
Run-time Modeling and Estimation of Operating System
Power Consumption

Tao Li
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, Texas, 78712

tli3@ece.utexas.edu

Lizy Kurian John
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, Texas, 78712

ljohn@ece.utexas.edu

ABSTRACT
The increasing constraints on power consumption in many

computing systems point to the need for power modeling and
estimation for all components of a system. The Operating System
(OS) constitutes a major software component and dissipates a
significant portion of total power in many modern application
executions. Therefore, modeling OS power is imperative for
accurate software power evaluation, as well as power management
(e.g. dynamic thermal control and equal energy scheduling) in the
light of OS-intensive workloads. This paper characterizes the
power behavior of a commercial OS across a wide spectrum of
applications to understand OS energy profiles and then proposes
various models to cost-effectively estimate its run-time energy
dissipation. The proposed models rely on a few simple parameters
and have various degrees of complexity and accuracy.
Experiments show that compared with cycle-accurate full-system
simulation, the model can predict cumulative OS energy to within
1% accuracy for a set of benchmark programs evaluated on a
high-end superscalar microprocessor. When applied to track run-
time OS energy profiles, the proposed routine level OS power
model offers superior accuracy than a simpler, flat OS power
model, yielding per-routine estimation error of less than 6%. The
most striking observation is the strong correlation between power
consumption and the instructions per cycle (IPC) during OS
routine executions. Since tools and methodology to measure IPC
exist on modern microprocessors, the proposed models can
estimate OS power for run-time dynamic thermal and energy
management.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development -
modeling methodologies

General Terms
Measurement, Performance, Design.

Keywords
Power estimation, operating system, low power.

1. INTRODUCTION
The increasing concern on power issues in many computing

systems points to the need for the power modeling and estimation
for all components of a system. Software, which presents in forms
of both the operating system (OS) and the user applications,
constitutes a major component of today’s systems implemented
with high-end and general-purpose microprocessors. Software
execution drives the activities of the underlying hardware and the
manner in which software uses hardware can have a substantial
impact on the power dissipation of a system [3]. For example, a 2
GHz Intel Pentium-4 microprocessor fabricated with 0.13 µm
technology can consume 60-Watt power on an integer
multiplication, whereas the power dissipated to execute a HALT
instruction can be as low as a few Watts [11]. Previous studies
[29, 24] also observed that the choice of algorithm and other
higher-level decisions during the design of software components
could measurably affect system power. Therefore, it is becoming
crucial to model power consumption from the perspective of the
software.

Many modern and emerging applications (e.g. database, file/e-
mail servers) constitute an important software domain and
exercise operating system significantly. The OS not only occupies
a significant portion of machine cycles but also can consume the
dominant part of total energy. For instance, Figure 1 shows the
percentage of total energy (microprocessor and memory
subsystems) dissipated by the OS on the experimented
applications (see Section 2 for details). Overlooking the OS effect
can cause significant software energy estimation error. The
proportion of the OS energy overhead is continuously increasing
due the emerging system administrative activities, such as thermal
sensor reading [12], energy accounting [3] and low power mode
control for memory and I/O devices [13, 34].

91%89%

0%
10%
20%
30%
40%
50%
60%

pmake gcc

vorte
x

sendm
ail

fil
em

an db
jes

s
ja

vac jack
mtrt

co
m

pre
ss

pos
tg

re
s.selec

t

postg
re

s.u
pdate

postg
re

s.jo
in

osb
oot

db.s1
0

jess.s
10

ja
vac

.s
10

jack.s
10

mtrt
.s10

com
pre

ss
.s10

Figure 1. % of Energy Dissipated by the OS on the
Experimented Applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMETRICS’03, June 10-14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006…$5.00.

160

Therefore, accounting OS power is imperative for accurate
software power modeling in the light of OS-intensive workloads.
In the power-constrained systems, such information is useful for
programmers to explore the design space for energy-efficient
software and to assure that overall software (system and
application) power meets the specified budget. Moreover, OS
power estimation can help to quantify how one optimization
affects the complete system behavior from the perspective of
energy consideration. For example, software engineers may be
interested in knowing whether compiler techniques such as code
and data re-layout [32] can help with saving run-time OS power
caused by handling TLB misses and paging.

Many high-level power management and optimizations require
the just-in-time, accurate and complete (including the OS) energy
profile to finely tune the performance/power knob during program
execution. As shown in [6, 10], hardware and software strategies
can be used to implement dynamic thermal management (DTM) to
reduce the chip’s temperature operated by a particular workload.
An on-line and accurate power estimator is imperative to make it
feasible and to further alleviate the negative impact of the DTM.
In mobile computing environments where energy is precious, to
extend battery life, applications can run in degraded QoS modes
[34], provided the available battery energy is below a given
threshold. In this scenario, software power estimator can be used
to account the available battery energy quota for a given
application and to adjust its QoS modes accordingly. Without the
reliable run-time OS power models, the fidelity of such
adaptations is difficult to guarantee.

In the past, the energy behavior of embedded and real-time
operating systems has been evaluated [8, 2, 27]. In [9], a full-
system energy-aware simulator is developed and the necessity of
simulating OS energy is quantified. Nevertheless, the issue of
just-in-time OS power estimation on high-performance and
general-purpose microprocessors has not been addressed so far.
These motivate the need for the accurate and efficient run-time
OS power estimation - something that traditional software power
modeling techniques are inadequate or not quite suited for.

Several software power estimation methodologies [29, 26, 12,
5, 9] have been proposed in the past literature. In the following
subsections, we briefly describe various styles for software power
estimation and discuss the challenges of modeling OS power that
motivates the new approaches.

1.1 Software Power Estimation Techniques
In microprocessor-based systems, one can model power

dissipation as a function of the software (instructions) being
executed on the underlying hardware platforms. Software power
estimation techniques from past literature can be sorted into the
following four categories:

1.1.1 Instruction Level Power Modeling

The instruction level power modeling [29] has been proposed
to evaluate the power dissipation of a given piece of software. The
basic idea is to explicitly associate the consumed power with
individual instruction execution. An instruction level software
power model can be generally described as:

∑+×∑+×∑=
k

kji
ji

jii
i

i SNONBE)()(,
,

, (1),

where iB is the base energy cost to process the individual

instruction i . jiO , reflects the dissipated power due to the circuit

switching between each pair of consecutively executed
instructions),(ji . The term kS accounts for other energy

overhead due to the k-types of inter-instruction effects, such as
write buffer stalls and cache misses. For a given program, its
overall energy cost, E , can then be calculated by multiplying the

iB and the jiO , with the dynamic instances of the individual

instruction (iN) and the instruction pair (jiN ,) correspondingly.

To get iB and jiO , , an exhaustive power characterization of

the entire ISA (Instruction Set Architecture) and an inter-
instruction effects measurement for any possible instruction pairs
have to be conducted. For example, for the Intel IA-32 ISA [11]
with 331 unique instructions, the number of possible instruction

pairs need to be measured are 109,561 (2331), which makes the
instruction level power characterization effort non-trivial.

To compute power dissipation, the above methodology favors
an off-line analysis of the complete trace of the program.
Although it is feasible to produce and store complete instruction
traces for the simple and embedded software, the volumes of
complete instruction traces from large applications would easily
overwhelm the disk space. It should be noticed that the on-the-fly
traces could be generated and analyzed by employing ad hoc
methodology. For example, a special linker modifies the
compiler-generated code to insert calls to the tracing and power
analyzing routines at each instruction and at the entry of each
basic block. However, programs traced in this way are much
larger than normal and take longer to execute than normal.
Additionally, without significantly merging, approximation and
therefore paying the cost of accuracy lost, it is infeasible to fit all
the iB and jiO , into a small (hardware) table for a live, just-in-

time power estimation, a feature which is imperative to support
many run-time power management. One solution is to store the

iB and jiO , into a software-based table and uses a dedicated

software trap to trigger table lookup and then compute power
consumption. Unfortunately, this scheme can also significantly
dilate the execution time of an estimated program, due to the
overhead of the software trap handler and its invocations at
individual instruction (or instruction sequence) granularity.
Therefore, run-time instruction level power modeling is intrusive
and computation intensive.

1.1.2 Characterization-based Macro-modeling

Instead of evaluating power at instruction level, software
function level macro-modeling techniques [26, 21] treat
application functions or sub-routines as “black boxes” and
construct macro-models that correlate power with a set of
characteristics of interest. Such power characteristics of interest
can be obtained and collected by using a low-level energy
simulation framework [28]. Under this philosophy, a software
function or sub-routine’s power template can be represented by a
linear formula with respective to the n power interest metrics

],...,,[21 nccc as:

j
j

j cwP ×∑= (2),

161

where],...,,[21 nwww are the macro-modeling coefficients to be

determined. Regression analysis is then applied to identify the
optimal],...,,[21 nwww with the least mean square fitting error

based on a set of known input and output pairs.
The key issue on the above macro-modeling is how to choose

],...,,[21 nccc , which can effectively capture the power

characteristics of a given software sub-routine under various
circumstances. In [26], Tan et al. suggested the use of algorithm
complexity and trace-based basic-block correlation information as
the power metrics. These techniques are proposed for embedded
software and targeted for embedded processors. It should be
noticed that while embedded software like the DSP kernels have
more intensive and regular looping patterns, the operating systems
which are designed to manage both software and hardware
systems can lead to far more complicated and unpredictable
control flow [14, 15] that can not be easily captured by a naive
metric such as algorithm complexity. The trace-based basic-block
correlation analysis is more suitable for processors that execute
instruction in order [17]. The data dependency and speculative
execution effects have a more significant impact and greater
variation in the case of wide-issue and deeply pipelined
superscalar processors. For example, even for exactly the same
input data set, speculative execution along the wrong path
followed by a mispredicted branch will cause more energy
dissipation compared with the scenario that has the correctly
predicted control flow [16].

On the other hand, the use of basic-block correlation metric
relies on storing complete control flow graph (CFG) for each
software sub-routine and counting the number of each correlated
path whenever that sub-routine is invoked. Like instruction level
power modeling, this macro-modeling technique necessitates off-
line trace analysis because finding basic-blocks and counting
correlated paths will be computation intensive and intrusive to the
estimated software execution when they are applied to the on-line
power estimation. The feature of just-in-time power modeling
necessitates the use of simpler metrics.

1.1.3 Performance Counter-based Run-time Power
Estimation

Run-time software power estimation [12, 3] derives an estimate
of live power dissipation by leveraging the existing processor
hardware and an analytical power model of the target
microprocessor. The idea is that the amount of power dissipated
on software execution is appropriate to the amount of accesses
and switching activities within processor units. Most modern
microprocessors have already embedded programmable event
counters [4] to monitor microarchitectural events for the
performance measurement purpose. Heuristics can be chosen from
the available counters to infer power relevant events and further
feed to an analytical processor power model to calculate the
power.

Joseph et al. [12] showed that the performance counters can be
quite useful in providing good power estimation for programs as
they run. Considering about 12 performance measures, they
estimated power within 2% of the actual power. However, in
general and for a given processor, the availability of heuristics is
limited by the types of the performance counters and the number
of events that can be measured simultaneously. For example, the
Alpha 21264 has only 9 performance counters and the Intel

Pentium III processor can only simultaneously observe 2 out of
the 77 total events. Operating systems and many large software
are non-deterministic in nature and their behavior can vary
significantly over time and different runs [1]. Therefore, random
sampling of counters with different configured event types does
not apply to the on-line OS energy profiling. On the other hand,
due to the “black box” power modeling approaches taken in [12,
3], fine-grained (e.g. function level) power distribution, which
provides insight into the software power behavior, is not
available. Meanwhile, due to the observed drastic phase changes
during application execution [23], the accuracy of using a simpler,
flat model to track the run-time software power behavior is largely
unknown.

1.1.4 Cycle-accurate Architectural Level Simulation

It has been widely accepted that circuit and gate level
simulations are infeasible to evaluate power consumption of large
software executing on complex computing systems. A
complementary set of approaches is based on the use of cycle-
accurate architectural level power simulators [5, 33, 9].
Architectural level power simulations have been shown to be
applicable to modern superscalar processor (with deep pipelines,
out-of-order and speculative execution). However, cycle-accurate
simulation causes simulation speed to be extremely slow,
preventing the efficiency of the design space searching. This is
especially true when simulating large and complex applications
using detailed processor models. Because of that, simulation
based power model can not be used to support run-time software
power estimation.

Moreover, most of the existing architectural level power
simulators (e.g. Wattch [5] and SimplePower [33]) do not include
the effect of the OS in their software power analysis. The OS
execution can either be invoked explicitly (e.g. system calls) or
implicitly (e.g. paging and faults handling) and the occurrence of
the OS execution can be either synchronous (e.g. timer interrupt)
or asynchronous (e.g. scheduling). Therefore, the power
dissipation of OS due to its run-time, exception-driven and non-
deterministic nature can not be completely captured without using
a power-aware, timing-accurate and full-system simulation
framework. In [9, 27, 7], such full-system energy simulators are
developed and the necessity of simulating OS energy is
quantified. Detailed and full-system simulation further suffers
from potentially long run times when simulating complete system
activities using complicated processor, memory and I/O device
modules.

1.2 Challenges in OS Power Modeling
For an OS power estimation technique to be applicable to run-

time thermal/power management, it must have the following
properties:

● High fidelity and fast speed: The model should be able to
estimate the OS energy dissipation accurately. Power estimation
should avoid the extremely slow cycle by cycle full-system
simulation as much as possible.

● Run-time estimation capability, non-intrusive and low overhead:
The model should support on-the-fly OS power estimation. The
run-time power estimation overhead should be low to avoid
disturbing the normal OS execution.

162

● Simplicity, availability and generality: The model should only
rely on a few power metrics of interest that is widely available
across different hardware platforms.

The goal of this work is to develop a methodology that
possesses the above merits.

1.3 Paper Overview
This paper explores techniques to efficiently estimate OS power

dissipation while providing the valuable features discussed in
Section 1.2. The observation is that in a given computing system,
OS is a commonly used software layer exercised by all
applications. OS power dissipation is usually dominated by a set
of limited but heavily invoked kernel service routines. Just as
instructions are the fundamental units of software execution, the
OS service routines can be though as the fundamental unit of OS
execution. Provided that the most frequently invoked OS service
routines have the similar or predictable power dissipation
behavior across various benchmarks, we can evaluate the power
characteristics of these OS routines and use such information to
derive the aggregrate OS power consumption across various
applications. Furthermore, we discover a strong correlation
between power and the Instruction Per Cycle (IPC) metric during
execution. We develop a simple model that exploits this
correlation.

OS routine based power characterization and estimation thus
avoid the computationally expensive full-system simulation for
each estimated application. Combined with existing performance
estimation mechanisms (e.g. microprocessor hardware
performance counters), the proposed OS routine level power
model can lead to highly efficient and accurate run-time power
modeling for the OS.

This paper is organized as follows: Section 2 describes the
experimental framework, methodology and benchmarks. Section 3
provides routine level OS power characterization. Section 4
proposes the routine based OS power models and evaluates their
estimation accuracies. Section 5 discusses the issues of applying
the proposed model to run-time power estimation. Finally, Section
6 concludes with some final remarks and comments.

2. EXPERIMENTAL METHODOLOGY
To characterize OS power behavior at routine level, we use

power-aware and full-system simulation driven by a wide range of
OS-intensive applications. This section describes the simulation
framework, the machine architecture modeled and the workloads
executed.

2.1 Framework and System Configuration
We use the complete system power simulator SoftWatt [9] that

models the power dissipation of the CPU, memory hierarchy and
a low-power disk subsystem to investigate the power behavior of
OS. The SoftWatt tool, built on top of the SimOS infrastructure
[22], uses validated energy models similar to other low-level
power simulators like Wattch [5]. By leveraging the SimOS cycle-
accurate and full-system simulation capability, SoftWatt captures
power dissipation of both applications and OS running on a
detailed system model. The simulated OS is a commercial version
of the SGI IRIX 5.3.

Table 1 gives the target system configuration of SoftWatt that is
used for our experiments. The simulated processor is a 8-way

issue, out-of-order superscalar with function unit latency like
MIPS R10000. The CPU model runs at 900 MHz on 2.0 V supply
voltage and uses 0.18 micron processing technology. The memory
hierarchy includes separate L1 data and instruction caches, unified
L2 cache and multiple-banked main memory. The disk model is a
SCSI HP97560 incorporated with low power feature.

Table 1. Baseline Machine

Processor Core
Technology/Vdd/Frequency 0.18 um/2.0V/900 Mhz
Fetch/Issue/Retire Width 8
Instruction Window Size 128
Reorder Buffer Size 128
Number and Latency of
Function Units MIPS R10000 Like

Branch Target Buffer 2048-entry, 4-way
Return Address Stack 32-entry w/ misprediction repair
Branch Prediction/Penalty 8K-entry OS-aware Gshare/10 Cycles[15]
Load Store Queue Size 64

Memory Hierarchy

MMU Fully associative TLB, 48-entries, 4KB
page size

L1 I-Cache 32KB, 2-way(LRU), 64B blocks,
4MSHRs, 2 ports, 1 cycle latency

L1 D-Cache 32KB, 2-way(LRU), 32B blocks,
4MSHRs, 2 ports, 1 cycle latency

L2 Cache 512KB, 2-way(LRU), 128B blocks,
4MSHRs, 2 ports, 9 cycle latency

Memory 256MB, 4 banks, 180 cycle access

I/O

SCSI Disk Scaled HP97560 incorporated with low
power feature

2.2 Benchmarks

Table 2. Benchmarks
Name Description

sendmail UNIX electronic mail transport agent
fileman File management
db Performs multiple database functions
jess Java expert shell system
postgres.select DBMS PostgreSQL executes a select query
postgres.update DBMS PostgreSQL executes an update query

T
es

t

osboot A complete OS boot sequence
pmake Two parallel compilation processes
gcc Compiles pre-processed source
vortex A full object oriented database
javac The JDK 1.0.2 Java compiler
jack Parser generator with lexical analysis
mtrt Dual-threaded raytracer
compress Compress and decompress large file
postgres.join DBMS PostgreSQL executes a join query
db.s10 db executes S10 dataset
jess.s10 jess executes S10 dataset
javac.s10 javac executes S10 dataset
jack.s10 jack executes S10 dataset
mtrt.s10 mtrt executes S10 dataset

P
ro

fi
li

ng

compress.s10 compress executes S10 dataset

We use 21 applications (see Table 2) that have different
characteristics. This section provides a brief overview of the
selected applications. Db, jess, javac, jack, mtrt and compress are
Java programs from the SPECjvm98 suite [25] executed with s1
dataset on a SGI ported Sun Java virtual machine. The above 6
applications are also run with different dataset (s10) to provide
more profiling information. Vortex and gcc are two programs
from the SPECint95 benchmarks. Pmake is a parallel program

163

development workload [18]. The sendmail benchmark forwards
emails using the Simple Mail Transport Protocol (SMTP). We
also use three benchmarks that run on a relational database
management system (DBMS) engine - PostgreSQL [20]. The
database is populated with relational tables for the TPC-C
benchmark [30]. The postgres.select performs a sequential table
scan of a table with 1 million rows and a selectivity of 3%. The
postgres.update updates to a field of a 300,000 row table and the
postgres.join executes a nested loop join query involving two
tables of sizes 11MB and 24KB. The osboot executes a complete
OS booting sequence from a root disk image and then generates a
shell for the root user. The fileman performs file management
activities, such as copy, remove, tar -cvf and tar -xvf.

For the OS power modeling and estimation, the benchmarks are
partitioned into two groups, namely, profiling and test, as shown
in Table 2. The profiling group is used to generate data needed to
build the models. The test group is used to examine the accuracy
of the proposed models. The test group was selected to contain
some of the programs that contain significant OS activity.

3. ROUTINE LEVEL OS POWER
CHARACTERIZATION

Modern operating systems are complex software managing
heterogeneous system resources. The complexities of OS are
hidden behind a relatively simple interface - the OS kernel
services. Thus to model the energy consumption of this complex
system, it seems intuitive to consider individual OS service
routine. Each OS service execution consumes a certain amount of
power. The power consumed by the OS can be thought of as the

aggregation of the power cost of each OS routine that is executed
in the OS. This section presents a characterization of OS power
behavior at kernel service routine level.

3.1 Power Behavior of OS Routines
We measure the average power and its standard deviation for

each OS routine across different benchmarks. As shown in Figure
2, these OS routines are classified into interrupts, process and
interprocess control, file system and miscellaneous services (see
Appendix 1 for more information).

One can see that there can be a great variance in power
consumption between different OS routines. For example, while
the power dissipation on the OS copy-on-write fault handler
COW_fault is as high as 54W, the setreuid routine (set real and
effective user id) only consumes 14W of power. This implies that
estimating the energy cost of various OS calls without resorting to
detailed simulation will cause measurable error. Each OS service
involves specific instruction processing across various units of the
processor, which results in circuit activity that is characteristic of
each OS service and can vary with OS services. Memory access
intensive OS routines, such as vfault, COW_fault, demand_zero,
cacheflush show higher power consumption than computation
intensive services, such as utlb and clock. Some I/O interrupts
(simscsi_intr and if_etintr), process scheduling (getcontext), file
I/O (fcntl, lseek and getdents) show higher standard derivation in
power consumption because their execution is largely dependent
on system status. On the other hand, OS routines such as utlb,
utssys and cacheflush perform certain amount of work in each
invocation, resulting in negligible power consumption variation.

0
10
20
30
40
50
60

ut
lb

pf
au

lt

vf
au

lt

CO
W
_f
au

lt

de
m
an

d_
ze

ro

si
m
sc

si
_i
nt

r

if_
et
in
tr

du
_p

ol
l

cl
oc

k

A
vg

. P
o
w

er
 (W

)

0
2
4
6
8
10
12
14
16

S
td

. D
ev

. (
%

)

Avg. Power (W) Std. Dev.(%)

0
10
20
30

40
50
60

ex
it

fo
rk

getp
id

getu
id
ala

rm pip
e

getg
id

ex
ec

ve

sig
re

tu
rn

gets
ockn

am
e

getd
om

ain
nam

e

se
tre

uid
sp

ro
c
prc

tl

ks
ig

ac
tio

n

sig
pro

cm
as

k

BSDse
tp

grp

sig
su

spend

getc
onte

xt

se
tc

onte
xt

A
vg

. P
o

w
er

 (
W

)

0
2
4
6

8
10
12

S
td

. D
ev

. (
%

)Avg. Power (W) Std. Dev.(%)

(a) Interrupts (b) Process and Interprocess Control

0

10

20

30

40

50

60

re
ad

w
rit

e
op

en
cl
os

e

un
lin

k

ls
ee

k

ac
ce

ss
du

p
io

ct
l
fc

nt
l

ge
td

en
ts

xs
ta

t

lx
st

at

fx
st

at

A
vg

. P
o
w

er
 (
W

)

0

2

4

6

8

10

12

S
td

. D
ev

. (
%

)

Avg. Power (W) Std. Dev.(%)

0

10

20

30

40

50

60

br
k

sy
ss

gi

ut
ss

ys

ul
im

it

m
m
ap

m
pr

ot
ec

t

m
sy

nc

ge
trl

im
it

ca
ch

ef
lu
sh

w
ai
ts
ys

tim
ei
n

tim
e

A
vg

. P
o
w
er

 (
W

)

0
2
4
6
8
10
12
14
16
18

S
td

. D
ev

. (
%

)Avg. Power (W)
Std. Dev.(%)

(c) File System (d) Miscellaneous Services

Figure 2. Average and Standard Deviations of OS Routines Power
(Standard deviations indicated on the right side y-axis in each graph)

164

sendmail

0%

2%

4%

6%

8%

10%

12%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
o
ta

l
D

is
si

p
at

ed
 E

n
er

g
y

fileman

0%

10%

20%

30%

40%

50%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
o
ta

l D
is

si
p
at

ed

E
n
er

g
y

db

0%

10%

20%

30%

40%

50%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
o
ta

l D
is

si
p
at

ed

E
n
er

g
y

jess

0%

10%

20%

30%

40%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
o

ta
l D

is
si

p
at

ed

E
n

er
g

y

postgres.
select

0%

10%

20%

30%

40%

50%

60%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
o
ta

l
D

is
si

p
at

ed
 E

n
er

g
y postgres.

update

0%

10%

20%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
o
ta

l
D

is
si

p
at

ed
 E

n
er

g
y osboot

0%

10%

20%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
o
ta

l D
is

si
p
at

ed

E
n
er

g
y

Figure 3. Routine Level Energy Distributions in OS

Figure 3 further reveals the run-time routine-level OS energy
distribution across different benchmarks. The x-axis indicates the
serial numbers of unique OS service routines and the y-axis shows
the percentage of run-time OS energy dissipated by that specific
OS routine. In this study, we identify a total number of 186 OS
service routines. Figure 3 shows that different benchmarks invoke
different OS services and hence show different energy distribution
patterns. For example, on benchmarks filename, db, jess and
postgres.select, the OS energy dissipation is dominated by a small
fraction of highly invoked service routines while on benchmarks
sendmail, postgres.update and osboot, OS energy consumption is
contributed by a wide range of service routines. The above
observation, combined with the fact that individual routine shows
different power behavior, implies that: (1) overall, the OS power
behavior can vary from one application to another; (2) the use of
single “average OS power” number across various applications
will lead to significant estimation errors.

3.2 Energy-Performance Correlation
Figure 4 further shows how a set of OS routine’s power varies

on different profiling benchmarks. In the cases of utlb and
cacheflush, the OS power varies in a very restricted range.
However, on simscsi_intr, the OS routine power can span with in
a range from 8W to 59W. Interestingly, we observe that OS
routine’s power is strongly correlated with its performance. We
investigate the use of IPC (Instructions per Cycle) as the metric to
characterize the performance of modern processors, as pointed out
in [19]. Valluri [31] and Chen [7] also had observed a similar
correlation.

The explanation for this correlation lies in the fact that in a
complex, high performance superscalar processor, a dominant
portion of the power is consumed by circuits used to exploit the
ILP (instruction level parallelism). The pie chart in Figure 5
shows how various components in the CPU and memory systems
contribute to the total OS routine power. Data-path and pipeline
structures, which support multiple issue and out-of-order
execution, are found to consume 50% of total power on the
examined OS routines. Figure 5 shows that clock is the second

largest power consuming component: the capacitive load to the
clock network switches on every clock tick, causing significant
power consumption.

0.9 0.95 1 1.05 1.1
27

28

29

30

31

32

33

IPC

A
ve

ra
g

e
P

o
w

er
(W

at
t)

utlb

1 1.1 1.2 1.3 1.4 1.5
30

35

40

45

50

55

IPC

A
ve

ra
g
e

P
o
w

er
(W

at
t)

cacheflush

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

IPC

A
ve

ra
g

e
P

o
w

er
(W

at
t)

simscsi_intr

0 0.5 1 1.5 2
0

10

20

30

40

50

60

IPC

A
ve

ra
g

e
P

o
w

er
(W

at
t)

demand_zero

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

IPC

A
ve

ra
g

e
P

o
w

er
(W

at
t)

read

0 0.5 1 1.5 2
0

10

20

30

40

50

60

IPC

A
ve

ra
g

e
P

o
w

er
(W

at
t)

lseek

Figure 4. Correlation between OS Routines Power and IPC

165

The energy consumed in data-path during execution usually
depends on the number of instructions that flow through. The ILP
performance measured by IPC, certainly impacts circuit switching
activities in those microprocessor components and can result in
significant variation in power. High IPC reflects the scenario in
which most of the processor structures are busy. On the other
hand, main pipeline stalls or bubbles, which lead to low IPC and
can be easily clock gated, will drastically reduce power
dissipation. For a given piece of code, similar IPC usually
indicates similar circuit switching activities and therefore, similar
power consumption.

Clock
34%

L-1
Cache
14%

L-2
Cache

1%

Memory
1%

Datapath
&

Pipeline
50%

Figure 5. Breakdown of Power Dissipation of
OS Routines shown in Figure 4

The above correlation implies that one can use a simple linear
regression model

01 kIPCkP +×= (3),

to track the OS routine power showing different performance.
Appendix 1 lists the regression model parameters),(01 kk and the

regression model fitting errors for the examined OS routines.

4. ROUTINE LEVEL OS POWER MODEL
In this section, we present routine level profiling based energy

estimation models. The objective is to provide simple and easily
computable techniques that can be used for run-time energy
estimation of operating system software.

Energy consumption of a given piece of software can be
estimated as: TPE ×= , where P is the average power and T is the
execution time of that program. If average power of different OS
routines can be determined, it can be used to compute the
operating system energy. A routine level OS energy estimation
model can be represented as:

)(,_,_ iroutineos
i

iroutineosOS TPE ×∑= (4),

where iroutineosP ,_ is the power of the ith OS routine invocation

and iroutineosT ,_ is the execution time of that invocation.

The iroutineosP ,_ can be computed in many ways. It can be an

average power based on all invocations of that routine in the
programs (as shown in Figure 2). Figure 6 illustrates the accuracy
of this estimation model. The profiling based average power
values at the routine level are found to yield estimation errors
within 5% in 6 out of the 7 test benchmarks. On benchmark
fileman, however, this scheme can underestimate the OS power by
as much as 32%.

Exploiting the interesting observation we presented in Section
3.2 on the correlation between IPC and OS routine average
power, we investigate the potential of this correlation in
estimating energy consumption of programs based on IPC. This
approach is similar to the one used in [12], where approximately a
dozen performance counters are used to estimate power. However,
we only utilize 2 pieces of information here, namely, instruction
count and cycles. Also, we use a profiling approach by which
information based on some benchmarks can be used to predict the
energy of a different application. To investigate the usefulness of
this approach, we use per-routine based OS power models built on
profiling benchmarks (Appendix 1) to estimate OS power on the
test benchmarks. The accuracy of the energy estimation is within
1% (as illustrated in Figure 7).

-3
2%

-30% -20% -10% 0%

sendmail

fileman

db

jess

postgres.select

postgres.update

osboot

Estimation Error (%)

Figure 6. Model Estimation Accuracy
(Routine Average Power)

-2%

-1%

0%

1%

2%

se
n

d
m

ai
l

fil
em

an d
b

je
ss

p
o

st
g

re
s.

se
le

ct

o
st

g
re

s.
u

p
d

at
e

o
sb

o
o

t

E
st

im
at

io
n

 E
rr

o
r

(%
)

Figure 7. Model Estimation Accuracy
(IPC Correlated Routine Average Power)

-50% -40% -30% -20% -10% 0%

sendmail

fileman

db

jess

postgres.select

postgres.update

osboot

Estimation Error (%)

Figure 8. Model Estimation Accuracy
(OS Average Power)

166

If instead of routine-based estimation, a flat average is used, the
errors are high. We use this approach and estimate energy of OS
execution on the test programs listed in Table 2. Not surprisingly,
Figure 8 illustrates that there is 20% to 50% error if energy is
estimated with a flat average OS power for all programs.
Therefore, the paradigm of blindly treating the OS as monolithic
software is unlikely to yield highly accurate estimation.

5. RUN-TIME OS POWER MODELING
As discussed in Section 2, live power estimation is valuable for

run-time power management and optimizations. The proposed
routine level power estimation technique characterizes the power
behavior of each OS routine at profiling stage and uses that
information to compute the run-time power dissipation. The
overhead of estimation is the computation needed for a first order
linear processing of the IPC at OS routine boundaries, which is
low.

The linear regression model parameters can be stored in a
smaller look-up table and the operating system can dynamically
compute power and energy at run-time. If the routine of interest is
not found in the table, a single performance correlated average
power number OSP can be used. The maximum error that could

occur by using such an approach is shown in Figure 9. Generally,
the OS power correlates well with IPC and the cumulative power
estimation error using the power model 01 kIPCkP osOS +×= is

seen to yield errors less than 10%.

In some cases, cumulative (average) power estimation is
insufficient and power has to be modeled and estimated on a fine-
grained basis. Generating accurate and fine grained power
estimation of an OS on a given system is important to computer
architects as well as OS developers who need insight into
machine’s power efficiency to tune their code.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
20

25

30

35

40

45

50

IPC

A
ve

ra
g

e
P

o
w

er
(W

at
t) P= 36.7 × IPC - 5.95

-15%

-10%

-5%

0%

5%

10%

15%

se
nd

m
ai

l

fi
le

m
an d
b

je
ss

p
os

tg
re

s.
se

le
ct

p
os

tg
re

s.
up

d
at

e

o
sb

o
ot

E
st

im
at

io
n

 E
rr

o
r

(%
)

(a) Regression Model: 01 kIPCkP osOS +×= (b) Estimation Errors

Figure 9. OS Power Estimations Using Single Power/IPC Correlation Model

(a) Single Regression Model (b) Routine based Regression Models

Names of OS Service Routines
1:utlb 2:pfault 3:vfault 4:COW_fault 5:demand_zero 6:timein 7:simscsi_intr 8:if_etintr 9:du_poll 10:clock
11:fchmod 12:exit 13:fork 14:read 15:write 16:open 17:close 18:unlink 19:time 20:brk
21:lseek 22:getpid 23:getuid 24:alarm 25:access 26:syssgi 27:dup 28:pipe 29:getgid 30:ioctl
31:utssys 32:execve 33:fcntl 34:ulimit 35:getdents 36:sigreturn 37:getsockname 38:getdomainname 39:setreuid 40:sproc
41:prctl 42:mmap 43:mprotect 44:msync 45:BSDsetpgrp 46:getrlimit 47:cacheflush 48:xstat 49:lxstat 50:fxstat
51:ksigaction 52:sigprocmask 53:sigsuspend 54:getcontext 55:setcontext 56:waitsys 57:setrlimit

Figure 10. A Comparison of Run-time Per-routine based Estimation Error

167

To evaluate the run-time suitability of the proposed routine
level power modeling approach, we performed a comparative
study of the flat and routine level power modeling schemes in
terms of per-module accuracy. As it can be seen, routine level
modeling (Figure 10b) consistently produces results that are less
than 6% away from the exact, cycle-accurate values, while the flat
model (Figure 10a) scheme can generate up to 178% error in
some cases. Modeling power behavior at OS service routine level
drastically reduces the run-time estimation error, implying the
good power tracking ability of this model. On the other hand,
building single model for the whole operating system, although
achieves acceptable cumulative power estimation accuracy, can
lead to measurable estimation error when applied to track the fin-
grained run-time power behavior. This fact implies that the “black
box” power modeling approaches taken in [12, 3] are unlikely to
be effective for run-time power tracking.

As described earlier, many hardware platforms have restrictions
on the member of counters that can be configured simultaneously
to count events. Therefore, a good power model should rely on
minimal number of hardware event counters but must still
maintain high accuracy. Table 3 lists energy accounting
mechanisms [3] that rely on 2, 3, 5, and 7 types of counters
respectively. For example, the 5-CS uses 5 hardware counters,
namely, cycles, graduated instructions, L1 data cache accesses, L2
data cache accesses and main memory references to build
regression power model and evaluate power.

Table 3. Hardware Counter Schemes
SchemesEvents

2-CS 3-CS 5-CS 7-CS
Cycles + + + +
Graduated Instructions + + + +
L1-D Cache Accesses + + +
L1-I Cache Accesses +
L2-D Cache Accesses + +
L2-I Cache Accesses +
Main Memory References + +

Figure 11 compares the estimation accuracy of the proposed
routine level OS power model that uses 2 counters (RL 2-CS)
with flat modeling schemes that rely on more hardware counters.
While the 3-CS, 5-CS and 7-CS outperform the 2-CS scheme in
some cases in terms of accuracy, they show unpredictable
behavior, depending on the benchmarks. The RL 2-CS scheme is
the only one that offers consistent low error. One can see that the
RL 2-CS model outperforms the flat regression models that use
more hardware counters, indicating the benefit of combining
hardware and software knowledge in energy modeling.

The proposed technique requires initial energy profiling of OS
routines, which necessitate a full-system power-aware simulator
such as SoftWatt [9]. However, the models described in this paper
are independent of the actual method used to profiling. If
sophisticated data acquisition based measurements are available,
the measurement method can be used. The OS routine level power
characterization is computation intensive. However, the power
estimation does not require power simulation once that
information is built, making it outperform other simulation-based
approaches in terms of efficiency. The scheme also needs run-time
measurement of cycles and IPC. All high-end microprocessors
provide these counters and hence obtaining the information is not
a problem, making it generally applicable to all hardware

platforms. The run-time OS power estimation involves a first
order linear operation on a single power metric, reducing
estimation overhead.

-15

-10

-5

0

5

10

15

sen
d

m
ail

filem
an

d
b

jess

p
o

stg
res.select

p
o

stg
res.u

p
d

ate

o
sb

o
o

t

E
st

im
at

io
n

 E
rr

o
r

(%
) 2-CS

3-CS
5-CS
7-CS
RL 2-CS

Figure 11. A Comparison of Different
Hardware Counter Schemes

6. CONCLUSIONS
Modern computer systems are characterized by the presence of

high performance, general-purpose processors and software
(operating systems and user applications) running on it. Power
modeling is increasingly becoming a critical issue during system
designs, as well as run-time power/performance optimizations.

This paper proposes power models for the operating system
(OS), a major power consumer in many modern application
executions. The proposed models rely on a few metrics of interest
for power evaluation. Profiling of several Java, Database, file/e-
mail workloads illustrated a strong correlation between IPC and
OS routine power. Exploiting this correlation, we built a model to
estimate energy consumption of OS activity. Profiling done on
one set of programs is used to estimate energy of another set of
programs and yields a high accuracy within 1%. The proposed
routine level power model not only offers superior accuracy when
compared to a simpler, flat OS power model, but also provides
per-routine estimation errors of less than 6% when applied to
track the run-time OS energy profile.

The integrated OS performance/power characterization not only
leads to efficient power estimation for OS-intensive applications
but also provides hint to reduce OS power consumption. Having
known the routine based power dissipation behavior, hardware
can be adapted for power minimization. For example, to save
power, the size of a banked instruction window or reorder buffer
can be dynamically reconfigured when OS routines with low IPC
are detected. In another scenario, dynamic voltage scaling or
frequency throttling can be applied to the OS code that performs
intensive I/O when the processor ILP dose not really matter. We
plan to investigate OS power saving techniques in the future.

7. ACKNOWLEDEGMENT

This research is partially supported by the National Science
Foundation under grant number 0113105, and by AMD, Intel,
IBM, Tivoli and Microsoft Corporations. We would like to thank
Sudhanva Gurumurthi, Anand Sivasubramaniam and
Vijaykrishnan Narayanan from Pennsylvania State University for
their help in the development of the simulation infrastructure that
was used in this paper.

168

8. REFERENCES
[1] A. R. Alameldeen and D. A. Wood, Variability in
Architectural Simulations of Multi-threaded Workloads, In
Proceedings of the International Symposium on High
Performance Computer Architecture, 2003.

[2] K Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Lohout, C.
Smit, T. B. Zhang and B. Jacob, The Performance and Energy
Consumption of Three Embedded Real-Time Operating Systems,
In Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, 2001.

[3] F. Bellosa, The Benefits of Event-driven Energy Accounting
in Power-sensitive Systems, In Proceedings of 9th ACM SIGOPS
European Workshop, 2000.

[4] R. Berrendorf and B. Mohr, PCL - The Performance Counter
Library Version 2.2, http://www.fz-juelich.de/zam/PCL/, Jan.
2003.

[5] D. Brooks, V. Tiwari and M. Martonosi, Wattch: A
Framework for Architectural-level Power Analysis and
Optimizations, In Proceedings of the International Symposium on
Computer Architecture, 2000.

[6] D. Brooks and M. Martonosi, Dynamic Thermal Management
for High-Performance Microprocessors, In Proceedings of the
International Symposium on High-Performance Computer
Architecture, 2001.

[7] J. W. Chen, M. Dubois and P. Stenström, Integrating
Complete-System and User-level Performance/Power Simulators:
The SimWattch Approach, In Proceedings of International
Symposium on Performance Analysis of Systems and Software,
2003.

[8] R. P. Dick, G. Lakshminarayana, A. Raghunathan and N. K.
Jha, Power Analysis of Embedded Operating Systems, In
Proceedings of the Design Automation Conference, June 2000.

[9] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N.
Vijaykrishnan, M. Kandemir, T. Li and L. K. John, Using
Complete Machine Simulation for Software Power Estimation:
The SoftWatt Approach, In Proceedings of the International
Symposium on High Performance Computer Architecture, 2002.

[10] M. Huang, J. Renau, S. M. Yoo and J. Torrellas, A
Framework for Dynamic Energy Efficiency and Temperature
Management, In Proceedings of the International Symposium on
Microarchitecture, 2000.

[11] Intel Pentium 4 Processors - Manuals, Intel Corporation,
2002.

[12] R. Joseph and M. Martonosi, Run-Time Power Estimation in
High Performance Microprocessors, In Proceeding of the
International Symposium on Low Power Electronic Device, 2001.

[13] A. R. Lebeck, X. B. Fan, H. Zeng and C. S. Ellis, Power
Aware Page Allocation, In Proceedings of International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2000.

[14] T. Li and L. K. John, Understanding Control Flow Transfer
and its Predictability in Java Processing, In Proceedings of
International Symposium on Performance Analysis of Systems
and Software, 2001.

[15] T. Li, L. K. John, A. Sivasubramaniam, N. Vijaykrishnan and
J. Rubio, Understanding and Improving Operating System Effects
in Control Flow Prediction, In Proceedings of the International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2002.

[16] S. Manne, A. Klauser and D. Grunwald, Pipeline Gating:
Speculation Control for Energy Reduction, In Proceedings of the
International Symposium on Computer Architecture, 1998.

[17] D. Ofelt and J. L. Hennessy, Efficient Performance
Prediction for Modern Microprocessors, In Proceedings of the
International Conference on Measurement and Modeling of
Computer Systems, 2000.

[18] J. Ousterhout, Why aren’t Operating Systems Getting Faster
as Fast as Hardware?, In Proceedings of the Summer USENIX
Conference, 1990.

[19] S. Palacharla, N. P. Jouppi and J. E. Smith, Quantifying the
Complexity of Superscalar Processors, CS-TR-1996-1328,
University of Wisconsin, Nov. 1996.

[20] “PostgreSQL”, http://www.us.postgresql.org/

[21] G. Qu, N. Kawabe, K. Usami and M. Potkonjak, Function-
Level Power Estimation Methodology for Microprocessors, In
Proceedings of the Design Automation Conference, 2000.

[22] M. Rosenblum, S. A. Herrod, E. Witchel and A. Gupta,
Complete Computer System Simulation: the SimOS Approach,
IEEE Parallel and Distributed Technology: Systems and
Applications, vol.3, no.4, Winter 1995.

[23] T. Sherwood, E. Perelman, G. Hamerly and B. Calder,
Automatically Characterizing Large Scale Program Behavior, In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems,
2002.

[24] A. Sinha, A. Wang and A. P. Chandrakasan, Algorithmic
Transforms for Efficient Energy Scalable Computation, In
Proceedings of the International Symposium on Low Power
Electronics and Design, 2000.

[25] SPEC JVM98 Benchmarks, http://www.spec.org/jvm98/.

[26] T. K. Tan , A. Raghunathan, G. Lakshminarayana and N. K.
Jha, High-level Software Energy Macro-modeling, In Proceedings
of the Design Automation Conference, 2001.

[27] T. K. Tan, A. Raghunathan and N. Jha, Embedded Operating
System Energy Analysis and Macro-modeling, In Proceedings of
the International Conference on Computer Design, 2002.

[28] T. K. Tan, A. Raghunathan and N. Jha, EMSIM: An Energy
Simulation Framework for an Embedded Operating System, In the
Proceedings of the International Conference on Circuits and
Systems, 2002.

[29] V. Tiwari, S. Malik, A. Wolfe and M. T. C. Lee, Instruction
Level Power Analysis and Optimization of Software, Journal of
VLSI Signal Processing, 1-18, 1996.

[30] Transaction Processing Council, The TPC-C Benchmark,
http://www.tpc.org/tpcc/.

[31] M. Valluri and L. K. John, Is Compiling for Performance ==
Compiling for Power?, In Proceedings of the 5th Annual
Workshop on Interaction between Compilers and Computer
Architectures, 2001.

169

[32] C. Xia and J. Torrellas, Comprehensive Hardware and
Software Support for Operating Systems to Exploit MP Memory
Hierarchies, IEEE Transactions on Computers, May 1999.

[33] W. Ye, N. Vijaykrishnan, M. Kandermir and M. J. Irwin, The
Design and Use of SimplePower: A Cycle-accurate Energy
Estimation Tool, In Proceedings of Design Automation
Conference, 2000.

[34] H. Zeng, X. B. Fan, C. Ellis, A. Lebeck and A. Vahdat,
ECOSystem: Managing Energy as a First Class Operating System
Resource, In the Proceedings of the International Symposium on
Architecture Support for Program Language and Operating
System, 2002.

���������	
���
������������������������������������ ������������������� �������!����"

Interrupts
IPC Power Regression Model

P = k1×IPC+k0
OS

Services
Avg.

Cycles Avg. Std. Dev.
(%)

Avg.
(W)

Std. Dev.
(%) k1 k0

Comment

utlb 13 0.92 0 28 0.1 23.6 6.2 0.17% TLB miss handler
pfault 1,100 1.16 19 40 6.2 32.8 1.9 0.48% protection fault
vfault 971 1.43 11 47 3.4 23.9 12.9 4.89% virtual memory fault
COW_fault 2,574 1.65 8 54 2.6 32.1 1.1 0.19% copy-on-write fault
demand_zero 1,939 1.54 16 44 4.5 27.6 1.5 0.40% zero fill page faults
simscsi_intr 993 0.98 37 35 12.6 33.9 1.3 1.94% SCSI disk I/O interrupt
if_etintr 241 1.38 51 42 15.0 29.4 1.1 1.57% Ethernet interrupt
du_poll 481 0.95 26 35 9.3 35.7 0.8 5.04% input/output multiplexing
clock 2,457 0.53 26 20 9.5 36.4 0.6 2.68% clock interrupts

Process and Interprocess Control
IPC Power Regression Model

P = k1×IPC+k0
OS

Services
Avg.

Cycles Avg. Std. Dev.
(%)

Avg.
(W)

Std. Dev.
(%) k1 k0

Comment

exit 63,492 1.08 12 39 4.3 36.0 0.6 0.42% terminate a process
fork 16,154 1.28 6 45 2.3 36.5 -1.7 0.99% create a new process
getpid 226 1.51 23 48 7.7 33.6 -2.7 0.75% return the process ID of the calling process
getuid 248 1.34 5 42 1.8 33.6 -3.1 0.17% return the real user ID of the calling process
alarm 594 0.77 9 26 2.9 32.8 0.6 0.14% set a process alarm clock
pipe 4,188 0.71 11 25 3.8 35.4 0.4 0.50% create an interprocess channel
getgid 240 1.41 21 43 6.5 30.5 0.4 0.10% return the real group ID of the calling process
execve 64,401 1.23 4 43 1.2 31.0 4.6 0.20% execute a file
sigreturn 924 1.17 7 39 2.4 34.5 -1.4 0.56% returns from a signal handler
getsockname 1,137 0.74 10 25 3.1 32.4 1.2 0.57% get socket name
getdomainname 590 0.70 18 22 5.6 31.2 0.3 0.04% get name of current NIS domain
setreuid 1,455 0.43 6 14 2.2 34.7 -0.9 0.08% set real and effective user ID’s
sproc 51,775 1.24 4 41 0.1 15.7 21.1 0.12% create a new share group process
prctl 813 0.48 12 15 3.8 31.8 -0.2 0.89% operations on a process
ksigaction 624 1.17 7 38 2.3 32.8 0.1 0.70% used to implement all type signal routines
sigprocmask 364 1.46 29 47 9.2 31.4 0.9 0.03% alter and return previous state of the blocked signals
BSDsetpgrp 2,565 0.41 4 15 1.6 35.4 0.3 0.55% set process group ID
sigsuspend 9,901 0.30 15 11 5.0 33.7 0.7 0.94% release blocked signals and wait for interrupt
getcontext 679 1.38 31 43 9.6 30.6 0.2 0.19% get current user context
setcontext 1,025 0.97 14 32 4.5 33.1 0.1 0.48% set current user context

170

File System
IPC Power Regression Model

P = k1×IPC+k0
OS

Services
Avg.

Cycles Avg. Std. Dev.
(%)

Avg.
(W)

Std. Dev.
(%) k1 k0

Comment

read 2,614 1.36 19 45 6.1 29.6 4.7 4.53% read file
write 9,344 0.91 9 33 3.2 34.3 1.5 1.27% write file
open 8,626 0.97 10 35 3.5 34.3 1.2 0.41% opens a file, serial port or command pipeline
close 2,131 0.77 21 27 6.5 30.4 3.9 2.61% close an open channel
unlink 8,904 1.00 7 36 2.0 30.0 5.5 0.11% remove a link to a file
lseek 536 1.01 22 33 7.3 33.1 -0.5 2.49% move read/write file pointer
access 6,547 1.11 18 39 5.9 33.3 1.7 0.57% determine accessibility of a file
dup 1,074 0.74 18 25 5.7 32.4 1.2 0.56% duplicate an open file descriptor
ioctl 5,230 0.51 3 18 1.0 32.5 1.1 0.52% perform a variety of control functions on devices
fcntl 613 1.39 25 45 8.3 33.2 -0.9 0.95% file and descriptor control

getdents 5391 1.00 35 34 11.3 32.4 1.8 0.58% read directory entries and put in a file system
independent format

xstat 5,990 1.22 14 43 4.8 35.0 0 0.85% obtain file attributes
lxstat 3,517 1.52 3 53 1.0 34.9 -0.2 0.20% obtain symbolic link file attributes

fxstat 1,293 0.85 18 28 5.4 30.5 2.0 2.01% obtain information about an open file known by the
file descriptor

Miscellaneous Services
IPC Power Regression Model

P = k1×IPC+k0
OS

Services
Avg.

Cycles Avg. Std. Dev.
(%)

Avg.
(W)

Std. Dev.
(%) k1 k0

Comment

brk 2,974 0.80 18 30 6.3 35.8 1.1 1.03% change data segment space allocation
syssgi 2,377 1.06 3 37 1.0 34.4 0.3 0.29% system interface specific to SGI
utssys 1,833 0.47 2 16 0.5 31.9 0.7 0.22% set/get system’s hostname
ulimit 364 1.08 52 34 15.9 30.4 1.0 0.02% get and set user limits
mmap 7,311 0.74 12 26 4.2 34.5 0.6 1.08% map pages of memory
mprotect 1,703 0.99 3 35 1.1 35.3 0.3 0.50% set protection of memory mapping
msync 23,107 0.61 3 23 0.1 36.8 0 0.36% synchronize memory with physical storage
getrlimit 1,045 0.42 2 14 0.2 18.0 6.1 0.42% control maximum system resource consumption
cacheflush 867 1.22 2 41 0.8 33.4 0.1 0.41% flush contents of instruction and/or data cache
waitsys 3,338 0.63 65 22 1.9 32.7 1.4 0.55% underlying system call for all wait-like calls
timein 1,185 0.65 15 23 5.0 34.3 0.4 2.89% set timer
time 478 0.97 7 32 2.3 33.2 -0.6 0.85% count elapsed time

171

