Problem 0: First, follow the instructions for account setup and homework workflow on the course procedures page, http://www.ece.lsu.edu/koppel/v/proc.html.

Look through the code in hw04.v. Module `lookup_behav` in file hw04.v has a w-bit input `char` and an n-element array of w-bit quantities named `chars`. (Parameter `nelts` is n and parameter `charsz` is w.) The module also has a 1-bit output `found` which is logic 1 iff any element of `chars` is equal to `char`. Finally, the module has a $\lceil \lg n \rceil$-bit output `index` which is set to the element number of `chars` that matches `char`, or 0 if `found` is 0. Assume that no two elements of `chars` are identical.

For example, suppose input `char` is set to 102 and that `chars` is \{63,124,102,92\}. Then output `found` will be 1 and `index` will be 2. If `char` were 7 `index` would be 0 and `found` would be 1, etc. The alert student will have recognized that $n = 4$ and that $w \geq 7$ in these examples.

Module lookup is coded in synthesizable behavioral form that describes combinational logic. The hw04.v file contains two other modules which are to do the same thing, `lookup_linear` and `lookup_tree`, but those modules are not yet finished.

The testbench tests all of these modules. It tests them for sizes (n) of 4, 5, 10, 15, 16, 30, 40, and 64. To change which sizes are tested (or the order in which they are tested) edit the testbench module.

To have the testbench test only some of these modules (say, skip the `lookup_tree` tests until after `lookup_linear` is working) look for the for loop with `mut=0` and modify it appropriately. (It should be easy to figure out the numbers.)

A synthesis script is provided that will synthesize all three modules at different sizes and both with and very lax timing constraint and a very strict timing constraint. The script can be run using the command `rc -files syn.tcl`. Initially it will stop with an error. To see it run to completion before starting the assignment have it only synthesize `lookup_behav` (see below). Pre-set synthesis options (in file `.synth_init`) were chosen to reject any design that is not combinational.

If there is an error when using the synthesis script then follow the manual synthesis steps on the procedures page and look for error messages.

To change which modules are synthesized edit the `set modules` line (near the bottom) in file `syn.tcl`. The values for `nelts` and other items can also be changed by editing the file.

Note: There are no points for this problem.

Problem 1: Complete `lookup_linear` so that it does the same thing as `lookup Behavioral` but by using as many copies of `lookup_elt` as it needs. That is, `lookup_linear` should use generate statements to instantiate `lookup_elt` and it should include whatever other code is needed to use these instances to compute the correct outputs.

- Behavioral or structural code can be used.
- The module must be synthesizable.
- Assume that all elements of `chars` are different.

(The complete solution Verilog code is in the assignment directory and at http://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html) There are two approaches to solving this problem. In the easy approach, which is sufficient to get full credit, generate statements are used to instantiate the `lookup_elt` modules but behavioral code is used to compute `index`. 1
In the alternative solution (lookup_linear_alt), generate statements are used both to instantiate the modules and compute index. To compute index an array of wires, $[idx_{sz-1:0}]idx_i[nelts-1:-1]$ is declared. Element $idx_i[i]$ is the value of index taking into account elements 0 to i.

```verilog
module lookup_linear
#( int charsz = 8,
    int nelts = 15, // Pronounced en-elts.
    int idx_sz = $clog2(nelts) )
(output logic found,
output logic [idx_sz-1:0] index,
input wire [charsz-1:0] char,
input wire [charsz-1:0] chars[nelts-1:0] );

/// SOLUTION -- Easy
///
/// Instantiate nelts modules, but use use behavioral code to examine
/// their found (match) outputs.

// Declare wires to connect to the found outputs of the instantiated modules.
//
wire  [nelts-1:0] match;

for ( genvar i=0; i<nelts; i++ )
    lookup_elt #(charsz) le(match[i],char,chars[i]);

always_comb begin
    found = 0;
    index = 0;
    for ( int i=0; i<nelts; i++ )
        if ( match[i] ) begin index = i; found = 1; end
end

endmodule
```
module lookup_linear_alt
#(int charsz = 8,
 int nelts = 15, // Pronounced en-elts.
 int idx_sz = $clog2(nelts))
(output logic found,
 output logic [idx_sz-1:0] index,
 input wire [charsz-1:0] char,
 input wire [charsz-1:0] chars[nelts-1:0]);

/// SOLUTION -- Alternative
///<
// Use generate statements to instantiate the modules and to
// generate logic to find the index.
///<
// Instantiate nelts lookup_elt modules and compute found.
//
wire [nelts-1:0] match;

for (genvar i=0; i<nelts; i++)
 lookup_elt #(charsz) le(match[i],char,chars[i]);

assign found = | match;

// Instantiate logic to find the index of the last matching character.
///<
wire [idx_sz-1:0] idx_i[nelts-1:-1];

assign idx_i[-1] = 0;

for (genvar i=0; i<nelts; i++)
 // If no match pass along previous idx_i, otherwise replace it with i.
 assign idx_i[i] = match[i] ? i : idx_i[i-1];

assign index = idx_i[nelts-1];
endmodule

Problem 2: Complete module lookup_tree so that it performs the lookup using recursive instantiations of itself. Take care so that index is computed efficiently. Hint: think about how to compute index efficiently when n (nelts) is a power of 2, then get the same efficiency for any n.

If completed correctly, the cost and especially the performance at larger sizes should be better than lookup_behavioral and (unless you did an unexpectedly good job) better than lookup_linear.

• Behavioral or structural code can be used.
• The module must be synthesizable.
• Assume that all elements of chars are different.
The complete solution Verilog code is in the assignment directory and at http://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html. First, we need to use generate statements to split elaboration into two cases: \(n = 1 \), and \(n > 1 \). For \(n = 1 \) index will always be zero (there's only one element in the array and its index is zero), and found can directly be assigned the expression \(\text{char} == \text{chars}[0] \).

Two solutions will be described. In lookup_tree_simple work is split evenly between the two instantiated modules but this results in a more costly computation of index than is necessary. In lookup_tree, the size (value of nelts) of one instantiated module is forced to be a power of 2, reducing cost.

For \(n > 1 \) we need to split the input array, chars, between two instantiated lookup_tree modules and combine their found and index outputs. In lookup_tree_simple the array is split in half, the approach used in the pop_n module presented in class. Objects lo_sz and hi_sz are the sizes of the instantiated modules, note that these are used to compute the number of bits in the index outputs.

Logic is also needed to take the found and index outputs of the two instantiated modules, named lo_f, hi_f, lo_idx, and hi_idx, and compute the found and index outputs of the module. A mistake that many students make when trying to solve this problem is to try to take into account what is happening in all instantiated modules at every level when designing this logic. Instead, just assume that lo_f, hi_f, lo_idx, and hi_idx are correct, and use them to compute found and index. If such logic can be found, then the module will work at any size.

The output found is simply the OR of lo_f and hi_f. If lo_f is 1, then index is lo_idx, but if hi_f is 1 then index is lo_sz + hi_idx. We don’t need to worry about both lo_f and hi_f being one (the problem statement said it couldn’t happen). If hi_f and lo_f are both 0 then lo_idx and hi_idx will both be 0 and index should be set to zero. Therefore, index can be set to hi_f ? lo_sz + hi_idx : lo_idx. That’s it for the simple solution.

The problem though was to find a solution that computed index efficiently. Consider the sum lo_sz + hi_idx. If lo_sz were chosen to be a power of 2, and lo_sz >= hi_sz then instead of adding we would just be putting a 1 in bit position lo_bits: \(\{1'b1, hi_idx\} \). We can re-write this as \(\{hi_f, hi_idx\} \) since this is the case where hi_f is 1. And since hi_f is 1 we know lo_idx is all zeros, so we can use the expression \(\{ hi_f, lo_idx | hi_idx \} \). As the alert student may have realized, that expression also is correct for the case where lo_f is 1 and the case where both are 0. The OR gates are much less expensive than an adder and a multiplexor, even an adder with a constant input.

The code for the two modules appears below, along with the inferred hardware for the second module (that computes index efficiently.)

```verilog
module lookup_tree_simple

#( int charsz = 8,
   int nelts = 15,
   int idx_sz = $clog2(nelts) )
output wire found,
output wire [idx_sz-1:0] index,
input wire [charsz-1:0] char,
input wire [charsz-1:0] chars[nelts] );

/// SOLUTION -- Unoptimized

if ( nelts == 1 ) begin

   assign found = char == chars[0];
   assign index = 0;

end else begin

   // Split the character array between recursive instantiations.

```
localparam int lo_sz = nelts / 2;
localparam int lo_bits = $clog2(lo_sz);
localparam int hi_sz = nelts - lo_sz;
localparam int hi_bits = $clog2(hi_sz);

// Note that we need to compute lo_bits and hi_bits correctly so
// that we can declare index connections, lo_idx and hi_idx, of
// the correct size.

wire lo_f, hi_f;
wire [lo_bits-1:0] lo_idx;
wire [hi_bits-1:0] hi_idx;

lookup_tree #(charsz,lo_sz) lo(lo_f, lo_idx, char, chars[0:lo_sz-1]);
lookup_tree #(charsz,hi_sz) hi(hi_f, hi_idx, char, chars[lo_sz:nelts-1]);

assign found = lo_f || hi_f;
assign index = hi_f ? lo_sz + hi_idx : lo_idx;
end
endmodule
module lookup_tree
 #(int charsz = 8, int nelts = 15, int idx_sz = $clog2(nelts))
 (output wire found, output wire [idx_sz-1:0] index,
 input wire [charsz-1:0] char, input wire [charsz-1:0] chars[nelts]);

 /// SOLUTION -- Preferred

 if (nelts == 1) begin
 assign found = char == chars[0];
 assign index = 0; // Actually, we are assigning a zero-bit vector.
 end else begin

 // Make the size of the first lookup_tree (lo) a power of two.
 localparam int lo_bits = idx_sz - 1;
 localparam int lo_sz = 1 << lo_bits;

 // Compute the size of the second lookup_tree (hi).
 localparam int hiSz = nelts - lo_sz;
 localparam int hi_bits = $clog2(hiSz);

 wire lo_f, hi_f;
 wire [lo_bits-1:0] lo_idx;
 wire [hi_bits-1:0] hi_idx;

 lookup_tree #(charsz,lo_sz) lo(lo_f, lo_idx, char, chars[0:lo_sz-1]);
 lookup_tree #(charsz,hiSz) hi(hi_f, hi_idx, char, chars[lo_sz:nelts-1]);

 assign found = lo_f || hi_f;

 if (lo_bits == 0) assign index = hi_f;
 else assign index = { hi_f, hi_idx | lo_idx };
 end
endmodule
Problem 3: Run the synthesis script and characterize the strengths and weaknesses of each module. (For example, module X has lowest cost for low-speed designs.)

In a follow-on homework assignment additional questions will be asked about these modules.

The cost of the tree solution is almost always lower than the other designs, the performance is usually but not always better. For the low-cost (large delay) configurations behavioral design is usually most expensive, but is less expensive than the linear designs for the high-performance designs.

Note: linear_tree below is linear_tree_simple above, and linear_tree_opt below is linear_tree above.

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Area Actual</th>
<th>Delay Actual</th>
<th>Delay Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>lookup_behav_charsz8_nelts4</td>
<td>9152</td>
<td>927</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts4</td>
<td>9012</td>
<td>990</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts4</td>
<td>8916</td>
<td>1026</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts4</td>
<td>8988</td>
<td>952</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts15</td>
<td>35444</td>
<td>2348</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts15</td>
<td>34996</td>
<td>2338</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts15</td>
<td>34280</td>
<td>2606</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts15</td>
<td>33532</td>
<td>2238</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts32</td>
<td>74648</td>
<td>3691</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts32</td>
<td>74212</td>
<td>3257</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts32</td>
<td>70932</td>
<td>2480</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts32</td>
<td>71084</td>
<td>2443</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts40</td>
<td>94028</td>
<td>3862</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts40</td>
<td>94288</td>
<td>2585</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts40</td>
<td>95996</td>
<td>3501</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts40</td>
<td>89292</td>
<td>2778</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts60</td>
<td>143268</td>
<td>5913</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts60</td>
<td>141792</td>
<td>5638</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts60</td>
<td>142828</td>
<td>3963</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts60</td>
<td>138288</td>
<td>3501</td>
<td>10000</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts4</td>
<td>12304</td>
<td>621</td>
<td>100</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts4</td>
<td>13344</td>
<td>594</td>
<td>100</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts4</td>
<td>13280</td>
<td>598</td>
<td>100</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts4</td>
<td>10888</td>
<td>640</td>
<td>100</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts15</td>
<td>46896</td>
<td>1136</td>
<td>100</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts15</td>
<td>47528</td>
<td>1120</td>
<td>100</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts15</td>
<td>45268</td>
<td>1151</td>
<td>100</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts15</td>
<td>41696</td>
<td>1003</td>
<td>100</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts32</td>
<td>105032</td>
<td>1247</td>
<td>100</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts32</td>
<td>108688</td>
<td>1288</td>
<td>100</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts32</td>
<td>96980</td>
<td>1093</td>
<td>100</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts32</td>
<td>96408</td>
<td>1056</td>
<td>100</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts40</td>
<td>120132</td>
<td>1523</td>
<td>100</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts40</td>
<td>131344</td>
<td>1114</td>
<td>100</td>
</tr>
<tr>
<td>lookup_tree_charsz8_nelts40</td>
<td>134444</td>
<td>1260</td>
<td>100</td>
</tr>
<tr>
<td>lookup_tree_opt_charsz8_nelts40</td>
<td>116320</td>
<td>1144</td>
<td>100</td>
</tr>
<tr>
<td>lookup_behav_charsz8_nelts60</td>
<td>184892</td>
<td>1726</td>
<td>100</td>
</tr>
<tr>
<td>lookup_linear_charsz8_nelts60</td>
<td>210512</td>
<td>1461</td>
<td>100</td>
</tr>
<tr>
<td>Lookup Tree String</td>
<td>Size</td>
<td>Depth</td>
<td>Purity</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td><code>lookup_tree_charsz8_nelts60</code></td>
<td>185628</td>
<td>1890</td>
<td>100</td>
</tr>
<tr>
<td><code>lookup_tree_opt_charsz8_nelts60</code></td>
<td>176544</td>
<td>1500</td>
<td>100</td>
</tr>
</tbody>
</table>