A Study of Control Independencein Superscalar Processors

Eric Rotenbay*, Quinn Jacobson, Jim Smith
Computer Sciences Dept.* and Dept. of Electrical and Computer Engineering
University of Wisconsin - Madison

Abstract

Control independenchasbeenput forward asa signifi-
cantnew source of instruction-lesel parallelism for future
geneation processos. Howerer, its performancepotential
under practical hardware constaints is hot known, and
evenlessis undestoodaboutthe factors that contribute to
or limit the performance of comtrindependence

Important aspectsof contol independenceare identi-
fied and singled out for study and a seriesof idealized
madine modelsare usedto isolate and evaluate these
aspectslt is shownthat mud of the performancepotential
of contol independencés lost due to data dependences
and wasted resouces consumedby incorrect control
dependeninstructions.Evenso, control independencean
closetheperformancegapbetweerreal andperfectbranc
prediction by as murcas half

Next, important implementationissuesare discussed
andsomedesignalternativesare given.Thisis followedby
a more detailed set of simulations,whele the key imple-
mentationfeatulesare realisticallymodeledThesesimula-
tions show typical performance inggements of 10-30%.

1. Introduction

In order to expose instruction-leel parallelism in
sequentialprograms,dynamically scheduledsuperscalar
processorgorm a “window” of fetchedinstructions.Each
cycle, the processoselectsandissuesa groupof indepen-
dent instructionsfrom this window. Maintaining a suffi-
ciently large window of instructionsis essentiaffor high
instruction-level parallelism-- the moreinstructionsin the
windaow, thegreatetthe chanceof findingindependentnes
for parallel eecution.

Branchinstructionsarea major obstacleto maintaining
a large window of usefulinstructionsbecausehey intro-
ducecontmol dependences the next groupof instructions
to befetchedfollowing a branchinstructiondepend®n the
outcomeof the branch.Typically, high performancepro-
cessorslealwith controldependencesy usingbranchpre-
diction. Theninstructionfetchingandspeculatre issuecan
proceeddespiteunresoledbranchesn thewindow. Unfor-
tunately branch mispredictionsstill occur and current
superscalaimplementationsquashall instructionsaftera
mispredictedranch therebylimiting the effective window
size. Following a squashthe window is often empty and

several cycles are requiredto re-fill it beforeinstruction
issuingproceedstfull efficieng. Furthermorewe arefast
approachinghe pointwherethe hardwarewindow thatcan
be constructedxceedsthe averagenumberof instructions
between mispredictions.

There are three ways of dealing with the conditional
branchproblem. The first, and mostwidely studied,is to
improve branch prediction. This approachhas receved
considerablgsuccessfulyesearcheffort for mary years.
The secondss to fetch and executeboth pathsfollowing a
branch,andkeeponly the computatiorof the correctpath.
Of coursethis canleadto exponentialgrowth in hardware,
so recently more selectve approacheshave beenadwo-
cated, where multi-path execution is only used for
hard-to-predictbrancheq1-6]. Predicatedexecutionis a
software methodfor achiezing a similar effect [7, 8]. The
third approachis aimed at reducingthe penalty after a
mispredictionoccurs.This approachexploits the fact that
not all instructionsfollowing a mispredictedbranchhave
performed useless computation.

The third approachis probably less well understood
thanthe othertwo, andin this paperwe explore its poten-
tial. Thekey pointis thatonly a subsef dynamicinstruc-
tions immediatelyfollowing the branchmay truly depend
on the branch outcome. These instructions are contmol
dependenbn the branch.Otherinstructionsdeeperin the
window may be control independenbf the mispredicted
branch:they will be fetchedregardlessof the branchout-
come, and do not necessarilyhave to be squashedand
re-executed[9, 10]. This can be illustratedwith a simple
example.

actual path
r5¢
/,
5 @ o r4<
y
«rb
<r4

FIGURE 1. An example of control independence.

Figurel shaws a control flow graph(CFG) containing
four basicblocks.Basicblocksareusedfor simplicity and
may be substitutedwith arbitrary control flow. The branch

terminatingblock 1 is mispredicted with dashedarrows
indicating the mispredictedpath 1, 2, and 4. Two data
dependences, throughgisters r4 and r5, are also gho

At the time the mispredictionis detectedplocks 1, 2,
and4 have alreadybeenspeculatiely fetchedandsomeof
their instructions may have already started executing.
Becauseonly block 2 is control dependenbn the mispre-
dictedbranch,it is the only block whoseinstructionsmust
be squashedmmediatelyafterthe mispredictionis found,
the fetch unit goesbackandfetchesblock 3 to replacethe
squashed instructions of block 2.

Control independeninstructionsfollowing the mispre-
dicted branch,specifically block 4, are not squashedbut
they do needto beinspectedor datadependenceiolations
causeddy the mispredictectontrol flow, andsomeinstruc-
tionsmayhave to bere-executed.Thevalueidentifiedwith
r5 must be correctedso that block 4 usesthe value pro-
ducedearlierin block 1 insteadof the oneincorrectlypro-
ducedin block 2. Likewise, when block 3 is eventually
insertednto thewindow, the datadependencéroughreg-
ister r4 must also be establishedNote that data depen-
denceghroughmemorymustsimilarly be repaired.After
theinstructionsusingr4 andr5 in block 4 correcttheir data
dependencesnd reissue,all subsequentiata dependent
instructionsmustalsoreissue Hence,selectve instruction
reissue [11, 12] in some form is necessary

Lam andWilson’s limit studyon control independence
[9] shawved that substantialperformanceimprovements
may be possible.However, asa limit study mostimple-
mentationconstraintsverenot consideredFurther impor-
tantaspectof programsthemseleswere not modeled;in
particular a significantsubsetof datadependences/ere
ignoreddueto thetrace-drven natureof the study Several
microarchitectureimplementationshave since been pro-
posedthatincorporatecontrolindependencen someform
[10,12-19].In thesestudies however, eitherthe impactof
control independenceés not isolated, or insight into the
reportedperformanceyainsis limited andobscuredy arti-
facts of the particular design.

In this paperwe have threeprimary objectivesandcon-
tributions. Thefirst objectve is to establish new bounds on
the performance potential of control independence under
implementation constraints. The studyfocuseson two fun-
damentalconstraintsthat characterizesuperscalaproces-
sors: instruction window size and instruction fetch/issue
bandwidth. Other aspectsof the study remainideal and
aggressie to aoid artificial design limitations.

The secondobjectie is to provide insight into the fac-
tors that contribute to or limit the performance of control
independence. Data dependencebetweencontrol depen-
dent and control independentnstructionsplay an impor-
tant role. In Figurel, thereis a true data dependence
(register r4) betweenthe correct control dependent

instructions in block 3 and subsequentontrol indepen-
dentinstructionsin block 4. Similarly, thereis afalse data
dependence (register r5) producedby the incorrect con-
trol dependent instructions in block 2. Resolvingboth
typesof datadependenceis delayedby thebranchmispre-
dictionin spiteof controlindependenceéAnotherimportant
factor is the waste of fetch and execution resourcesby
incorrect control dependentinstructions.Having to first
fetch the misspeculatedinstructions delays filling the
instruction window with correct, control independent
instructions. Also, if there are more incorrect control
dependeninstructionsthan correctones,e.g. block 2 is
larger than block 3, window spaceis wastedthat might
have gone to more control independent instructions.

Thethird objectie is to assess the complexity of imple-
menting aggressive control independence mechanisms in
superscalar processors. Althoughit is beyondthe scopeof
this paperto put forth detailed designs,implementation
requirementareidentifiedandhardware/softvare alterna-
tivesfor meetingthe requirementsare proposedWe have
also developeda detailedexecution-drven simulator that
implements the outlined requirements.

Several conclusionsemege from our study First, the
performancegap betweenbranchpredictionwith corven-
tional speculationand oracle branch prediction is quite
large, but controlindependenckoldsthepotentialfor clos-
ing thegapby asmuchashalf. Secondtheeffectsof incor-
rect control dependent instructions -- both wasted
resourceandfalsedatadependences significantly limit
the benefits of control independence,with wasted
resourcedeingthe chief problem.Theimpactof true data
dependencess slightly smaller than that of false data
dependenceslhird, for the chosendesignalternatvesin
the detailed execution-drven model, performance
improvements ranging from 10% to 30% are measured.

In order to keepthe study manageablewe limit our
scopeto one of two major schemedor exploiting control
independenceln particulat the study targets processors
thatusea singleflow of control,i.e. a singlefetch unit, as
in todays superscalaprocessorsOther schemesusing
multiple flons of control, are not studied here.

1.1 Prior work

LamandWilson'slimit study[9], anda similar studyby
Uht and Sindagi[1], demonstrateshat control indepen-
denceexposesa large amountof instruction-leel parallel-
ism, on the orderof 10 to 100. Although theseresultsare
important,full interpretationis obscuredor bothtechnical
and practical reasonsAs pointed out in an analysisby
Sundararamarmnd Franklin [20], the limit study makes
certainassumptionghat may inflate the apparentenefits
of controlindependencestatichranchpredictionbasedon
profiling is used,as opposedto more accuratedynamic

branchpredictors.More importantly becausehe simula-
tion is fully trace-drven, it doesnot accountfor falsedata
dependencesreatedon mispredictedoaths,thusallowing
incorrect-datadependeninstructionsto be schedulecear-
lier thanthey would bein practice Furthermorelimit stud-
ies, by definition, are unconstrainedn orderto measure
inherent parallelismin programsanddo not considerfun-
damentalprocessofeaturesThereis no conceptof alim-
ited instruction window or instruction fetch bandwidth,
whetherconsideringa single or multiple flows of control.
Theentiredynamicinstructionstreams scheduleatonce;
exposing the obsened parallelismmay require buffering
speculatre statefor thousand®f instructionsandusingan
impractical number of parallel fetch units.

Multiscalar processorg10,13] and other speculatiely
multithreaded architectures [14-17,19] exploit control
independencby pursuingmultiple flows of control.In the
caseof multiscalar the compiler partitions the program
into tasks,or subgraphsf the CFG, which may contain
arbitrarycontrol flow. Branchmispredictionswithin a task
may not causesubsequentasksto squashf they arecon-
trol independenof the branch.To date,however, therehas
beenno studythatseparatetheimpactof controlindepen-
denceanddeterminedts contributionto performanceén the
multiscalar paradigm.

Trace processorgd12,21] are a variant of multiscalar
processorsvherethe dynamicinstructionstreamis divided
into traces -- frequently executed dynamic instruction
sequencesAn internal mispredictedconditional branch
causedts traceto be squashedbut subsequentracesare
notsquashed, afterrepairingthemispredictecbranchand
predictinga new sequencef tracesthe new tracesarethe
sameasthosealreadyresidingin the processingelements
[12]. Only modestimpraovementsare reportedbecauseno
optimizationin traceselectionor processoassignmenvas
done to &pose control independence.

The instructionreusebuffer [18] providesanotherway
of exploiting control independencelt saves instruction
input and output operandsin a buffer -- recurringinputs
canbeusedto index the buffer anddeterminghe matching
output.In the proposedsuperscalaprocessowith instruc-
tion reuse,thereis completesquashingafter a branchis
mispredicted.However, control independentinstructions
after the squashcan be quickly evaluatedvia the reuse
buffer. Overall speedupsiue to reuseare on the order of
10%, over half of which is due to squash reuse.

1.2 Paper organization

In Section2, we considera seriesof idealizedmachine
modelsin order to better understandhe relative impor-
tanceof someof the biggerissuesaffecting control inde-
pendenceSection3 lists the key featuresin a superscalar
processorfor exploiting control independenceand dis-

cussesmplementatioralternatvesfor eachof thefeatures.
Next, in Section4, we studyperformanceconsideringim-
ing constraints imposed by practical implementations.

2. Thepotential of control independence

In this sectionwe begin evaluating the performance
potential of control independencen superscalaproces-
sors.It is anidealizedstudyin the sensethat someof the
models have oracle knowledge so that (1) performance
boundscan be establishedand (2) aspectsthat limit the
performanceof controlindependenceanbeisolated.The
latter has important implications: by understandingthe
limiting aspectstechniquesnaybedevelopedto overcome
them.On the otherhand,the studyis not an unconstrained
“parallelismlimit study”-- a particularclassof implemen-
tations is tageted, and fundamental resources are limited.

2.1 Control independence models

In the modelsgiven belaw, the performancampact of
threeimportantaspect®f a controlindependentiesignare
singled out for study

* The first aspect concerns true data dependences
between correct control dependentinstructions and
controlindependeninstructions.In suchcasesjssuing
the control independentinstructionsis delayeduntil
afterthe mispredictionis resohed andthe correctcon-
trol dependent instructions are fetched/issued.

* The secondaspects the handlingof falsedatadepen-
dencescreatedby incorrectcontrol dependentnstruc-
tions. As discussedearlier thesecausethe selectve
reissue of some control independentinstructions.
Delaysbroughton by this repairand selectve reissue
can inhibit performanceains.

* The third aspectis the use of machineresourcesby
instructionson an incorrect path that are eventually
squashed.Even if control independenceis ideally
implementedotherwise, this waste of resourcesand
time will reduce performance.

Six differentmodelsare evaluated.Figure?2 illustrates
the differencesamongthesesix models,usingthe example
CFGin Figurel. Only two resourcesinstructionfetchand
issue,areshavn. Time progresseslovnward in the fetch/
issueschedulesketchingeachbasicblock consumedetch
bandwidth;this is shavn using basicblock labelswithin
their respectie fetchslots.Lik ewise, instructionsconsume
issuebandwidth,andarelabeledfirst with the correspond-
ing basicblock, followed by the production/consumption
of a value. For clarity, only instructionsthat ultimately
retire (i.e. correctinstructions)are shavn; for these,only
the final issuetime is shavn. The labels“M” and“D” in
the diagramsindicatethe time of the branchmisprediction
(M) and the time that the misprediction is detected (D).

FETCH ISSUE FETCH ISSUE FETCH ISSUE
L M| L M-
3 1: r5<= 4 1: rb<= 4 1: r5<=
4 B: r4<= 4: <=r5
TIME @A <=r5 . .
N 4. <=r4 . °
* D= 3 D> 3 4: <=r5
3: rd<= 3: rd<=
4. <=r4 4. <=r4
(@ ORACLE (b) NWR-nFD (c) nWR-FD

FETCH ISSUE FETCH ISSUE FETCH ISSUE
M- M- 1 M——
2 1: r5<= 1: r5<= 1: r5<=
4 @ <=r5 4 4
D=3 D3 h<ms P> 3
3: rd<= 3: rd<= 4 B: rd<=
@ <=r4 @ <=r4 4 <=r5
@: <=r4
(d) WR-nFD (e) WR-FD (f) BASE

FIGURE 2. Fetch and issue timing for the six models, corresponding to the example CFG in Figure 1.

The oracle model (Figure2(a)) usesoraclebranchpre-
diction andthereforethe branchterminatingblock 1 is not
mispredicted.Blocks 1, 3, and 4 are fetchedin correct
dynamic program order

Thenext four modelsuserealbranchpredictioncoupled
with complete knowledge of control dependencedo
exploit controlindependenceTlhe following notationsare
used.

* WR (“WastedResources”)Misspeculatednstructions
consumawvindow resourcesandbandwidth thusdelay-
ing other correct instructions.

* FD (“False Data Dependences”)The effects of false
datadependencebetweenincorrectcontrol dependent
instructionsand control independentinstructionsare
modeled.

The inversenotations,nWR and nFD, indicatethe corre-
spondingfactoris not modeled.Thus,therearefour possi-
ble modelsnWR-nFD, nWR-FD, WR-nFD, andWR-FD.

In the NWR-nFD model (Figure2(b)), mispredicted
branchesdelay fetching the correct control dependent
instructions But betweenthe time thata branchis mispre-
dictedandthe mispredictionis detectedfetchandwindow
resourcesre kept busy with control independentnstruc-
tions. Incorrectcontroldependeninstructionsarenot con-
sidered (for example, block 2 is not fetched into the
window), thereby eliminating false dependencesand
devoting resourcessolely to control independentwork
while the misprediction is resad.

The only differencebetweenthis model and oracle is
thatinstructionsare fetchedin a differentorderfollowing
mispredictedbranches.This has a negative performance
impactonly whentrue datadependenceare delayedwith
respecto oracle. For example,instruction“4; <=r4” issues
laterbecausehe producerinstructionin block 3 is delayed
by the misprediction.

Interestingly thereare situationswhereperformanceof
NWR-nFD may actually exceedthat of oracle. For exam-
ple, instruction “4: <=r5" issues slightly earlier with

respectto oracle, becauselock 4 is fetchedout-of-order
andearlier If this instructionis on the critical path,sched-
uling it earlier may impree overall performance.

The nWR-FD model, shovn in Figure2(c), also does
not wastetime with misspeculatednstructions,however
their effectson datadependencearefelt. For example,we
do not know the true producerof “r5” until the mispredic-
tion is resohed, delayinginstruction“4: <=r5" until that
time. The repair of falsedatadependences assumedo
occur in a single cycle, at the time a mispredictionis
resolhed -- this is the best that can be achie

The dual of this modelis WR-nFD (Figure2(d)): mis-
speculatednstructionstake up time and resourcegindi-
cated by shadedregions), but false dependencesare
hidden. Performance degradation with respect to
NWR-nFD is causedby an underutilized window and
delayedfetching of correct(control independentjnstruc-
tions.

The WR-FD model(Figure2(e)) usesno oracleknowl-
edge regarding misspeculatednstructions-- they waste
both time and resourcesand interfere with data depen-
dencesThis modelrepresentsn upperboundon the per-
formanceof superscalaprocessorgxploiting basiccontrol
independence.

Finally, the base model (Figure2(f)) squashesall
instructions after a branch misprediction.

2.2 Hardware constraints and assumptions

We areinterestedn the performancempactof instruc-
tion window sizeandmachinewidth (peakfetch,issueand
retire rate) on control independenceln our study the
machinewidth is 16 instructionsper cycle for all simula-
tions,andwindow sizeis varied.We implementthefollow-
ing additional hardare constraints and assumptions:

* Instructionfetchis ideal: up to 16 instructions,includ-
ing any numberof branchesganbefetchedevery cycle.
¢ Instruction fetch, dispatch,issue, execute, and retire
stagesare modeled.Fetch and dispatchtake 1 cycle
each.Issuetakesat least1 cycle, possiblymoreif the

instruction must stall for operandsExecutiontakes a
fixed lateny basedon instructiontype, plus ary time
spentwaiting for aresultbus. Addressgeneratiortakes
1 cycle,andall datacacheaccessearel cycle (i.e. per-
fect data cache). Instructions retire in order

* Any 16 ready instructions may issue inyale.

¢ OQutput and anti-dependencefor both registers and
memory are eliminated (i.e. perfect renaming).

¢ Oracle memory disambiguationis used. (However,
storesfetcheddown the wrong control path may still

interfere with subsequent, control independent loads.)

» A 2.entry gshare predictor[22] is implementedfor
predicting the direction of conditional branches.All
directtargetaddresseareassumedo be predictedcor-

rectly. For indirect calls and jumps, a 216—entry corre-
lated target buffer [23] is used.Returnsare predicted
using a perfect return address stack [24].

2.3 Benchmarks

Dynamic instruction traces, including both correctly
speculatedand misspeculatednstructions,are generated
by the Simplescalasimulator[25]. Five integer SPEC95
benchmarks-- chosento reflect a variety of prediction
accuracies @blel) -- were simulated to completion.

TABLE 1. Benchmark information.

benchmark input dataset dxn. instr. count mig. rate
gcc -O3 genrecog.| 117 M 8.3%
go 99 133 M 16.7%
compress 400000 e 2231 104 M 9.1%
ijpeg vigo.ppm 166 M 6.8%
vortex modified train inpuf] 101 M 1.4%
2.4 Results

Resultsof simulating the six machinemodelsare in
Figure3. Performancés measuredh instructionspercycle
(IPC) and is shon as a function of winde size.

First of all, a performanceupperboundis established
with the oracle results. Theseresults, assumingperfect
branchprediction, are typically over 10 IPC for window
sizesof 256t0 512. The machinewidth upperboundis 16,
andmostof thebenchmarkgomecloseto this mark.Com-
paringthe oracle andbase resultsindicatesa large perfor-
manceloss dueto branchmispredictionswith a complete
squash(but otherwiseideal) model. For a 512 instruction
window, the lossis betweern40% and 70% for four of the
five benchmarksThe benchmarkhat hasthe leastperfor-
mancelossis vortex -- but its predictionaccurag is quite
high. Performancéor the base modeltypically saturatest
awindow size of 128 or 256. Thereis no suchsaturation
point for the oracle model. Theseresultsare consistent
with thoseproducedby othersandindicatethe importance
of branch mispredictions orverall performance.

Thedifferencebetweeroracle andnWR-nFD illustrates
performancdossedrom deferringinstructionson a correct
control dependenpathuntil aftera mispredictedoranchis
resolhed.In NWR-nFD, however, machineresourceslo not
sit idle while the mispredictedbranchis resohed -- all
machineresourcesare kept as busy as possiblefetching
and executing the control independenpath. The perfor-
mancelossis typically only 1 to 2 IPC for the mediumto
large windavs.

The base model also defers execution of the correct
control pathfollowing a mispredictionput it getsno bene-
fit from the machineresourcesbefore the mispredicted
branchis resolhed -- ary work done after the branchis
squashedviewedin this way, nWR-nFD indicatesthatthe
otherwisewastedresourcesn base canleadto large per-
formancebenefitsin termsof theway controlflow is man-
aged, nWR-nFD is most similar to Lam and Wilson’s

model [9], because misspeculated instructions are ignored.

With nWR-FD, the impactof falsedatadependenceis
isolated.For four of the five benchmarksthe performance
drop is significant,anotherl to 2 IPC belov nWR-nFD.
Compress experiences muchlargerdropin performance.
Falsedependenceis compress limit IPC to under5 for all
window sizes.

With WR-nFD, we isolate the effects of wasting
resourcedy executingincorrectcontroldependeninstruc-
tions until the branchis resolhed. Someresourcesre still
usedfor the control independenpath -- but not until and
unless the fetch unit reachesthe control independent
region. This resultsin a majordropin performancebigger
than the drop causedby nWR-FD. For all benchmarks
except compress, the effect of wastedtime and resources
dominateghatof falsedependencesy aboutafactorof 2.

With WR-FD, we seethe combinedimpact of wasted
resourcesandfalsedependencesausedoy incorrectcon-
trol dependeninstructions.Fortunately the effectsarenot
additive. TheWR componenalreadydominatessothereis
little additionalpenaltycausedby repairingand reissuing
falsedatadependeninstructionsn the controlindependent
stream(except for compress). At this point performance
gains are about 100%er thebase machine.

2.5 Summary and applications of the study

This initial study has establishedperformancebounds
for controlindependence the contet of superscalapro-
cessorsThe WR-FD modelreducesthe gap betweenthe
oracle andbase modelsby half, anda realisticimplemen-
tation will fall somevhere betweebase andWR-FD.

The otherthreecontrolindependencenodelsalsohave
interestingimplications. A major performancelimiter is
the incorrectcontrol dependenpath, primarily becausef
wastedfetching and window space(WR-nFD), but also
false data dependencegnWR-FD). If these limitations

could be mitigated in some way, performanceof the
NWR-nFD model indicatesthe remainingproblemis less
significant, i.e. the problem of true data dependences

mentationissuesthat mustbe consideredandthey form a
basis for our later performance simulations in Section

betweenthe deferred,correctcontrol dependenpath and
control independent instructions.

A possibleapproachto mitigating the effects of incor-
rect control dependeninstructionsis to designinstruction
windows and fetch units that are less sensitve to wasted
resourcesThe multiscalararchitectureis a candidatedue
to its multiple program counters and “expandable,
split-window™ [10]. Althoughstrictly speakingour studyis
only applicableto processorsvith a singleflow of control,
we at leastgeta hint of the controlindependenceotential
for some multiscalardesignpoints. For example,Vijayku-
mar’s thesis[26] indicatesaveragetask sizeson the order
of 15 instructions(comparableto the fetch width of 16
instructions) and effective window sizes of under 200
instructionsfor integer benchmarksGiven a multiscalar
processorwith aggressie resolution of intertask data
dependencesand selectve reissuing capability the
NWR-FD modelratherthanWR-FD givesthe moreappro-
priate performance bound due to tixpandable winde.

The large performancedrop betweennWR-nFD and
WR-nFD, the result of wasted fetch and execution
resourcestendsto indicate that both hardware and soft-
ware forms of multi-path executionshould be performed
carefully Thesetechniquesare appliedto both correctly
predicted and incorrectly predicted branches.We have
shavn that wastedresourcescausedby incorrect predic-
tions aloneis a problem;addingsomefraction of correct
predictions wrsens the problem.

3. Implementation issues

In this sectionwe discussimportant implementation
issuesfor exploiting control independencén superscalar
processorsThis discussiorallows usto betterunderstand,
gualitatvely, whereimplementationcompleities may lie.
We do not meanto suggesthat the methodswe describe
arethe only onespossible but we feel the approachesut-
lined hereare adequatdor highlighting the major imple-

gce
16

orasie—]

14

64 128 256 512

window size (log2)

1024 2048

go
16

14

oracle

12

10

NWR-FD

"~ WR-nFD

252

256 512
window size (Iog2)
compress

1024 2048

__——urxle |

WR-nED.

base

N W 0O N 0 ©

64 128 256 512

window size (Iog2)
ijpeg
15

1024 2048

14

oracl

13

WR-rE
—F=AWRNAD

NWR-FO

12

11

810

A OO N © ©

64 128 256 512

window size (log2)

vortex
16

1024 2048

14

12

10

64 128 256 512

window size (log2)

1024 2048

FIGURE 3. Performance of the six models.

3.1 Handling of branch mispredictions

Whena branchmispredictionis detectedn atraditional
superscalaprocessqrthe processomperformsa seriesof
stepsto ensurecorrect execution. Instructions after the
mispredictedbranchare squashecdand all resourceshey
hold arefreed.Typically, freeingresourcedncludesreturn-
ing physical registersto the freelistandreclaimingentries
in the instructionissue buffers, reorderbuffer, and load/
storequeuesin addition,the mappingof physicalregisters
is backed up to the point of the mispredictedbranch.The
instructionfetch unit is alsobacled up to the point of the
mispredictedbranchand the processoibegins sequencing
on the correct path.

Exploiting control independencesquiresmodifications
to the recorery sequenceas illustrated in Figure4 and
describedbelow. Steps1-3 belowv constitutethe restart
sequence, and step 4 theedispatch sequence.

1. After detectinga branchmisprediction thefirst control
independentnstruction (if it exists) mustbe foundin
the window. We call this the reconvergent point,
becausein general,controlindependencexists when
control flav diverges and subsequently re-gemes.

2. Instructions are selectvely squashed,dependingon
whetherthey are incorrect control dependeninstruc-
tions or control independentinstructions. Squashed
instructionsare removed from the window, and ary
resources thehold are released.

3. Instructionfetchingis redirectedto the correctcontrol
dependentnstructions,and thesenew instructionsare
insertedinto the window which may alreadyhold sub-
sequent control independent instructions.

4. Basedon the new, correctcontrol dependeninstruc-
tions, data dependencemust be establishedwith the
controlindependeninstructionsalreadyin the window.
Any modifieddatadependencesausealready-&ecuted
control independent instructions to be reissued.

Restart Sequence

Redispatch Sequence

Incorrect O Control Independent Instructions

N Instructions’ o
Mispredicted Branch / . \ Reconvergent Point
Correct Instructions

FIGURE 4. Misprediction recovery sequence.

3.2 Key microar chitecture mechanisms

To supportthe above recovery stepswe have identified
four underlyingmicroarchitecturenechanismsTheseare:
detecting the recorvergent point, supporting arbitrary
insertionand removal of instructionswithin the window,
establishingcorrectdatadependencefllowing a mispre-
diction, and selectely reissuing instructions.

3.2.1 Detecting the reconvergent point

Ideally, onewould find recorvergentpointsby associat-
ing with every branchinstructionits immediate post-dom-
inator: the basicblock nearestthe branchwhich lies on
every path betweenthe branchand the CFG exit block
[27]. In Figurel, for example,block 4 is the immediate
post-dominatornf the mispredictedoranch.Although the
post-dominatordoes not directly specify the programs
control dependencesit is sufficient for identifying all
recorvergent points. Finding immediate post-dominators
could be difficult using hardware alone.Software can aid
the hardware by encodingthis information. For example,
the compilercould encodethis informationby includingin
eachbranchinstructiona small offsetto its post-dominator
instruction.A secondptionis to incorporatgpost-domina-
tor registersinto the architecture Software canload these
registerswith the addressesf post-dominatoinstructions
for soon-to-be-gecuted branchesand then specify a
post-dominator mgister in each branch instruction.

Hardware-only solutions for detecting recorvergent
points probablyrequireimpreciseheuristics.One alterna-
tive is to exploit easily-identifiedcontrol flow constructs
such as loops and functions. The targets of subroutine
return instructionsand backward branchesare detectable
by hardware,andthey may sene as“global” recorvergent
points. While thesepointsarenot the precise,i.e. nearest,
recorvergent point of ary particular branch, they often
identify a subsetof controlindependeninstructionscom-
mon to mary branchesn a region. Hardware can easily
detectandrecordthelocationof suchpointsin thewindow,
and when a mispredictionis detected,the nearestsuch
point is assumed to be the correct resment point.

3.2.2 Instruction removal/insertion

The restartsequenceequiresselectvely removing and
insertinginstructionswhile maintaininga correctordering.
The reorderbuffer (ROB) of a traditionalsuperscalapro-
cessorcanbe augmentedo supportthis. Oneoptionis to
have the ROB supportarbitraryphysicalshifting of instruc-
tions to collapse and expand the window for restart
sequencesThis first option causeghe physical ROB slots
to move, andary instructiontagsin the pipelinespointing
to them will become out-of-date.

A secondoptionis to implementthe ROB asa linked
list. Then,ary outstandingnstructiontagsdo not change
asthe ROB is repaired but dispatchandretirementwill be
complicatedby multiple linked list operationshbeingdone
in parallel. The compleity of manipulatingthe linked list
canbe reducedby implementingit at a granularitylarger
thana singleinstruction.Thatis, ROB spacecanbe parti-
tioned into multi-instruction blocks. For example,a 256
instruction ROB can be implementedas 16 blocks of 16

instructionseach.Then,ablock atatime canbeinsertedor
removed from the ROB in a more-orless corventional
way. This reducescompleity but alsoreducedull utiliza-
tion of the window asROB blockswill often not be fully
utilized. For example,whenthe processomneedsto insert
eightinstructionsinto the middle of the ROB, it will allo-
cate a full block of 16Ut use only half the entries.
During the restartsequenceresourcegphysical regis-
tersandload/storebuffers) of squashedontrol dependent
instructionsare iteratively reclaimed.In parallel, as the
correctcontroldependenpathis fetched,new instructions
may acquirethe resourcedreedby the old instructions.If
thereare more correctcontrol dependeninstructionsthan
incorrect ones, the resourcesof control independent
instructions, youngest first, are reclaimed to enadom.

3.2.3 Forming correct data dependences

Although instructionsmay be control independentith
a precedingblock of instructions,they may not be data
independent.Consequently both register and memory
dependencesf control independeninstructionsmust be
repaired after a misprediction.

When the restart sequencecompletes, the register
renamemapsreflect stateup to the re-corvergent point.
Control independentinstructions are redispatched[12]
using the up-to-date register maps. During redispatch,
sourceoperandsare remappedvhile destinationoperands
maintain their original assignmentslf an instructions
sourceoperandis mappedto a new physical register the
instruction reissues with nedata.

To repair memory dependenceshe memory-ordering
mechanisnmdetectswhen a precedingstoreis remaoved or
insertedby a restartsequencanddirectsaffectedloadsto
reissue. An implementation can be found in [12].

3.2.4 Selectivereissuing of instructions

If a control independentinstruction reissuesdue to
incorrect register/memorydependenceshen subsequent
data dependent instructions will also need to reissue.

Ultimately, instructionsmay issueandexecutemultiple
times before they eventually retire. Reissuing,therefore,
becomes commoncaseandthe microarchitecturenustbe
modified to reflect this. To reducethe compleity and
lateng of reissuingnstructionsthey remainin theinstruc-
tion issuebuffersuntil they retire[11,12]. Instructionissue
buffers can be built to reissuetheir instructionsautono-
mouslywhenthey obsenre a new valuebeingproducedor
a sourceoperand.This functionality can be built into the
normal issuelogic. Thus, the redispatchlogic needonly
identify instructions directly affected by incorrect data
dependencesand the following data dependenthain of
instructions will automatically reissue.

4. Performance of control independencein a
super scalar processor

The idealizedstudiesof Section2 provide insight into
the factorsthat govern performanceof control indepen-
dence.We now proceedwith a more refined analysis,
focusingon animplementatiorof the modelWR-FD. The
analysisis basedon a detailed fully-executiondriven sim-
ulator, andreflectsthe performancdampactof implement-
ing the basic mechanisms outlined in Sec8on

4.1 Simulator detail

Mary of the basichardwareconstraintsaarethe sameas
in Section2. The machinewidth is 16 instructionsandthe
underlyingpipelineis similar. Instructionfetchingremains
ideal, but a morerealisticdatacacheis modeled.The data
cacheis 64KB, 4-way set associatie. The cacheaccess
lateng is two cyclesfor a hit insteadof one,andthe miss
lateng to theperfectL2 datacaches 14 cycles.Also, real-
istic, but aggressie, addresslisambiguations performed.
Loads may proceedaheadof unresoled stores,and ary
memory hazardsare detectedas store addressedecome
available [12] -- recovery is via the selectve reissuing
mechanismLastly, the branchpredictor while identicalto
that in the ideal study may have lower accurag due to
delayed updates and temporarily incorrect global history

The key mechanismdor supportingcontrol indepen-
dence, outlined in Sectid) are modeled as folls.

Detecting the reconvergent point is donevia software
analysis of post-dominator information.

Instruction removal/insertion is implementedvia the
linked list approach, using single-instruction granularity

Forming correct data dependences is delayeda vari-
able numberof cycles after the mispredictionis detected,
unlike theideal study becausé€l) the redispatctsequence
cannotproceeduntil after the restartsequenceompletes

and (2) redispatch proceeds at the maximum dispatch rate.

Selective reissuing is modeledin detail, whereasthe
ideal study models only the delay causedby repaired
dependencesi.e. only the final instruction issue. The
sourceof reissuingincludesboth register renamerepairs
and loads squashedy stores,followed by a cascadeof
reissued instructions along the dependence chains.

4.2 Performanceresults

Figure5 shavs theinstructionspercycle (IPC) for three
different machines:a superscalaprocessotthat squashes
all instructionsafter branchmispredictiong BASE), a pro-
cessomwith controlindependenceapability (Cl), andone
with the addedcapability to instantaneouslyepair data
dependencesand redispatch all control independent
instructions after the restart sequencecompletes(CI-I).
Measurementare madefor threewindow sizes,128, 256,
and 512 instructions.

For less predictableworkloads, control independence
offers a significantperformanceadwantageover complete
squashingalthoughlessthantheidealstudyindicated.The
relative performancemprovementof Cl over BASE for
eachof the window sizesis summarizedn Figure6. Go,
compress, and jpeg shav improvementson the order of
20%to 30%. While jpeg is fairly predictableijt is alsorich
in parallelismandary mispredictioncyclesresultin alarge
penalty Go on the other handis a very control-intensre
workload with frequent mispredictions,and it demon-
strates the most performance benefit.

Gcce also shaws a substantialperformancegain, about
10%. Statisticspresentedin the next sectionshowv that
approximately60% of gcc's mispredictionshave a corre-
spondingrecotvergentpoint in the window, while for go,
jpeg, andcompress the samestatisticis over 70%. Thefact
thatlesscontrol independencés exposedin gcc may par-
tially account for the lver performanceajn.

FromFigure5 we seethatCl-1, asexpectedgivesbetter
performancethan Cl. However, the gain is small --
between1% and 4% -- meaningthe time spentduring
redispatch sequences has less impact than anticipated.

Cl-1

IPC

© ®
FEE &
S L K

(SRS

© 2 o ® O
FF FEE O
L S S
RN

benchmark/window size

FIGURE 5. Performance of the three models.

Improvement of Cl over BASE

m128
256
512

comp jpeg

35%

30%

25%
20% -
15% -
10% -+
A
0% - |
gcc go

FIGURE 6. Percent improvement in IPC.

% IPC improvement

vortex

4.3 Other control independence measures

This sectionexploresthe behaior of control indepen-
dencein a superscalaprocessotto betterunderstandhe

performanceresults given in the previous section. The
results in this section are for a 256-instruction wimdo

Thefirst row of Table2 shavs how oftena controlinde-
pendentrecorvergentpointis in the window at thetime a
mispredictionis detectedExceptfor vortex, arecorvergent
point is present forwer 60% of mispredictions.

The secondandthird rows of Table2 show the average
number of instructionsremoved and insertedfor those
restart sequences that reconverge in the window. On aver-
age fewerthanl14incorrectcontroldependeninstructions
areremoved, andfewer than 20 correctcontrol dependent
instructionsareinserted.For over 80% of the restartsthat
recorvergein the window, boththe numberof instructions
insertedandremovedis fewerthan32 (notshown in table).

Thefourth row in Table2 shavs thatthe averagenum-
ber of control independeninstructionsafter the recorver-
gentpoint is greaterthan 50 for all the benchmarksThe
fifth row in Table2 shaws that on average,only 2 to 3 of
thecontrolindependeninstructionswill acquirenew phys-
ical register namesduring redispatch,requiring them to
reissugaswell assubsequerdatadependeninstructions).

The last row in Table2 showvs the amountof useful
work that can be saved with control independentnstruc-
tions.Ignoringvortex, 11% (jpeg) to 39% (compress) of all
retiredinstructionsssueandhave their final valuebeforea
precedingmispredictedoranchis resohed. Without using
control independence thisonk would be lost.

TABLE 2. Control independence measures.

statistic gce go | comp | jpeg | vortex
e

% of misp.thatrecorverge] 62% | 71% | 91% | 82% | 4/%
remaved ctl. dep. instr § 13.2 | 13.5 | 6.8 9.0 9.2
inserted ctl. dep. instr § 16.5 | 18.1 | 6.6 10.7 | 12.8
control indep. instr 51.8 | 624 | 122 | 79.8 | 815
instc w/ new reg. names] 2.8 2.2 1.7 2.2 2.1
work sared § 20% [30% | 39% [11% | 4%

5. Conclusions and future work

This researchrefinesour understanding@f controlinde-
pendenceperhapgheleastunderstoodolutionto thecon-
ditional branch problem. The study establishesnew
performancédoundshataccounfor practicalimplementa-
tion constraintsand incorporateall datadependenceslo
gaininsight,the studyidentifiesthreeimportantfactorsand
isolatestheir impact on performance:true data depen-
dencedetweencorrectcontrol dependeninstructionsand
control independentinstructions,false data dependences
createdby incorrect control dependeninstructions,and
wastedresourcesonsumedy incorrectcontroldependent
instructions A conclusionis thatbothtypesof datadepen-
dencedimit the potentialof control independencén per-
haps unavoidable ways, but the biggest performance
limiter is wastedresourcesonsumedy incorrectcontrol
dependeninstructions.This limitation may be reducedin

designscapableof “absorbing” wastedinstruction fetch
and ecution bandwidth.

This paper also discussesimportant implementation
issuesand provides some designalternatves. Simplified
alternatvesareproposedo addressomeof themorecom-
plex aspects,such as the sgmentedROB for arbitrary
insertion/remwal of instructions,and hardware heuristics
for identifying recorvergentpoints.Detailedsimulationsof
a superscalamprocessorimplementing the key features
shav typical performance improvements of 10-30%,
derivedfrom the 20% of retiredinstructionswhosecompu-
tation is saed as a result of control independence.

The purposeof this work is not so muchto adwcate
control independencén corventional superscalaproces-
sors as to promote other control independencearchitec-
tures.This researchis a necessargteptowardsimproving
controlindependencen traceprocessorsyhosehierarchi-
cal structureprovides a simpler implementationin mary
respectsincluding arbitrary instructioninsertion/remaal.
Further the abstractnWR-FD model suggestscombining
the expandablewindow model of multiscalarprocessors
with the aggressie datadependenceesolutionandrecor-
ery model of trace processors.

A muchmorecomprehensk treatmenof controlinde-
pendence can be found in [28], attemsion of this paper

Acknowledgments

This work was supportedin part by NSF Grant
MIP-9505853and by the U.S. Army Intelligence Center
and Fort Huachucaunder Contract DABT63-95-C-0127
and ARPA order no. D346. The views and conclusions
containechereinarethoseof the authorsandshouldnot be
interpretedas necessarilyepresentinghe official policies
or endorsementseither expressedor implied, of the U.S.
Army IntelligenceCenterand Fort Huachucapr the U.S.
Government.Eric Rotenbeg is supportedoy anIBM Fel-
lowship, and Quinn Jacobson by an Intel Redbip.

References

[1] A. UhtandV. Sindagi.Disjoint eagerexecution:An optimal
form of speculativeexecution.28th Intl. Symp.on Microar-
chitecture Dec 1995.

[2] T.HeilandJ.Smith.SelectivedualpathexecutionTechnical
report, Univ. of Wisc., ECE Dept., Nov 1996.

[3] G.Tyson,K. Lick, andM. FarrensLimited dual pathexecu-
tion. TechnicalReportCSE-TR-346-97Univ. of Michigan,
EECS Dept., 1997.

[4] A. Klauser,A. PaithankarandD. Grunwald.Selectiveeager
executionon the polypatharchitecture 25th Intl. Symp.on
Comp. Arch.June 1998.

[5] S.Wallace, B. Calder, and D. Tullsen. Threadedmultiple
path execution25th Intl. Symp. on Comp. Arcldune 1998.

[6] P.Ahuja,K. SkadronM. Martonosi,andD. Clark. Multipath
executionOpportunitiesandlimits. Intl. Conf.on Supercom-
puting, July 1998.

[7] S.Mahlke,R.Hank,J.McCormick,D. August,andW. Hwu.
A comparisorof full andpartialpredicatedexecutiorsupport
for ilp processors22nd Intl. Symp.on Comp.Arch,, June
1995.

[8] H.Ando, C.Nakanishi, T. Hara, and M. Nakaya. Uncon-
strainedspeculativeexecutiorwith predicatedtatebuffering.
22nd Intl. Symp. on Comp. Arcllune 1995.

[9] M. S.LamandR.P.Wilson.Limits of controlflow on paral-
lelism. 19th Intl. Symp. on Comp. Arc¢iMay 1992.

[10] M. Franklin.TheMultiscalar Architecture PhDthesis Univ.
of Wisc., Nov 1993.

[11] M. Lipasti. Value Locality and SpeculativeExecution PhD
thesis, Carnegie Mellon University, April 1997.

[12] E. RotenbergQ. Jacobsony. SazeidesandJ. Smith. Trace
processors30th Intl. Symp. on MicroarchitecturBec 1997.

[13] G. S.Sohi,S.BreachandT. N. Vijaykumar.Multiscalarpro-
cessors22nd Intl. Symp. on Comp. Arclune 1995.

[14] P.Dubey, K. O'Brien, K. M. O'Brien, and C. Barton. Sin-
gle-programspeculativemultithreading(spsm)architecture:
Compiler-assisted fine-grained multithreadiRCT, 1995.

[15] J.-Y. Tsai and P.-C. Yew. The superthreadedrchitecture:
Threadpipelining with run-time datadependencehecking
and control speculatioRACT, 1996.

[16] J.Oplinger,D. Heine, S.-W. Liao, B. Nayfeh,M. Lam, and
K. Olukotun. Softwareand hardwarefor exploiting specula-
tive parallelism in multiprocessors. Technical Report
CSL-TR-97-715, Stanford University, CSL, Feb 1997.

[17] J. SteffanandT. Mowry. The potentialfor usingthread-level
dataspeculatiorio facilitate automatigparallelization 4th In-
tl. Symp. on High Perf. Comp. Arckeb 1998.

[18] A. SodaniandG. S.Sohi.Dynamicinstructionreuse24thin-
tl. Symp. on Comp. Archlune 1997.

[19] H. Akkary and M. Driscoll. A dynamicmultithreadingpro-
cessor31st Intl. Symp. on MicroarchitectyrBec 1998.
[20] K. Sundararamarand M. Franklin. Multiscalar execution

along a single flow of controlCPP’97, Aug 1997.

[21] S.Vajapeyamand T. Mitra. Improving superscalaimstruc-
tion dispatchandissueby exploitingdynamiccodesequenc-
es.24th Intl. Symp. on Comp. Ar¢clune 1997.

[22] S.McFarling. Combining branchpredictors.TechnicalRe-
port TN-36, WRL, June 1993.

[23] P.Chang,E. Hao,andY. Patt. Targetpredictionfor indirect
jumps.24th Intl. Symp. on Comp. Arcldune 1997.

[24] D. Kaeli and P.Emma. Branch history table prediction of
moving targetbranchesueto subroutinereturns.18th Intl.
Symp. on Comp. ArgiMay 1991.

[25] D. Burger, T. Austin, and S. Bennett.Evaluatingfuture mi-
croprocessorsThe simplescalartoolset. Technical Report
CS-TR-96-1308, Univ. of Wisc., CS Dept., July 1996.

[26] T. Vijaykumar. Compilingfor the Multiscalar Architecture
PhD thesis, Univ. of Wisc., Jan 1998.

[27] R. Cytron,J. FerranteB. RosenM. WegmanandF. Zadeck.
An efficient methodof computingstatic single assignment
form. Symp. on Principles of Prog. Languagéan 1989.

[28] E. RotenbergQ. JacobsonandJ. Smith. A studyof control
independence in superscalar processors. Technical
Report1389, Univ. of Wisc., CS Dept., Nov 1998.

