
LSU EE 4755 Homework 5 Solution Due: 23 Oct 2015 17:00

Problem 1: The homework Verilog file, hw05.v, contains something similar to the streamlined
multiplier presented in class, mult_seq_stream, and even more streamlined versions of the multi-
plier, mult_seq_stream_2, and mult_seq_stream_3. These modules are reproduced at the end of
this assignment. For an HTML version visit
http://www.ece.lsu.edu/koppel/v/2015/hw05.v.html. See the 2014 midterm exam for similar

problems.

(a) Show the hardware that will be synthesized for each module for the default parameters. Show
the module after optimization.

The synthesized hardware for each module appears below, and they also appear next to the respective Verilog

descriptions at the end of this assignment. The red numbers show signal arrival times based on the assumptions given in

the sub-problem below. The red wires show the critical path based on this analysis.

A decr unit has been used compute both pos-1 and pos==0, under the assumption that it might be possible to

share some hardware. An enable signal is used on the prod register.

clk

mult_seq_stream wid=16

decr x=0

x-1x

4

6

t=0

2

prod

accum

pos

cand

plier

pp
wid+1

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

accum

0
wid

msb

lsb

lsb

msb

pos

pos==0

10

2
t=0

t=0

31
41

4

5lg17=25

6

5lg4=10

12
22

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2015/hw05.v.html

clk

mult_seq_stream_2 wid=16

decr x=0

x-1x

t=0

2

prod

accum

pos

cand

plier

pp

wid

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

msb

lsb

msb

pos

pos==0

10

2

t=0

27

39

5lg17=25

5lg4=10

12
22

wid

lsb

0
wid+1

1
0

0:0 wid-1:1

29

2 2

2

clk

mult_seq_stream_3 wid=16

decr x=0

x-1x

t=0

2

prod

accum

pos

cand

plier

pp

wid

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

msb

lsb

msb

pos

pos==0

10

2

t=0

27

39

5lg17=25

5lg4=10

12
22

wid

lsb

0
wid+1

1
0

0:0 wid-1:1

29

2 2

2

29
39

1 lg wid

=
2

2

(b) Estimate the clock frequency of each module based on the following latencies:
Latch delay: 10 units. Multiplexor latency: 2 units. Latency of an n-bit adder: 5⌈lg n⌉ units.

Latency of an n-input gate: ⌈lg n⌉ units. Let a unit be equal to 10 ps. Note: The duration of a

unit was not given in the original assignment.

The timing analysis is shown in red on the three modules and the wires carrying the critical path are shown in

red. This timing analysis strictly follows the guidelines above, using a 5⌈lg 17⌉ = 25 unit delay for the big adder.

Realistically, that would be a 16-bit adder with a carry out. Solutions that used 20 rather than 25 units for the adder are

correct.

For mult seq stream the critical path ends at accum with a period of 41 units or 410 ps. That would give a

clock frequency of 1

41
cycles per unit or 2.44GHz.

For mult seq stream 2 and mult seq stream 3 the critical path is 2 units shorter, at 39 units. This is

because the big adder uses the accum signal right out of the register outputs, in contrast to mult seq stream in

which the particular accum to use must be routed through a mux based on a pos==0 select, adding delay. The clock

frequency for these two modules would be 2.56GHz.

(c) Why would module mult_seq_stream_3 provide a result in less time than the other two, even
assuming that the clock frequency for all the modules was the same?

The product is available one cycle earlier because it is written to prod from the output of the big adder rather than

from accum.

3

clk

mult_seq_stream wid=16

decr x=0

x-1x

4

6

t=0

2

prod

accum

pos

cand

plier

pp
wid+1

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

accum

0
wid

msb

lsb

lsb

msb

pos

pos==0

10

2
t=0

t=0

31
41

4

5lg17=25

6

5lg4=10

12
22module mult_seq_stream

#(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog =

$clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

logic [wid:0] pp;

if (pos == 0) begin

prod = accum;

accum = cand;

pos = wid - 1;

end else begin

pos--;

end

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? { 1’b0, plier } : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

end

endmodule

4

clk

mult_seq_stream_2 wid=16

decr x=0

x-1x

t=0

2

prod

accum

pos

cand

plier

pp

wid

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

msb

lsb

msb

pos

pos==0

10

2

t=0

27

39

5lg17=25

5lg4=10

12
22

wid

lsb

0
wid+1

1
0

0:0 wid-1:1

29

2 2

2

module mult_seq_stream_2

#(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog =

$clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

if (pos == 0) begin

prod = accum;

accum = { 1’b0, cand[0] ? plier : wid’(0), cand[wid-1:1] };

pos = wid - 1;

end else begin

logic [wid:0] pp;

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? plier : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

pos--;

end

end

endmodule

5

clk

mult_seq_stream_3 wid=16

decr x=0

x-1x

t=0

2

prod

accum

pos

cand

plier

pp

wid

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

msb

lsb

msb

pos

pos==0

10

2

t=0

27

39

5lg17=25

5lg4=10

12
22

wid

lsb

0
wid+1

1
0

0:0 wid-1:1

29

2 2

2

29
39

1 lg wid

=
2

module mult_seq_stream_3

#(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog =

$clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

if (pos == 0) begin

accum = { 1’b0, cand[0] ? plier : wid’(0), cand[wid-1:1] };

pos = wid - 1;

end else begin

logic [wid:0] pp;

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? plier : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

if (pos == 1) prod = accum;

pos--;

end

end

endmodule

6

