
Name

Digital Design using HDLs

EE 4755

Midterm Examination

Wednesday, 28 October 2015 11:30–12:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Complete the Verilog description of the hardware illustrated below. It’s okay—and a
time saver—to use the == operator.

a
[0
]

a
[1
]

a
[2
]

a
[3
]

x

y

a

ezmod

Complete the port declarations.

Complete the module.

module ezmod

(output // DON’T FORGET

input); // THE PORTS

endmodule

2

Problem 2: [20 pts] Consider the module below.

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

(a) Show the hardware that will be synthesized without optimization and using default parameters.

Hardware without optimization.

(b) Show the hardware that will be synthesized using the default parameters with optimization. In particular,
try to make use of a four-input multiplexor for the first two iterations of the i loop.

Hardware with optimization and using a four-input mux.

3

Problem 3: [20 pts] Appearing below is the ssum module from the previous problem and the start of
a recursive version of the module, ssum_rec. Finish ssum_rec so that it performs the same computation,
but does so using a tree connection of hardware rather than the linear connection that ssum describes.
(For partial credit only use a generate loop to instantiate ssum modules of a fixed size; for full credit use
recursion.)

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

Complete module so that it describes a tree structure specified using recursion.

module ssum_rec

#(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask,

input logic [f-1:0] a [n-1:0]);

endmodule

4

Problem 4: [20 pts] Show the hardware that will be synthesized for the module below.

module yam(output logic [7:0] x, y, z,

input uwire [7:0] a, b, c, input uwire [1:0] op, input uwire run, clk);

logic [7:0] x1, x2, e;

always_ff @(posedge clk) begin

e = b;

z = a + b;

if (op == 0) e = z;

else if (op == 1) e = a + x;

else if (op == 2) e = a + x1;

x2 = x1;

x1 = x;

if (run) x = e;

end

always_comb y = x1 + x2 - c;

endmodule

Show hardware, including registers and module ports.

5

Problem 5: [20 pts] Answer each question below.

(a) Show the values of a, b, and c when the code reaches Point 1 and Point 2.

module short_answers;

int a, b, c;

initial begin

a = 0; b = 0; c = 0;

a = 1;

a <= 2;

a <= #3 3; //

b = a + 10; // ---a--- ---b--- ---c---

c <= a + 20; //

// Point 1:

#1;

// Point 2.

end

my_prog my_prog_instance(a,b,c); // Ignore for part (a).

endmodule

At Point 1, values for a, b, and c.

At Point 2, values for a, b, and c.

(b) The definition of the my_prog program from the previous part appears below. Show the contents of the
Verilog event queue at Point 1 in the code from the previous part, include the effect of code in short_answers

as well as my_prog. Show events in the form “t = 1969, region=NL-East, Resume Point 3” and “t = 2015,
region=X, Update variable z,” but use real region names.

program my_prog(input int a, b, c);

initial forever @(a or b or c) begin

// Point 3;

$display("Let’s go Mets!");

end

endprogram

Contents of event queue at Point 1, show region names and time stamps.

6

(c) The module below is in explicit structural form, in which only primitive gates (and module instantiations)
are used. Will the synthesis program synthesize exactly that arrangement of gates? Explain.

module bfa_structural(output uwire sum, cout, input uwire a, b, cin);

uwire term001, term010, term100, term111;

uwire ab, bc, ac;

uwire na, nb, nc;

not n1(na, a);

not n2(nb, b);

not n3(nc, cin);

and a1(term001, na, nb, cin);

and a2(term010, na, b, nc);

and a3(term100, a, nb, nc);

and a4(term111, a, b, cin);

or o1(sum, term001, term010, term100, term111);

and a10(ab, a, b);

and a11(bc, b, cin);

and a12(ac, a, cin);

or o2(cout, ab, bc, ac);

endmodule

Will synthesis program emit exactly these gates? Explain.

(d) Based on a hand analysis of my_mut we expect it to have a clock period of 12 ns. Shown below is an
excerpt from the testbench for my_mut that includes the code for generating a clock. Assume that the Verilog
time unit is set to 1 ns. How does the clock declaration below affect the timing of the synthesized hardware?

module testbench();

logic clock;

initial clock = 0;

always #5 clock = !clock;

// Other declarations omitted.

my_mut woof(x,y,a,b,clock);

The effect of the declaration of clock on timing of synthesized hardware is . . . because

7

