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Low Low PassbandPassband Sensitivity Sensitivity 
FIR Digital FilterFIR Digital Filter

• We consider here the Type 1 filter as it is 
the most general linear-phase filter and can 
realize any type of frequency response

• The frequency response of a Type 1 FIR 
transfer function H(z) of order N can be 
expressed as

where          , a real function of ω, is its 
amplitude response
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• If H(z) is a BR function, then
• Its delay-complementary transfer function 

G(z) defined by

has a frequency response given by

where                             is its amplitude 
response
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• Amplitude responses of a typical delay-
complementary FIR filter pair are shown 
below
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• It follows from the plots of the amplitude 
responses that at            , where                 

has double zeros
• Thus, G(z) can be expressed as
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• A delay-complementary realization of H(z)
based on                                     is shown 
below

• consists of L 4-th order FIR sections 
with the k-th section having a transfer 
function
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• If the multiplier coefficient               of the 
k-th section is quantized, its zeros are still 
double and remain on the unit circle

• Thus, quantization of the coefficients of        
does not change the sign of the amplitude 
response          , and in the passband of H(z),
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• In addition,            has no zeros on the unit 
circle, and quantization of its coefficients 
also does not affect the sign of

• Hence,            continues to remain bounded 
above by unity

• The realization of H(z) as indicated 
remains structurally BR or structurally 
passive with regard to all coefficients, 
resulting in a low passband sensitivity 
realization

)(zGa

)(ωG
(

)(ωH
(

Copyright © 2005, S. K. Mitra
8

Low Low PassbandPassband Sensitivity Sensitivity 
FIR Digital FilterFIR Digital Filter

• Example - The filter specifications are 
length 13 with a normalized passband edge 
at 0.5 and a normalized stopband edge  at 
0.6 with equal weights to passband and 
stopband ripples

• Using the M-file remez we determine the 
transfer function of the lowpass filter H(z)
and form its delay-complementary filter
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• G(z) has 6 zeros on the unit circle: 2 zeros  
at z = 1, a pair of complex conjugate zeros 
at                                                              
and a pair of complex conjugate zeros at

• These unit circle zeros constitute
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• By factoring out            from G(z) we get

• Next we quantize the coefficients of            
and             by rounding the fractional part 
to 2 decimal digits
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• Finally, from G(z) with quantized 
coefficients, the delay-complementary 
transfer function H(z) is determined
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FirstFirst--Order ErrorOrder Error--Feedback Feedback 
StructureStructure

• Consider the scaled first-order section

• We assume that all multiplier coefficients 
are signed (b + 1)-bit fractions

• The quantization error signal is given by
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• The first-order section is modified by 
feeding back the error signal e[n] to the 
system through a delay and a multiplier β as 
shown below
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• In practice, β is chosen to be a simple 
integer or a power-of-2 fraction, such as      

,       , or           so that the multiplication 
can be performed using a shift operation 
and will not introduce an additional 
quantization error

1± 2± 5.0±
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• Analyzing the error-feedback structure we 
arrive at its transfer function

• The noise transfer function G(z) with the 
error feedback, with y[n] as the output is 
given by
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• The noise transfer function without the error 
feedback (β = 0) is given by

• The output noise variance of the error-
feedback structure is given by

where       is the variance of e[n]
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• is a minimum when
• However, in practice
• Hence               will introduce an additional 

quantization noise source, making the 
analysis resulting in the expression for         
invalid

• Thus, β should be chosen as an integer with 
a value close to that of

2
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• For              , β = 0, implying no error 
feedback

• However, in this case, the pole of H(z) is far 
from the unit circle, and as a result, the 
output noise variance        is not that high

• For               , choose
• Using this value of β we get
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• The output noise variance with β = 0 is

• Thus, error feedback has increased the SNR 
by a factor of

dB
• This increase in SNR is quite significant if 

the pole is closer to the unit circle
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• For example if                , the improvement 
is about 17 dB, which is  equivalent to 
about 3 bits of increased accuracy compared 
to the case without error feedback

• Additional hardware requirements for the 
error-feedback structure are two new adders 
and an additional storage register
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• The noise transfer function for the error-
feedback structure can be expressed as

where            is the noise transfer function 
without error feedback

• The error-feedback circuit is 
shaping the error spectrum by modifying 
the input quantization noise E(z) to
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• The output noise is generated by passing    
through the usual noise transfer function

• To illustrate the effect of noise spectrum 
shaping, consider the case of a narrow-band 
lowpass first-order filter with

• We choose              and as a result            
has a zero at z = 1 (ω = 0)
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• The power spectral density of the unshaped 
quantization noise E(z) is      , a constant

• The power spectral density of the shaped 
quantization noise           is

2
oσ

)(zEs
22 )2/(sin4 oσω

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

ω/pi

N
oi

se
 p

ow
er

Unshaped

Shaped

Copyright © 2005, S. K. Mitra
24

FirstFirst--Order ErrorOrder Error--Feedback Feedback 
StructureStructure

• The noise shaping redistributes the noise so 
as to move it mostly into the stopband of the 
lowpass filter, thus reducing the noise 
variance

• Because of the noise redistribution caused 
by the error-feedback, this approach has 
also been called the error spectrum 
shaping method
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• The noise transfer function is given by

• The output round-off noise variance for           
-scaling is given by

• A choice of              and               makes         
, yielding               , an apparent 

optimal solution
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• However, this choice for the multiplier 
coefficients in the error-feedback path 
introduces additional quantization noise 
sources that invalidates the expression for

• A more attractive solution is to make        
and        integers with values close to       
and      , respectively

2
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• For example, for a narrow-band lowpass
transfer function, the poles are close to the 
unit circle and to the real axis, i.e.,           
and

• Then,       is close to       and      is close to 1
• In this case, choose              and
• Then
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• For a very narrowband lowpass filter with r
= 0.995,     = 0.07π, and b = 16, the second-
order error-feedback structure has an SNR 
that is approximately 25 dB higher than that 
without the error feedback

• The second-order error-feedback structure 
also provides a noise shaping

θ
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• The error-feedback circuit shapes the error 
spectrum by modifying the input quantization 
noise E(z) to

• The output noise is generated by passing     
through the usual noise transfer function
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• The power spectral density of the shaped 
noise source            is

• The power spectral density of the unshaped 
noise source is 2oσ
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Limit Cycles in IIR Digital Limit Cycles in IIR Digital 
FiltersFilters

• So far we have treated the analysis of finite 
wordlength effects using a linear model of 
the system

• A practical digital filter is a nonlinear system 
caused by the quantization of the arithmetic 
operations

• Such nonlinearities may cause an IIR filter, 
which is stable under infinite precision, to 
exhibit an unstable behavior under finite 
precision arithmetic for specific input signals
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Limit Cycles in IIR Digital Limit Cycles in IIR Digital 
FiltersFilters

• This type of instability usually results in an 
oscillatory periodic output called a limit
cycle

• The system remains in this condition until 
an input of sufficiently large amplitude is 
applied to move the system into a more 
conventional operation
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• Limit cycles occur in IIR filters due to the 
presence of feedback

• Such oscillations are absent in FIR filters as 
they do not have any feedback path

• There are two types of limit cycles
(1) Granular limit cycle is usually of low 
amplitude
(2) Overflow limit cycle has large 
amplitudes
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• Two types of granular limit cycles have 
been observed in IIR digital filters:
(1) Inaccessible limit cycle - can appear 
only if the initial conditions of the digital 
filter at the time of starting pertain to that 
limit cycle
(2) Accessible limit cycle - can appear by 
starting the digital filter with initial 
conditions not pertaining to the limit cycle
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Granular Limit CyclesGranular Limit Cycles
• Consider the first-order IIR filter as shown 

below

• Assume the quantization operation to be 
rounding and the filter to be implemented 
with a signed 6-bit fractional arithmetic

• The nonlinear difference equation 
characterizing the filter is given by
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• For x[n] = 0.04δ[n],                , and α = 0.6, 

the output of the filter is as shown below

• The limit cycle generated has a period of 1
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• For x[n] = 0.04δ[n],                , and                  

the output of the filter is as shown below

• The limit cycle generated has a period of 2
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Overflow Limit CyclesOverflow Limit Cycles
• Limit-cycle-like oscillations can also result 

from overflow in digital filters implemented 
with finite precision arithmetic

• The amplitude of the overflow oscillations 
can cover the whole dynamic range of the 
register experiencing the overflow

• Overflow limit cycles are thus much more 
serious in nature than the granular limit 
cycles
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Overflow Limit CyclesOverflow Limit Cycles
• Consider the causal all-pole second-order 

IIR digital filter shown below

• Assume implementation using sign-
magnitude 4-bit arithmetic with a rounding 
of the sum of products by a single quantizer
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Overflow Limit CyclesOverflow Limit Cycles
• Let                     ,                   ,                   

and
• Consider x[n] = 0 for
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Overflow Limit CyclesOverflow Limit Cycles
• The second-order direct form IIR structure 

with multiplier coefficients      and         
remains stable if              and

• However, the structure can still get into a 
zero-input overflow oscillation mode for a 
large range of values of the filter constants 
satisfying the stability constraint when 
implemented using two’s-complement 
arithmetic with rounding

12 <α 21 1 α+<α
1α 2α
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• It has been shown that overflow limit cycles 

under zero-input cannot occur if the filter 
coefficients lie in the shaded region inside 
the stability triangle shown below
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Limit Cycle Free StructuresLimit Cycle Free Structures
• Conditions for a digital filter structure to not 

support limit cycles have been derived in 
terms of its state transition matrix

• For a second-order causal LTI digital filter, 
the state-space representation relating the 
output y[n] to the input x[n] is given by
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• Let

• The state-space description is then compactly 
written as

• A is called the state-transition matrix
• s[n] is called the state-vector
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[ ]21
2

1

2221

1211 ,, cc
b
b

aa
aa

=⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡
= CBA

][][]1[ nxnn BsAs +=+
][][][ nxdnny += sC

Copyright © 2005, S. K. Mitra
46

Limit Cycle Free StructuresLimit Cycle Free Structures
• The quantization errors caused by the 

quantization of the state-transition equation

go through the feedback loop and are 
responsible for the generation of limit cycles

• Assume               and               are quantized
• Delayed versions of these quantized signals 

are          and

][][]1[ nxnn BsAs +=+
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Limit Cycle Free StructuresLimit Cycle Free Structures
• A quantizer is defined to be passive if

for all x
• If x is inside the dynamic range of the 

system, then for magnitude truncation 
above inequality holds

• If x is outside the dynamic range, for 
example by overflow, it must be brought 
back to the range by following the schemes 
discussed next

,)( xx ≤Q
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Handling OverflowHandling Overflow
• If η, the sum of two fixed-point fractions, 

exceeds the dynamic range           , it is 
substituted with a number     which is within 
the range using one of the two following 
schemes
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Limit Cycle Free StructuresLimit Cycle Free Structures

• Thus, magnitude truncation followed by one 
of the two overflow handling schemes is 
again a passive quantizer

• A digital filter structure with a state 
transition matrix satisfying

• has been called a normal form structure

TT AAAA =
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• A normal form structure with passive 
quantizers does not support zero-input limit 
cycles of either type

• The state transition matrix A satisfying the 
condition                       and              is called 
a normal matrix

TT AAAA = 12 <A
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Limit Cycle Free StructuresLimit Cycle Free Structures
• Example - Consider the digital filter 

structure shown below

• Analysis yields
][][][]1[ 211 nxcnscdnscns +−=+

][][]1[ 212 nscnscdns +=+
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Limit Cycle Free StructuresLimit Cycle Free Structures
• The state transition matrix is given by

• The transfer function of the structure is
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Limit Cycle Free StructuresLimit Cycle Free Structures
• Comparing the denominator of H(z) with 

that of a second-order IIR transfer function 
with poles at                 (with r < 1 for 
stability) we obtain                   and

• Thus

• Note:                                and
• The filter is a normal form structure
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