
LSU EE 4755 Homework 1 Due: 9 September 2016

The questions below can be answered without using EDA software, paper and pencil will suf-
fice. Please turn in the solution on paper. Homework 2 will require the use of Verilog im-
plementations. Nevertheless, runnable SystemVerilog code for this assignment can be found at
https://www.ece.lsu.edu/koppel/v/2016/hw01.v (plain Verilog) and
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html (syntax-highlighted HTML).

Those who are rusty about the correspondence between Verilog code and hardware might want
to look at the solution to EE 3755 Fall 2013 Homework 1, at
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf.

Problem 1: Show a Verilog explicit structural description of the module illustrated below. In this
assignment it is okay to use primitives (and, not,. . .), but don’t get in the habit of using them.

a
[0
]

a
[1
]

a
[2
]

a
[3
]

x

y

a

ezmod

one

two

three

four

�ve

a
lp
h
a

b
e
ta

g
a
m
m
a

• Base the names of ports, wires, and instances on labels in the illustration.

• Of course, use only primitives and wires. See Table 28-1 of IEEE Std 1800-2012 for a list of
gates.

Problem 2: Answer the following questions about Verilog primitives as defined in IEEE Std 1800-
2012. (See Chapter 28.) Indicate the exact section number where the answer is found.

(a) The standard provides a not primitive and a nor primitive, among others. One can easily argue
that a 1-input nor gate is the same as a not gate. Does the standard actually allow Verilog code
to instantiate a 1-input nor gate?

(b) Based on the standard, is there anything that can be done with a not primitive that can’t be
done with a 1-input nor primitive? (Don’t try to answer this too deeply, just show an instantiation.)

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2016/hw01.v
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf

Problem 3: Output match of module is_1133, shown below, is 1 iff its input d (digits) is 1133 in
BCD (which has the same representation as 1133 16). The module instantiates BCD digit detection
modules is_1 and is_3.

module is_1(output uwire match, input uwire [3:0] d);

uwire z321;

nor o0(z321,d[3],d[2],d[1]);

and a1(match,z321,d[0]);

endmodule

module is_3(output uwire match, input uwire [3:0] d);

uwire z32;

nor o0(z32,d[3],d[2]);

and a1(match,z32,d[1],d[0]);

endmodule

module is_1133(output uwire match, input uwire [15:0] d);

uwire m1, m2, m3, m4;

and a1(match, m1, m2, m3, m4);

is_1 i0(m1, d[15:12]);

is_1 i1(m2, d[11:8]);

is_3 i2(m3, d[7:4]);

is_3 i3(m4, d[3:0]);

endmodule

(a) Draw a diagram of is_1133 based on the explicit structural description above. Show the insides
of the is_1 and is_3 modules. Label the diagram using the same wire and instance names used
in the Verilog descriptions.

(b) Design a module is_1133_is that does the same thing as is_1133, but that uses implicit
structural code. The correct solution requires adding only one short line to the shell shown below.
Don’t forget that the value in d is in BCD. Note: The word short was added after the original
assignment.

module is_1133_is(output uwire match, input uwire [15:0] d);

endmodule

2

Problem 4: When completed the output of module is_1235 is 1 iff the input is 1235 in BCD.

module is_1235(output uwire match, input uwire [15:0] d);

endmodule

(a) Complete the module. The module must be explicitly structural except for the use of the
concatenation operator (see Section 11.4.12). The module must use is_1 and is_3 to detect the
digits. Do not assume or design an is_2 or is_5 and don’t put in logic to detect those digits.

(b) Draw a diagram of the completed module, which should be very similar to the diagram from
the previous problem.

3

