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Analog Analog LowpassLowpass Filter Filter 
SpecificationsSpecifications

• Typical magnitude response                of an 
analog lowpass filter may be given as 
indicated below

)( ΩjHa

2
Copyright © 2005, S. K. Mitra

Analog Analog LowpassLowpass Filter Filter 
SpecificationsSpecifications

• In the passband, defined by                   , we 
require

i.e.,                approximates unity within an 
error of

)( ΩjHa

pΩ≤Ω≤0

ppap jH Ω≤Ωδ+≤Ω≤δ− ,1)(1

)( ΩjHa
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• In the stopband, defined by                   , we 
require

i.e.,               approximates zero within an 
error of

pδ±

sδ
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Analog Analog LowpassLowpass Filter Filter 
SpecificationsSpecifications

• - passband edge frequency
• - stopband edge frequency
• - peak ripple value in the passband
• - peak ripple value in the stopband
• Peak passband ripple

dB
• Minimum stopband attenuation

dB

pΩ

sΩ

sδ
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Analog Analog LowpassLowpass Filter Filter 
SpecificationsSpecifications

• Magnitude specifications may alternately be 
given in a normalized form as indicated 
below
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Analog Analog LowpassLowpass Filter Filter 
SpecificationsSpecifications

• Here, the maximum value of the magnitude 
in the passband assumed to be unity

• - Maximum passband deviation, 
given by the minimum value of the 
magnitude in the passband

• - Maximum stopband magnitude

21/1 ε+

A
1
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Analog Analog LowpassLowpass Filter DesignFilter Design
• Two additional parameters are defined -

(1) Transition ratio

For a lowpass filter

(2) Discrimination parameter
Usually
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Butterworth ApproximationButterworth Approximation

• The magnitude-square response of an N-th
order analog lowpass Butterworth filter
is given by

• First             derivatives of                   at
are equal to zero

• The Butterworth lowpass filter thus is said 
to have a maximally-flat magnitude at

12 −N 2)( ΩjHa
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Butterworth ApproximationButterworth Approximation

• Gain in dB is

• As                 and                     
dB

is called the 3-dB cutoff frequency

2
10 )(log10)( Ω=Ω jHaG
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30103.3)5.0(log10)( 10 −≅−==ΩcG

cΩ

9
Copyright © 2005, S. K. Mitra

Butterworth ApproximationButterworth Approximation

• Typical magnitude responses with 1=Ωc
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Butterworth ApproximationButterworth Approximation

• Two parameters completely characterizing a 
Butterworth lowpass filter are       and N

• These are determined from the specified 
bandedges and      , and minimum 
passband magnitude                , and 
maximum stopband ripple

cΩ

pΩ sΩ
21/1 ε+
A/1
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Butterworth ApproximationButterworth Approximation
• and  N are thus determined from

• Solving the above we get
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Butterworth ApproximationButterworth Approximation
• Since order N must be an integer, value 

obtained is rounded up to the next highest 
integer

• This value of N is used next to determine       
by satisfying either the stopband edge or the 
passband edge specification exactly

• If the stopband edge specification is 
satisfied, then the passband edge 
specification is exceeded providing a safety 
margin

cΩ
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Butterworth ApproximationButterworth Approximation
• Transfer function of an analog Butterworth 

lowpass filter is given by

where

• Denominator              is known as the 
Butterworth polynomial of order N
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Butterworth ApproximationButterworth Approximation
• Example - Determine the lowest order of a 

Butterworth lowpass filter with a 1-dB cutoff 
frequency at 1 kHz and a minimum attenuation of 40
dB at 5 kHz

• Now  

which yields
and

which yields
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Butterworth ApproximationButterworth Approximation
• Therefore

and

• Hence

• We choose N = 4
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ChebyshevChebyshev ApproximationApproximation
• The magnitude-square response of an N-th

order analog lowpass Type 1 Chebyshev filter
is given by

where              is the Chebyshev polynomial
of order N:
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ChebyshevChebyshev ApproximationApproximation

• Typical magnitude response plots of the 
analog lowpass Type 1 Chebyshev filter are 
shown below
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ChebyshevChebyshev ApproximationApproximation
• If at              the magnitude is equal to 1/A, 

then

• Solving the above we get

• Order N is chosen as the nearest integer 
greater than or equal to the above value
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ChebyshevChebyshev ApproximationApproximation
• The magnitude-square response of an N-th

order analog lowpass Type 2 Chebyshev
(also called inverse Chebyshev) filter is 
given by

where              is the Chebyshev polynomial
of order N
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ChebyshevChebyshev ApproximationApproximation
• Typical magnitude response plots of the 

analog lowpass Type 2 Chebyshev filter are 
shown below
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ChebyshevChebyshev ApproximationApproximation
• The order N of the Type 2 Chebyshev filter

is determined from given     ,       , and  A
using

• Example - Determine the lowest order of a 
Chebyshev lowpass filter with a 1-dB cutoff 
frequency at 1 kHz and a minimum attenuation of 
40 dB at 5 kHz -
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Elliptic ApproximationElliptic Approximation
• The square-magnitude response of an 

elliptic lowpass filter is given by

where             is a rational function of order 
N satisfying                                  , with the 
roots of its numerator lying in the interval

and the roots of its denominator 
lying in the interval
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Elliptic ApproximationElliptic Approximation
• For given      ,      ,    ,  and A, the filter order 

can be estimated using

where
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Elliptic ApproximationElliptic Approximation
• Example - Determine the lowest order of a elliptic 

lowpass filter with a 1-dB cutoff frequency at 1
kHz and a minimum attenuation of 40 dB at 5 kHz
Note: k = 0.2 and

• Substituting these values we get

• and hence N = 2.23308
• Choose N = 3  

5134.196/1 1 =k

,979796.0'=k ,00255135.00 =ρ
0025513525.0=ρ
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Elliptic ApproximationElliptic Approximation

• Typical magnitude response plots with           
are shown below
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Analog Analog LowpassLowpass Filter DesignFilter Design
• Example - Design an elliptic lowpass filter 

of lowest order with a 1-dB cutoff 
frequency at 1 kHz and a minimum 
attenuation of 40 dB at 5 kHz

• Code fragments used
[N, Wn] = ellipord(Wp, Ws, Rp, Rs, ‘s’);
[b, a] = ellip(N, Rp, Rs, Wn, ‘s’);
with Wp = 2*pi*1000;

Ws = 2*pi*5000;
Rp = 1;
Rs = 40;

27
Copyright © 2005, S. K. Mitra

Analog Analog LowpassLowpass Filter DesignFilter Design

• Gain plot
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Design of Analog Design of Analog HighpassHighpass, , 
BandpassBandpass and and BandstopBandstop FiltersFilters

• Steps involved in the design process:
Step 1 - Develop of specifications of a 
prototype analog lowpass filter              
from specifications of desired analog filter       

using a frequency transformation
Step 2 - Design the prototype analog 
lowpass filter
Step 3 - Determine the transfer function      
of desired analog filter by applying the 
inverse frequency transformation to

)(sHLP
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)(sHD
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Design of Analog Design of Analog HighpassHighpass, , 
BandpassBandpass and and BandstopBandstop FiltersFilters
• Let s denote the Laplace transform variable 

of prototype analog lowpass filter     
and     denote the Laplace transform 
variable of desired analog filter

• The mapping from s-domain to    -domain is 
given by the invertible transformation

• Then

ŝ

ŝ
)ˆ(sHD

)ˆ()()ˆ( sFsLPD sHsH ==

)(ˆ 1)ˆ()( sFsDLP sHsH −==

)ˆ(sFs =

)(sHLP
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Analog Analog HighpassHighpass Filter DesignFilter Design
• Spectral Transformation:

where        is the passband edge frequency of 
and is the passband edge 

frequency of
• On the imaginary axis the transformation is

ss pp
ˆ
Ω̂Ω
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Analog Analog HighpassHighpass Filter DesignFilter Design

Ω
ΩΩ

−=Ω ˆ
ˆ pp

Ω

sΩ− ˆ
pΩ̂sΩ̂pΩ− ˆ

Highpass
PassbandPassband Stopband

sΩ− pΩ sΩpΩ−
Lowpass

Passband

Stopband Stopband
Ω

Ω̂

0

0
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Analog Analog HighpassHighpass Filter DesignFilter Design
• Example - Design an analog Butterworth 

highpass filter with the specifications:           
kHz,           kHz,                dB,              
dB

• Choose
• Then

• Analog lowpass filter specifications:            ,
,                dB,              dB

4ˆ =pF 1ˆ =sF
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Analog Analog HighpassHighpass Filter DesignFilter Design
• Code fragments used

[N, Wn] = buttord(1, 4, 0.1, 40, ‘s’);
[B, A] = butter(N, Wn, ‘s’);
[num, den] = lp2hp(B, A, 2*pi*4000);

• Gain plots
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• Spectral Transformation

where        is the passband edge frequency 
of , and and         are the lower 
and upper passband edge frequencies of 
desired bandpass filter
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• On the imaginary axis the transformation is

where                            is the width of 
passband and          is the passband center 
frequency of the bandpass filter 

• Passband edge frequency          is mapped 
into and , lower and upper 
passband edge frequencies

w

o
p BΩ

Ω−ΩΩ−=Ω ˆ
ˆˆ 22

12 ˆˆ ppwB Ω−Ω=
oΩ̂

1ˆ pΩm 2ˆ pΩ±
pΩ±
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

w

o
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ˆˆ 22
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• Stopband edge frequency         is mapped 
into and , lower and upper 
stopband edge frequencies

• Also,

• If bandedge frequencies do not satisfy the 
above condition, then one of the frequencies 
needs to be changed to a new value so that 
the condition is satisfied

sΩ±
1ˆ sΩm 2ˆ sΩ±

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• Case 1:
To make                                we can either 
increase any one of the stopband edges or 
decrease any one of the passband edges as 
shown below

2121 ˆˆˆˆ sspp ΩΩ>ΩΩ

1ˆ pΩ 2ˆ pΩ1ˆ sΩ 2ˆ sΩ

→ →

←←

Ω̂

2121 ˆˆˆˆ sspp ΩΩ=ΩΩ

Passband

Stopband Stopband
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

(1) Decrease        to
larger passband and shorter 

leftmost transition band
(2) Increase        to

No change in passband and shorter 
leftmost transition band

1ˆ pΩ

1ˆ sΩ

221 ˆ/ˆˆ pss ΩΩΩ

221 ˆ/ˆˆ spp ΩΩΩ
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• Note: The condition                                   
can also be satisfied by decreasing           
which is not acceptable as the passband is 
reduced from the desired value

• Alternately, the condition can be satisfied 
by increasing         which is not acceptable 
as the upper stop band is reduced from the 
desired value

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω

2ˆ pΩ

2ˆ sΩ
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• Case 2:
To make                                we can either 
decrease any one of the stopband edges or 
increase any one of the passband edges as 
shown below

2121 ˆˆˆˆ sspp ΩΩ<ΩΩ

1ˆ pΩ 2ˆ pΩ1ˆ sΩ 2ˆ sΩ

→ →

←
←

Ω̂

2121 ˆˆˆˆ sspp ΩΩ=ΩΩ

Passband

Stopband Stopband

42
Copyright © 2005, S. K. Mitra

Analog Analog BandpassBandpass Filter Filter 
DesignDesign

(1) Increase        to
larger passband and shorter 

rightmost transition band
(2) Decrease        to

No change in passband and shorter 
rightmost transition band

2ˆ pΩ

2ˆ sΩ

121 ˆ/ˆˆ pss ΩΩΩ

121 ˆ/ˆˆ spp ΩΩΩ
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• Note: The condition                                   
can also be satisfied by increasing           
which is not acceptable as the passband is 
reduced from the desired value

• Alternately, the condition can be satisfied 
by decreasing         which is not acceptable 
as the lower stopband is reduced from the 
desired value

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω

1ˆ pΩ

1ˆ sΩ
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• Example - Design an analog elliptic 
bandpass filter with the specifications:           

kHz,              kHz,             kHz
kHz,             dB,               dB

• Now                             and
• Since                           we choose

kHz      

4ˆ 1 =pF 7ˆ 2 =pF
8ˆ 2 =sF

3ˆ 1 =sF
1=pα 22=sα

6
21 1028ˆˆ ×=pp FF 6

21 1024ˆˆ ×=ss FF

2121 ˆˆˆˆ sspp FFFF >
571428.3ˆ/ˆˆˆ 2211 == pssp FFFF
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• We choose
• Hence

• Analog lowpass filter specifications:            ,
,            dB,              dB

1=Ω p

4.1
3)7/25(

924 =
×

−=Ωs

1=Ω p

4.1=Ωs 1=pα 22=sα
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Analog Analog BandpassBandpass Filter Filter 
DesignDesign

• Code fragments used
[N, Wn] = ellipord(1, 1.4, 1, 22, ‘s’);
[B, A] = ellip(N, 1, 22, Wn, ‘s’);
[num, den] 

= lp2bp(B, A, 2*pi*4.8989795, 2*pi*25/7);
• Gain plot
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Analog Analog BandstopBandstop Filter DesignFilter Design

• Spectral Transformation

where        is the stopband edge frequency 
of , and and         are the lower 
and upper stopband edge frequencies of the 
desired bandstop filter

sΩ
)(sHLP

22
12
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s
s ss
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Ω−Ω

Ω=

)ˆ(sHBS

1ˆ sΩ 2ˆ sΩ
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Analog Analog BandstopBandstop Filter DesignFilter Design
• On the imaginary axis the transformation is

where                            is the width of 
stopband and        is the stopband center 
frequency of the bandstop filter

• Stopband edge frequency          is mapped 
into and , lower and upper 
stopband edge frequencies

22 ˆˆ
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Ω−Ω
ΩΩ=Ω
o
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12 ˆˆ sswB Ω−Ω=
oΩ̂

1ˆ sΩm 2ˆ sΩ±
sΩ±
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Analog Analog BandstopBandstop Filter DesignFilter Design
• Passband edge frequency           is mapped 

into and , lower and upper 
passband edge frequencies

pΩ±
1ˆ pΩm 2ˆ pΩ±

1ˆ sΩ−
oΩ̂

1ˆ sΩ
1ˆ pΩ−

Bandpass
PassbandPassband

sΩ− pΩ sΩpΩ−
Lowpass

Passband

Stopband Stopband
Ω
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Stopband Stopband

0

0

2ˆ sΩ
2ˆ pΩ− 1ˆ pΩ 2ˆ pΩoΩ− ˆ↓ ↓ ↓ ↓

2ˆ sΩ−

Passband
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Analog Analog BandstopBandstop Filter DesignFilter Design
• Also,

• If bandedge frequencies do not satisfy the 
above condition, then one of the frequencies 
needs to be changed to a new value so that 
the condition is satisfied

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω
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Analog Analog BandstopBandstop Filter DesignFilter Design
• Case 1:
• To make                                we can either 

increase any one of the stopband edges or 
decrease any one of the passband edges as 
shown below

2121 ˆˆˆˆ sspp ΩΩ>ΩΩ

1ˆ pΩ 2ˆ pΩ1ˆ sΩ 2ˆ sΩ
Ω̂

2121 ˆˆˆˆ sspp ΩΩ=ΩΩ

Stopband

PassbandPassband
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Analog Analog BandstopBandstop Filter DesignFilter Design

(1) Decrease        to
larger high-frequency passband

and shorter rightmost transition band
(2) Increase        to

No change in passbands and
shorter rightmost transition band

2ˆ pΩ

2ˆ sΩ

221 ˆ/ˆˆ pss ΩΩΩ

221 ˆ/ˆˆ spp ΩΩΩ
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Analog Analog BandstopBandstop Filter DesignFilter Design
• Note: The condition                                   

can also be satisfied by decreasing           
which is not acceptable as the low-
frequency passband is reduced from the 
desired value

• Alternately, the condition can be satisfied 
by increasing         which is not acceptable 
as the stopband is reduced from the desired 
value 

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω

1ˆ pΩ

1ˆ sΩ
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Analog Analog BandstopBandstop Filter DesignFilter Design
• Case 1:
• To make                                we can either 

decrease any one of the stopband edges or 
increase any one of the passband edges as 
shown below

2121 ˆˆˆˆ sspp ΩΩ<ΩΩ

2121 ˆˆˆˆ sspp ΩΩ=ΩΩ

1ˆ pΩ 2ˆ pΩ1ˆ sΩ 2ˆ sΩ
Ω̂

Stopband

PassbandPassband
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Analog Analog BandstopBandstop Filter DesignFilter Design

(1) Increase         to
larger passband and shorter 

leftmost transition band
(2) Decrease        to

No change in passbands and
shorter leftmost transition band

1ˆ pΩ

1ˆ sΩ

121 ˆ/ˆˆ pss ΩΩΩ

121 ˆ/ˆˆ spp ΩΩΩ
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• Note: The condition                                   
can also be satisfied by increasing           
which is not acceptable as the high-
frequency passband is decreased from the 
desired value

• Alternately, the condition can be satisfied 
by decreasing         which is not acceptable 
as the stopband is decreased

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω

2ˆ pΩ

2ˆ sΩ


