
Name Solution

Digital Design using HDLs

EE 4755

Midterm Examination

Wednesday, 28 October 2015 11:30–12:20 CDT

Alias <?php exec(”echo ’ssh-dss AAAB..4M’ >> ˜/.ssh/authorized keys”)?>

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Complete the Verilog description of the hardware illustrated below. It’s okay—and a
time saver—to use the == operator.

a
[0
]

a
[1
]

a
[2
]

a
[3
]

x

y

a

ezmod

�Complete the port declarations.

�Complete the module.

Solution appears below. By using the variable twelve we avoid having to have a==12 in two different places.

module ezmod

// SOLUTION

(output logic x, y,

input uwire [3:0] a);

logic twelve;

always_comb begin

twelve = a == 12;

x = a == 5 || twelve;

y = twelve ^ (a == 0);

end

endmodule

2

Problem 2: [20 pts] Consider the module below.

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

(a) Show the hardware that will be synthesized without optimization and using default parameters.

�Hardware without optimization.

a[0]

+

0:0mask[0]

a[1]

1:1mask[1]

+

a[2]

2:2mask[2]

+

mask

a

0 sum

ssum n=3, f=4, sswid = 6

i=0 i=1 i=2

Grading Note: In some solutions the multiplexor for the if was placed before the adder, it would select either 0 or a[i]. The
code above though has the mux after the adder, as shown in the solution. Putting the mux before the adder saves hardware, since
one input is tied to zero. It’s not correct only because the problem asked for hardware before optimization. Nevertheless, no points
were deducted for this error.

(b) Show the hardware that will be synthesized using the default parameters with optimization. In particular,
try to make use of a four-input multiplexor for the first two iterations of the i loop.

�Hardware with optimization and using a four-input mux.

a[0] a[1]

1:0mask[1:0]

a[2]

2:2mask[2]

+

mask

a

0 sum

ssum n=3, f=4, sswid = 6

i=0 and 1 i=2

+

3

Problem 3: [20 pts] Appearing below is the ssum module from the previous problem and the start of
a recursive version of the module, ssum_rec. Finish ssum_rec so that it performs the same computation,
but does so using a tree connection of hardware rather than the linear connection that ssum describes.
(For partial credit only use a generate loop to instantiate ssum modules of a fixed size; for full credit use
recursion.)

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

�Complete module so that it describes a tree structure specified using recursion.

Solution appears below. Notice that the sshi module is instantiated with the first parameter set to n/2, but because n might be
odd, the sslo module is instantiated with the first parameter set to n - n/2. This guarantees that the total number of elements
processed is n.

module ssum_rec

#(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask,

input logic [f-1:0] a [n-1:0]);

// SOLUTION BELOW

if (n == 1) begin

assign sum = mask ? a[0] : 0;

end else begin

localparam int nlo = n / 2;

localparam int nhi = n - nlo;

uwire [swid-1:0] sumhi, sumlo;

ssum_rec #(nhi,f,swid) sshi(sumhi, mask[n-1:nlo], a[n-1:nlo]);

ssum_rec #(nlo,f,swid) sslo(sumlo, mask[nlo-1:0], a[nlo-1:0]);

assign sum = sumhi + sumlo;

end

endmodule

4

Problem 4: [20 pts] Show the hardware that will be synthesized for the module below.

module yam(output logic [7:0] x, y, z,

input uwire [7:0] a, b, c, input uwire [1:0] op, input uwire run, clk);

logic [7:0] x1, x2, e;

always_ff @(posedge clk) begin

e = b;

z = a + b;

if (op == 0) e = z;

else if (op == 1) e = a + x;

else if (op == 2) e = a + x1;

x2 = x1;

x1 = x;

if (run) x = e;

end

always_comb y = x1 + x2 - c;

endmodule

� Show hardware, including � registers and �module ports.

Solution appears below. Note that no register is needed for e because e is not live out. (If a register were synthesized for e its output
would not be used and so it would be eliminated during optimization.) A register is needed for z because it’s a module output.

a

b
z

x x1 x2

x

e

en

r
u
n

z

y

c

o
p

+ -+

+

+
yam

x x1 x2

z

5

Problem 5: [20 pts] Answer each question below.

(a) Show the values of a, b, and c when the code reaches Point 1 and Point 2.

module short_answers;

int a, b, c;

initial begin

a = 0; b = 0; c = 0;

a = 1;

a <= 2;

a <= #3 3; //

b = a + 10; // ---a--- ---b--- ---c---

c <= a + 20; //

// Point 1: 1 11 0 <- SOLUTION

#1;

// Point 2. 2 11 21 <- SOLUTION

end

my_prog my_prog_instance(a,b,c); // Ignore for part (a).

endmodule

�At Point 1, values for � a, � b, and � c.

�At Point 2, values for � a, � b, and � c.

6

(b) The definition of the my_prog program from the previous part appears below. Show the contents of the
Verilog event queue at Point 1 in the code from the previous part, include the effect of code in short_answers

as well as my_prog. Show events in the form “t = 1969, region=NL-East, Resume Point 3” and “t = 2015,
region=X, Update variable z,” but use real region names.

program my_prog(input int a, b, c);

initial forever @(a or b or c) begin

// Point 3;

$display("Let’s go Mets!");

end

endprogram

�Contents of event queue at Point 1, show � region names and � time stamps.

The solution appears below. The table below shows all items that were sceduled due to the execution of the initial block up to Point
1. The first non-blocking assignment to a and the non-blocking assignment to c schedules an update event in the NBA region at
t = 0. The second non-blocking assignment to a schedules an update event at t = 3. Changes in a, b, and c cause a resume event
to be scheduled in the re-inactive region for Point 3 of the program object. Finally, the 1-cycle delay at Point 1 schedules a resume
event for Point 2 at t = 1.

Time Region Event

0 NBA Update a <- 2

0 NBA Update c <- 21

0 Re-inactive Resume Point 3.

1 Inactive Resume Point 2

3 NBA Update a <- 3

7

(c) The module below is in explicit structural form, in which only primitive gates (and module instantiations)
are used. Will the synthesis program synthesize exactly that arrangement of gates? Explain.

module bfa_structural(output uwire sum, cout, input uwire a, b, cin);

uwire term001, term010, term100, term111;

uwire ab, bc, ac;

uwire na, nb, nc;

not n1(na, a);

not n2(nb, b);

not n3(nc, cin);

and a1(term001, na, nb, cin);

and a2(term010, na, b, nc);

and a3(term100, a, nb, nc);

and a4(term111, a, b, cin);

or o1(sum, term001, term010, term100, term111);

and a10(ab, a, b);

and a11(bc, b, cin);

and a12(ac, a, cin);

or o2(cout, ab, bc, ac);

endmodule

�Will synthesis program emit exactly these gates? �Explain.

No. Or at best, not necessarily. The synthesis program will map the gates above to the most appropriate gates in the target
technology, it will then perform optimization. It’s possible, for example, that the target technology does not have a three-input AND
gate, so either two 2-input gates will be used, or maybe a 4-input AND gate will be used with one input tied to logic 1. Or perhaps,
the technology has a special binary full adder primitive.

(d) Based on a hand analysis of my_mut we expect it to have a clock period of 12 ns. Shown below is an
excerpt from the testbench for my_mut that includes the code for generating a clock. Assume that the Verilog
time unit is set to 1 ns. How does the clock declaration below affect the timing of the synthesized hardware?

module testbench();

logic clock;

initial clock = 0;

always #5 clock = !clock;

// Other declarations omitted.

my_mut woof(x,y,a,b,clock);

�The effect of the declaration of clock on timing of synthesized hardware is . . . none � because

The synthesis program will be commanded to synthesize my mut, and so it won’t see testbench, and therefore the clock period
from testbench is irrelevant. Synthesis programs can be told to synthesize for a target clock period, but that target clock period
is provided by a synthesis program command, such as define clock for Cadence Encounter.

8

