
Name Solution

Digital Design Using Verilog

EE 4702-1

Midterm Examination

16 March 2001 8:40-9:30 CST

Alias always @( posedge )

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (35 pts)

Problem 4 (10 pts)

Exam Total (100 pts)

Good Luck!



Problem 1: Complete the Verilog behavioral description below so that it operates as follows.
Compute 32-bit output eq_time so that it is the number of consecutive positive edges of input
clk for which 32-bit inputs siga and sigb remain equal. The counting should start on the first
positive edge of clk after siga becomes equal to sigb; the count starts at zero at the moment they
become equal, and while they remain equal the count is incremented at each positive edge. The
count should go back to zero at the first positive edge of clk after siga becomes unequal to sigb.
The count goes to zero even if siga and sigb become equal again before the positive edge. Sample
output appears in the timing diagram below. (30 pts)

0 50 100 150 200

m/siga 0 1 3 7

m/sigb 1 2 1 7

m/clk

m/eq_time 0 1 0 1 2 0 1 2

module monitor(eq_time, siga, sigb, clk);

input siga, sigb, clk;

output eq_time;

// Don’t forget to declare port types.

// Solution:

wire [31:0] siga, sigb;

wire clk;

reg [31:0] eq_time;

reg [10:0] next_count;

always @( siga or sigb ) if ( siga != sigb ) next_count = 0;

always @( posedge clk )

begin

eq_time = next_count;

if ( siga == sigb ) next_count = next_count + 1;

end

endmodule

Don’t get bogged down: There are eight more problems, some can be answered quickly.

2



Problem 2: Complete the following timing diagram problems.

(a) Complete the timing diagram below. (15 pts)

module timing_stuff();

reg clk, clk3, clk2a, clk2b, clk2c, clk2d,

initial begin

clk = 0; clk2a = 0; clk2b = 0; clk2c = 0; clk2d = 0; clk3 = 0;

end

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

always #5 clk = !clk

always @( posedge clk ) clk2a = !clk2a

always #12 @( posedge clk ) clk2b = !clk2b

always @( posedge clk ) #12 clk2c = !clk2c

always @( posedge clk ) clk2d <= #12 !clk2d



Solution:

0 20 40

/timing_stuff/clk

/timing_stuff/clk3

/timing_stuff/clk2a

/timing_stuff/clk2b

/timing_stuff/clk2c

/timing_stuff/clk2d

4



(b) Complete the timing diagram below. Be sure to clearly indicate when a signal value changes.
(10 pts)

module timing();

integer a, b, c, d;

initial begin

a = 0;

b = 10;

c = 20;

d <= #0 3;

d = 30;

d <= #1 300;

d <= #2 3000;

#1;

b = 100;

c <= 200;

a <= #5 b + c;

#1;

b = 1000;

c <= 2000;

#10;

end

endmodule

Time 0 2 4 6 8 10

a

b

c

d

Solution:

0 4 8 12

/timing/a 0 120

/timing/b 10 100 1000

/timing/c 20 200 2000

/timing/d 3 300 3000

5



Problem 3: Answer each question below. Some can be answered quickly, try answering those
questions first.

(a) The match_count_x modules below are supposed to count the number of times input symbol is
the same as input targ. Output count should be incremented if symbol is the same as targ after
a change in symbol. Most or all of the modules below don’t work properly. For each non-working
module describe the problem and how it is simulated. It is important to describe how the incorrect

Verilog is simulated and why it is wrong.

Port declarations and initializations are not shown, but assume they are present and correct. Be-
havior for unknown and high-impedance values is undefined. In other words, the problems are not

related to declarations, initialization, or unknown values. (10 pts)

module count_match_1(count,symbol,targ); // Declarations and init. not shown.

always wait ( symbol == targ ) count = count + 1;

endmodule

(4 pts) Because an iteration of always is done without any delay the simulator “freezes” when symbol is equal to
targ as count is continually updated, there is no chance for targ or symbol to change.

module count_match_3(count,symbol,targ); // Declarations and init. not shown.

always #10 if ( symbol == targ ) count = count + 1;

endmodule

(3 pts) Rather than incrementing count on each change in symbol, the code above increments count on ten-cycle
intervals when symbol is equal to targ. It does not increment count when symbol changes, it might miss times
that symbol is equal to targ (when symbol changes several times in the ten-cycle interval) and it will increment
count multiple times if symbol remains equal to targ at least 20 cycles.

module count_match_4(count,symbol,targ); // Declarations and init. not shown.

always @( symbol == targ ) count = count + 1;

endmodule

(3 pts) Variable count is incremented when symbol becomes equal to targ and when symbol becomes unequal to
targ.

6



(b) Show how each of the three adders below can be used in the module use_adders to add seven
to input a. Do not modify the adders themselves. (10 pts)

module adder1(x,a,b);

input a, b;

output x;

wire [31:0] a, b;

wire [31:0] x = a + b;

endmodule

module adder2(x,a);

input a;

output x;

parameter b = 0;

wire [31:0] a;

wire [31:0] x = a + b;

endmodule

‘define b 7 // Part of solution.

module adder3(x,a);

input a;

output x;

wire [31:0] a;

wire [31:0] x = a + ‘b;

endmodule

module use_adders(x_1,x_2,x_3,a);

input a;

output x_1, x_2, x_3; // Each output should be a + 7

// Use adder1, adder2, and adder3 to generate respective x_ outputs.

// Solution

wire [31:0] x_1, x_2, x_3, a;

adder1 a1(x_1,a,32’d7);

adder2 #(7) a2(x_1,a);

adder3 a3(x_1,a);

endmodule

7



(c) Show the values that will be assigned in each assignment to r. Variables a, c, and r are six-bit
registers. (5 pts)

a = 6’b101010;

c = 6’bx1x0x1;

r = & a; // Solution: r set to 0

r = | a; // Solution: r set to 1

r = ^ a; // Solution: r set to 1

r = & c; // Solution: r set to 0

r = | c; // Solution: r set to 1

r = ^ c; // Solution: r set to x

(d) Do the two code fragments below do the same thing? If not, how do they differ? (5 pts)

// Fragment A.

if ( foo > bar ) x = x + 1; else y = y + 1;

// Fragment B.

case ( foo > bar )

1: x = x + 1;

default: y = y + 1;

endcase

They do not differ.

8



(e) Why can’t the following increment macro be re-written as a function or task in Verilog 95?
(5 pts)

‘define incr(a) a=a+1

// ...

// Sample uses of macro.

for (i=0; i<10; ‘incr(i)) x = x + y;

for (j=0; j<10; ‘incr(j)) begin foo(j); k = k + x; end

In Verilog 95 the third item in the for must be an assignment statement, so a task or function wouldn’t work. A function
could be used in SystemVerilog.

Problem 4: The module below counts the number of five’s and nine’s appearing at input c.
Explain exactly when five’s and nine’s are counted (start cycle and end cycle), and describe any
restrictions on the counts. (10 pts)

module yet_another_symbol_counter(fives, nines, c);

input c;

output fives, nines;

wire [7:0] c;

reg [31:0] fives, nines;

initial fork

begin

fives = 0;

nines = 0;

end

#50 fork:A

repeat ( 42 ) @( c ) if ( c == 5 ) fives = fives + 1;

#100 disable A;

join

#70 fork:B

forever @( c ) if ( c == 9 ) nines = nines + 1;

#200 disable B;

join

join

endmodule

The module counts fives that appear between 50 and 150 cycles into the simulation. No more than 42 new symbols
appearing after cycle 50 are examined for fives. (The maximum number of fives that can be counted is 21.)

The module counts nines that appear between 70 and 270 cycles into the simulation. The number of nines that can be
counted is limited only by the size of nines, 32 bits.

9


