Stability Condition of an LTI
Discrete-Time System

BIBO Stability Condition - A discrete-
time is BIBO stable if and only if the output
sequence {y[n]} remains bounded for all
bounded input sequence {x[n]}
An LTI discrete-time system is BIBO stable
if and only if its impulse response sequence
{h[n]} is absolutely summable, i.e.

o0

S= Z\h[n]\ < ©

N=—w ) ’
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Stability Condition of an LTI
Discrete-Time System

 Proof: Assume h[n] is a real sequence
« Since the input sequence x[n] is bounded we

have
\x[n]\ <By <o

e Therefore

< Y |hik]xin—k]

ly[n]=| > h[kIx[n—k]
K=—

k=—c0

<By, Y |hk]=ByS

k=—o0 Copyright © 2005, S. K. Mitra

Stability Condition of an LTI
Discrete-Time System

Thus, S< e implies |y[n] < By <o

indicating that y[n] is also bounded

To prove the converse, assume y[n] is

bounded, i.e., |y[n] < By

Consider the input given by

_[sen(h[=n]), if h{=n]=0
Al ‘{ K, if h[=n]=0
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Stability Condition of an LTI
Discrete-Time System
where sgn(c) = +1if ¢ >0 and sgn(c) = -1
ifc<0 and |K|<1
« Note: Since|x[n] <1, {x[n]} is obviously
bounded
e For this input, y[n]atn=0s
y[0]= isgn(h[k])h[k] =S< By <o
k=—00

y[n] < By implies S < o
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e Therefore,

Stability Condition of an LTI
Discrete-Time System
Example - Consider a causal LTI discrete-

time system with an impulse response
h[n]= ()" uIn]
For this system
S= i ‘an%[n]z i\a\n S
n=—c0 n=0 1_‘0“
Therefore S < o if || <1for which the
system is BIBO stable

If |o| =1, the system is not BIBO stable
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if lo|<1

Causality Condition of an LTI
Discrete-Time System

 Let x[n] and X,[n]be two input sequences
with
X[n]=%,[n] for N<ng
* The corresponding output samples at n=n,
of an LTI system with an impulse response
{h[n]} are then given by
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Causality Condition of an LTI
Discrete-Time System

yilngl= > hikIx[ng —k1= > h[kIx[n, — k]
k=0

k=—c0 =

1
+ Y hik]lx[ny —k]
k=—c0
Yolnol= > h[kIxs[ng —k1= > hik]x,[n, —k]
k_

=0 k=0
-1

+ Y hikIxo[ng —K]
k=—c0

Copyright © 2005, S. K. Mitra

Causality Condition of an LTI
Discrete-Time System
« If the LTI system is also causal, then
Y1[No 1= Y2[No |
e As xq[n]=xy[n] for n<n,

> hikIx[n, —k1= > h[k]xo[ny —k]

k=0 k=0
* This implies
-1 -1
> hikIx[ng —kl= > h[kIxs[ng —k]
k=—o0 k=—0
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Causality Condition of an LTI
Discrete-Time System
* As xq[n]# x5[n] for n>n, the only way
the condition

-1 -1
> hikIx[n, —k1= > h[k]x,[n, —K]
k=—0 k=—c0

will hold if both sums are equal to zero,
which is satisfied if

h(k]=0 fork<0
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Causality Condition of an LTI
Discrete-Time System
- mmm) An LTI discrete-time system is causal
if and only if its impulse response {h[n]} is a
causal sequence
» Example - The discrete-time system defined
by
y[n] = ayX[n]+ oo X[N =1 + aaX[n — 2]+ oy X[N — 3]
is a causal system as it has a causal impulse
response {h[n]}:{c%l oy O3 Og4}
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Causality Condition of an LTI
Discrete-Time System

o Example - The discrete-time accumulator
defined by

n
y[n]= >8[/1=p[n]
f=—c0
is a causal system as it has a causal impulse
response given by

h[n]= 3.8[7]=uln]

f=—c0
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Causality Condition of an LTI
Discrete-Time System

» Example - The factor-of-2 interpolator
defined by

yin] = %, [n]+ 1 (x,[n—11+ x,[n +1])
is noncausal as it has a noncausal impulse
response given by

{hn}={05 1 05}
1
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Causality Condition of an LTI
Discrete-Time System

» Note: A noncausal LTI discrete-time system
with a finite-length impulse response can
often be realized as a causal system by
inserting an appropriate amount of delay

» For example, a causal version of the factor-
of-2 interpolator is obtained by delaying the
input by one sample period:

y[n]= Xu [n-1]+ %(Xu [n-2]+ Xy [n])
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Finite-Dimensional LTI
Discrete-Time Systems
« An important subclass of LTI discrete-time

systems is characterized by a linear constant
coefficient difference equation of the form

N M
2 dgyln—k]= 3 pxfn—k]
k=0 k=0

« x[n] and y[n] are, respectively, the input and
the output of the system
» {d} and {p,} are constants characterizing

the system
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Finite-Dimensional LTI
Discrete-Time Systems

» The order of the system is given by
max(N,M), which is the order of the difference
equation

* It is possible to implement an LTI system
characterized by a constant coefficient
difference equation as here the computation
involves two finite sums of products
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Finite-Dimensional LTI

Discrete-Time Systems
* If we assume the system to be causal, then
the output y[n] can be recursively computed

using
N M
sinl=— 3 %ytn—k1+ 3 Pxin—k]
k=1do k=04
provided dg = 0

* y[n] can be computed foralln>n, ,
knowing x[n] and the initial conditions
y[no =11, y[no —2]...., y[no = N]
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Classification of LTI Discrete-
Time Systems

Based on Impulse Response Length -
« |If the impulse response h[n] is of finite
length, i.e.,
h[n]=0 forn<N;andn>N,, N;<N,
then it is known as a finite impulse
response (FIR) discrete-time system
 The convolution sum description here is

N,
y[n]= X h[k]x[n—k]
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Classification of LTI Discrete-
Time Systems

 The output y[n] of an FIR LTI discrete-time
system can be computed directly from the
convolution sum as it is a finite sum of
products

» Examples of FIR LTI discrete-time systems
are the moving-average system and the
linear interpolators

18

Copyright © 2005, S. K. Mitra




Classification of LTI Discrete-
Time Systems

« If the impulse response is of infinite length,
then it is known as an infinite impulse
response (lIR) discrete-time system

 The class of IIR systems we are concerned
with in this course are characterized by
linear constant coefficient difference
equations
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Classification of LTI Discrete-
Time Systems

» Example - The discrete-time accumulator
defined by

y[n]=y[n-1]+x[n]
is seen to be an IR system
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Classification of LTI Discrete-
Time Systems

» Example - The familiar numerical
integration formulas that are used to
numerically solve integrals of the form

t
y(t) = _[X('r)dr
0

can be shown to be characterized by linear
constant coefficient difference equations,
and hence, are examples of IIR systems

21 Copyright © 2005, S. K. Mitra

Classification of LTI Discrete-
Time Systems

« If we divide the interval of integration into n
equal parts of length T, then the previous
integral can be rewritten as

nT
y("T)=y((n-DT)+ [x(r)de

(DT
where we have set t = nT and used the
notation nT
y(nT) = [x(x)dt
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Classification of LTI Discrete-
Time Systems
» Using the trapezoidal method we can write
nT
[x(r)dr = %{x((n ~)T)+x(nT)}
()T

» Hence, a numerical representation of the
definite integral is given by

y(nT) = y((n=1T)+ L{x((n=1)T) + x(nT)}
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Classification of LTI Discrete-
Time Systems
e Lety[n] =y(nT) and x[n] = x(nT)
e Then
y(nT) =y((n-1T)+ %{X((n —DT)+x(nT)}
reduces to
yIn]=yIn 1]+ T{x{n] + x[n -1}
which is recognized as the difference

equation representation of a first-order 1IR
discrete-time system
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Classification of LTI Discrete-
Time Systems

Based on the Output Calculation Process

25

Nonrecursive System - Here the output can
be calculated sequentially, knowing only
the present and past input samples
Recursive System - Here the output
computation involves past output samples in
addition to the present and past input
samples
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Classification of LTI Discrete-
Time Systems

Based on the Coefficients -

26

Real Discrete-Time System - The impulse
response samples are real valued

Complex Discrete-Time System - The
impulse response samples are complex
valued
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Correlation of Signals

There are applications where it is necessary
to compare one reference signal with one or
more signals to determine the similarity
between the pair and to determine additional
information based on the similarity

Copyright © 2005, S. K. Mitra
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Correlation of Signals

For example, in digital communications, a
set of data symbols are represented by a set
of unique discrete-time sequences

If one of these sequences has been
transmitted, the receiver has to determine
which particular sequence has been received
by comparing the received signal with every
member of possible sequences from the set
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Correlation of Signals

Similarly, in radar and sonar applications,
the received signal reflected from the target
is a delayed version of the transmitted
signal and by measuring the delay, one can
determine the location of the target

The detection problem gets more
complicated in practice, as often the
received signal is corrupted by additive
random noise
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Correlation of Signals

Definitions
» A measure of similarity between a pair of

energy signals, x[n] and y[n], is given by the
cross-correlation sequence ryy[/] defined by

Nylll= ix[n]y[n -/], ¢(=0,£1+£2,..

n=—o0

» The parameter ¢ called lag, indicates the

30

time-shift between the pair of signals
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Correlation of Signals

« y[n] is said to be shifted by ¢ samples to the
right with respect to the reference sequence
x[n] for positive values of ¢, and shifted by ¢
samples to the left for negative values of

 The ordering of the subscripts xy in the
definition of ryy[¢] specifies that x[n] is the
reference sequence which remains fixed in
time while y[n] is being shifted with respect
to x[n]
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Correlation of Signals

If y[n] is made the reference signal and shift
x[n] with respect to y[n], then the
corresponding cross-correlation sequence is
given by

rlf1= 20 yInIX[n—¢]

= Yoo YIM+ £IXM] = 1 [¢]

Thus, Fyx 4] is obtained by time-reversing
Ny [£]
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Correlation of Signals

 The autocorrelation sequence of x[n] is
given by
y[0]= Zfz_w X[nIx[n—¢]
obtained by setting y[n] = x[n] in the
definition of the cross-correlation sequence
Ny [4]

* Note: r[0]="" x2[n] =7, , the energy
of the signal x[n]
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Correlation of Signals

From the relation Fyx[£]= Ty [=(] it follows
that r[¢]1=r[—¢] implying that r,,[¢] is
an even function for real x[n]
An examination of

hylf1=2 0 XInlyln—/]
reveals that the expression for the cross-
correlation looks quite similar to that of the
linear convolution
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Correlation of Signals

 This similarity is much clearer if we rewrite
the expression for the cross-correlation as
yl01=2 0 XINIY[=(/ =m]=X[/1®y[-]

o mm) The cross-correlation of y[n] with the
reference signal x[n] can be computed by
processing x[n] with an LTI discrete-time
system of impulse response y[—n]

x[n] hy [n]
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Correlation of Signals

Likewise, the autocorrelation of x[n] can be
computed by processing x[n] with an LTI

discrete-time system of impulse response
X[—n]

XIn] rnl
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Properties of Autocorrelation and
Cross-correlation Sequences
 Consider two finite-energy sequences x[n]
and y[n]
* The energy of the combined sequence
ax[n]+ y[n—/] is also finite and
nonnegative, i.e.,

S @xinl+yn-/)’ =a?yr  x?[n]
+2ay  X[nlyln—£+Y5 _ y*[n—(]>

37 Copyright © 2005, S. K. Mitra

Properties of Autocorrelation and
Cross-correlation Sequences

e Thus
a1 [0]+ 2ary[(]+1,[0]>0
where 1, [0]=Z, >0 and ry,[0]=Z, >0
» We can rewrite the equation on the previous
slide as

rxx[o] rxy[f] a
[a 1]ny[[] rW[O]}[l]ZO

w for any finite value of a
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Properties of Autocorrelation and
Cross-correlation Sequences

 Or, in other words, the matrix

N[0 Ty [4]
Ny 41 ryy[0]

is positive semidefinite
o == N [01ryy [01— er[£]> 0
or, equivalently,
|rxy [l < \/rxx [O]I’yy [0]= \/fxfy
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Properties of Autocorrelation and
Cross-correlation Sequences

 The last inequality on the previous slide
provides an upper bound for the cross-
correlation samples
* If we set y[n] = x[n], then the inequality
reduces to
|rxy[f]| £ rxx[o] = 2;x
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Properties of Autocorrelation and
Cross-correlation Sequences

* Thus, at zero lag (¢ =0), the sample value
of the autocorrelation sequence has its
maximum value

» Now consider the case

y[n]=xbx[n-N]
where N is an integer and b > 0 is an
arbitrary number

* Inthis case £, = bszX
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Properties of Autocorrelation and
Cross-correlation Sequences

Therefore

JEE, =[b*E; =
Using the above result in
|rey [4]] < /1 l0lryy [01 = ./ E,E,
we get
-b Myx [0]< rxy [/1<b Fxx (0]
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Correlation Computation
Using MATLAB

» The cross-correlation and autocorrelation

sequences can easily be computed using
MATLAB

» Example - Consider the two finite-length
sequences

xnj=[1 3 -2 12 -14 4 2]
yinl=[2 -1 4 1 -2 3|

43
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Correlation Computation
Using MATLAB

 The cross-correlation sequence Ny [Nl
computed using Program 2_7 of text is
plotted below

30

20

i 1T JTT?
w !

44
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Carrelation Computation
Using MATLAB

* The autocorrelation sequence r,, [¢]
computed using Program 2_7 is shown below

* Note: At zero lag, ry,[0] is the maximum

A0 Te T?T T?T of P

5 0 5
Lag index
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Correlation Computation
Using MATLAB

 The plot below shows the cross-correlation
of x[n] and y[n]=x[n—N] for N=4

» Note: The peak of the cross-correlation is
precisely the value of the delay N

40

20

Amplitude

1o T?T T?T of 7

T s 0 5
Lag ind
46 ag index Copyright © 2005, 5. K. Mitra

Coarrelation Computation
Using MATLAB
 The plot below shows the autocorrelation of

x[n] corrupted with an additive random
noise generated using the function randn

» Note: The autocorrelation still exhibits a
peak at zero lag

) ?TEQT?TUT?T@TT

Lag index Copyright © 2005, S. K. Mitra
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Correlation Computation
Using MATLAB

 The autocorrelation and the cross-
correlation can also be computed using the
function xcorr

» However, the correlation sequences
generated using this function are the time-
reversed version of those generated using
Programs 2_7 and 2_8

48
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Normalized Forms of
Correlation
* Normalized forms of autocorrelation and
cross-correlation are given by
rxx[f] rxy[f]
Fec[ 01 Nex[01ryy [O]
 They are often used for convenience in
comparing and displaying
* Note: | py[£]]<1 and | oy [¢]]<1
independent of the range of values of x[n]
and y[n]

pxx[f]z pr[f]z
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Correlation Computation for
Power Signals
» The cross-correlation sequence for a pair of
power signals, x[n] and y[n], is defined as

1 K
r[/]=1i X[n]y[n—¢
w1 K1_1>noo2K+1n:Z_:K[ lyln—¢]

 The autocorrelation sequence of a power
signal x[n] is given by

1 K
Iw[/]= lim ——— X[n]X[n—¢
wlf] Klinsz+1n_ZK[ Kn-£
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Correlation Computation for
Periodic Signals

 The cross-correlation sequence for a pair of
periodic signals of period N, X[n]and ¥[n],
is defined as
Iryll1=~ > N RIn1yin— ]
 The autocorrelation sequence of a periodic
signal X[n] of period N is given by

all1= & S o X[nIX(n - /]
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Correlation Computation for
Periodic Signals

» Note: Both Iry (] and rgz[¢] are also
periodic signals with a period N

* The periodicity property of the
autocorrelation sequence can be exploited to
determine the period of a periodic signal
that may have been corrupted by an additive
random disturbance
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Correlation Computation for
Periodic Signals

* Let X[n] be a periodic signal corrupted by
the random noise d[n] resulting in the signal
w[n]=X[n]+d[n]
which is observed for 0<n<M —1where
M > N
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Correlation Computation for
Periodic Signals
 The autocorrelation of w[n] is given by

T[] = 1 o WIn]win — 7]

= 4> SHEIn] + d[n])(X[n - ]+ d[n - £])

=Ly M SRInIXIn— ]+ =3 M td[n]d[n - /]
+ LM XIndIn - ]+ & S Mt n]xn - 4]
= Izl ]+ rgg [2]+ rgg [£]+ rggl 4]
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Correlation Computation for
Periodic Signals

* In the last equation on the previous slide, rzz[¢]
is a periodic sequence with a period N and
hence will have peaks at / =0,N,2N,...
with the same amplitudes as ¢ approaches M

 As X[n]and d[n] are not correlated, samples
of cross-correlation sequences ryq [¢]and ryg[¢]
are likely to be very small relative to the
amplitudes of rgz[¢]
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Correlation Computation for

Periodic Signals

* The autocorrelation ryq[¢] of d[n] will show
a peak at ¢ = 0 with other samples having
rapidly decreasing amplitudes with
increasing values of ||

* Hence, peaks of r,,,[¢] for £ > 0 are
essentially due to the peaks of rzz[¢]and can
be used to determine whether X[n] is a
periodic sequence and also its period N if
the peaks occur at periodic intervals
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Correlation Computation of a
Periodic Signal Using MATLAB

» Example - We determine the period of the
sinusoidal sequence x[n] = cos(0.25n),
0<n<95 corrupted by an additive
uniformly distributed random noise of
amplitude in the range [-0.5,0.5]

 Using Program 2_8 of text we arrive at the
plot of r,,,[¢] shown on the next slide
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Correlation Computation of a
Periodic Signal Using MATLAB

g UL
o «: ,:

2 -0 0 10 20
Lag index

 As can be seen from the plot given above,
there is a strong peak at zero lag

» However, there are distinct peaks at lags that
are multiples of 8 indicating the period of the
sinusoidal sequence to be 8 as expected
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Correlation Computation of a
Periodic Signal Using MATLAB

« Figure below shows the plot of ryy[¢]

* As can be seenryq[¢] shows a very strong
peak at only zero lag
59
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