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Discrete-Time Signals:
Time-Domain Representation
« Signals represented as sequences of

numbers, called samples

» Sample value of a typical signal or sequence
denoted as x[n] with n being an integer in
the range —oo<n<oo

« x[n] defined only for integer values of n and
undefined for noninteger values of n

» Discrete-time signal represented by {x[n]}
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Discrete-Time Signals:
Time-Domain Representation

« Discrete-time signal may also be written as
a sequence of numbers inside braces:

{x[n]}:{...,—0.2,2%2,1.1,0.2,—3.7,2.9,...}

« In the above, X[-1]=-0.2, x[0]= 2.2, x[1]=1.1,
etc.

 The arrow is placed under the sample at
time indexn =10
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Discrete-Time Signals:
Time-Domain Representation

 Graphical representation of a discrete-time
signal with real-valued samples is as shown
below:
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Discrete-Time Signals:

Time-Domain Representation

* In some applications, a discrete-time
sequence {x[n]} may be generated by
periodically sampling a continuous-time
signal X, (t) at uniform intervals of time

< -5T)
N
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Discrete-Time Signals:
Time-Domain Representation
 Here, n-th sample is given by

x[n]= X3 (O} _;7 = *a(nT), n=...,—2,-101,...

» The spacing T between two consecutive
samples is called the sampling interval or
sampling period

* Reciprocal of sampling interval T, denoted
as Fy, is called the sampling frequency:

1
o
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Discrete-Time Signals:

Time-Domain Representation

 Unit of sampling frequency is cycles per
second, or hertz (Hz), if T is in seconds

» Whether or not the sequence {x[n]} has
been obtained by sampling, the quantity
x[n] is called the n-th sample of the
sequence

» {x[n]} is a real sequence, if the n-th sample
x[n] is real for all values of n

 Otherwise, {x[n]} is a complex sequence
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Discrete-Time Signals:
Time-Domain Representation

» A complex sequence {x[n]} can be written
as {X[nI}={Xre[n]}+ {Xim[n]}where
Xre[N] and Xjm[n] are the real and imaginary
parts of x[n]

» The complex conjugate sequence of {x[n]}
is given by {x*[n]}={Xre[n]}— i{Xim[n]}

» Often the braces are ignored to denote a
sequence if there is no ambiguity
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Discrete-Time Signals:
Time-Domain Representation
o Example - {x[n]} ={co0s0.25n} is a real

sequence
e {y[n]}= {ej°'3"} is a complex sequence
» We can write
{y[n]}={co0s0.3n+ jsin0.3n}
={c0s0.3n}+ j{sin0.3n}
where {y,.[n]}={cos0.3n}
{Yim[n1}={sin0.3n}
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Discrete-Time Signals:
Time-Domain Representation

* Example -
{(W[n]} ={cos0.3n}— j{sin0.3n} = {e~1%3M}
is the complex conjugate sequence of {y[n]}
e That is,
{(winT}={y*[n]}
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Discrete-Time Signals:

Time-Domain Representation
» Two types of discrete-time signals:

- Sampled-data signals in which samples
are continuous-valued

- Digital signals in which samples are
discrete-valued

« Signals in a practical digital signal
processing system are digital signals
obtained by quantizing the sample values
either by rounding or truncation
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Discrete-Time Signals:
Time-Domain Representation

o Example -
E"_\“ BT
- — [ | [
time, t [ T time, t
|
Boxedcar signal Digital signal
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Discrete-Time Signals:
Time-Domain Representation
* A discrete-time signal may be a finite-

length or an infinite-length sequence
* Finite-length (also called finite-duration or
finite-extent) sequence is defined only for a
finite time interval: Ny <n<N,
where —oo <Ny and N, <oo With Ny <N,
 Length or duration of the above finite-
length sequence is N =N, —Nj +1
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Discrete-Time Signals:
Time-Domain Representation

e Example - x[n]= n2, —3<n<4isafinite-
length sequence of length 4—(-3)+1=8

y[n]=cos0.4n is an infinite-length sequence
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Discrete-Time Signals:
Time-Domain Representation

A length-N sequence is often referred to as
an N-point sequence

 The length of a finite-length sequence can
be increased by zero-padding, i.e., by
appending it with zeros
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Discrete-Time Signals:
Time-Domain Representation

» Example -

2
_Jn%, —-3<n<4
Xe[”]‘{o, 5<n<8

is a finite-length sequence of length 12
obtained by zero-padding x[n]= n2, -3<n<4
with 4 zero-valued samples
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Discrete-Time Signals:
Time-Domain Representation

A right-sided sequence x[n] has zero-
valued samples for n < N;

PR
ik

A right-sided sequence

* If Ny >0,a right-sided sequence is called a

causal sequence
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Discrete-Time Signals:
Time-Domain Representation

* A left-sided sequence x[n] has zero-valued
samples for n> N,

see T N,
n

A left-sided sequence

* If Ny <0,a left-sided sequence is called a
anti-causal sequence
17
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Discrete-Time Signals:
Time-Domain Representation

* Size of a Signal
Given by the norm of the signal
L,-norm
o 1/p
b, =( Ehtnr )

n=—o

where p is a positive integer

18
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Discrete-Time Signals:
Time-Domain Representation

* The value of p is typically 1 or 2 or «

Lp-norm

[l
is the root-mean-squared (rms) value of

{x[n]}
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Discrete-Time Signals:
Time-Domain Representation

L£y-norm ||,
is the mean absolute value of {x[n]}

Lo,m-norm |x|
is the peak absolute value of {x[n]}, i.e.

el = el
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Discrete-Time Signals:
Time-Domain Representation

Example

e Let{y[n]},0<n< N -1, be an approximation of
XN 0<n<N-1

¢ An estimate of the relative error is given by the
ratio of the £,-norm of the difference signal and
the £,-norm of {x[n]}:

N-1 > 1/p
Y |ylnl=xln]
—| n=0
E. = " N-1 )
> |xln]
2 =0
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Operations on Sequences

 Asingle-input, single-output discrete-time
system operates on a sequence, called the
input sequence, according some prescribed
rules and develops another sequence, called
the output sequence, with more desirable
properties

Discrete-time
) )

Input sequence Output sequence
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Operations on Sequences

 For example, the input may be a signal
corrupted with additive noise

« Discrete-time system is designed to
generate an output by removing the noise
component from the input

* In most cases, the operation defining a
particular discrete-time system is composed
of some basic operations
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Basic Operations

* Product (modulation) operation:

x[n] 4’%’9—’ y[n]
— Modulator y[n]=x[n]-w[n]

w[n]

 An application is in forming a finite-length
sequence from an infinite-length sequence
by multiplying the latter with a finite-length
sequence called an window sequence

* Process called windowing
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Basic Operations

 Addition operation:

x[n] — y[n]
_ Adder - y[n]=x[n]+w{n]

win]

» Multiplication operation

A
— Multiplier ~ xin] —J>— Il y[n]=A-x[n]
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Basic Operations

 Time-shifting operation: y[n]=X[n—N]
where N is an integer
e If N >0, itis delaying operation

— Unit delay x[n]Y[“] y[n]=x[n-1]

e If N< 0, it is an advance operation
xinl—] 2 — il y[n]=x(n+1]
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— Unit advance

Basic Operations

» Time-reversal (folding) operation:
y[n]=Xx[-n]

» Branching operation: Used to provide
multiple copies of a sequence

x[n] — 1 X[n]
x[n]
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Basic Operations

» Example - Consider the two following
sequences of length 5 defined for 0 < n < 4:
{a[n]}={3 4 6 -9 0}
{b[n]}={2 -1 4 5 -3}

» New sequences generated from the above
two sequences by applying the basic
operations are as follows:

28
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Basic Operations

{c[n]}={a[n]-b[n]}={6 —4 24 —45 0}
{d[n]}={a[n]+b[n]}={5 3 10 —4 -3}
{e[n]}=%{a[n]}={4.5 6 9 -135 0}

* As pointed out by the above example,
operations on two or more sequences can be
carried out if all sequences involved are of
same length and defined for the same range
of the time index n

29

Copyright © 2005, S. K. Mitra

30

Basic Operations

» However if the sequences are not of same
length, in some situations, this problem can
be circumvented by appending zero-valued
samples to the sequence(s) of smaller
lengths to make all sequences have the same
range of the time index

» Example - Consider the sequence of length
3 defined for 0<n<2: {f[n]}={-2 1 -3}
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Basic Operations

e We cannot add the length-3 sequence { f[n]}
to the length-5 sequence {a[n]} defined
earlier

o We therefore first append { f [n]} with 2
zero-valued samples resulting in a length-5
sequence{f,[n]}={-2 1 -3 0 0}

* Then

{gln]}={aln]}+{f[n]}={1 5 3 -9 0}
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Basic Operations

Ensemble Averaging

A very simple application of the addition
operation in improving the quality of
measured data corrupted by an additive
random noise

* In some cases, actual uncorrupted data
vector s remains essentially the same from
one measurement to next

32 Copyright © 2005, S. K. Mitra

Basic Operations

» While the additive noise vector is random
and not reproducible
* Let d; denote the noise vector corrupting
the i-th measurement of the uncorrupted
data vector s:
X; =s+d;
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Basic Operations

» The average data vector, called the
ensemble average, obtained after K
measurements is given by

1 K 1 K 1 K
Xave =§lel- ZE.ZI(S'Fdi):S'F}Zldi
i= i= i=

e For large values of K, x,,, is usually a
reasonable replica of the desired data vector
S
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Basic Operations

35
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Basic Operations

» We cannot add the length-3 sequence { f[n]}
to the length-5 sequence {a[n]} defined
earlier

» We therefore first append { f[n]} with 2
zero-valued samples resulting in a length-5
sequence {fy[n]}={-2 1 -3 0 0}

e Then

{oln]}={aln]}+{f[n]}={1 5 3 -9 0}
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Combinations of Basic
Operations

» Example -

xin]

vin]

y[n] = eqx[n]+ aox[n — 1]+ agX[n— 2]+ a4 X[n - 3]
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Sampling Rate Alteration

 Employed to generate a new sequence y[n]
with a sampling rate Fy higher or lower
than that of the sampling rate K of a given
sequence X[n] ]

« Sampling rate alteration ratio is R :2

If R > 1, the process called interpolation
If R <1, the process called decimation
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Sampling Rate Alteration

* In up-sampling by an integer factor L > 1,
L —1equidistant zero-valued samples are
inserted by the up-sampler between each
two consecutive samples of the input
sequence x[n]:

X[n/L], n=0,£L,+2L,--
xy[n]= i
0, otherwise

x[n] %y [N]
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Sampling Rate Alteration

» An example of the up-sampling operation
Input Sequence Output sequence up-sampled by 3

il jﬂT 11 Tﬂi bl

H LUL ﬁ if’ HL M l F % [

0 10 20 30 40 50 0 10 20 30 40 50
Time index n e index n
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Sampling Rate Alteration

¢ In down-sampling by an integer factor

M > 1, every M-th samples of the input
sequence are kept and M —1 in-between
samples are removed:

y[n]=x[nM]

X[n]—{ m}— yn]
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Sampling Rate Alteration

» An example of the down-sampling
operation

Input Sequence Output sequence down-sampled by 3

(»Tﬂz HTT Jﬂ ﬁTﬁ’ d ”N H jl ?ﬁ ?h
s 1333

o 10 20 30 40 50 o 10 20 30 40 50
Time index n Time index n

= o
——
= 4

Amplitud
&
ﬂ.:c
o o——
——
—
——,
oo
e
—
—
—

Amplitud
o9
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Classification of Sequences
Based on Symmetry

» Conjugate-symmetric sequence:
X[n] = x*[-n]
If x[n] is real, then it is an even sequence

T TTé‘rmTéTT ]
T T T T

An even sequence

43 Copyright © 2005, S. K. Mitra

Classification of Sequences
Based on Symmetry

« Conjugate-antisymmetric sequence:
X[n]=—-x*[-n]
If x[n] is real, then it is an odd sequence

An odd sequence
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Classification of Sequences
Based on Symmetry

« |t follows from the definition that for a
conjugate-symmetric sequence {x[n]}, x[0]
must be a real number

* Likewise, it follows from the definition that
for a conjugate anti-symmetric sequence
{y[n]}, y[0] must be an imaginary number

» From the above, it also follows that for an
odd sequence {w[n]}, w[0] =0
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Classification of Sequences
Based on Symmetry

» Any complex sequence can be expressed as
a sum of its conjugate-symmetric part and
its conjugate-antisymmetric part:

X[n] = Xes[N]+ XcalN]
where

Xes[n] = %(X[n] +x*[-n])
XealM = 1 (x[n] - x*[n])

46 Copyright © 2005, S. K. Mitra

Classification of Sequences
Based on Symmetry

» Example - Consider the length-7 sequence
defined for —-3<n<3:
{g[nl}={0, 1+j4, —2+j3, 4?'2, -5-j6, —j2, 3}

* |ts conjugate sequence is then given by
{g *[n]} ={0, 1-j4, -2-j3, 4J%j2, -5+j6, j2, 3}

e The time-reversed version of the above is
{g*[-n]}={3, j2, -5+j6, 4+j2, —2—j3, 1-j4, 0}
T

47
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Classification of Sequences
Based on Symmetry
* Therefore {ges[n1}=2{gln]+g*[-nl}
={15, 0.5+j3, —3.5+j4.5, th, —35-j4.5, 05-j3, 1.5}

* Likewise {gca[n]}=21{g[n]-g*[-n]}

={-15, 05+j, 1.5-j1.5, —j2, -1.5-j1.5, -0.5—], 1.5}
T
* It can be easily verified that gcs[n] = gé‘s[—n]
*
and gca[n]:_gca[_n]
48
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Classification of Sequences
Based on Symmetry

» Any real sequence can be expressed as a
sum of its even part and its odd part:

X[n] = Xev [n] + Xod [n]
where

Xey[n] =1 (x{n] + X{-n])

Xoa [N = 3 (x[n] — x[-n])
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Classification of Sequences

Based on Symmetry
* A length-N sequence x[n], 0<n< N -1,

can be expressed as X[n] = Xpes[N]+ XpcalN]
where

chs[n] =%(x[n]+ X*[<_n>N ])’ 0<n<N-1
is the periodic conjugate-symmetric part
and

XpealN]= %(X[n]_ X*[(=n)y1) 0<n<N-1,
is the periodic conjugate-antisymmetric

5 part
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Classification of Sequences
Based on Symmetry

* For a real sequence, the periodic conjugate-
symmetric part, is a real sequence and is
called the periodic even part xpe[n]

» For a real sequence, the periodic conjugate-
antisymmetric part, is a real sequence and is
called the periodic odd part Xpo[n]
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Classification of Sequences
Based on Symmetry

A length-N sequence x[n] is called a
periodic conjugate-symmetric sequence if

X[n]=x*[(=n)n]1=x*[N—n]
and is called a periodic conjugate-
antisymmetric sequence if

X[n]=—=x*[(-M)n]=—Xx*[N-n]
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Classification of Sequences
Based on Symmetry

« A finite-length real periodic conjugate-
symmetric sequence is called a symmetric
sequence

* A finite-length real periodic conjugate-
antisymmetric sequence is called a
antisymmetric sequence
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Classification of Sequences
Based on Symmetry

» Example - Consider the length-4 sequence
defined for 0<n<3:
{unl}={1+j4, -2+j3, 4-j2, —5- |6}

* Its conjugate sequence is given by
{u*[n]}={1-j4, —2-j3, 4+j2, -5+ 6}

 To determine the modulo-4 time-reversed
version {u*[(—n), ]} observe the following:
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Classification of Sequences
Based on Symmetry

U*[(-0),]=u*[0]=1- j4
U*[(~1y4]=u*[3]=-5+ j6
U*[(=2)4]=u*[2]=4+ ]2
U*[(=3)41=u*[1]=-2-j3

e Hence

{U*[(=n)41}={1—j4, =5+ ]6, 4+j2, —2-]3}

55 Copyright © 2005, S. K. Mitra

Classification of Sequences
Based on Symmetry
 Therefore
{Upes[N1} = Z{uln]+u*[(=n),1}

—{L -35+j45, 4, —3.5- j4.5)

* Likewise
{UpcalN1} = Z{ULN]—U*[(=N)4 1}
={j4, 15-j1.5 -2, —-1.5-j15)
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Classification of Sequences
Based on Periodicity

* Asequence X[n] satisfying X[n]=X[n+kN]
is called a periodic sequence with a period N
where N is a positive integer and k is any
integer

e Smallest value of N satisfying X[n]=X[n+kN]
is called the fundamental period
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Classification of Sequences
Based on Periodicity

» Example -

hhhTthi T

4 343221 01 23 4 56 TR 90123 4IS

A sequence not satisfying the periodicity
condition is called an aperiodic sequence
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Classification of Sequences:
Energy and Power Signals

* Total energy of a sequence x[n] is defined by
e8]
2
Ey= Xxn]
N=—c0
* An infinite length sequence with finite sample
values may or may not have finite energy

« A finite length sequence with finite sample
values has finite energy

59 Copyright © 2005, S. K. Mitra

Classification of Sequences:
Energy and Power Signals

» The average power of an aperiodic
sequence is defined by

P, =lim L >xn]?
x Koo 2K+ S

« Define the energy of a sequence x[n] over a
finite interval —K <n<Kas

K 2
gx,K = nEILX[n]‘
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Classification of Sequences:

Energy and Power Signals
* Then o
Px = }ll_rﬂomgx.K

» The average power of a periodic sequence
X[n] with a period N is given by
1N 2
Po=y 2 I%In]
n=0
» The average power of an infinite-length
sequence may be finite or infinite
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Classification of Sequences:
Energy and Power Signals

» Example - Consider the causal sequence
defined by

Xn]= {3(—1)”, n>0
0, n<0

* Note: x[n] has infinite energy
* Its average power is given by
K
P, = lim —* (9 zlj= lim KD _ g5
K- 2K +1\ n2 Koo 2K +1
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Classification of Sequences:
Energy and Power Signals

 An infinite energy signal with finite average
power is called a power signal
Example - A periodic sequence which has a
finite average power but infinite energy

* A finite energy signal with zero average
power is called an energy signal
Example - A finite-length sequence which
has finite energy but zero average power
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Other Types of Classifications

» A sequence X[n] is said to be bounded if
IX[n] < B, <

« Example - The sequence x[n]=c0s0.3rn is a
bounded sequence as

X[n] =|cos0.3nn/<1
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Other Types of Classifications

A sequence x[n] is said to be absolutely
summable if

> [x[n] <

N=—o0

» Example - The sequence
n
y[n]:{o.s , n>0

0, n<0
is an absolutely summable sequence as
Y 03"|= L _142857<o0
o s 1-0.3
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Other Types of Classifications

» A sequence x[n] is said to be square-
summable if

>x[n]? < oo
N=—o0
« Example - The sequence
sin0.4n
h[n]=""74

is square-summable but not absolutely
summable

66
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Basic Sequences

1, n=0

» Unit sample sequence - 5[n]={O N0

1

n
-4 -3 -2 -1 0 1 2 3 4 5 6

[n] = 1, n=0
& 10, n<o0

e

4 3 2 -1 6
Copyright © 2005, S. K. Mitra

 Unit step sequence -

67

Basic Sequences
 Real sinusoidal sequence -
X[n]= Acos(m,n + ¢)
where A is the amplitude, @, is the angular
frequency, and ¢ is the phase of x[n]

Example -

0 10 20 30 40
ne index n

68
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Basic Sequences
» Exponential sequence -
x[n]=Aa", —co<n<o
where A and « are real or complex numbers
o If we write o =e(%0*i%) A=|pel?,
then we can express
X[n] = | Ale P00 = x ]+ j i [],
where
Xre[N] =|Ale®" cos(woh + ),

Xim[N] =| Ale®" sin(won + )
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Basic Sequences

* X.[n]and x;,[n] of a complex exponential
sequence are real sinusoidal sequences with
constant (c,=0), growing (s, >0), and
decaying (o, < 0) amplitudes for n >0

Real part . Imaginary part

Amplitude

% OTTQLMF?W?% P ) WHML&G?W%&M&%

0.5

-1
0 10 20 30 w0 g 10 20 30 40
Time index Time index n

" x[n] =exp(—+ jZ)n
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Basic Sequences
» Real exponential sequence -
X[n]=Aa", —o<n<w
where A and o are real numbers

a=12 a=09

E 5 @@@WTTTTHH

10
Time index n

20 25 30 0 5 10 15
Time index n

71
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Basic Sequences
« Sinusoidal sequence Acos(w,n+ ) and
complex exponential sequence Bexp( jwyn)
are periodic sequences of period N if @gN = 2mr
where N and r are positive integers
+ Smallest value of N satisfying w,N = 2xr
is the fundamental period of the sequence
 To verify the above fact, consider
X [n] = cos(wyn + ¢)
Xo[N] = cos(®y(N+ N) + )

72
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Basic Sequences

e Now Xy[n]=cos(w,(n+N)+9)
= C0S(m,N + ¢) cos N —sin(myn + ¢)sinw, N
which will be equal to cos(w,n+¢) = x[n]
only if
sinw,N =0 and cosm,N =1
 These two conditions;re ml\elzt if and only if
T

ooN =27r or =T
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Basic Sequences

* If 2n/w, isa noninteger rational number, then
the period will be a multiple of 27/,

« Otherwise, the sequence is aperiodic

+ Example - x[n]=sin(~/3n+¢) is an aperiodic
sequence
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Basic Sequences

® =0
o

Amplitude

* Here o, =0
* Hence period N =2%r=1 forr=0
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Basic Sequences

o =0.1n
0
2

I
B

2

Amplitude

0 10 20 30 40

* Here 0, =0.1n

e Hence N =E=20 forr=1
0.1z
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Basic Sequences

e Property 1 - Consider x[n] =exp(joyn) and
y[n]=exp(jo,n) with 0<w; <7 and

27k < 5 < 27(k +1) where k is any positive
integer

o If ®, =0+ 27k, then x[n] =y[n]

» Thus, x[n] and y[n] are indistinguishable
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Basic Sequences

* Property 2 - The frequency of oscillation of

Acos(myn) increases as ®, increases from 0
to «r, and then decreases as ®, increases from
T to2m%

 Thus, frequencies in the neighborhood of

o =0 are called low frequencies, whereas,
frequencies in the neighborhood of @=m are
called high frequencies

78
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Basic Sequences

 Because of Property 1, a frequency @, in
the neighborhood of ® = 2tk is
indistinguishable from a frequency o, — 27k
in the neighborhood of ® = 0
and a frequency o, in the neighborhood of
o=m(2k+1) isindistinguishable from a
frequency o, —n(2k+1) inthe
neighborhood of ® = &t
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Basic Sequences

 Frequencies in the neighborhood of @ = 21t k
are usually called low frequencies

 Frequencies in the neighborhood of

o = 1 (2k+1) are usually called high

frequencies

vq[n]=cos(0.1rn) = cos(L.9xn) is a low-

frequency signal

V,[n] =cos(0.8n) = cos(1.2xn) is a high-

frequency signal
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Basic Sequences

» An arbitrary sequence can be represented in
the time-domain as a weighted sum of some
basic sequence and its delayed (advanced)
versions

‘i:ﬂ's V‘v I i ]' 07s .
X[n]=0.56[n+2]+1.56[n—1]-6[n-2]
+06[n—4]+0.756[n - 6]
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The Sampling Process

« Often, a discrete-time sequence x[n] is
developed by uniformly sampling a
continuous-time signal x,(t) as indicated
below

=T,

 The relation between the two signals is
x[n]=x,()_; =%(T),n=...,-2,-1,0,1,2,...
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The Sampling Process

e Time variable t of x, (t)is related to the time
variable n of x[n] only at discrete-time
instants t, given by

—nT =N _2nn
t,=nT = A O
with R =1/T denoting the sampling
frequency and
Qp =2nF; denoting the sampling angular
frequency
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The Sampling Process

* Consider the continuous-time signal

X(t) = Acos(2nfyt + ¢) = Acos(Qt + ¢)
« The corresponding discrete-time signal is

X[n]= Acos(Q,nT +¢) = Acos(% n+ o)

T
= Acos(m,n + ¢)
where @, =21Q,/Qr = QT

is the normalized digital angular frequency
of x[n]

84 Copyright © 2005, S. K. Mitra




The Sampling Process

« |If the unit of sampling period T is in
seconds

 The unit of normalized digital angular
frequency w, is radians/sample

 The unit of normalized analog angular
frequency Q, is radians/second

 The unit of analog frequency f, is hertz
(Hz)
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The Sampling Process
 The three continuous-time signals
0, (t) = cos(bnt)
g, (t) = cos(l4rt)
g3(t) = cos(26nt)

of frequencies 3 Hz, 7 Hz, and 13 Hz, are
sampled at a sampling rate of 10 Hz, i.e.
with T = 0.1 sec. generating the three
sequences
gy[n] =cos(0.6xn)  gp[n]=cos(l.4rn)
gs[n] =cos(2.6mn)
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The Sampling Process
« Plots of these sequences (shown with circles)
and their parent time functions are shown
below:

Amplitude

» Note that each sequence has exactly the same
o7 Sample value for any given n
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The Sampling Process
* This fact can also be verified by observing that
g,[n]=cos(L.4nn) = cos((2rn —0.67)n) = cos(0.6mn)
g3[n] = cos(2.6mn) = cos((2r +0.6m)n) = cos(0.6mn)

« As aresult, all three sequences are identical
and it is difficult to associate a unique
continuous-time function with each of these
sequences
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The Sampling Process

 The above phenomenon of a continuous-
time signal of higher frequency acquiring
the identity of a sinusoidal sequence of
lower frequency after sampling is called
aliasing
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The Sampling Process

* Since there are an infinite number of
continuous-time signals that can lead to the
same sequence when sampled periodically,
additional conditions need to imposed so
that the sequence {x[n]} ={x,(nT)} can
uniquely represent the parent continuous-
time signal X, (1)

* In this case, x,(t) can be fully recovered

from {x[n]}

90 Copyright © 2005, S. K. Mitra




The Sampling Process

» Example - Determine the discrete-time
signal v[n] obtained by uniformly sampling
at a sampling rate of 200 Hz the continuous-
time signal
V, (t) = 6¢0s(607t) + 3sin(300xt) + 2 cos(340mt)
+ 4c0s(500xt) +10sin(660mt)

Note: v, (t) is composed of 5 sinusoidal
signals of frequencies 30 Hz, 150 Hz, 170
Hz, 250 Hz and 330 Hz
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The Sampling Process

» The sampling period is T = ﬁ =0.005 sec

» The generated discrete-time signal v[n] is
thus given by
v[n] = 6.¢os(0.3nn) + 3sin(1.57n) + 2 cos(1.7xn)
+ 4c0s(2.57n) +10sin(3.37n)
=6c0s(0.37n) + 3sin((2n - O.Sn)n) + 2005((215 - 0.3n)n)
+ 4cos((2n + 0.5m)n) +10sin((4x — 0.77)n)
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The Sampling Process

= 6¢0s(0.3n) — 3sin(0.57n) + 2¢0s(0.3wn) + 4 cos(0.5mn)
—10sin(0.7%n)

= 8¢0s(0.3nn) + 5c0s(0.5nn+ 0.6435) —10sin(0.77n)

Note: v[n] is composed of 3 discrete-time
sinusoidal signals of normalized angular
frequencies: 0.3x, 0.57, and 0.7x
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The Sampling Process

* Note: An identical discrete-time signal is
also generated by uniformly sampling at a
200-Hz sampling rate the following
continuous-time signals:

Wg (t) = 8cos(60nt) + 5cos(100~t + 0.6435) —10sin(140mt)

gq (t) = 2cos(60t) + 4 cos(100nt) +10sin(2607t)
+ 6.c0s(460mt) + 3sin(700xt)
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The Sampling Process

21Q),
Qr

e Recall oy =

 Thus if Qp >2€Q, then the corresponding
normalized digital angular frequency o, of
the discrete-time signal obtained by
sampling the parent continuous-time
sinusoidal signal will be in the range -t <<~

- Em) No aliasing
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The Sampling Process

 On the other hand, if QO <20, the
normalized digital angular frequency will
foldover into a lower digital frequency
®y =(21Q, Q1 )y, intherange —t<w<
because of aliasing

» Hence, to prevent aliasing, the sampling
frequency Oy should be greater than 2
times the frequency Q, of the sinusoidal
signal being sampled
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The Sampling Process

 Generalization: Consider an arbitrary

continuous-time signal X, (t) composed of a
weighted sum of a number of sinusoidal
signals

* X,(t) can be represented uniquely by its

97

sampled version {x[n]} if the sampling
frequency Qq is chosen to be greater than 2
times the highest frequency contained in

Xa (t)
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The Sampling Process

 The condition to be satisfied by the
sampling frequency to prevent aliasing is
called the sampling theorem

* A formal proof of this theorem will be
presented later
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