
LSU EE 4755 Homework 4 Solution Due: 12 October 2015

Problem 0: Follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html. Run the testbench on the un-
modified file. There should be errors on the shift_lt_seq_d_sol module, but the others should
run correctly. Run the Note: There are no points for this problem.

Problem 1: The homework Verilog file, hw04.v, contains a module shift_lt_seq_d_sol which
is based on shift_lt_seq_d. It contains an always_ff block that assigns the same variables that
are assigned in shift_lt_seq_d, however it assigns them from variables of the same name with
next_ prefixed:

always_ff @(posedge clk) begin

ready = next_ready;

shifted = next_shifted;

shift = next_shift;

cnt = next_cnt;

end

Add code so that these next_ objects will be assigned values from combinational logic, and
so that the resulting module describes the same hardware as shift_lt_seq_d. A hand-drawn
diagram of synthesized hardware should be identical, though it’s possible that there will be small
differences in the actual output of a synthesis program.

The added code can be implicit structural or behavioral, but it must synthesize to combina-
tional logic.

The simplest approach is to start with the always ff block from module shift lt seq d. Change the always
type to always comb and rename some of the objects that are to synthesize to registers, namely ready, shifted,
shift, and cnt.

If an assignment is made to any of these in the always comb block, the assignment must be changed to write
the next version. For example change cnt=amt; to next cnt=amt;. The right-hand side of an assignment should
only use the next version of a variable if it was assigned earlier in the block. For example, next shift in the excerpt
from the solution below:

next_shift[i] = cnt[i] > 0;

next_cnt[i] = next_shift[i] ? cnt[i] - 1 : cnt[i];

The code also has to be modified so that each of the next variables is assigned at least once no matter what
path is taken through the always comb block. That is, they must be assigned for every possible outcome of the if
statements. That’s why there is no if statement in the assignment to next cnt above. (That is, the following would
be wrong: if(next shift[i])next cnt[i]=cnt[i]-1). (If a variable is not always assigned then its value will
come from the output of a latch, rather than from combinational logic.)

The solution uses both continuous assign statements and an always comb block. The complete solution appears
below:

module shift_lt_seq_d_sol

#(int wid_lg = 4, int num_shifters = 2, int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted, output logic ready,

input [wid-1:0] unshifted, input [wid_lg-1:0] amt,

input start, input clk);

logic [num_shifters-1:0] shift;

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html

wire [wid-1:0] shin[num_shifters-1:-1];

localparam int bits_per_seg = wid_lg / num_shifters;

for (genvar i=0; i<num_shifters; i++) begin

localparam int fs_amt = 2 ** (i * bits_per_seg);

shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

end

assign shin[-1] = shifted;

logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

logic [wid-1:0] next_shifted;

logic next_ready;

logic [num_shifters-1:0] next_shift;

logic [num_shifters-1:0][bits_per_seg-1:0] next_cnt;

always_comb begin

if (start == 1) begin

next_cnt = amt;

next_shift = 0;

end else begin

for (int i=0; i<num_shifters; i++) begin

next_shift[i] = cnt[i] > 0;

// Note that next_cnt is always assigned, this avoids latches.

next_cnt[i] = next_shift[i] ? cnt[i] - 1 : cnt[i];

end

end

end

// Use a continuous assignment for next_ready and next_shifted.

assign next_ready = start ? 0 : cnt == 0 ? 1 : ready;

assign next_shifted = start ? unshifted : shin[num_shifters-1];

always_ff @(posedge clk) begin

shifted = next_shifted;

ready = next_ready;

shift = next_shift;

cnt = next_cnt;

end

endmodule

Problem 2: Module shift_lt_seq_d_live takes one more cycle to produce a result than module
shift_lt_seq_d. Module shift_lt_seq_d_p2 initially is identical to shift_lt_seq_d_live.

(a) Modify shift_lt_seq_d_p2 so that it uses one less cycle to produce a result without changing
the number of shifters per stage. There are two possible ways of doing this, performing some work
in the same cycle that the start signal arrives, or doing work in the cycle when ready is set to 1.
Either method is fine.

2

The original module, shift lt seq d live, does not start to shift until the cycle after start is set to 1. In
the solution the logic generating the shift signal is moved so that it operates at every cycle. That was done by moving
the i loop out of the if/else block, the logic generating the ready signal was also moved.

By doing this we are requiring start and amt to arrive early in the cycle. Before the change they could arrive late
in the cycle.

module shift_lt_seq_d_p2

#(int wid_lg = 6, int num_shifters = 1, int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted, output logic ready,

input [wid-1:0] unshifted, input [wid_lg-1:0] amt,

input start, input clk);

localparam int bits_per_seg = wid_lg / num_shifters;

logic [num_shifters-1:0] shift;

wire [wid-1:0] shin[num_shifters-1:-1];

assign shin[-1] = shifted;

for (genvar i=0; i<num_shifters; i++) begin

localparam int fs_amt = 2 ** (i * bits_per_seg);

shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

end

logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

always_ff @(posedge clk) begin

if (start == 1) begin

ready = 0;

cnt = amt;

shifted = unshifted;

end else begin

shifted = shin[num_shifters-1];

end

if (cnt == 0) ready = 1;

for (int i=0; i<num_shifters; i++) begin

shift[i] = cnt[i] > 0;

if (cnt[i] != 0) cnt[i]--;

end

end

endmodule

(b) Run syn.tcl and compare the cost and performance of your design and shift_lt_seq_d_live.
Comment on the differences. An answer might start “The cost was about the same because the same

hardware was used...”.
A table showing area (cost) and timing as reported by the synthesis program appears below. That’s followed by a

sketch of our guess of the synthesized hardware for each module, along with a timing analysis. These expectations are
compared with the output of the synthesis program.

3

Module Name Area Delay Delay

Actual Target

shift_lt_seq_d_live_wid_lg6_num_shifters1 68368 1253 100

shift_lt_seq_d_p2_wid_lg6_num_shifters1 68428 1229 100

shift_lt_seq_d_live_wid_lg6_num_shifters2 77528 1355 100

shift_lt_seq_d_p2_wid_lg6_num_shifters2 78700 1348 100

shift_lt_seq_d_live_wid_lg6_num_shifters3 96648 1527 100

shift_lt_seq_d_p2_wid_lg6_num_shifters3 95820 1539 100

shift_lt_seq_d_live_wid_lg6_num_shifters6 143412 2002 100

shift_lt_seq_d_p2_wid_lg6_num_shifters6 142380 2007 100

clk

start r
e
a
d
y

amt

u
n
s
h
ifte

d

s
h
if
te
d

cnt[0]

shift_�xed

sf

s
h
if
te
d

u
n
s
h
ifte

d

s
h
if
te
d

s
h
ift

decr x=0

x-1

shift_lt_seq_d_live wid_lg=6, num_shifters=2

i=0

wid_lg=6,

amt=1

x

shift[0]

cnt[1]

decr x=0

x-1x

shift[1]

shift_�xed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
ift

i=1

wid_lg=6,

amt=8

3:2

1:0

t=0

3

2

4
6

t=0

3 4 5

5
7

t=0

2

3

clk

start r
e
a
d
y

amt

u
n
s
h
ifte

d

s
h
if
te
d

cnt[0]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d

s
h
if
te
d

s
h
ift

decr x=0

x-1

shift_lt_seq_d_p2 wid_lg=6, num_shifters=2

i=0

wid_lg=6,

amt=1

x

shift[0]

cnt[1]

decr x=0

x-1x

shift[1]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
ift

i=1

wid_lg=6,

amt=8

3:2

1:0

t=0t=0

2

4
5

6

7
75

t=0

2 4
6

5

To determine the expected area and timing differences between the two modules examine the sketches of the expected
synthesized hardware for the two modules, which appears above. The change that enables us to save a cycle is moving
the mux that selects a new value of amt from the input of cnt to the input of the decrement unit. That lets the shifter
get started one cycle earlier.

Notice that by moving the hardware to compute cnt and shift out of the loop we are simplifying the logic at the
input to those registers because they no longer have to check start. For this reason we would expect the cost to be
slightly lower. The costs reported by the synthesis program are close and show no consistent pattern.

The sketches of the expected hardware include a simple timing analysis. The timing analysis is based on an assumed
delay of two units for a mux, ⌈lg n⌉ units for an n-input gate and a delay of 3 for a 3-bit decrementor.

Based on this analysis the changes in the p2 module don’t affect the path that ends in the shifted register, that’s
the same 6 units in both cases.

Moving the amt mux from cnt to the decrementer inputs does not change the critical path. The move does delay the
shift and ready signals by one or two units, but since they are not critical it doesn’t matter. When num shifters

is 1 the path ending at cnt remains critical so moving the mux doesn’t change anything. When num shifters is
larger the path ending at shifted is critical so moving the mux has no impact.

4

Based on this analysis we would not expect a change in the clock period. The output of the synthesis program shows
only small changes.

The fact that the clock period is about the same is good news for us since one less clock cycle is needed. If the
changes increased the clock period we may not actually get higher performance.

5

