LSUEE 4755 Homework 5 soution  Due: 7 November 2016

Problem 0: This first problem provides background on the module used in this assignment. Please
read the background and then solve the problems further below. The Verilog source can be found
in directory hw05, however for this assignment there is no need to do anything with it.

Module ortho has one input, v, a three-element vector of signed integers, and one output,
u, also a three-element vector of signed integers. The output is computed so that u is orthogonal
to v in the geometric sense. For those who are rusty on linear algebra, non-zero vectors u and
v are orthogonal if v -v = 0 or u,v; + uyv, + u,v, = 0. Using Verilog notation, u is computed
so that u[0]*v[0]+ul1]*v[1]+u[2]*v[2]=0 and at least one element of u is not zero. It does so
by finding the smallest element of v, setting the corresponding element in u to zero, swapping the
to remaining two elements, and negating one of the two. For example, if v = (4,7,55) then the
module would set u = (0, 55, =7).

module ortho #( int alternative = 1, int w = 32 )
( output logic signed [w-1:0] u [3], input wire signed [w-1:0] v [3] );

logic [1:0] idx_min, idx_a, idx_b;
always_comb begin

idx_min = 0;
for ( int i=1; i<3; i++ ) if ( $abs(v[i]) < $abs(v[idx_min]) ) idx_min = i;

idx_a = ( idx_min + 1 ) % 3;
idx_b = ( idx_min + 2 ) % 3;
if ( alternative == 1 ) begin

// The loop below is a hint to synthesis program Cadence Encounter 14.28.J}
for ( int i=0; i<3; i++ ) ul[i] = 0;

ulidx_min] = 0;
ulidx_al] = v[idx_b];
ulidx_b] = -v[idx_a];

end else if ( alternative == 2 ) begin

for ( int i=0; i<3; i++ )
uli] = idx_min == i ? 0 : idx_a == i ? v[idx_b] : -v[idx_al;

end else $fatal(1);
end

endmodule


http://www.ece.lsu.edu/koppel/v/

Important: For all problems below in which hardware is shown:

e C(Clearly show inputs and outputs of ortho.

e Try to draw diagrams showing all hardware for ortho and refer to parts of the diagram in
your answers below.

COT\'\P\QIQ solution appears Delow. See the prob\ems for detail.
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Problem 1: Consider the following part of the module:

idx_min = 0;
for ( int i=1; i<3; i++ )
if ( $abs(v[i]) < $abs(v[idx_min]) ) idx_min = i;

(a) Show the hardware that will be synthesized for this fragment. (Please refer to the entire
module when determining what will be synthesized.) Make reasonable optimizations. (See the
next subproblem.) In this subpart show abs as a box.

Un—opt'\m'\zed and opt'\m'\zed solution appears balow. In the un—opt'\m'\zed solution absolute value units appear at
the output of the index operation multiplexors (the multiplexors implementing v [idx_min]), whereas in the optimized
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solution the absolute value is Q()mPUIQd earlier. In the opt‘\m'\z@,d version one index operation mux is removed entirely, in
the other an input is eliminated. (SQQ the midterm exam SO\UUOH.) As shown in Problem 3, the absolute value hardware
i3 shared with the hardware used for negation.
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(b) The synthesis program synthesizes hardware that contains four absolute value units for this
code, even with effort set to high. Explain why four is too many, perhaps by referring your own
version that uses fewer absolute value units.

See the solution to the p&ﬂ anove.

Problem 2: Consider the part of the module below: Show the hardware that will be synthesized
for this code, taking into consideration that idx_min is two bits. Hint: This is easy. Just consider
all possible values of idx_min.

idx_a = ( idx_min + 1 ) % 3;
idx_b ( idx_min + 2 ) % 3;

solution appears below. The most important point is that there is no hardware to compute the remainder (modu\o),
which would be costly, nor are there adders. Drawing a truth table will show that only a single gate is needed.
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Problem 3: Show the hardware that will be synthesized for the alternative 2 code, below, after
optimization. As with the other problems, take into account the rest of the module. Look for
opportunities to optimize -v[idx_a] taking advantage of hardware for abs.

for ( int i=0; i<3; i++ )
uli] = idx_min == 1 ? 0 : idx_a == i ? v[idx_b] : -v[idx_al;

Solution appears below. Since this part needs negation (computing —z) and the hardware computing idx min
needs absolute \IQ\UQ, whieh uses ﬂQg&UOﬂ, this pmt Q()mpUIQS the absolute value. NQgQUOT\ itself of 2 2's eomp\emgm
value is Qomputed by anﬁtmg the bits and addmg one. If the I\Qg&t@d value were Om\j needed for an QGGQY, or adder-like
hMGW&YQ, then the adder could be eliminated.
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Problem 4: As directed below, estimate the critical path in ortho for a w-bit instantiation. Do
so using ripple-adder like implementations for absolute value, comparison, and negation. Use the
performance model in which n-input AND and OR gates have delay [lgn] units.

(a) Find the critical path using the assumption that in hardware for an expression like a + b < ¢
the delay through the adder must be added to the delay through the comparison unit. The answer
should be a function of w.

solution appears in the d'\agram Delow in the upper t'\m'mg number. See the last PMY for detalls.

(b) Find the critical path accounting for the fact that in ripple-like hardware for an expression like
a + b < ¢ the low bits of the comparison can start as soon as the low bits of the sum are available.
The answer should be a function of w.

solution appears in the d'\agram Delow in the lower t'\m'mg number. See the last pmt for details.

(¢) Show a sketch of the hardware with an arrow tracing the critical path through the hardware,
from input to output. Annotating that arrow with intermediate delays will help in assigning partial
credit.

The critical path appears in red in the figure below, the critical path (but not its length) is the same with both
timing QSSU\”Y\PUOT\S The PQ\YQG PUYP @ boxed numbers give The absolute time that the Sigﬁ&\ arrives at the labeled wire.
The upper of the p&m is under the QSSU\'T\PUOH that one p\QQQ of NPP o-like hardware must comp QIQy finish before o
SUDSQQUQM p\QQQ of pr a-like hardware can start. The lower number is QOmPUIQG under the correct gssumpt\on that
Qompumt\on starts when data arrives. In the d\&gram this Oﬂy affects the first eompanson unit.

The GQ\Q\j ot each Qompongnt 18 Shown as an unboxed pUTp\Q number. The GQ\Qy of the unit is based on 4
Npp\@ adder constructed with b'mary half adders. The carry chain consists on\y of AND g&tQS.

PUYP\Q arrows po‘mt 10 Wwires Qarry'mg the critical PQU\, green arrows po‘mt 10 non-critical wires.
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