LSUEE 4755 Homework 1 Due: 9 September 2016

The questions below can be answered without using EDA software, paper and pencil will suf-
fice. Please turn in the solution on paper. Homework 2 will require the use of Verilog im-
plementations. Nevertheless, runnable SystemVerilog code for this assignment can be found at

https://www.ece.lsu.edu/koppel/v/2016/hw0l.v (plain Verilog) and
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html (syntaa-highlighted HTML).

Those who are rusty about the correspondence between Verilog code and hardware might want
to look at the solution to EE 3755 Fall 2013 Homework 1, at
http://www.ece.lsu.edu/ee3755/2013f /hw01_sol.pdf|.

Problem 1: Show a Verilog explicit structural description of the module illustrated below. In this
assignment it is okay to use primitives (and, not,...), but don’t get in the habit of using them.

ezmod
imm|
|mu}
a Jo 12, 12 12
S |2 (N«
E—
Q
Qg
)
“
——(g
—————Q
—O
P
“

e Base the names of ports, wires, and instances on labels in the illustration.

e Of course, use only primitives and wires. See Table 28-1 of IEEE Std 1800-2012 for a list of
gates.

Problem 2: Answer the following questions about Verilog primitives as defined in IEEE Std 1800-
2012. (See Chapter 28.) Indicate the exact section number where the answer is found.

(a) The standard provides a not primitive and a nor primitive, among others. One can easily argue
that a 1-input nor gate is the same as a not gate. Does the standard actually allow Verilog code
to instantiate a 1-input nor gate?

(b) Based on the standard, is there anything that can be done with a not primitive that can’t be
done with a 1-input nor primitive? (Don’t try to answer this too deeply, just show an instantiation.)

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2016/hw01.v
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf

Problem 3: Output match of module is_1133, shown below, is 1 iff its input d (digits) is 1133 in
BCD (which has the same representation as 1133_16). The module instantiates BCD digit detection
modules is_1 and is_3.

module is_1(output uwire match, input uwire [3:0] d);
uwire z321;
nor o0(z321,d[3],d[2],d[1]);
and al(match,z321,d[0]);

endmodule

module is_3(output uwire match, input uwire [3:0] d);
uwire z32;
nor 00(z32,d[3],d[2]);
and al(match,z32,d[1],d[0]);

endmodule

module is_1133(output uwire match, input uwire [15:0] d);
uwire ml, m2, m3, mé;

and al(match, ml, m2, m3, m4);

is_1 io(ml, d[15:12]);

is_1 i1(m2, d[11:8]);

is_3 i2(m3, d[7:4]1);

is_3 i3(m4, d[3:0]);
endmodule

(a) Draw a diagram of is_1133 based on the explicit structural description above. Show the insides
of the is_1 and is_3 modules. Label the diagram using the same wire and instance names used
in the Verilog descriptions.

(b) Design a module is_1133_is that does the same thing as is_1133, but that uses implicit
structural code. The correct solution requires adding only one short line to the shell shown below.
Don’t forget that the value in d is in BCD. Note: The word short was added after the original
assignment.

module is_1133_is(output uwire match, input uwire [15:0] d);

endmodule

Problem 4: When completed the output of module is_1235 is 1 iff the input is 1235 in BCD.
module is_1235(output uwire match, input uwire [15:0] d);
endmodule

(a) Complete the module. The module must be explicitly structural except for the use of the
concatenation operator (see Section 11.4.12). The module must use is_1 and is_3 to detect the
digits. Do not assume or design an is_2 or is_5 and don’t put in logic to detect those digits.

(b) Draw a diagram of the completed module, which should be very similar to the diagram from
the previous problem.

