
Name

Digital Design using HDLs

EE 4755

Midterm Examination

Monday, 16 October 2017 9:30–10:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (15 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must

include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

a

b

ci c
o

s
u
mBFA_fast a

b

ci c
o

s
u
mBFA_fast

a

b

ci

a[0]

b[0]

2

2

a[1]

b[1]

s
u
mlsb

msb

3

bf1bf0

tba

Verilog corresponding to illustrated hardware.

Show instantiations, Verilog for instantiated module(s), and all module ports.

2

Problem 2: [20 pts] Appearing below is a partially completed recursive description of an n = 2b-input,
w-bit multiplexor, which is a generalized version of the multiplexors appearing in Homework 1. Complete it.

Fill in the condition and code for the terminating case.

Complete recursive case, including the instantiation port and parameter connections (look for FILL IN).

module muxn #(int w = 5, int b = 4, int n = 1 << b)

(output uwire [w-1:0] x, input uwire [b-1:0] sel, input uwire [w-1:0] a[0:n-1]);

if () // Terminating Case Condition <---- FILL IN

begin

// Terminating Case

end else begin

// Recursive Case

uwire [w-1:0] y[2];

// Instantiate two n/2-input muxen, and connect each to half the inputs.

//

// ---- ---- <---- FILL IN

muxn #(.w(), .b()) mlo(y[0], sel[b-2:0], a[0 : n/2-1]);

// ---- ---- ----- <---- FILL IN

muxn #(.w(), .b()) mhi(y[1], sel[], a[n/2 : n-1]);

// Instantiate one 2-input mux.

//

// ---- ---- ------------------- <---- FILL IN

muxn #(.w(), .b()) m2()

end

endmodule

3

Problem 3: [20 pts] Appearing below to the right is an 8-input multiplexor constructed from 2-input
multiplexors using the technique from Homework 1 and from the previous problem. Call a multiplexor
constructed this way a tree mux. Appearing below to the left is a diagram showing a flat mux, the kind
usually used in class. The flat mux diagram shows a timing analysis based on the simple model, and some
details about cost.

For reference:
∑

b−1

i=0
a2i = a(2b − 1). Assume that n is a power of 2.

1:10:0

select

a0

a1

a2

a3

a4

a5

a6

a7

x

2:2
s

a0

a1

x

mux n, w

s=0

s
[0
]

s
[1
]

s
[lg

(n
)-1

]

a(n-1)

s=1

s=n-1

w

w

w

lg n

lg
 lg

 n

1

One decode AND per input (n total).

w gate ANDs per

input (nw total).

0

0

0

0

(lg
 lg

 n
) +

 1
 +

 lg
 n

w
 O

R
 g

a
te

s

(a) Compute the cost of an n-input, w-bit flat mux using the simple
model and without optimization.

Cost of flat mux in terms of n and w.

(b) Compute the cost of an n-input, w-bit tree mux using the simple model.

Cost of tree mux in terms of n and w. Describe assumptions made about 2-input mux implementation.

(c) Compute the delay of an n-input, w-bit tree mux using the simple model.

Delay of tree mux in terms of n and w.

4

Problem 4: [15 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below, including the minimum number of bits in

each wire. Assume that sqrt is defined in a library somewhere.

module wqf

#(int w = 16)

(output logic signed [2*w-1:0] rad,

output uwire [31:0] srad,

input uwire [w-1:0] a, b, c);

sqrt #(32,2*w) s1(srad,rad);

always_comb begin

rad = b*b - 4 * a * c;

if (rad < 0) rad = 0;

end

endmodule

Show inferred hardware. Show minimum correct bit widths.

(b) Show the hardware that will be inferred for the module below.

module sort2 #(int w = 4)

(output logic [w-1:0] x[2], input uwire [w-1:0] a[2]);

always_comb begin

for (int i=0; i<2; i++) x[i] = a[i];

if (a[0] < a[1]) begin x[0] = a[1]; x[1] = a[0]; end

end

endmodule

Show inferred hardware.

5

Problem 5: [10 pts] Answer each question below.

(a) The mux2 module below uses implicit structural code. Modify it so that it uses behavioral (procedural)
code.

module mux2 #(int w = 16)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a,b);

assign x = s == 0 ? a : b;

endmodule

Modify so that is procedural. Change ports if necessary.

(b) Modify the module port and parameter declarations below so that the Verilog is correct. Do not modify

the contents of the module itself. Note that opt is not defined, but that it should be. Note: In the original

exam assign was omitted from the module body, making the problem impossible to solve.

module sum_or_dff

#(int w = 16)

(output uwire [w-1:0] x,

input uwire [w-1:0] a, b);

if (opt == 0) assign x = a+b; else assign x = a-b;

endmodule

Modify port and parameter declarations for correctness.

6

Problem 6: [15 pts] Answer each question below.

(a) Why is always_comb preferred over always @(x or y or ..) when describing combinational logic?

always comb preferred because . . .

What is the risk with always @(x or y or ..)?

(b) Describe what the technology mapping step of synthesis is, and the kind of optimizations that need to
be performed after technology mapping.

Technology mapping is:

Optimizations that must be performed after technology mapping:

(c) The module below adds a real and an integer and assigns the sum (in real format) to its output. It is

valid Verilog but is not synthesizable by Owr EDA software. So, you call Owr EDA and ask, “why not?”.

They answer, “because it is impossible to add an integer to a real.” Is that the real reason? Explain.

module plusri (output real sum, input real a, input [20:0] x);

assign sum = a + x;

endmodule

Reason a+x not synthesizable by Owr EDA software:

7

