
University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

ec-
as

such

the
o

ver-
ose

l the

la-
We
ing
rk
t of
es.

-

ies rela-

“hoist-

any

e-

p-

tiates the

am and

e we do

A Quantitative Framework for Automated Pre-Execution Thread Selection

Amir Roth
Department of Computer and Information Science

University of Pennsylvania
amir@cis.upenn.edu

Gurindar S. Sohi
Computer Sciences Department

University of Wisconsin–Madison
sohi@cs.wisc.edu
Abstract

Pre-execution attacks cache misses for which conventional address-prediction driven prefetching is ineff
tive. In pre-execution, copies of cache miss computations are isolated from the main program and launched
separate threads calledp-threadswhenever the processor anticipates an upcoming miss.P-thread selectionis
the task of deciding what computations should execute on p-threads and when they should be launched
that total execution time is minimized. P-thread selection is central to the success of pre-execution.

We introduce a framework forautomated static p-thread selection, a static p-thread being one whose dynamic
instances are repeatedly launched during the course of program execution. Our approach is to formalize
problem quantitatively and then apply standard techniques to solve it analytically. The framework has tw
novel components. Theslice treeis a new data structure that compactly represents the space of all possible
static p-threads.Aggregate advantageis a formula that uses raw program statistics and computation struc-
ture to assign each candidate static p-thread a numeric score based on estimated latency tolerance and o
head aggregated over its expected dynamic executions. Our framework finds the set of p-threads wh
aggregate advantages sum to a maximum. The framework is simple and intuitively parameterized to mode
salient microarchitecture features.

We apply our framework to the task of choosing p-threads that cover L2 cache misses. Using detailed simu
tion, we study the effectiveness of our framework, and pre-execution in general, under different conditions.
measure the effect of constraining p-thread length, of adding localized optimization to p-threads, and of us
various program samples as a statistical basis for the p-thread selection, and show that our framewo
responds to these changes in an intuitive way. In the microarchitecture dimension, we measure the effec
varying memory latency and processor width and observe that our framework adapts well to these chang
Each experiment includes avalidationcomponent which checks that the formal model presented to our frame
work correctly represents actual execution.

1 Introduction

Second-level cache misses constrain processor performance and will constrain it further as memory latenc

tively increase. Driven by address prediction, non-binding prefetching hides memory latency by speculatively

ing” the cache miss portion of a load, overlapping it with many prior instructions. Prefetching eliminates m

misses. However, certain staticproblem loads defy address prediction and their misses elude prefetching.

Pre-executionis a recently proposed technique for dealing with problem loads1. Pre-execution sidesteps address pr

diction and generates prefetch addresses by executing acopy of the load computationin parallel with the main pro-

gram as a separate thread—called ap-thread2—in a multithreaded processor. “Hoisting” is accomplished as the

thread fetches and executes many fewer instructions than the main program thread and thus arrives at and ini

cache miss first. The multithreaded execution model, in which p-threads are decoupled from the main progr

1. Pre-execution has also been proposed as a way of dealing with problem (i.e., frequently mis-predicted) branches. Whil
not explicitly discuss branch pre-execution here, all of our methods do apply in that scenario.

2. These have been alternately called data-driven threads, p-threads and p-slices. The termp-threadsis the “average” of the three.
1

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

hreads are

che miss

ogram.

ion is a

gonistic

ds share

proached

e been

shion.

pro-

ull run,

n ana-

en, we

gre-

reads

ith the

allows us

ork also

a few

ions. In

ong all

-driven

enta-

profiles

ure that

nsofar

the stan-

-valida-

le, this

duced

re p-

otential

we do

effec-
one another, has many advantages. P-thread execution and cache miss initiation are accelerated because p-t

isolated from stalls and squashes that occur in the main thread. Overlapping is enhanced because while a ca

stalls the p-thread, the main thread continues fetching, executing and retiring instructions from the main pr

With hardware multithreading becoming prevalent, pre-execution is gaining popularity [3, 8, 11, 14, 20].

The benefits and limitations of pre-execution have been well-documented. Here, we attack the problem ofp-thread

selection, the task of deciding which p-threads to pre-execute and when to pre-execute them. P-thread select

crucial component of pre-execution. It is also a complex task that must balance many inter-related, often anta

concerns including cache miss latency tolerance, p-thread resource consumption (important when p-threa

resources with the main thread), and prefetch coverage and accuracy. To date, p-thread selection has been ap

both manually [20] and automatically [2, 3, 5, 7, 11] and with promising results. However, past approaches hav

generally heuristic. We present a framework for attacking the problem in a formal, quantitative, and holistic fa

We focus onstatic p-threads, copies of which are launched repeatedly during program execution. The dynamic

gram intervals for which p-threads are chosen can be short, modeling on-the-fly p-thread generation, or a f

modeling an off-line implementation. For each program sample, we select p-threads using what is effectively a

lytical pre-execution limit study. First, we use an execution trace to enumerate all possible static p-threads. Th

apply a simple model calledaggregate advantageto calculate the performance benefit of each static p-thread ag

gated over its dynamic invocations. Finally, we “solve” the selection problem by choosing the set of static p-th

that maximizes total performance benefit. Two novel components make this approach feasible. The first isaggregate

advantage, which uses a few key abstractions to effectively model the microscopic interactions of a p-thread w

main thread using only a few intuitive high level parameters. The second is theslice tree, a data structure that com-

pactly represents the space of all possible static p-threads and the relationships between them. The slice tree

to accurately assess miss coverage and to ensure that pre-execution work is not replicated. The framew

includes facilities for optimizing p-threads. Constructed from first principles, the framework is simple and, via

intuitive parameters, applicable to a wide range of pre-execution implementations and processor configurat

this work, we assume a simultaneous multithreading (SMT) [17] processor, where resources are shared am

threads. The framework, however, is easily adapted to other multithreaded models.

At first glance, the use of exhaustive analysis on dynamic execution traces seems impractical: the trace

approach meshes well with dynamic optimization while exhaustive search seems a better fit for off-line implem

tions. However, representative execution samples can be obtained for off-line analysis or reconstructed from

and the structure of the problem allows us to perform our exhaustive search using a simple iterative proced

converges quickly. Independently, the framework has intrinsic value in that the p-threads it finds are optimal i

as aggregate advantage accurately models pre-execution. The conditional optimality statement derives from

dard iterative techniques we use to solve the problem. To remove the condition, we use correlation and cross

tion methodologies to measure the fidelity of aggregate advantage. Our results show that, although simp

formula is quite accurate under many conditions. While perhaps not always optimal in reality, the p-threads pro

by our framework are often close to it. Thus, our framework provides a robust analytical foundation for futu

thread selection algorithms. In addition, it allows us to characterize p-threads and evaluate the performance p

of pre-execution under different processor and pre-execution configurations and conditions. In this paper,

exactly that in the context of L2 misses. Our experiments confirm an intuitive result—maximum pre-execution
2

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

tion. As

ribes the

sions.

op exe-

ropriate

oad. Its

thread-

, the p-

 up.

A p-

de of the

thread

hread
tiveness and the p-threads required to achieve it are a function of program structure and processor configura

we remove constraints, our framework naturally gravitates to this canonical set of p-threads.

The next section provides background and describes the important aspects of the problem. Section 3 desc

framework in detail. The final three sections contain an experimental evaluation, related work, and our conclu

2 Background

We review pre-execution and introduce the p-thread selection problem using an example. Figure 1 shows a lo

cuted by a mythical pharmacy cash register. The loop iterates over the day’s transactions and sums the app

prices for the purchased drugs. Load #09 (in bold), which accesses the price of the drug, is a static problem l

cache misses cannot be handled via conventional prefetching—their addresses donot form an arithmetic series—and

must be attacked via pre-execution. The left side of the figure shows the static code. The right shows an p-

assisted dynamic execution—the main thread is on the left with loop iterations separated by horizontal lines

thread is to the right. As a running example throughout the paper, we construct this p-thread from the ground

Abstract pre-execution model.Selecting proper p-threads requires an understanding of p-thread execution.

thread has two components: thebodyis a list of instructions that mimics a cache miss computation, thetrigger is a PC

of an instruction in the main thread. Astatic p-threadis a trigger/body pair. Adynamic p-threadis an instance of a p-

thread body launched when the main thread executes an instance of the corresponding trigger. On the right si

figure, the p-thread body is shown in a box with the trigger as a annotation on top. The p-thread and the main

computation it mimics are in bold. Although not shown, a dynamic p-thread is launched by every main t
FIGURE 1. Pre-Execution Example

for (i = 0; i < N_XACT; i++) {
 if (xact[i].coverage == FULL)
 continue;
 else if (xact[i].coverage == PARTIAL)
 drug_id = xact[i].drug_id;
 else
 drug_id = xact[i].generic_drug_id;
 todays_take += drugs[drug_id].price ;
}

#00: bge R4, R1,#14
#01: lw R6, 0(R5)
#02: beq R6, R2, #11
#03: bne R6, R3, #06
#04: lw R7, 4(R5)
#05: j #07
#06: lw R7, 8(R5)
#07: sll R7, R7, #2
#08: addi R7, R7, #drugs
#09: lw R8, 0(R7)
#10: add R9, R9, R8
#11: addi R5, R5, #16
#12: addi R4, R4, #1
#13: j #00

#11:
#11: addi R5, R5, #16
#04: lw R7, 4(R5)
#07: sll R7, R7, #2
#08: addi R7, R7, #drugs
#09: lw R8, 0(R7)

#11: addi R5, R5, #16
#12: addi R4, R4, #1
#13: j #00
#00: bge R4, R1,#14
#01: lw R6, 0(R5)
#02: beq R6, R2, #11
#03: bne R6, R3, #06
#04: lw R7, 4(R5)
#05: j #07
#07: sll R7, R7, #2
#08: addi R7, R7, #drugs
#09: lw R8, 0(R7)
#10: add R9, R9, R8
#11: addi R5, R5, #16
#12: addi R4, R4, #1
#13: j #00
#00: bge R4, R1,#14
#01: lw R6, 0(R5)
#02: beq R6, R2, #11
#03: bne R6, R3, #06
#04: lw R7, 4(R5)
#05: j #07
#07: sll R7, R7, #2
#08: addi R7, R7, #drugs
#09: lw R8, 0(R7)

STATIC CODE DYNAMIC EXECUTION

MAIN THREAD

P-THREAD
3

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

mputa-

cuting

e trig-

lection

ss

simplify

ies p-

effects.

es—we

ey do

xecu-

ps are

ad.

nd the

anical

d) and

eters.

ry in

subtle.

more

o many

f

been

different

tion #11

e inci-

g more

-

g_id).

ise the
instance of instruction #11.

As shown in the figure, a p-thread’s trigger and body are closely related: the body corresponds to the miss co

tion starting from the trigger. This relationship forms the basis of theabstract pre-execution model. The p-thread and

main thread execute in parallel, with the p-thread arriving at the cache miss first by virtue of fetching and exe

fewer instructions, i.e., only the cache miss computation as opposed to the full program. A different view of th

ger/body relationship allows us toautomatep-thread selection: the body and trigger form adynamic backwards data-

dependence slicethat starts at the problem instruction. For a given problem instruction, weenumerate all possible

static p-threadsby constructing successively longer backward slices. P-thread selection thus becomes a true se

process. From this enumerated set, we select thestatic p-threadswhose dynamic instances will tolerate the most mi

latency while incurring the least amount of overhead.

Our abstract model makes two assumptions about the p-thread sequencing model. First, p-threads arecontrol-less—

they are fixed sequences that are executed in their entirety. Second, p-thread launching isnot chained[3]—only the

main thread may launch p-threads (with chaining p-threads can launch other p-threads). These restrictions

the pre-execution implementation—allowing only the main thread to launch fixed size p-threads naturally t

thread progress to main thread, limiting redundant and runaway pre-execution and reducing early prefetching

They also allows us to analyze the benefit of a static p-thread as the aggregate benefit of its dynamic instanc

know exactly what each instance looks like and exactly how many of them there will be. At the same time, th

not excessively constrain the power of pre-execution. The primary use of control [20] and chaining [3] in pre-e

tion is to implement p-thread loops for increased lookahead and latency tolerance. In our model, where loo

needed, they aresimulatedby including multiple copies of the induction in a p-thread, an idiom calledinduction

unrolling [2, 14]. Our example p-thread uses a copy of instruction #11 to effectively skip one loop iteration ahe

Our framework uses the abstract pre-execution model—the parallel execution of an isolated computation a

dynamic main thread region which contains it—in its calculations. It ignores the “constant-overhead” mech

details of pre-execution (e.g., the mechanism which initializes p-threads with seed values from the main threa

incorporates the important aspects (e.g., how much sequencing bandwidth p-threads are allocated) as param

Aspects of p-thread selection.Since p-threads are backwards slices of problem loads, the only thing we can va

a p-thread is its length. While choosing a proper p-thread length may sound straightforward, it can be quite

Obviously, a longer p-thread is launched earlier with respect to is target cache miss and will typically tolerate

latency. However, it also execute more instructions and consume more resources. In fact, if it executes to

instructions less latency will be tolerated. That is not all. A given static p-thread will launch a certain number ouse-

less dynamic instances. There are two kind of useless p-threads: the first pre-executes loads that would have

cache hits anyway, the second pre-executes no main thread load at all (i.e., the main thread executes along a

path than the one the p-thread assumes). Our example p-thread is launched once per loop iteration by instruc

while not every loop iteration contains an instance of load #09. Increasing p-thread length often increases th

dence of useless p-threads of the second kind. Another phenomenon is that longer p-threads, while toleratin

latency per miss,cover fewer dynamic misses. A given instance of load #09 may be arrived at via two different com

putations: one containing #04 (drug_id=xact[i].drug_id), the other containing #06 (drug_id=xact[i].generic_dru

A longer p-thread that contains this portion of the computation will target only the subset of misses that exerc
4

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

k

s used

, we

A slice

g

es, and

s

dvantage

of two

s, and

s from

actual

e associ-

r do not

) and

y.

cles

either

.g., buff-

-thread
corresponding instruction. To fully cover all #09 missespotentially requires two static p-threads. Our framewor

simultaneously examines all of these considerations and makes trade-offs between themquantitatively.

3 P-Thread Selection Framework

We now construct our framework, using first principles of pre-execution as guides. We first describeaggregate advan-

tage (ADVagg), a formula that quantifies the performance impact of static p-thread candidates and show how it i

to select the best p-thread from within a single computation. We then introduce theslice treeand show how it enables

the simultaneous selection of multiple p-threads from multiple, partially overlapping computations. Finally

describe two enhancements to the basic framework: p-thread merging and p-thread optimization.

3.1 Aggregate Advantage: Quantifying the Performance Impact of a Single Static P-Thread

Obtaining a backward data-dependence slice of a single load is straightforward, even in hardware [2, 11].

comprisingN instructions presents us with a choice ofN possible p-threads that increase in length from 1 toN

instructions. The basic p-thread selection problem is to choose theslice suffixthat makes the best p-thread, allowin

for the possibility that no sub-slice makes an acceptable p-thread.

P-thread selection balances four considerations:latency tolerance, overhead, miss coverageanduseless p-thread fre-

quency. Longer p-threads tolerate more latency per miss, but incur more overhead, generally cover fewer miss

generally result in more useless p-thread instances.Aggregate advantage (ADVagg) combines these consideration

into a single numerical score, allowing them to be simultaneously optimized. Theadvantage(ADV) of a dynamic p-

thread instance is the estimated number of cycles by which it accelerates program execution; the aggregate a

of a static p-thread is the sum of the advantages of all of its dynamic instances. Advantage is the difference

terms:latency tolerance (LT)is the number of cycles by which the p-thread accelerates its targeted cache mis

overhead (OH)is the number of cycles by which the p-thread slows down the main thread by stealing resource

it. When computing ADVagg, it is convenient to aggregate latency tolerance (LTagg) and overhead (OHagg) separately.

Every dynamic p-thread exacts overhead on the main thread, but only dynamic p-threads that pre-execute

dynamic cache miss computations achieve any latency tolerance. Useless p-threads have no latency toleranc

ated with them because their associated main thread loads have no latency (they either hit in the cache o

exist). If DCtrig is the dynamic count of triggers in the program (i.e., the number of times a p-thread is launched

DCpt-cm is the number of times a given launched p-thread actually pre-executes a main thread miss, then:

ADVagg = LTagg – OHagg EQ 1.

OHagg = DCtrig * OH EQ 2.

LTagg = DCpt-cm * LT EQ 3.

where OH and LT are the overhead and latency tolerance for a single dynamic p-thread instance, respectivel

Overhead per dynamic p-thread (OH).Given our assumption of SMT execution, the number of sequencing cy

stolen from the main thread is the most direct way of measuring overhead. All other forms of contention are

subsumed by this measure (e.g., execution bandwidth), not easily estimated (e.g., bus bandwidth), or both (e

ering resources). The number of cycles it takes to sequence a p-thread is the number of instructions in the p
5

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

nt

half of

ce

idth.

ate the

s on its

d LT by

a given

to

s

d

ns

ta-

s. The

of #09.

putation

es). All

ible to
(SIZEpt) divided by the sequencing width of the processor (BWseq). Since overhead is opportunity cost, we discou

overhead for a given p-thread by the expected main thread sequencing utilization (BWseq-mt/ BWseq). For instance, if

on an 8-wide processor the main thread fetches 4 instructions per cycle, then a p-thread is only penalized for

its bandwidth consumption. One in two cycles it uses would not have been used by the main thread anyway.

OH = (SIZEpt / BWseq) * (BWseq-mt / BWseq) EQ 4.

Latency tolerance per useful dynamic p-thread (LT).P-thread latency tolerance (LT) is quantified as a differen

in execution times of the p-thread and the main thread. Our execution time estimation metric issequencing-con-

strained dataflow-height (SCDH), a function that models both data-dependences and limited sequencing bandw

Starting from the trigger instruction (when the main thread and p-thread begin executing in parallel), we calcul

number of cycles it would take the p-thread to execute the cache miss and the number of cycles it takes anunassisted

main threadto do the same. The difference between these two estimates, SCDHmt - SCDHpt, is the number of cycles

by which the p-thread hoists the miss with respect to the main thread and thus the amount of latency it tolerate

behalf. Since it does not benefit the main thread to tolerate more latency than the latency of the miss, we boun

the original miss latency (Lcm).

LT = MIN(SCDHmt - SCDHpt, Lcm) EQ 5.

The recursive equations for SCDH are those for standard dataflow-height, except that the input height at

instruction also models asequencing constraint (SC)—the cycle at which the instruction is sequenced (fetched).

SCDHin = MAX(SC, MAXdataflow-predecessors(SCDHout)) EQ 6.

SCDHout = SCDHin + Lexec EQ 7.

To calculate SC for a given instruction, we divide the instruction’s trigger distance (DISTtrig)—its distance in

dynamic instructions from the trigger—by the available sequencing bandwidth (BWseq-mt for the main thread,

BWseq-ptfor the p-thread). SCDHpt is smaller than SCDHmt because of SC: the p-thread has fewer instructions

sequence through, so each p-thread instruction has a smaller DISTtrig than its main thread counterpart. Now let u

define the values used for BWseq-mtand BWseq-pt. BWseq-mtis the rate at which the main threadactuallysequences.

To account for main thread speculative execution, we heuristically calculate BWseq-mtas the average of the unassiste

main thread IPC and the sequencing width of the processor (BWseq), weighted 2-to-1 in favor of the IPC. BWseq-ptis

the rate at which a p-thread isallowedto sequence. We set BWseq-ptto 1 because p-threads are single computatio

that execute serially and there is no sense allocating a p-thread more sequencing bandwidth than it will use.

Working Example. To illustrate the working of ADVagg, we select a p-thread for one particular dynamic compu

tion of load #09 from our example, the one that contains instruction #04. We make the following assumption

loop executes 100 iterations. The first branch is taken 20 times such that only 80 iterations contain instances

The second branch is taken 60 times, thus of the 80 iterations that contain instances of #09, 60 use the com

that includes #04, the remaining 20 use #06. Half of all #09 instances result in misses (there are 40 #09 miss

operations have unit latency and cache miss latency is 8 cycles. Note, the highest possible ADVaggscore in this case

is 320: 8 cycles of latency tolerance for each of the 40 #09 misses, with 0 overhead. This score is imposs
6

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

, these

g p-

tions. In

the
achieve if p-threads have non-zero cost. The processor is 4 wide, and the unassisted IPC of the loop is 1 (BWseq-mtis

2). Finally, our slicing mechanism examines 40 instructions and limits p-threads to fewer than 8 instructions

constraints result in a slice with 6 instructions (plus the trigger) implying there are six p-thread candidates.

Figure 2 shows the ADVagg calculation for each of the six candidate p-threads. The calculation for the winnin

thread is shaded. Each calculation is represented by two tables. The table on the left shows the SCDH calcula

the p-thread, trigger distances (DISTtrig) are sequential and the sequencing constraint (SC) is obtained by dividing

FIGURE 2. Working Example: using aggregate advantage a single static p-thread.
p-thread candidate #1 main thread p-thread
DISTtrig SC SCDHin/out DISTtrig SC SCDHin/out

B #08 addi R7, R7, #accts 0 0 0/1 0 0 0/1
A #09 lw R8, 0(R7) 1 1 1/9 1 1 1/9

DCpt-cm SCDHdiff LT LTagg
40 0 0 0

DCtrig SIZE OH OHagg
80 1 0.125 10

ADVagg -10

DCpt-cm SCDHdiff LT LTagg
40 0 0 0

DCtrig SIZE OH OHagg
80 2 0.25 20

ADVagg -20

p-thread candidate #2 main thread p-thread
DISTtrig SC SCDHin/out DISTtrig SC SCDHin/out

C #07 sll R7, R7, #2 0 0 0/1 0 0 0/1
B #09 addi R7, R7, #accts 1 1 1/2 1 1 1/2
A #09 lw R8, 0(R7) 2 1 2/10 2 2 2/10

p-thread candidate #3 main thread p-thread
DISTtrig SC SCDHin/out DISTtrig SC SCDHin/out

D #04 lw R7, 4(R5) 0 0 0/1 0 0 0/1
C #07 sll R7, R7, #2 3 2 2/3 1 1 1/2
B #08 addi R7, R7, #accts 4 2 3/4 2 2 2/3
A #09 lw R8, 0(R7) 5 3 4/12 3 3 3/11

DCpt-cm SCDHdiff LT LTagg
30 1 1 30

DCtrig SIZE OH OHagg
60 3 0.375 23

ADVagg 7

p-thread candidate #4 main thread p-thread
DISTtrig SC SCDHin/out DISTtrig SC SCDHin/out

E #11 addi R5, R5, #16 0 0 0/1 0 0 0/1
D #04 lw R7, 4(R5) 7 4 4/5 1 1 1/2
C #07 sll R7, R7, #2 10 5 5/6 2 2 2/3
B #08 addi R7, R7, #accts 11 6 6/7 3 3 3/4
A #09 lw R8, 0(R7) 12 6 7/15 4 4 4/12

DCpt-cm SCDHdiff LT LTagg
30 3 3 90

DCtrig SIZE OH OHagg
100 4 0.5 50

ADVagg 40

DCpt-cm SCDHdiff LT LTagg
30 8 8 240

DCtrig SIZE OH OHagg
100 5 0.625 63

ADVagg 177

p-thread candidate #5 main thread p-thread
DISTtrig SC SCDHin/out DISTtrig SC SCDHin/out

F #11addi R5, R5, #16 0 0 0/1 0 0 0/1
E #11addi R5, R5, #16 12 6 6/7 1 1 1/2
D #04 lw R7, 4(R5) 19 10 10/11 2 2 2/3
C #07sll R7, R7, #2 22 11 11/12 3 3 3/4
B #08addi R7, R7, #accts 23 12 12/13 4 4 4/5
A #09 lw R8, 0(R7) 24 12 13/21 5 5 5/13

p-thread candidate #6 main thread p-thread
DISTtrig SC SCDHin/out DISTtrig SC SCDHin/out

G #11 addi R5, R5, #16 0 0 0/1 0 0 0/1
F #11 addi R5, R5, #16 6 3 3/4 1 1 1/2
E #11 addi R5, R5, #16 18 9 9/10 2 2 2/3
D #04 lw R7, 4(R5) 25 13 13/14 3 3 3/4
C #07 sll R7, R7, #2 28 14 14/15 4 4 4/5
B #08 addi R7, R7, #accts 29 15 15/16 5 5 5/6
A #09 lw R8, 0(R7) 30 15 16/24 6 6 6/14

DCpt-cm SCDHdiff LT LTagg
30 10 8 240

DCtrig SIZE OH OHagg
100 6 0.75 75

ADVagg 165
7

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

g the

s

ul-

g at the

(which

DC

ver the

in con-

compu-

tation).

s, and

ccurs

xe-

ral

s an

ugh the

d

t gain.

e addi-

level of

ction

L

nrolls

main

isses, at

ncy tol-
trigger distance by 1 (BWseq-pt). In the main thread, trigger distances are sparse and SC is obtained by dividin

DISTtrig by 2 (BWseq-mt). SCDHpt and SCDHmt are SCDHout of the load #09 instance. The table on the right show

the LTagg, OHagg, and ADVaggcalculations. In the LTaggcalculation, SCDHdiff is SCDHmt - SCDHpt, and latency tol-

erance (LT) is the minimum of SCDHdiff and Lcm (8 in our example) per Equation 5. LTaggis the product of DCpt-cm

and LT per Equation 3. In the OHaggcalculation, SIZE is the number of instructions in the p-thread, OH is SIZE m

tiplied by 0.125 (using Equation 4 and plugging the value 4 for BWseqand 2 for BWseq-mt), and OHaggis OH times

DCtrig per Equation 2.

Neither of the first two candidates provides a fetch advantage (latency tolerance) over the main thread—startin

trigger, the main thread and the p-thread fetch exactly the same instructions—while both incur overhead

increases linearly with p-thread size). Pre-executing either will reduce performance. Notice, for both p-threadstrig

is 80 while DCpt-cm is 40—each p-thread is executed 80 times, but only 40 executions correspond to misses.

Setting #04 (D) as the trigger for the third candidate imparts the p-thread with minimal sequencing advantage o

main thread—the p-thread gets to skip instructions #05 and #06—and 1 cycle of latency tolerance. However,

trast with the first two candidates, #04 is executed only 60 times (#06 is executed the other 20 times) and the

tation triggered by #04 results in only 30 misses (the other 10 #09 misses have instruction #06 in their compu

Unlike the first two, this p-thread has a positive advantage, tolerating 1 cycle of latency for each of 30 misse

incurring 0.375 cycles of overhead for each of 60 p-threads launched.

The trigger for the fourth candidate is instruction #11 from the previous iteration. Since an instance of #11 o

once per iteration, DCtrig is 100. DCpt-cm is still 30—the computation includes instruction #04 and correctly pre-e

cutes only 30 misses. The changes in DCpt-cm and DCtrig observed for the last two candidates illustrate two gene

trends. First, within a given backwards slice, DCpt-cmmonotonically decreases as p-thread length increases. This i

intuitive result: the longer the slice, the fewer dynamic computations it corresponds to. In contrast, DCtrig has no

direct relationship to p-thread length. Trends aside, the fourth p-thread candidate is better than the third. Altho

number of useless p-threads—computed by subtracting DCpt-cm from DCtrig—rises from 30 to 70 and the overhea

of each p-thread increases, the additional 2 cycles of latency tolerance achieved for each miss produces a ne

Once the induction instruction, #11, is encountered in a slice, further p-thread growth generally comes from th

tion of instances of this instruction. This pre-execution idiom is calledinduction unrolling[2, 14] and it generates

most of the fetch advantage (lookahead) used by pre-execution to achieve latency tolerance. Each additional

unrolling provides the latency tolerance of one full loop iteration for the price of one additional instruction. Indu

unrolling falls naturally from dynamic backward slicing and is automatically performed to the level dictated bycm.

The final two p-thread candidates are similar—the fifth uses a single level of induction unrolling, the sixth u

twice. The first unrolling provides the p-thread with an additional fetch advantage of 12 instructions over the

thread, which translates into 5 additional cycles of execution time advantage (SCDHdiff) for a total of 8. This is as

much latency tolerance as we need. The score achieved for this p-thread is 177: full latency tolerance for 30 m

the cost of 63 overhead cycles. Predictably, the final candidate has worse projected performance. With full late

erance already achieved, adding another level of unrolling only serves to increase overhead.
8

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

m we

the 40

nquer

-

ated the

roblems

h han-

e in a

rom the

epresent

ion #09

ne we

nts the

and C

figure,

corre-
3.2 Slice Tree: Selecting Multiple P-Threads Simultaneously

The pre-execution solution for a given program typically involves multiple p-threads. Even the simple proble

tackled in the previous section is not fully solved by a single p-thread. The p-thread we found covers only 30 of

possible misses. In this section we show how to select aset of p-threadsby solving multiple, partially overlapping

sub-problems simultaneously. The specific question we answer is: “given the set of computations forall the misses of

a given static load, what is the best set of p-threads for pre-executing as many of those misses as possible?”

One approach to any large problem is “divide-and-conquer”. In p-thread selection, the naive divide-and-co

approach does not work because the underlying assumption that aggregate advantage adds—ADVagg(A+B) =

ADVagg(A) + ADVagg(B)—does not always hold. If two p-threadsoverlap—if at least one dynamic miss is pre-exe

cuted by both of them—then their aggregate latency tolerances do not add. Once one p-thread has toler

latency of a miss, a second p-thread cannot tolerate it again. To ensure that p-threads across individual sub-p

do not overlap, we divide the p-thread selection problem for an entire program into sub-problems each of whic

dles the misses of a different static load. To solve each sub-problem, we use a new data structure—theslice tree—that

naturally and precisely represents p-thread overlap.

Slice tree.The slice tree is a tree of static backward slices with the static load at the root. Each instruction nod

slice tree represents a static p-thread whose trigger is that instruction. The p-thread is constructed by walking f

node to the root. Figure 3 shows the slice tree representing both slices from our example. To save space, we r

linear tree regions as tables. The figure shows two partially overlapping slices targeting the misses of instruct

which is at the root of the tree (node A). The slice formed by the tables along the left path (nodes A-G) is the o

optimized in the previous section. The slice formed by the tables along the right path (nodes A-C,H-K) represe

“other” computation, the one that contains instruction #06 rather than instruction #04. The slices triggered by B

are shared suffixes of the larger slices. When discussing p-threads in a slice tree, we talk aboutparent-child relation-

ships. Given a parent p-thread, a child p-thread is constructed by extending the slice by one instruction. In the

C is a child p-thread of B, and D and H are children of p-thread C.

Each slice tree node is annotated with information that summarizes the behavior of dynamic instances of the

sponding static triggerand static p-thread. DISTpl is a concise representation of the average DISTtrig in the main

thread context: an instruction’s DISTtrig with respect to any trigger is obtained by subtracting its DISTpl from the trig-

ger’s, DCtrig and DCpt-cmwere previously defined in Section 3.1. Note, DCtrig is a trigger property while DCpt-cmis a
FIGURE 3. Slice Tree

PC inst DISTpl DCpt-cm DCtrig
A #09 lw R8, 0(R7) 0 40 80
B #08 addi R7,R7,#drugs 1 40 80
C #07 sll R7, R7, #2 2 40 80

PC inst DISTpl DCpt-cm DCtrig
D #04 lw R7, 4(R5) 5 30 60
E #11 addi R5, R5, #16 12 30 100
F #11 addi R5, R5, #16 24 30 100
G #11 addi R5, R5, #16 30 30 100

PC inst DISTpl DCpt-cm DCtrig
H #06 lw R7, 4(R5) 3 10 20
I #11 addi R5, R5, #16 12 10 100
J #11 addi R5, R5, #16 24 10 100
K #11 addi R5, R5, #16 30 10 100
9

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

ction

ad.

hat tem-

ework

ads do

s for L2

e will-

ation.

t is

all 40

te more

isses.

en two

ized, not

ine the

ly) then

ggregate

tal. The

we typi-

et of p-

nted for—

find this

lice tree,

duce the

e iteration

o p-

e previ-

s do not
p-thread property. For instance, DCtrig is the same for nodes E, F, G, I, J, and K as these are all instances of instru

#11. However, DCpt-cm is different for each one of these nodes as each corresponds to a different static p-thre

The use of the slice tree to summarize information for a static p-thread across its dynamic executions means t

poral information is lost and that we cannot compute the interactions of p-threads with one another. Our fram

calculates the aggregate effects for each static p-thread individually, implicitly assuming that dynamic p-thre

not interact, whether they be instances of the same static p-thread or not. This assumption is not egregiou

cache misses which are infrequent enough to make the likelihood of concurrent p-threads low. Either way, w

ingly trade this inaccuracy for the computational leverage and statistical support provided by summary inform

P-thread overlap and addition of aggregate advantages.The degree of overlap between a p-thread and its paren

defined by DCpt-cm. Consider the p-threads corresponding to instructions C, D, and H. P-thread C pre-executes

misses, but cannot achieve latency tolerance for any of them. If we want a longer p-thread, one that can tolera

latency, we are faced with a choice of two. P-thread D and its children (E-G) will pre-execute only 30 of the m

P-thread H and its children (I-K) will target the other 10. That a parent p-thread’s DCpt-cm is the sum of the DCpt-cm

of its children is an invariant. Also note, a parent-child relationship is the only possible source of overlap betwe

p-threads. P-thread A can either be longer and more specialized than p-thread B or shorter and less special

both at the same time.

Now that we understand the relationship between different p-threads in a slice, we can explain how to comb

aggregate advantages of two p-threads. If two p-threads are not a parent and child (either directly or indirect

their aggregate advantages simply add. If the two are a parent and child, then there is some component of a

latency tolerance that is counted in both, and this double counted component must be subtracted from the to

number of misses attacked by both p-threads is given by the child’s DCpt-cm. The amount of latency that is “double-

tolerated” for each one of these is LT of the parent. Because the parent thread tolerates less latency per miss,

cally associate advantage reduction with the parent p-thread.

ADVagg-reduced(P) = ADVagg(P) - LT(P) * DCpt-cm(C) EQ 8.

where P is the parent and C is the child.

The solution of a composite p-thread selection problem (covering the misses of a single static load) is the s

threads whose aggregate advantages—where latency tolerance reductions due to overlap have been accou

sum to a maximum. Because p-threads within a slice tree obey certain relationships to one another, we can

set using an iterative procedure rather than an exhaustive search. For each leaf (separate linear slice) in the s

we select a p-thread as in the previous section. If any of the independently selected p-threads overlap, we re

advantages of the parent p-threads and reselect. The process terminates once the reductions performed in on

do not influence the p-threads selected in the next iteration.

Working example. Obtaining a complete solution for the slice tree in our example is trivial. Selecting the tw

threads separately we find that the best p-thread along the left hand side of the tree is p-thread F (found in th

ous section) and that the best p-thread along the right side of the tree is p-thread J. Since these two p-thread
10

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

two

pport p-

targets

, every

ns #11,

instruc-

e latency

lgorithm

y

trigger

ded to

ns #07,

tion that

pro-

alcu-

ub-

hreads

econd,

ter allo-

ry since

e two

s opti-

ad.

ion 4.2,

d from

veral p-

func-
overlap, no corrections must be made, and no further iterations are necessary.

3.3 Framework Extensions: Merging and Optimization

In addition to the basic facilities for solving the static p-thread selection problem, our framework contains

enhancements. First, we support merging of partially redundant p-threads to reduce overhead. Second, we su

thread optimization or specialization. Both of these capabilities are automated.

Merging. The two p-threads chosen in the previous section do not overlap from a cache miss standpoint, each

a disjoint set of misses. However, many of the instructions dynamically executed by these p-threads—e.g.

instance of instruction #11—are redundant. Rather than execute two separate p-threads, one with instructio

#04, #07, #08, #09 and one with instructions #11, #06, #07, #08, and #09, we create a single p-thread with

tions #11, #04, #06, #07, #08, and #09 that captures both computations. A merged p-thread achieves the sam

tolerance as separate instances of each of the original p-threads and incurs less overhead. Our merging a

merges p-threads with matchingdata-flow prefixes.A p-thread’s data-flow prefix is its trigger instruction plus an

contiguous chunk of data-flow sub-graph connected directly to any other instruction external to the p-thread (

included). Merging proceeds in dataflow order with register renaming and code duplication performed as nee

preserve the computational semantics of each of the original component p-threads. In our example, instructio

#08 and #09 cannot be merged in the final p-thread, they must be replicated: one copy must take the computa

contains instruction #04 to its completion and the other must complete the computation that contains #06.

Optimization. Optimized p-threadsare p-threads that are not exact copies of dynamic computations from the

gram, but rather specialized versions of them. We fit p-thread optimization into our framework by allowing the c

lations for SCDHpt and SIZEpt to useany sequence of instructions that is functionally equivalent to the actual s

slice. P-thread optimization is both easier and more productive than full program optimization. First, since p-t

are control-less, traditional control-flow and iterative data-flow analyses are replaced by a simple linear scan. S

only optimizations that are enabled by the highly specialized nature of the p-thread need be considered. Regis

cation was already performed by the compiler that generated the initial program and scheduling is unnecessa

a p-thread is a single computation. We have found thatstore-load pair eliminationandconstant foldingcapture most

p-thread optimization opportunities. Figure 2 contains one optimization opportunity: in the final candidate, th

instances of instruction #16 (addi R5, R5, #16) may be folded into a single instruction (addi R5, R5, #32). Thi

mization reduces both p-thread latency (the height of the dataflow graph is cut by one instruction) and overhe

4 Experimental Evaluation

We evaluate our p-thread selection framework’s capacity for selecting p-threads that target L2 misses. In sect

we validate the framework’s performance model by comparing predicted statistics against statistics measure

pre-execution simulations. In sections 4.3 and 4.4, we measure the framework’s response to variations in se

thread and machine parameters, respectively.

4.1 Methodology

Our experiments use a suite of tools built using the SimpleScalar Alpha AXP ISA and system call modules. A
11

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

collects

meters

-thread

s. This

and p-

ope of

register

th con-

eserva-

iative

stem

4-way

try store

n infinite

B mem-

names

context

hion, 8

reserva-

ad con-

tions are

e sim-

in one

e has no

th for p-

erfor-

uation.

ictor

m that,

se the

erfor-

00.00
7.17
tional cache simulator generates program traces and constructs backward slices of all dynamic L2 misses and

them into slice trees which are written out to files. The p-thread selection tool takes a slice tree file and para

describing the processor (sequencing width, memory latency), unoptimized program performance (IPC), and p

construction constraints (maximum p-thread length, optimization level) and produces a list of static p-thread

arrangement allows multiple p-thread sets for the same cache configuration but different pipeline, latency

thread optimization configurations to be generated quickly. Our default configuration has a maximum slicing sc

1024 instructions, maximum p-thread length of 32 instructions, and full merging and p-thread optimization.

Performance results are obtained via a detailed timing simulator that models a parametrizable pipeline with

renaming, reservation stations, load speculation, and an event-driven memory hierarchy with realistic bandwid

tention. Our base configuration is an 8-wide dynamically scheduled processor, with a 14 stage pipeline, 80 r

tion stations, and a maximum of 128 instructions in-flight. The front-end has a 32KB, 2-way set-assoc

instruction cache, 32-entry TLB, and 6K-entry hybrid branch predictor with 2K-entry BTB. The data-memory sy

includes a 16KB, 32B line, 2-way set associative, 2-cycle access, write-back data cache, a 256KB, 64B line,

set-associative, 6-cycle access second-level cache, and a 32-entry TLB. Store-to-load forwarding via a 64-en

queue also takes 2 cycles, with all memory accesses preceded by 1-cycle address generation. We model a

main memory with 70 cycle access latency, a 32B wide backside bus clocked at processor frequency, and a 32

ory bus clocked at one fourth processor frequency. 32 simultaneously outstanding misses are allowed.

The simulator models the run-time functions of pre-execution. A p-thread is launched when the main thread re

the corresponding trigger. The p-thread is allocated to one of three additional thread contexts or dropped if no

is available. P-thread instructions are injected into the execution core at register renaming in a bursty fas

instructions once every 8 cycles per active p-thread. P-thread instructions are allocated physical registers and

tion stations and contend with main thread instructions for these resources and for scheduling slots. A p-thre

text is freed when all p-thread instructions have been renamed. Physical registers allocated to p-thread instruc

recycled in a circular fashion and our simulator models an additional 64 physical registers for p-thread use. Th

ulator doesnot model the p-thread selection/pre-execution interface assuming that p-threads are accessible

cycle from an ideal p-thread cache that experiences no misses. Our (untested) assumption is that this interfac

first-order performance effects. Because our experiments target L2 misses, we disable the data cache fill pa

thread loads—p-thread loads prefetch only into the L2. While prefetching into the first level cache improves p

mance, it perturbs our ability to validate the framework’s performance model, an important aspect of this eval

All simulation tools exploit sampling, cycling through off (fast-forwarding), warm-up (caches and branch pred

only) and on (full detail) phases at regular intervals. We have performed experiments (not shown) which confir

by both miss rates and IPCs, cyclic sampling is “equivalent” to unsampled execution. Our experiments u

SPEC2000 integer benchmarks compiled at “peak” optimization levels using the Digital Unix cc compiler. P
bzip2 crafty gap gcc mcf parser twolf vortex vpr.p vpr.r
Instructions (M) 6000.00 2600.00 900.00 500.00 900.00 1300.00 1300.00 1700.00 300.00 11
Loads (M) 1509.20 731.49 218.49 116.15 246.03 295.70 291.56 458.21 79.27 32
L2 misses (M) 21.05 0.93 1.79 0.93 70.48 5.15 9.64 1.17 0.41 7.69
IPC 3.13 3.16 1.85 2.09 0.29 1.44 1.18 3.63 2.08 1.30
Perfect L2 IPC 5.41 3.56 2.79 2.71 1.86 2.51 2.31 4.78 2.70 2.19

TABLE 1. Benchmark characterization
12

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

ruction

they are

ay then

ns, we

y our

per p-

gh in

vered.

and

ork gen-

ance

the

rk is to

g sec-

t of all

ument.

ure of.
mance numbers are reported using the training inputs sampled at 100M of every 1B instructions with 10M inst

warm-up phases. Unless otherwise noted, p-threads are selected using the same program sample on which

subsequently measured. This arrangement allows our framework to produce performance predictions which m

be checked. A relevant benchmark characterization is shown in Table 1. Of the 16 benchmark/input combinatio

use only 10;eon (3 inputs),gzip, andperlbmk (2 inputs) exhibit negligible L2 miss rates.

4.2 Primary Performance Results

The middle section of Table 2 (Pre-exec, the shaded section) shows the performance of the p-threads selected b

framework. In addition to IPC, we list the number of p-threads launched, the average number of instructions

thread and L2 misses both in part and in full. A miss is fully covered if the p-thread initiates the miss far enou

advance to overlap the full latency of the miss. If the latency is only partially overlapped, the miss is partially co

Overhead IPCandLatency tolerance IPCare produced by simulations which model only p-thread cost or benefit

are used in the next section to validate the model. The results show that the p-threads selected by our framew

erally improve performance. The p-threads cover between 10% (mcf) and 82% (vpr.p) of the L2 misses in the pro-

gram—with full coverage in general achieved for about half of all misses covered—and result in perform

improvements of up to 24% (vpr.r). One benchmark,crafty, experiences a 1% performance degradation due to

addition of p-threads. These results are good in absolute terms, but the point of using a quantitative framewo

obtain thebest possibleresults. In other words, we want assurance that the reason only 10% ofmcf’s L2 misses are

covered is that the structure of the program is such that our pre-execution modelcannotbe used to cover the other

90%, not because the framework couldn’t find them. We devote the next section—and parts of the followin

tions—to constructing experiments that increase our confidence in this regard.

4.3 Model Validation

One way to gain confidence in our framework is to compare the performance of p-threads it produces with tha

other sets of possible p-threads. This approach is infeasible. We take a different tack based on the following arg

Our framework uses standard optimization techniques to find good solutions for a given function. That we are s

TABLE 2. Basic results and performance model validation
bzip2 crafty gap gcc mcf parser twolf vortex vpr.p vpr.r
Base L2 misses (M) 21.05 0.93 1.79 0.93 70.48 5.15 9.64 1.17 0.41 7.69

IPC 3.13 3.16 1.85 2.09 0.29 1.44 1.18 3.63 2.06 1.30
Pre-execP-threads launched (M) 102.19 6.86 5.41 6.74 26.23 25.88 13.75 5.03 4.62 32.25

Instructions per p-thread 19.49 13.91 9.00 5.84 17.66 4.89 11.09 8.91 9.97 11.97
Overhead IPC (execute) 2.97 3.15 1.85 2.09 0.29 1.44 1.18 3.63 2.05 1.29
Overhead IPC (sequence) 2.97 3.16 1.85 2.09 0.29 1.44 1.18 3.63 2.07 1.29
Misses covered (M) 13.40 0.61 0.81 0.40 8.36 1.46 4.77 0.43 0.34 5.19
Misses fully covered (M) 4.63 0.31 0.59 0.30 6.54 0.87 4.30 0.13 0.18 3.96
Latency tolerance IPC 3.54 3.13 1.93 2.22 0.30 1.54 1.38 3.82 2.27 1.63
IPC 3.32 3.12 1.93 2.21 0.30 1.53 1.39 3.81 2.25 1.62

Predict P-threads launched (M) 255.97 4.26 4.91 3.50 15.80 17.00 8.52 3.85 2.77 20.71
Instructions per p-thread 21.81 13.39 9.22 6.03 19.29 4.97 12.03 9.47 9.94 12.57
Overhead IPC 2.57 3.15 1.84 2.08 0.29 1.44 1.17 3.61 2.04 1.27
Misses covered (M) 11.87 0.46 0.64 0.24 11.03 1.38 4.58 0.45 0.28 5.40
Misses fully covered (M) 4.35 0.23 0.42 0.16 5.84 1.19 3.75 0.20 0.16 2.85
Latency tolerance IPC 5.25 3.28 2.02 2.23 0.38 1.61 1.61 3.83 2.35 2.18
IPC 3.85 3.27 2.01 2.21 0.38 1.60 1.60 3.81 2.32 2.12
13

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

elity of

of p-

ent that

ood in

is

instruc-

gnostic

l,

p-thread

uction is

dicating

are self-

-

ecially

ns. We

ect cor-

increase

-path p-

d into

nce-

thread

between

data.

dwidth.

affect

) is

overage

y

n-

ence of

the
What we are not sure of is whether the function our framework optimizes, ADVagg, accurately models reality such

that solutions which are good in the model space are also good in the real world. Fortunately, the modeling fid

ADVaggis easier to verify. In performing its selections, our framework implicitly makes diagnostic predictions

thread behavior. We check these predictions against simulated measurements. If they align, we can be confid

ADVagg is the appropriate p-thread evaluation function, and that our framework produces solutions that are g

the real world. The bottom portion of Table 2 (Predict) lists the framework predictions that allow us to perform th

validation. We validate overhead and latency tolerance individually to better identify model inaccuracies.

Overhead.Three diagnostics check our overhead model: number of p-threads launched, average number of

tions per dynamic p-thread, and performance of an overhead-only implementation. We address the last dia

first. Overhead performance degradation is measured intwo ways. In the first (execute), p-threads execute as usua

but do not access the data cache (thus do not have the pre-execution effect). In the second (sequence), p-thread

instructions consume sequencing cycles but are immediately discarded. The first simulation measures true

overhead, the second measures overhead as modeled by our framework (i.e., the only cost of a p-thread instr

the bandwidth used to sequence it). As we see in the table, these simulations often produce identical results in

that our “overhead as sequencing bandwidth consumption” assumption is valid.

Estimates of performance loss due to overhead are generally accurate. Predictions of average p-thread length

fulfilling. Occasional p-thread launch countover-estimation(e.g.,bzip2) is due to the finite number of p-thread con

texts—a p-thread launch request is dropped if a thread context is not immediately available. This effect is esp

prominent in programs that require many p-threads. Typically, however, p-thread launch counts areunder-estimated

due to the fact that our framework does not account for p-threads launched from wrong-path trigger instructio

have run simulations in which p-threads are launched only from correct path triggers and observed nearly perf

relation between predicted and simulated launch counts. Interestingly, wrong-path p-thread launches do not

overhead. Since the majority of p-threads are short and are sequenced within a cycle or two of launch, wrong

threads primarily contend with wrong-path instructions whose latency does not directly impact performance.

Latency Tolerance.Latency tolerance is also validated via three diagnostics: L2 misses covered (i.e., turne

either full or partial hits), L2 misses fully covered (i.e., turned into full hits) and performance of a latency-tolera

only implementation. Miss coverage is measured by timestamping cache blocks with p-thread request, main

request, and ready times. Fully and partially covered misses are detected by the appropriate relationships

timestamps and are tabulated at instruction retirement to avoid overinflating the counts with wrong-path

Latency-tolerance impact is measured via an additional simulation in which p-threads are not charged for ban

Miss coverage, both full and partial, is more difficult to predict than overhead, as there are many factors which

miss coverage that are not considered by ADVagg. Miss coverage over-estimation (too few misses actually covered

the result of p-thread issue delays caused by contention with the main thread and other p-threads. Full miss c

overestimation (too few actual full miss coverages) impliespost-issuedelays for p-thread misses, with the primar

source being contention in the memory bus. Full miss coverage under-estimation (toomanyactual full miss cover-

ages—a good problem to have) indicatesmain threaddelays, primarily due branch mis-predictions but also to co

tention with p-threads. Miss coverage underestimation (too many actual misses covered) implies the pres

unintentional L2 prefetcheswithin a p-thread. A given static load may not have statistical character that merits
14

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

eted for

degree in

under-

ment.

e-

erance

serially

—in a

s in the

atency

path

serial-

nds p-

tion con-

slower

frame-

es quite

ces—to

y mea-

ditions.

in Fig-

ey, top)

mber of

mber of
construction of p-threads for its own sake. However, such loads are sometimes embedded in p-threads targ

other loads or consistently share cache lines with such embedded loads. Each of these factors acts to some

everybenchmark, with the net effect determined by the dominant phenomena. For instance, full miss-coverage

estimation is dominant in benchmarks with high branch mis-prediction rates (e.g.,crafty, gcc andvpr.r).

Unfortunately, the simulated metric that most poorly correlates with its predicted value is performance improve

Even more unfortunately, it is generallyoverestimated. The primary cause is a single assumption built into our fram

work—that miss latency translates cycle for cycle into execution latency and, therefore, that miss latency tol

translates cycle for cycle into performance improvement. Effectively, we assume that L2 misses are handled

and are not overlapped with the execution of any instructions in the program. This is obviously not the case

dynamically scheduled processor, some degree of overlapping, either with other misses or other instruction

program, is almost always possible—meaning that our framework is fooled into believing that there is more l

to tolerate than actually exists. An interesting piece of future work is to combine our framework with a critical

model [4] that can assign a “true” latency to each miss. Finally, while never completely true for L2 misses, the

ization assumption is even less true for L1 misses. Our experience shows that, while our framework easily fi

threads that target L1 misses, itspredictions in that scenario are less accurate.

We have presented a single validation experiment on a single design point in the processor and p-thread selec

figuration space. We have performed similar experiments with other configurations—narrower processors,

memories, and different thread selection parameters—and have obtained similar qualitative results. While our

work does not always predict end performance and diagnostics with perfect accuracy, in many cases it com

close. This suggests that ADVagg, accurately captures pre-execution behavior under many conditions.

4.4 Sensitivity to P-Thread Selection Parameters

In this section and the next we measure our framework’s response—i.e., changes in the p-threads it produ

variations in p-thread selection parameters (this section) and the underlying microarchitecture (Section 4.5). B

suring this response, we directly observe the performance potential of pre-execution under those same con

From this point forward, our results are presented graphically. The graphs all have a format similar to the one

ure 4. Each bar in a group shows the results of one experiment using five diagnostics. Miss coverage (dark gr

and full miss coverage (light gray, bottom) are shown as stacked bars. Their units are in percentages of the nu

L2 misses in the unoptimized program. Overhead is shown as a tick in each column and is computed as the nu
FIGURE 4. Combined impact of slicing scope and p-thread length.

0

20

40

60

80

100
L2 miss coverage L2 miss full coverageInstruction Overhead P-thread length

0.
42

0.
00 0.

44

1.
32

-0
.4

1

1.
21

5.
36

0.
00

1.
42

0.
76

2.
50

-0
.9

5 4.
04

4.
42

-0
.3

1

5.
56

13
.8

2

2.
40

8.
10

12
.3

6

6.
00

-1
.2

5

4.
19

5.
61

3.
12

6.
22

17
.8

2

4.
95

9.
10

24
.8

4

6.
03

-1
.3

5

4.
32

6.
13

4.
26

6.
44

17
.0

9

8.
16

9.
21 24
.8

6

25
6

/ 8

25
6

/ 8

25
6

/ 8

25
6

/ 8

25
6

/ 8

25
6

/ 8

25
6

/ 8

25
6

/ 8

25
6

/ 8

25
6

/ 8

51
2

/ 1
6

51
2

/ 1
6

51
2

/ 1
6

51
2

/ 1
6

51
2

/ 1
6

51
2

/ 1
6

51
2

/ 1
6

51
2

/ 1
6

51
2

/ 1
6

51
2

/ 1
6

10
24

 /
32

10
24

 /
32

10
24

 /
32

10
24

 /
32

10
24

 /
32

10
24

 /
32

10
24

 /
32

10
24

 /
32

10
24

 /
32

10
24

 /
32

20
48

 /
64

20
48

 /
64

20
48

 /
64

20
48

 /
64

20
48

 /
64

20
48

 /
64

20
48

 /
64

20
48

 /
64

20
48

 /
64

20
48

 /
64

bzip2 crafty gap gcc mcf parser twolf vortex vpr.p vpr.r

4.65 Percent speedup
15

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

-thread

ach bar.

-

ad

nations.

nstruc-

e, and

nd do not

erty of

f

of 16

nstraint

traints,

dows.

—small

o scope

tions

ations.

pti-

found

thread
p-thread instructions executed over the number of instructions retired by the main thread. Average dynamic p

length is shown as a cross mark. Finally, percent speedup over the base configuration is shown in text over e

Slicing scope and p-thread length.Our first test measures the effects ofslicing scope, the length of the dynamic

trace that is examined to construct a p-thread, andp-thread length. Limiting these is a concession to the finite buffer

ing of the p-thread constructor. Limitingp-thread lengthis also a concession to the implementation of the p-thre

memory hierarchy. Figure 4 characterizes the performance of p-threads selected in four scope/length combi

For instance, the left bar corresponds to a scope limit of 256 instructions and a maximum p-thread length of 8 i

tions.

Two intuitive and comforting trends are evident. First, actual p-thread length, miss coverage, full miss coverag

performance increase as p-thread selection constraints are relaxed. Second, they all saturate at some point a

benefit from further relaxations. These trends imply that pre-execution performance potential is a strong prop

program structure, that each combination of program and processor configuration has anatural set of p-threadsand,

more significantly, thatour framework gravitates to this natural set. Quantitatively, the pre-execution performance o

most programs effectively saturates at slicing windows of 512 instructions and with post-optimization lengths

instructions, although several programs (e.g.,vortex) benefit from further relaxations.

For brevity, we only present the combined effects of length and scope restrictions. The importance of each co

individually varies from one benchmark to the next. Most programs are more sensitive to p-thread length cons

unable to achieve any gain whatsoever with very short p-threads, even with large (2K instruction) slicing win

This is an indication that miss computations in these programs are dense in the locus leading up to the miss

computations are unable to obtain any sequencing advantage. Two programs which are more sensitive t

restrictions areparser and twolf. This is signature of the complementary program structure, sparse computa

which can achieve latency tolerance with small computations, but need large windows to “see” these comput

P-Thread optimization and merging.One of the stated strengths of our framework is its support for p-thread o

mization and merging. As Figure 5 shows, the addition of p-thread optimization and merging can have a pro

performance impact on pre-execution, witnessvpr.r.

Optimization reduces average p-thread length, often significantly (e.g.,crafty, parser, vortex, andvpr). Less intu-

itively perhaps, it also often results in a significant increase in p-thread launches. With optimization reducing p-
FIGURE 5. Impact of p-thread optimization and merging.

0

20

40

60

80

100
L2 miss coverage L2 miss full coverageInstruction overhead P-thread length

4.
46

-1
.7

7 4.
42

3.
39

-0
.2

1

3.
76

15
.9

2

1.
55

7.
27

6.
09

4.
90

-1
.2

3

4.
68 4.
13

1.
06

4.
05

16
.6

4

1.
59

9.
27

10
.4

5

5.
96 -1

.2
2

4.
75

5.
08 2.

27

5.
90

15
.3

9

4.
95

7.
12

17
.2

9

6.
00

-1
.2

5

4.
19

5.
61

3.
12

6.
22

17
.8

2

4.
95

9.
10

24
.8

4

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

m
er

ge

m
er

ge

m
er

ge

m
er

ge

m
er

ge

m
er

ge

m
er

ge

m
er

ge

m
er

ge

m
er

geop
t

op
t

op
t

op
t

op
t

op
t

op
t

op
t

op
t

op
t

op
t+

m
er

ge

op
t+

m
er

ge

op
t+

m
er

ge

op
t+

m
er

ge

op
t+

m
er

ge

op
t+

m
er

ge

op
t+

m
er

ge

op
t+

m
er

ge

op
t+

m
er

ge

op
t+

m
er

ge

bzip2 crafty gap gcc mcf parser twolf vortex vpr.p vpr.r

4.90 Percent speedup
16

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

eads that

num-

covered

ich

ations,

mpact.

htened.

rmance

counts.

ionally

riods.

re 6

ic pro-

hunks

. After

requently,

the fin-

, but not

is phe-

verly-

high or

builds
length, increasing latency tolerance by compressing p-thread dataflow graphs and decreasing overhead, p-thr

were either unprofitable or illegal (i.e., too long) in their unoptimized forms become viable. An increase in the

ber of viable p-thread candidates results in increased miss coverage, more complete latency tolerance for

misses, and improved performance.Vortexandvpr.r are prime examples of the power of this secondary effect, wh

is much stronger than the primary effect of overhead reduction for pre-existing p-threads. Of our three optimiz

we have found store-load pair elimination to be the most effective. Register-move elimination has almost no i

Intuitively, our experience shows that optimization becomes increasingly effective as length constraints are tig

Merging primarily reduces overhead but does not increase the number of viable p-thread candidates—its perfo

effects are thus less pronounced. Merging increases p-thread length while decreasing the p-thread launch

Merging generally improves performance by reducing contention for p-thread contexts, although it can occas

increase contention by creating long p-threads that occupy a single context for several 8-cycle sequencing pe

P-thread selection granularity.Our default selection granularity is an entire (sampled) run of the program. Figu

compares this coarse grain approach with finer grain strategies in which p-threads are specialized for dynam

gram regions of 100, 10, and 1 million instructions each. Intuition says that breaking the program into smaller c

and optimizing each chunk separately will produce more highly specialized p-threads and higher performance

all, at the limit of this process we would find a custom p-thread for every dynamic L2 miss!

The trends we expect to see are those we observe inbzip2, parser, vpr.r or the first three bars ofgap and gcc—

increased miss coverage, reduced overhead, and increased performance. Although these trends appear f

they are not consistent or even monotonic within a benchmark. Counter intuitive trends are most often seen at

est (1 million instruction) granularity although they may appear sooner as they do invortex. Finer selection granular-

ities do not always mean increased miss coverage. If a p-thread is deemed profitable at a coarse-grain region

at all finer-grain sub-regions, coverage for any misses that do occur at unselected sub-regions will be lost. Th

nomenon suggests a slight mis-calculation by our framework at fine granularities, specifically one that is o

biased towards overhead. One reason for this may be that our overhead model is not quite accurate at very

very low IPCs, which are typically seen only over small dynamic regions.

Overall, the consistency of results across grains suggests a certain amount of self-similarity in programs and

confidence in our approach of using coarse-grain information (IPC) to model microscopic behavior.
FIGURE 6. Impact of p-thread selection granularity.

0

20

40

60

80

100
L2 miss coverage L2 miss full coverageInstruction overhead P-thread length

6.
00

-1
.2

5

4.
19

5.
61

3.
12

6.
22

17
.8

2

4.
95

9.
10

24
.8

4

8.
18

-1
.1

3

4.
37

6.
22

4.
77 6.

62

19
.2

8

4.
99

9.
05 26
.0

3

10
.1

3

-1
.0

2

6.
00 6.

39

4.
29 7.

05

19
.2

2

4.
81

8.
94 26

.2
2

10
.0

1

-1
.0

5

3.
38

5.
74

4.
36 7.

31

18
.6

1

4.
55

9.
05 26

.2
5

fu
ll

fu
ll

fu
ll

fu
ll

fu
ll

fu
ll

fu
ll

fu
ll

fu
ll

fu
ll

10
0M

10
0M

10
0M

10
0M

10
0M

10
0M

10
0M

10
0M

10
0M

10
0M10
M

10
M

10
M

10
M

10
M

10
M

10
M

10
M

10
M

10
M1M 1M 1M 1M 1M 1M 1M 1M 1M 1M

bzip2 crafty gap gcc mcf parser twolf vortex vpr.p vpr.r

4.65 Percent speedup
17

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

tion is

d to con-

sider a

of our

enario

com-

sce-

luation

on sce-

perfect

rmined

ts from

wer L2

g

tion is

hat p-

everal

e can

ework’s

work

In the
Input Data Sets.Our evaluation to this point has shown that automated p-thread selection is possible givenperfect

information—a previous execution of the same program using the same input data. In reality, such informa

never available. For our final experiment in p-thread selection parameter space, we vary the input data set use

struct p-threads to test the viability of performing automated p-thread selection in real world scenarios. We con

dynamicscenario in which p-threads are selected on-line (ignoring for a moment that the exhaustive nature

framework is not conducive to on-line implementation) using small profiling program phases. The dynamic sc

models p-thread selection as it would be implemented by a profile-driven, dynamically optimizing just-in-time

piler. We also consider astaticscenario in which p-threads are selected using profiles from test inputs. The static

nario models p-thread selection implemented by a profile-driven static compiler. A simulated performance eva

of p-threads selected under each scenario is shown in Figure 7.

The figure shows that good p-thread selection is theoretically possible under these two realistic implementati

narios. P-threads selected in the dynamic scenario often approach the performance of those selected with

information. This is a testament to the fact that programs have a finite number of characteristic behaviors (dete

by program structure) and further proof that our sampling methodology is sound. The less encouraging resul

static scenario are the product of our choice of test inputs which use small data sets and incur significantly fe

misses. In fact, the test data working sets fortwolf andvpr.p fit into our L2 cache resulting in no p-threads bein

selected for those two benchmarks in the static scenario. However, for most other programs, static informa

nearly as effective as dynamic information and even perfect information. This result reinforces our belief t

threads and pre-execution performance potential are most strongly a function of program structure.

Occasionally, imperfect information yields better results than perfect information. Our framework makes s

unrealistic assumptions—primarily that miss latency translates directly to program execution latency—which w

correct by essentially “lying” to the framework via adjusted parameters. Inmcf, the framework’s interpretation of the

characteristics of the dynamic sample better match the true characteristics of the perfect sample, than the fram

interpretation ofthosecharacteristics. While manifestations of this problem are rare, they do suggest that future

may be needed to free the framework from these assumptions.

4.5 Sensitivity to Machine Parameters

An important aspect of our framework is its ability to accurately parametrize important processor features.
FIGURE 7. Impact of p-thread selection input data-set.

0

20

40

60

80

100
L2 miss coverage L2 miss full coverageInstruction overhead P-thread length

4.
65

-1
.6

5

3.
13 1.

44

1.
61

4.
99

0.
00

4.
41

0.
00

22
.8

4

5.
00

-1
.3

0

3.
43

0.
18

11
.6

7

5.
24

18
.2

9

4.
13

9.
09

23
.1

8

6.
00

-1
.2

5

4.
19

5.
61

3.
12

6.
22

17
.8

2

4.
95

9.
10

24
.8

4

st
at

ic

st
at

ic

st
at

ic

st
at

ic

st
at

ic

st
at

ic

st
at

ic

st
at

ic

st
at

ic

st
at

ic

dy
na

m
ic

dy
na

m
ic

dy
na

m
ic

dy
na

m
ic

dy
na

m
ic

dy
na

m
ic

dy
na

m
ic

dy
na

m
ic

dy
na

m
ic

dy
na

m
ic

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

bzip2 crafty gap gcc mcf parser twolf vortex vpr.p vpr.r

4.65 Percent speedup
18

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

ethodol-

ts and

ocessor

, the

ion. We

ics

has

a-

-

’s

two

r is the

emory

latency

ght bar

chosen

re used

ilar to

erform

o varia-

tive

fewer
interest of space, we cannot validate our framework’s response to many parameters. We demonstrate our m

ogy using one important parameter, memory latency, which directly impacts latency tolerance requiremen

hence p-thread structure. We have performed similar validation experiments on other parameters including pr

width and L2 size, with similar results.

Intuition says that our framework models the underlying microarchitecture correctly if for a given configuration

p-threads selected with that configuration in mind are better than p-threads selected for another configurat

conduct a limited version of this study. For a given parameterX, let tX1 be the set of p-threads chosen using statist

obtained from a configuration whereX is X1andpX1(t) be the performance of a processor in which the parameter

a valueX1 pre-executing the set of p-threadst. Within each study, we perform four experiments on two configur

tions,X1andX2—pX1(tX1), pX2(tX2), pX1(tX2), andpX2(tX1). We gain confidence in our framework’s model of param

eter X if pX1(tX1) > pX1(tX2) and pX2(tX2) > pX2(tX1). This cross-validation also allows us to test the framework

response to both under- and over- specification of parameter X.

Memory Latency. Results for memory latency are shown in Figure 8. We show four experiments split into

groups. Within each group, the simulated memory latency value is constant. Within each group, the right ba

self-validation experiment and the left bar is the cross-validation experiment. In the left group, simulated m

latency is 140 cycles. In this group, the left bar corresponds to p-threads selected assuming 70 cycle memory

(cross-validation) and the right bar to p-threads selected assuming 140 cycle latency (self-validation). In the ri

group, the roles are reversed. Here, we simulate a memory latency of 70 cycles, meaning that p-threads

assuming 70 cycle latency are used for self validation and p-threads chosen with a 140 cycle latency in mind a

for cross-validation. Due to our cross-validation methodology, the inner columns of a given bar group are sim

each other, as are the outer two columns.

Within each bar group, we are interested in two trends. First, we expect the self-validation experiments to outp

the corresponding cross-validation experiments. Second, we can intuitively gauge the framework’s response t

tions in a given parameter by comparing the self-validation experiments to one another.

Comparingp70(t70) with p140(t140) shows that our framework responds to memory latency variations in an intui

way. A latency increase results in the selection of longer p-threads which cover fewer misses and fully cover

still. That it is the correct response is confirmed by cross-validation.
FIGURE 8. Response to variations in memory latency.

0

20

40

60

80

100
L2 miss coverage L2 miss full coverageInstruction overhead P-thread length

10
.5

7

-3
.2

2

5.
97

9.
15

3.
67

8.
46

25
.7

7

5.
08

12
.6

8

33
.9

2

12
.8

5

-2
.5

7

7.
78

8.
63

0.
90 9.
10

22
.0

7

1.
97

12
.9

9

32
.8

6

6.
99

-1
.1

8

5.
17

5.
10

0.
93 6.
59

14
.5

7

1.
96

8.
71

20
.8

6

6.
00

-1
.2

5

4.
19

5.
61

3.
12

6.
22

17
.8

2

4.
95

9.
10

24
.8

4

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
70

)

p1
40

(t
14

0)

p1
40

(t
14

0)

p1
40

(t
14

0)

p1
40

(t
14

0)

p1
40

(t
14

0)

p1
40

(t
14

0)

p1
40

(t
14

0)

p1
40

(t
14

0)

p1
40

(t
14

0)

p1
40

(t
14

0)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t1
40

)

p7
0(

t7
0)

p7
0(

t7
0)

p7
0(

t7
0)

p7
0(

t7
0)

p7
0(

t7
0)

p7
0(

t7
0)

p7
0(

t7
0)

p7
0(

t7
0)

p7
0(

t7
0)

p7
0(

t7
0)

bzip2 crafty gap gcc mcf parser twolf vortex vpr.p vpr.r

3.17 Percent speedup
19

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

ncy

pletely

er more

rks, the

nal ben-

iable p-

rse hap-

effec-

y over-

erate

misses.

back-

or more

everal

st-

incor-

anyway.

ubject of

g regular

ite state

ds was

Mul-

Pre-

ses pre-

effects

n-time

esources

itectural

ple-

) can be

ven so,
In p70(t140) (third bar in each group) weover-specifymemory latency. We pretend that the processor has more late

to tolerate than it actually does, causing the framework produces more aggressive p-threads that more com

cover the latency that does exist. The framework does, in fact, produce longer p-threads and these fully cov

misses (the light gray bars are highest in this group). However, end performance is mixed. On most benchma

expected effect is observed. As there is no more actual latency to tolerate, longer p-threads provide no additio

efit. At the same time, fewer total misses are covered as an increase in perceived latency makes previously v

threads unprofitable, with the net result being performance loss. However, on several benchmarks, the reve

pens. On these benchmarks, high memory bus contention—which our framework does not explicitly model—

tively increases memory latency and exploits the increased latency tolerance of the longer p-threads. B

specifying latency, we are effectively helping the framework model bus contention.

p140(t70) is anunder-specificationexperiment. By pretending that the underlying processor has less latency to tol

than actually exists, we elicit the framework to produce less aggressive p-threads that can cover more total

Although sometimes unexpectedly successful (again, for the highlighted benchmarks) this strategy typically

fires. The framework produces more and shorter p-threads capable of tolerating less latency but doing so f

misses. The lost opportunity to tolerate longer latencies typically results in lower performance. However, in s

cases, memory latency under-specification can producebetterresults. This is a concrete example of parameter adju

ment overcoming the shortcomings of the framework. Recall, one of the framework’s stated problems is that it

rectly assumes that latencies are serial, i.e., that they translate into performance cycle for cycle. Intwolf andvortex,

by feeding the framework lower than actual latencies, we help itsimulatethe true conditions of naturally overlapped

misses. Actual latency tolerance is not reduced, as there were never 140 cycles worth of latency per miss

Reduced overhead and increased total miss coverage produce a net gain.

5 Related Work

The analysis of cache misses and techniques for avoiding and eliminating them has been has been an active s

research for as long as caches have existed. Software, hardware, and cooperative techniques for prefetchin

and irregular accesses have been proposed and implemented [1, 6, 9, 12], including several that use fin

machines (FSMs) to mimic execution and generate prefetch addresses from loaded prefetch values [10, 13].

An early proposal to accelerate a single sequential program via prefetching using general-purpose threa

Assisted Execution [16]. Implementations of pre-execution in its current form include Speculative Data-Driven

tithreading (DDMT) [14], Speculative Pre-Computation [2, 3, 18], Speculative Slices [20], Software Controlled

Execution [8], and Slice Processors [11]. Each implementation has its own special feature. Recent work propo

execution on an in-memory processor creating a “push” prefetching model which cuts round-trip request/reply

[15, 19].

Our framework complements this body of work. We parametrize the pre-execution run-time model. From a ru

perspective our results apply to all of these implementations, whether p-threads are executed on dedicated r

[3, 2, 11, 15, 19] or in a shared resource environment [8, 14, 20] and whether they are executed at the arch

level [8, 15, 19, 20] or the microarchitectural level [2, 3, 11, 14]. Our results are directly applicable to those im

mentations which also use static p-threads [8, 14, 15, 19, 20]. Short p-thread selection intervals (Section 4.2

used to for comparison with systems in which p-threads are generated continuously and on-the-fly [2, 3, 11]. E
20

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

behav-

ck. For

evels of

be p-

del used

licabil-

one of

e-exe-

alyze

nstructs.

anal-

es the

s prob-

f these.

roces-

oving

asoning

r frame-

c-

a single

ionships

s built

s, and

ecution

check-

under-

-thread

and pro-

about p-

at certain

re prop-

threads.

odel
applicability to dynamic p-thread selection systems is tenuous: such systems typically do not analyze p-thread

ior and do not explicitly target aggregate effects but rather continuously adapt and modify p-threads via feedba

instance, one incarnation of Speculative Precomputation [2] initially selects a conservative p-thread and adds l

induction unrolling if more latency tolerance is needed. In addition to implementation differences, there may

thread sequencing model differences. Our framework assumes control-less p-threads and no chaining, a mo

by several proposed systems [2, 11, 14]. The use of chaining [3] or control flow [8, 15, 19, 20] reduces the app

ity of our results, although extensions to handle these different p-thread sequencing models are possible.

More recently, several frameworks for compiler- or linker-based p-thread generation have appeared [5, 7, 8]

which even employs inter-procedural analysis [5]. These frameworks form a strong implementation path for pr

cution. However, they have certain limitations which derive from their static nature. Primarily, they cannot an

the latency tolerance of general dataflow graphs and must instead approximate these from high-level static co

Although the amount of main thread work available for overlapping can be approximated for simple loops, such

ysis is difficult for general conditional and call constructs. By dealing with execution traces, our framework se

dynamic instruction stream as a long straightline piece of code (in which loops are unrolled) and sidesteps thi

lem. We hope that some of the insight supplied by our framework can be combined with the practical aspects o

6 Conclusions

Memory latency is a significant component of total execution time for integer programs running on modern p

sors. With multithreading becoming prevalent, pre-execution—a recently proposed technique for effectively m

cache miss latency to other threads—is becoming popular. This paper presents a quantitative framework for re

about the performance potential of pre-execution and, as a useful side effect, for selecting static p-threads. Ou

work contains two novel components.Aggregate advantageis a function that combines the important p-thread sele

tion criteria—latency tolerance per miss, overhead, and ratio of p-threads launched to misses covered—into

numerical value, allowing these often antagonistic considerations to be simultaneously optimized. Theslice treeis a

data structure that naturally represents the set of all possible candidate p-threads and the overlap relat

between them, allowing non-redundant solutions comprising multiple p-threads to be found. The framework i

from first principles. A few external parameters allow it model most processor configurations.

We apply our framework to find static p-threads for covering L2 misses in the SPEC2000 integer benchmark

evaluate the performance of these p-threads using detailed timing simulation. In addition to measuring pre-ex

performance under different p-thread selection and processor conditions, we evaluate the framework itself by

ing its diagnostic predictions against simulated measurements and by verifying that it qualitatively responds to

lying parameter variations as an optimization framework would. We find that aggregate advantage models p

behavior accurately, and that it parametrizes the important aspects of the underlying processor—miss latency

cessor width—accurately to a first order. The performance results themselves reveal several interesting facts

threads. P-thread effectiveness monotonically increases as selection constraints are relaxed but saturates

characteristic points. This behavior strongly suggests that pre-execution effectiveness and p-thread structure a

erties of the program—a given program/processor pair is associated with a certain canonical set of static p-

Encouragingly, our framework gravitates to this set when left to its own devices.

There are several interesting directions for future work. Primarily, alignment of the framework’s performance m
21

University of Pennsylvania, Department of Computer and Information Science Technical Report MS-CIS-02-23
available at http://www.cis.upenn.edu/~amir/pubs/tr/tselect-tr2002.pdf

mpo-

pped

ses.

Range

Specu-

Pro-

meric

n.” In

-

sity of

nium
and its assumptions with reality is a continuing process. This may involve adding a critical path modeling [4] co

nent to the framework or enriching its vocabulary to allow it to quantitatively reason about naturally overla

misses. Such an addition is important as it would allow us to better model p-threads for pre-executing L1 mis

7 References

[1] T. Chen and J. Baer. “Effective Hardware Based Data Prefetching for High Performance Processors.”IEEE Transactions on
Computers, 44:609–623, May. 1995.

[2] J. Collins, D. Tullsen, H. Wang, and J. Shen. “Dynamic Speculative Precomputation.” InProc. 34th International Sympo-
sium on Microrchitecture, pages 306–317, Dec. 2001.

[3] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen. “Speculative Pre-Computation: Long
Prefetching of Delinquent Loads.” InPrc. 28th International Symposium on Computer Architecture, pages 14–25, Jul. 2001.

[4] B. Fields, S. Rubin, and R. Bodik. “Focusing Processor Policies via Critical Path Prediction.” InProc. 27th Annual Interna-
tional Symposium on Computer Architecture, pages 74–85, Jul. 2001.

[5] D. Kim and D. Yeung. “Design and Evaluation of Compiler Algorithms for Pre-Execution.” InProc. 10th International Con-
ference on Architectural Support for Programming Languages and Operating Systems (to appear), Oct. 2002.

[6] A. Lai, C. Fide, and B. Falsafi. “Dead-block prediction and dead-block correlating prefetchers.” InPrc. 28th International
Symposium on Computer Architecture, pages 144–154, Jul. 2001.

[7] S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and J. Shen. “Post-Pass Binary Adaptation for Software-Based
lative Pre-Computation.” InProc. ACM 2002 Conference on Programming Language Design and Implementation, Jun.
2002.

[8] C.-K. Luk. “Tolerating Memory Latency through Software-Controlled Pre-Execution in Simultaneous Multithreading
cessors.” InPrc. 28th International Symposium on Computer Architecture, pages 40–51, Jul. 2001.

[9] C.-K. Luk and T. Mowry. “Compiler Based Prefetching for Recursive Data Structures.” InProc. 7th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, pages 222–233, Oct. 1996.

[10] S. Mehrotra and W. Harrison. “Examination of a Memory Access Classification Scheme for Pointer-Intensive and Nu
Program.” InProc. 10th International Conference on Supercomputing, pages 133–139, May 1996.

[11] A. Moshovos, D. Pnevmatikatos, and A. Baniasadi. “Slice Processors: An Implementation of Operation-Predictio
Proc. 2001 International Conference on Supercomputing, Jun. 2001.

[12] T. Mowry, M. Lam, and A. Gupta. “Design and evaluation of a compiler algorithm for prefetching.” InProc. 5th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems, pages 62–73, Oct. 1992.

[13] A. Roth, A. Moshovos, and G. Sohi. “Dependence Based Prefetching for Linked Data Structures.” InProc. 8th Conference
on Architectural Support for Programming Languages and Operating Systems, pages 115–126, Oct. 1998.

[14] A. Roth and G. Sohi. “Speculative Data-Driven Multithreading.” InProc. 7th International Symposium on High-Perfor
mance Computer Architecture, pages 37–48, Jan. 2001.

[15] Y. Solihin, J. Lee, and J. Torrellas. “Using a User Level Memory Thread for Correlation Prefetching.” InProc. 29th Interna-
tional Symposium on Computer Architecture, pages 171–182, May 2002.

[16] Y. Song and M. Dubois. “Assisted Execution.” Technical Report #CENG 98-25, Department of EE-Systems, Univer
Southern California, Oct. 1998.

[17] D. M. Tullsen, S. J. Eggers, and H. M. Levy. “Simultaneous Multithreading: Maximizing On-Chip Parallelism.” InProc.
22nd International Symposium on Computer Architecture, pages 392–403, Jun. 1995.

[18] P. Wang, H. Wang, J. Collins, E. Grochowski, R. Kling, and J. Shen. “Memory Latency Tolerance Approaches for Ita
Processors: Out-of-Order Execution vs. Speculative Precomputation.” InProc. 8th International Syposium on High-Perfor-
mance Computer Architecture, Jan. 2002.

[19] C.-L. Yang and A. Lebeck. “Push vs. Pull.” InProc. 2000 International Conference on Supercomputing, May 2000.

[20] C. Zilles and G. Sohi. “Execution Based Prediction Using Speculative Slices.” InPrc. 28th International Symposium on
Computer Architecture, pages 2–13, Jul. 2001.
22

	1 Introduction
	2 Background
	3 P-Thread Selection Framework
	3.1 Aggregate Advantage: Quantifying the Performance Impact of a Single Static P-Thread
	3.2 Slice Tree: Selecting Multiple P-Threads Simultaneously
	3.3 Framework Extensions: Merging and Optimization

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Primary Performance Results
	4.3 Model Validation
	4.4 Sensitivity to P-Thread Selection Parameters
	4.5 Sensitivity to Machine Parameters

	5 Related Work
	6 Conclusions
	7 References

