"A PROGRAMMABLE AND HIGHLY PIPELINED PPP ARCHITECTURE FOR GIGABIT IP OVER SDH/SONET"

Ciaran Toal, Sakir Sezer

10th Reconfigurable Architecture Workshop 2003

Outline
- Introduction to IP over SONET/SDH
- The Point-to-Point Protocol (PPP)
- PPP System Architecture
- PPP Data-Path
 - 32-Bit Programmable CRC Unit
 - Escape Detect and Escape Generate Units
- Synthesis and Circuit Analysis
 - Comparison between 8-bit and 32-bit implementations
- Conclusions

IP over SDH/SONET Layer 2 Technologies

Point-to-Point Protocol based Networking

The Point-to-Point Protocol
- The most efficient layer 2 protocol for encapsulating IP datagrams
- Key applications include ADSL, dialup modems, encapsulated Ethernet, Virtual Local Area Networks (VLAN), Virtual Privet Networks (VPN) etc.
- Key functions:
 - Framing and Error Control method for encapsulating data over physical layer point-to-point links.
 - Link Control Protocol (LCP) functions to establishes, negotiate configure and terminate PPP links between two network nodes.
 - Network Control Protocol (NCP) function for upper network protocols, optional for ATM, IP, Ethernet etc.

The PPP Frame Format
- The PPP frame is made up of the following fields:
 - Flag: A single byte which indicates the beginning or end of a frame. This is the standard broadcast address.
 - Address: A single byte that contains the binary sequence 11111111 which requests user data transmission in an unsequenced frame.
 - Protocol: Two bytes that identify the protocol encapsulated in the information field of the frame.
 - Payload: Zero or more bytes that contain the datagram for the protocol specified in the protocol field.
 - Frame Check Sequence (FCS): Normally 16 bits (2 bytes) but can be 32 bits (4 bytes) for improved error detection.
The Programmable SoPC Architecture for PPP processing is composed of three architectural independent units.

This includes:
- **Protocol Data-Path Unit**
 - A highly pipelined and parallel frame processing circuit
- **Protocol Control-Path Unit**
 - Data path control, Register and control protocol FIFO circuit
- **Embedded Microcontroller Unit**
 - Responsible for Control and management protocol processing and Data-Path configuration.

P5 Protocol Data-Path Units
- 32-bit wide circuit. Complete implementation in hardware
- operating at 78.125 Mhz offering a data transfer rate of 2.5 Gbps.
- TxD and RxD units are independent, parallel and pipelined
- Focus of presentation is on this unit. 8-bit version has also been implemented

Embedded Microprocessor Unit
- Based on a soft IP core processor (e.g. Nios Microblaze or Leon).
- Processes the majority of the control and management protocols and control / house-keeping functions.
- Interfaced to a local bus via a standard embedded bus architecture e.g. AMBA
- All implemented functions are software based and can be reprogrammed without interrupting the data transmission path.

Protocol Control-Path Unit
- Handles the interaction between the embedded processor and the Layer 2 protocol data path
- Composed of an Operation Administration and Maintenance (OAM) unit
- Accommodates a transmitter and a receiver FIFO for temporary storage of control protocols.

The P5 TxD Data-Path
- Consists of 3 main units, a control unit, a CRC processing unit and an Escape generator unit.
- The data-path is heavily pipelined.
Essentially the reverse operation of the TxD.
The circuit of each block is very different from the TxD sub-blocks.

CRC unit must be able to process 1, 2, 3 or 4 input bytes.
The need for configurability requires further pipelining.
Wait state insert for backpressure must be included.

Require safe-guard for any instances of flag character 0x7E outside of the flag fields.
Escape character 0x7D
Flag character 0x7E replaced by escape character 0x7D and original data with sixth bit complicated.

Consider 4 bytes of data to be processed.
Byte location 2 contains a flag character 0x7E.

The Escape generator inserts a 0x7D (Esc) character.

Extra pipelining is added to reduce critical path.
Data reorder mechanism is introduced to insert Escape characters and to rearrange the 4 byte data-path frame data.
Buffer is introduced to enable full cycle back-pressure mechanism after inserting 4 Escape characters.
32-Bit Escape Detect

- Consider 4 bytes at the receiver.
- Byte location 2 contains byte escape character 0x7D.

<table>
<thead>
<tr>
<th>Byte Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (7-0)</td>
<td>A1</td>
</tr>
<tr>
<td>2 (15-8)</td>
<td>7D</td>
</tr>
<tr>
<td>3 (23-16)</td>
<td>5E</td>
</tr>
<tr>
<td>4 (31-24)</td>
<td>8C</td>
</tr>
</tbody>
</table>

32-Bit Escape Detect Unit

- Extra pipelining is added to reduce critical path.
- Data reorder mechanism is introduced to eliminate inserted Escape characters.
- Buffer is introduced to enable full cycle wait states.

8-Bit System Synthesis Results

<table>
<thead>
<tr>
<th>8-Bit System</th>
<th>Pre-layout Synthesis</th>
<th>Post-layout Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCV50 -4</td>
<td>45.3 MHz</td>
<td>184 LUTs</td>
</tr>
<tr>
<td>XCV40 -6</td>
<td>96%</td>
<td>168 Register</td>
</tr>
</tbody>
</table>

- 8-bit PPP meets required speed of 78.125 Mhz with Virtex and Virtex II technology.
- Virtex II enables considerable speed-up over Virtex.
- Critical paths analysis revealed the same number of LUTs for both technologies. Thus speed-up is achieved because of the technological advantage of Virtex II.

32-Bit System Synthesis Results

<table>
<thead>
<tr>
<th>32-Bit System</th>
<th>Pre-layout Synthesis</th>
<th>Post-layout Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCV600 -4</td>
<td>73 MHz</td>
<td>2641 LUTs</td>
</tr>
<tr>
<td>XCV1000 -6</td>
<td>65 MHz</td>
<td>2563 LUTs</td>
</tr>
</tbody>
</table>

- The 32-bit PPP implementation meets the required speed of 78.125 Mhz with Virtex II technology only.
- Again, critical paths analysis revealed the same number of LUTs for both technologies.
- The 32-bit implementation is 11 times larger than the 8-bit implementation.

Escape Generate Unit Synthesis

32-bit Escape Generate unit requires 22 times more combinational logic and 28 times as many flip-flops as the 8-bit version.

Conclusions

- We have shown that a programmable Layer 2 network processing for 2.5 Gbps throughput rate, including control protocol processing is feasible using the latest SoPC technology.
- The circuit study has revealed that the 32-bit PPP implementation is 11 times larger than 8-bit version.
- Further analysis has shown that this increase is mainly due to the byte sorter and buffering mechanisms included in the 32-bit design which are heavy in combinational logic.
- Programmability of PPP processing is achieved by reconfiguring the programmable logic blocks and by reprogramming the firmware of the embedded processor.
Future Work

- ASIC Implementation of the current PPP SoPC architecture as a complete SoC (System on a Chip) solution.
- Investigating new technologies and systems architectures for programmable / configurable network processing.
- Investigating trade-offs using off-the-shelf embedded processor and FPGA technology for network processing.
- Development of a new generation of programmable packet processing elements by combining configurable logic with custom processing technology.