
LSU EE 4755 Homework 3 Solution Due: 7 October 2015

Problem 1: Solve EE 4755 Fall 2014 Midterm Exam Problem 4 and Problem 5. The solutions
are available, but please make an honest effort to solve them on your own.

See the posted solutions at http://www.ece.lsu.edu/koppel/v/2014/mt_sol.pdf.

Problem 2: The homework Verilog file, hw04.v contains two versions of the sequential shifter
used in class, those modules are also reproduced below. Module shift_lt_seq_d_live, is based
on the version written during class and module shift_lt_seq_d is the one prepared in advance.
Though both work correctly their timing is not identical.

(a) Show the hardware that might be synthesized for each module using the default parameters.
Include reasonable optimizations, the initially inferred hardware can be omitted. This should be a
human-to-human diagram, don’t show the output of a synthesis program.

Note: In the original assignment the parameters for the shift lt seq d live module were not
set as intended, that has been corrected in this version of the homework assignment. Both solutions
appear below, they are referred to as the original and intended module. In the intended assignment
(this one) both modules have the same parameters, in the original assignment the live module had
just one shifter and could shift more bits.

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2014/mt_sol.pdf

The hardware appears below. In shift lt seq d live the initially inferred multiplexors at the inputs to the
ready and shift registers have been replaced by logic gates. The logic computing the next state of ready includes
the old value of ready. The old value of ready isn’t really needed, but it’s shown because it is probably what the
synthesis program would have included.

clk

start

r
e
a
d
y

amt

u
n
s
h
ifte

d
s
h
if
te
d

cnt[1]

shift_�xed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
if
te
d

cnt[0]

s
h
ift

shift_�xed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
ift

decr
x>0

x-1

3:2

1:0

shift_lt_seq_d wid_lg=4, num_shifters=2

i=1i=0

wid_lg=4,

amt=1

wid_lg=4,

amt=4

x

decr
x>0

x-1

x

2

The intended live module appears below:

clk

start r
e
a
d
y

amt

u
n
s
h
ifte

d
s
h
if
te
d

cnt[0]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
if
te
d

s
h
ift

decr x=0

x-1

shift_lt_seq_d_live wid_lg=4, num_shifters=2

i=0

wid_lg=4,

amt=1

x

shift[0]

cnt[1]

decr x=0

x-1x

shift[1]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
ift

i=1

wid_lg=4,

amt=4

3:2

1:0

3

The original live module appears below:

clk

start r
e
a
d
y

amt

u
n
s
h
ifte

d
s
h
if
te
d

cnt[0]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
if
te
d

s
h
ift

decr x=0

x-1

shift_lt_seq_d_live wid_lg=6, num_shifters=1

i=0

wid_lg=6,

amt=1

x

shift[0]

(b) The two modules differ in their timing. Using your hardware diagrams explain any differences
in:

• The register-to-register delay within the module.

• How far in advance of the positive edge module inputs must become stable.

• How long after the positive edge module outputs will be available.

As with the previous part, this should be done by hand though synthesis tools can be used to
help solve the problem.

An answer might look like this: “For register-to-register delay Module A is slower because its
critical path has two multipliers, whereas in module B the two multiplications are split between
cycles and so at most one multiplier is on the critical path. In module A inputs connect directly to
a divider, and so they must arrive long before the positive edge, whereas in module B inputs can
arrive just before the positive edge because” Of course, this question does not have a module A
or B, nor does it really have multipliers and dividers.

The following timing will be assumed when comparing the modules. Multiplexor delay is two gate delays from either
the select or data inputs. For a two-bit decrementor the x=0, x>0, and x-1 outputs are all 1 gate delay (draw a truth
table). A six-bit decrementor is assumed to take two gate delays to compute x=0 and 6 gate delays to compute x-1.
Since it’s essentially a multiplexor the shift fixed modules take two gate delays regardless of the shift amount.

4

An important difference between the live and prepared module, is that the in the live module the shift input to
shift fixed comes from a register output, and so it will be available at the beginning of a the clock cycle. In the
prepared module the shift input is generated by checking if a portion of cnt is zero, the check adds a small delay.
Though this may sound like a small advantage for the live module, but it may not be because it doesn’t use the shift
signal until the next clock cycle and so it takes one clock cycle longer to perform the shift. If wid lg/num shifters

is large than the extra clock cycle will be a small fraction of the total time and so the live module would be better. If the
ratio is small the extra clock cycle will make things slower.

For the assigned problem, in which shift lt seq d live has 1 shifter, the register-to-register critical path in
the live module is 10 gate delays, assuming 6 gate delays for the 6-bit subtract. The prepared module, shift lt seq d,
module has a critical path of 7 delays. Thus, the live module can have a higher clock frequency—that’s the good news—but

it will take 2
6

24/2−1
= 21.33 times as many cycles to perform the largest shift.

A concise answer to the assigned problem might be: the register-to-register delay in the live module is much longer
because it must decrement a much larger number, six versus two bits. This overcomes any benefit of having one shifter,
versus two in the prepared module.

In the intended problem the live module has the same parameters as the prepared module, including two shifters. In
that case the critical path is 6 gate delays, 1 gate delay faster than the prepared module. But because it takes one cycle
longer the benefit in clock frequency would not be large enough to overcome the disadvantage of requiring one more clock
cycle, at least not for the default parameters.

The two modules have equivalent input setup times, two gate delays. So for both, the inputs can arrive near the
end of the clock cycle.

In the live module the outputs are available at the beginning of the clock cycle. In the prepared module the ready
signal is generated using an AND gate connected to the decrementors. Based on the analysis above, the prepared module’s
ready output is not available until two gate delays after the clock edge.

Modules on next page.

5

module shift_lt_seq_d_live

#(int wid_lg = 4, // In original assignment, 6

int num_shifters = 2, // In original assignment, 1.

int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted,

output logic ready,

input [wid-1:0] unshifted,

input [wid_lg-1:0] amt,

input start,

input clk);

localparam int bits_per_seg = wid_lg / num_shifters;

logic [num_shifters-1:0] shift;

wire [wid-1:0] shin[num_shifters-1:-1];

assign shin[-1] = shifted;

for (genvar i=0; i<num_shifters; i++) begin

localparam int fs_amt = 2 ** (i * bits_per_seg);

shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

end

logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

always_ff @(posedge clk) begin

if (start == 1) begin

ready = 0;

cnt = amt;

shift = 0;

shifted = unshifted;

end else begin

if (cnt == 0) ready = 1;

for (int i=0; i<num_shifters; i++) begin

shift[i] = cnt[i] > 0;

if (cnt[i] != 0) cnt[i]--;

end

shifted = shin[num_shifters-1];

end

end

endmodule

Another module on next page.

6

module shift_lt_seq_d

#(int wid_lg = 4,

int num_shifters = 2,

int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted,

output wire ready,

input [wid-1:0] unshifted,

input [wid_lg-1:0] amt,

input start,

input clk);

localparam int cnt_bits = (wid_lg + num_shifters - 1) / num_shifters;

logic [num_shifters-1:0][cnt_bits-1:0] cnt;

wire [wid-1:0] inter_sh[num_shifters-1:-1];

assign inter_sh[-1] = shifted;

for (genvar i = 0; i < num_shifters; i++) begin

localparam int shift_amt = 1 << i * cnt_bits;

wire shift = cnt[i] != 0;

shift_fixed #(wid_lg,shift_amt) sf(inter_sh[i], inter_sh[i-1], shift);

end

always_ff @(posedge clk)

if (start == 1) begin

shifted = unshifted;

cnt = amt;

end else if (cnt > 0) begin

shifted = inter_sh[num_shifters-1];

for (int i=0; i<num_shifters; i++) if (cnt[i]) cnt[i]--;

end

assign ready = cnt == 0;

endmodule

7

