1
« Since all of the stability conditions are
satisfied, A,(z)and hence H(z) are stable

* Note: It is not necessary to derive Aq(z)
since Ay(z) can be tested for stability using
the coefficient conditions

66 ) _
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