
LSU EE 4755 Homework 7 Due: 29 November 2017

For instructions visit http://www.ece.lsu.edu/koppel/v/proc.html. For the complete Ver-

ilog for this assignment without visiting the lab visit

http://www.ece.lsu.edu/koppel/v/2017/hw07.v.html.

Problem 1: Module mult_pipe is a simple pipelined multiplier which multiplies two w-bit operands,
computing m partial products per stage in ⌈w/m⌉ stages. The latency of this multiplier is ⌈w/m⌉
cycles regardless of what is being multiplied, which in many circumstances is just fine.

In contrast mult_fast is designed for situations in which lower latency is beneficial. The
goal is to compute the results for “easier” products in fewer cycles. For example, multiplying
abcd16×987616 in a 16-bit degree-4 (m=4) multiplier would take four cycles since all partial products
are needed. But, abcd16 × 116 requires one partial product and so the product should be available
sooner.

Like the other multipliers mult_fast has w-bit inputs plier and cand and a 2w-bit output
prod, and a 1-bit clk input. But it also has a 1-bit input in_valid and a 1-bit output out_avail.

At each positive clock edge if input in_valid is 1 mult_fast should start computing the
product of the input values, plier×cand. If input in_valid is 0 then the external hardware does
not need plier×cand. Though the module can start computing plier×cand when in_valid is 0,
it should not set out_avail when the product is ready.

The outputs out_avail and prod should be set at each positive clock edge. If out_avail is 1
then prod is the product of values appearing earlier at the inputs at a time when in_valid was 1.
The products should appear in the same order as the inputs. For example, suppose in cycle 10 the
values 876516 × 53ab16 appear at the inputs and at cycle 11 the values 1× 1 appear. Even though
1 × 1 can be computed in one cycle it cannot appear at the outputs until after 876516 × 53ab16
appears. If it takes four cycles to compute 876516 × 53ab16 then it will appear at the outputs in
cycle 14, and so the product 1× 1 will not appear at the outputs until four cycles after it arrives,
at cycle 11 + 4 = 15.

A simple case is when in_valid is always equal to one. In that case after w/m cycles out_avail
should always be set to one and the value at output prod is the product of inputs appearing w/m

cycles earlier, which is how an ordinary pipelined multiplier, such as mult_pipe operates.
Next, consider the table below which shows inputs and possible outputs. In cycle 0 the values

1 × 11 arrive. Their product, 11 appears at the outputs in cycle 1. In cycle 1 values 98 and 99

appear at the inputs but since in_valid is 0 their product is not needed. At cycle 2 values 3 and
22 are at the inputs, the product 3× 22 = 66 appears at the output in cycle 4. Note that at cycles
2 and 3 out_avail is 0. The product 4× 14 appears at the outputs in cycle 5.

cycle 0 1 2 3 4 5

in_valid 1 0 1 1

plier 1 98 3 4

cand 11 99 22 14

out_avail 0 1 0 0 1 1

prod 11 66 56

Note that it took two cycles to compute 3× 22 but one cycle to compute the other products.

(a) Modify mult_fast so that it sets out_avail when a product is ready. If this is completed
correctly the testbench should show that there are zero errors.

(b) Modify mult_fast so that the product is ready when all of the remaining multiplicand bits are
zero. That is, suppose stage i examines bits mi to mi+m− 1 of the multiplicand. If multiplicand
bits w − 1 to mi +m − 1 are all zero then the product is finished at stage i. If this is completed

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/2017/hw07.v.html


correctly then the testbench should show that the average number of cycles for the degree-2 fast
multiplier is about 5.1 and for degree 4 it should be about 2.7.

• Modules must be synthesizable.

• Modules must be reasonably efficient.

• Do not assume specific parameter values.

• Use SimVision for debugging.

2


