
A Study of Control Independence in Superscalar Processors

Eric Rotenberg*, Quinn Jacobson, Jim Smith
Computer Sciences Dept.* and Dept. of Electrical and Computer Engineering

University of Wisconsin - Madison

Abstract
Control independencehasbeenput forward asa signifi-

cant new source of instruction-level parallelism for future
generation processors. However, its performancepotential
under practical hardware constraints is not known, and
evenlessis understoodaboutthefactors that contributeto
or limit the performance of control independence.

Important aspectsof control independenceare identi-
fied and singled out for study, and a seriesof idealized
machine modelsare used to isolate and evaluate these
aspects.It is shownthatmuch of theperformancepotential
of control independenceis lost due to data dependences
and wasted resources consumedby incorrect control
dependentinstructions.Evenso,control independencecan
closetheperformancegapbetweenrealandperfectbranch
prediction by as much as half.

Next, important implementationissuesare discussed
andsomedesignalternativesaregiven.Thisis followedby
a more detailedset of simulations,where the key imple-
mentationfeaturesare realisticallymodeled.Thesesimula-
tions show typical performance improvements of 10-30%.

1. Introduction

In order to expose instruction-level parallelism in
sequentialprograms,dynamically scheduledsuperscalar
processorsform a “window” of fetchedinstructions.Each
cycle, theprocessorselectsandissuesa groupof indepen-
dent instructionsfrom this window. Maintaining a suffi-
ciently large window of instructionsis essentialfor high
instruction-level parallelism-- themoreinstructionsin the
window, thegreaterthechanceof finding independentones
for parallel execution.

Branchinstructionsarea majorobstacleto maintaining
a large window of useful instructionsbecausethey intro-
ducecontrol dependences-- thenext groupof instructions
to befetchedfollowing abranchinstructiondependson the
outcomeof the branch.Typically, high performancepro-
cessorsdealwith controldependencesby usingbranchpre-
diction.Theninstructionfetchingandspeculative issuecan
proceeddespiteunresolvedbranchesin thewindow. Unfor-
tunately, branch mispredictionsstill occur, and current
superscalarimplementationssquashall instructionsaftera
mispredictedbranch,therebylimiting theeffectivewindow
size.Following a squash,the window is often emptyand

several cycles are requiredto re-fill it before instruction
issuingproceedsat full efficiency. Furthermore,wearefast
approachingthepointwherethehardwarewindow thatcan
beconstructedexceedstheaveragenumberof instructions
between mispredictions.

There are three ways of dealing with the conditional
branchproblem.The first, andmost widely studied,is to
improve branch prediction. This approachhas received
considerable(successful)researcheffort for many years.
The secondis to fetch andexecuteboth pathsfollowing a
branch,andkeeponly thecomputationof thecorrectpath.
Of coursethis canleadto exponentialgrowth in hardware,
so recently, more selective approacheshave beenadvo-
cated, where multi-path execution is only used for
hard-to-predictbranches[1-6]. Predicatedexecution is a
softwaremethodfor achieving a similar effect [7, 8]. The
third approachis aimed at reducing the penalty after a
mispredictionoccurs.This approachexploits the fact that
not all instructionsfollowing a mispredictedbranchhave
performed useless computation.

The third approachis probably less well understood
thantheothertwo, andin this paperwe explore its poten-
tial. Thekey point is thatonly a subsetof dynamicinstruc-
tions immediatelyfollowing the branchmay truly depend
on the branch outcome.These instructions are control
dependenton the branch.Other instructionsdeeperin the
window may be control independentof the mispredicted
branch:they will be fetchedregardlessof the branchout-
come, and do not necessarilyhave to be squashedand
re-executed[9, 10]. This can be illustratedwith a simple
example.

FIGURE 1. An example of control independence.

Figure1 shows a control flow graph(CFG) containing
four basicblocks.Basicblocksareusedfor simplicity and
maybesubstitutedwith arbitrarycontrolflow. Thebranch

r5

r5

r4

r5
r4

1

2 3

4

actual path

terminatingblock 1 is mispredicted,with dashedarrows
indicating the mispredictedpath 1, 2, and 4. Two data
dependences, through registers r4 and r5, are also shown.

At the time the mispredictionis detected,blocks 1, 2,
and4 have alreadybeenspeculatively fetchedandsomeof
their instructions may have already started executing.
Becauseonly block 2 is control dependenton the mispre-
dictedbranch,it is theonly block whoseinstructionsmust
besquashed.Immediatelyafter themispredictionis found,
the fetchunit goesbackandfetchesblock 3 to replacethe
squashed instructions of block 2.

Control independentinstructionsfollowing the mispre-
dicted branch,specificallyblock 4, are not squashed,but
they doneedto beinspectedfor datadependenceviolations
causedby themispredictedcontrolflow, andsomeinstruc-
tionsmayhave to bere-executed.Thevalueidentifiedwith
r5 must be correctedso that block 4 usesthe value pro-
ducedearlierin block 1 insteadof theoneincorrectlypro-
ducedin block 2. Likewise, when block 3 is eventually
insertedinto thewindow, thedatadependencethroughreg-
ister r4 must also be established.Note that data depen-
dencesthroughmemorymustsimilarly be repaired.After
theinstructionsusingr4 andr5 in block4 correcttheirdata
dependencesand reissue,all subsequentdata dependent
instructionsmustalsoreissue.Hence,selective instruction
reissue [11, 12] in some form is necessary.

Lam andWilson’s limit studyon control independence
[9] showed that substantialperformanceimprovements
may be possible.However, as a limit study, most imple-
mentationconstraintswerenot considered.Further, impor-
tant aspectsof programsthemselveswerenot modeled;in
particular, a significant subsetof datadependenceswere
ignoreddueto thetrace-drivennatureof thestudy. Several
microarchitectureimplementationshave since been pro-
posedthat incorporatecontrol independencein someform
[10,12-19].In thesestudies,however, eitherthe impactof
control independenceis not isolated,or insight into the
reportedperformancegainsis limited andobscuredby arti-
facts of the particular design.

In this paperwe have threeprimaryobjectivesandcon-
tributions.Thefirst objective is to establish new bounds on
the performance potential of control independence under
implementation constraints. Thestudyfocuseson two fun-
damentalconstraintsthat characterizesuperscalarproces-
sors: instruction window size and instruction fetch/issue
bandwidth.Other aspectsof the study remain ideal and
aggressive to avoid artificial design limitations.

The secondobjective is to provide insight into the fac-
tors that contribute to or limit the performance of control
independence. Data dependencesbetweencontrol depen-
dent and control independentinstructionsplay an impor-
tant role. In Figure1, there is a true data dependence
(register r4) between the correct control dependent

instructions in block 3 and subsequentcontrol indepen-
dentinstructionsin block 4. Similarly, thereis a false data
dependence (register r5) producedby the incorrect con-
trol dependent instructions in block 2. Resolvingboth
typesof datadependencesis delayedby thebranchmispre-
diction in spiteof controlindependence.Anotherimportant
factor is the wasteof fetch and execution resourcesby
incorrect control dependentinstructions.Having to first
fetch the misspeculatedinstructions delays filling the
instruction window with correct, control independent
instructions. Also, if there are more incorrect control
dependentinstructionsthan correct ones,e.g. block 2 is
larger than block 3, window spaceis wastedthat might
have gone to more control independent instructions.

Thethird objective is to assess the complexity of imple-
menting aggressive control independence mechanisms in
superscalar processors. Althoughit is beyondthescopeof
this paper to put forth detaileddesigns,implementation
requirementsareidentifiedandhardware/softwarealterna-
tivesfor meetingthe requirementsareproposed.We have
also developeda detailedexecution-driven simulator that
implements the outlined requirements.

Several conclusionsemerge from our study. First, the
performancegap betweenbranchpredictionwith conven-
tional speculationand oracle branch prediction is quite
large,but controlindependenceholdsthepotentialfor clos-
ing thegapby asmuchashalf. Second,theeffectsof incor-
rect control dependent instructions -- both wasted
resourcesandfalsedatadependences-- significantly limit
the benefits of control independence,with wasted
resourcesbeingthechief problem.Theimpactof truedata
dependencesis slightly smaller than that of false data
dependences.Third, for the chosendesignalternatives in
the detailed execution-driven model, performance
improvements ranging from 10% to 30% are measured.

In order to keep the study manageable,we limit our
scopeto oneof two major schemesfor exploiting control
independence.In particular, the study targets processors
thatusea singleflow of control, i.e. a singlefetchunit, as
in today’s superscalarprocessors.Other schemes,using
multiple flows of control, are not studied here.

1.1 Prior work

LamandWilson’s limit study[9], andasimilarstudyby
Uht and Sindagi [1], demonstratesthat control indepen-
denceexposesa largeamountof instruction-level parallel-
ism, on the orderof 10 to 100.Although theseresultsare
important,full interpretationis obscuredfor bothtechnical
and practical reasons.As pointed out in an analysisby
Sundararamanand Franklin [20], the limit study makes
certainassumptionsthat may inflate the apparentbenefits
of control independence.Staticbranchpredictionbasedon
profiling is used,as opposedto more accuratedynamic

branchpredictors.More importantly, becausethe simula-
tion is fully trace-driven, it doesnot accountfor falsedata
dependencescreatedon mispredictedpaths,thusallowing
incorrect-datadependentinstructionsto be scheduledear-
lier thanthey wouldbein practice.Furthermore,limit stud-
ies, by definition, are unconstrainedin order to measure
inherent parallelism in programs,anddo not considerfun-
damentalprocessorfeatures.Thereis no conceptof a lim-
ited instruction window or instruction fetch bandwidth,
whetherconsideringa singleor multiple flows of control.
Theentiredynamicinstructionstreamis scheduledatonce;
exposing the observed parallelismmay require buffering
speculative statefor thousandsof instructionsandusingan
impractical number of parallel fetch units.

Multiscalar processors[10,13] and other speculatively
multithreaded architectures [14-17,19] exploit control
independenceby pursuingmultiple flows of control.In the
caseof multiscalar, the compiler partitions the program
into tasks,or subgraphsof the CFG, which may contain
arbitrarycontrolflow. Branchmispredictionswithin a task
may not causesubsequenttasksto squashif they arecon-
trol independentof thebranch.To date,however, therehas
beenno studythatseparatestheimpactof control indepen-
denceanddeterminesits contributionto performancein the
multiscalar paradigm.

Trace processors[12,21] are a variant of multiscalar
processorswherethedynamicinstructionstreamis divided
into traces -- frequently executed dynamic instruction
sequences.An internal mispredictedconditional branch
causesits traceto be squashed,but subsequenttracesare
notsquashedif, afterrepairingthemispredictedbranchand
predictinga new sequenceof traces,thenew tracesarethe
sameasthosealreadyresidingin the processingelements
[12]. Only modestimprovementsarereportedbecauseno
optimizationin traceselectionor processorassignmentwas
done to expose control independence.

The instructionreusebuffer [18] providesanotherway
of exploiting control independence.It saves instruction
input and output operandsin a buffer -- recurring inputs
canbeusedto index thebuffer anddeterminethematching
output.In theproposedsuperscalarprocessorwith instruc-
tion reuse,there is completesquashingafter a branchis
mispredicted.However, control independentinstructions
after the squashcan be quickly evaluatedvia the reuse
buffer. Overall speedupsdue to reuseare on the order of
10%, over half of which is due to squash reuse.

1.2 Paper organization

In Section2, we considera seriesof idealizedmachine
models in order to better understandthe relative impor-
tanceof someof the bigger issuesaffecting control inde-
pendence.Section3 lists the key featuresin a superscalar
processorfor exploiting control independenceand dis-

cussesimplementationalternativesfor eachof thefeatures.
Next, in Section4, we studyperformanceconsideringtim-
ing constraints imposed by practical implementations.

2. The potential of control independence

In this section we begin evaluating the performance
potential of control independencein superscalarproces-
sors.It is an idealizedstudyin the sensethat someof the
models have oracle knowledge so that (1) performance
boundscan be establishedand (2) aspectsthat limit the
performanceof control independencecanbe isolated.The
latter has important implications: by understandingthe
limiting aspects,techniquesmaybedevelopedto overcome
them.On theotherhand,thestudyis not anunconstrained
“parallelismlimit study” -- a particularclassof implemen-
tations is targeted, and fundamental resources are limited.

2.1 Control independence models

In the modelsgiven below, the performanceimpactof
threeimportantaspectsof a controlindependentdesignare
singled out for study.

• The first aspect concerns true data dependences
between correct control dependentinstructions and
control independentinstructions.In suchcases,issuing
the control independentinstructions is delayeduntil
after themispredictionis resolvedandthecorrectcon-
trol dependent instructions are fetched/issued.

• The secondaspectis the handlingof falsedatadepen-
dencescreatedby incorrectcontrol dependentinstruc-
tions. As discussedearlier, thesecausethe selective
reissue of some control independent instructions.
Delaysbroughton by this repair andselective reissue
can inhibit performance gains.

• The third aspectis the use of machineresourcesby
instructionson an incorrect path that are eventually
squashed.Even if control independenceis ideally
implementedotherwise, this waste of resourcesand
time will reduce performance.

Six different modelsare evaluated.Figure2 illustrates
thedifferencesamongthesesix models,usingtheexample
CFGin Figure1. Only two resources,instructionfetchand
issue,areshown. Time progressesdownward in the fetch/
issueschedules.Fetchingeachbasicblock consumesfetch
bandwidth;this is shown using basicblock labelswithin
their respective fetchslots.Likewise,instructionsconsume
issuebandwidth,andarelabeledfirst with thecorrespond-
ing basicblock, followed by the production/consumption
of a value. For clarity, only instructionsthat ultimately
retire (i.e. correctinstructions)areshown; for these,only
the final issuetime is shown. The labels“M” and“D” in
thediagramsindicatethe time of thebranchmisprediction
(M) and the time that the misprediction is detected (D).

FIGURE 2. Fetch and issue timing for the six models, corresponding to the example CFG in Figure 1.

The oracle model(Figure2(a)) usesoraclebranchpre-
diction andthereforethebranchterminatingblock 1 is not
mispredicted.Blocks 1, 3, and 4 are fetched in correct
dynamic program order.

Thenext four modelsuserealbranchpredictioncoupled
with complete knowledge of control dependencesto
exploit control independence.The following notationsare
used.

• WR (“WastedResources”):Misspeculatedinstructions
consumewindow resourcesandbandwidth,thusdelay-
ing other, correct instructions.

• FD (“FalseData Dependences”):The effects of false
datadependencesbetweenincorrectcontrol dependent
instructionsand control independentinstructionsare
modeled.

The inversenotations,nWR and nFD, indicatethe corre-
spondingfactoris not modeled.Thus,therearefour possi-
ble models:nWR-nFD, nWR-FD, WR-nFD, andWR-FD.

In the nWR-nFD model (Figure2(b)), mispredicted
branchesdelay fetching the correct control dependent
instructions.But betweenthetime thata branchis mispre-
dictedandthemispredictionis detected,fetchandwindow
resourcesarekept busy with control independentinstruc-
tions.Incorrectcontroldependentinstructionsarenot con-
sidered (for example, block 2 is not fetched into the
window), thereby eliminating false dependencesand
devoting resourcessolely to control independentwork
while the misprediction is resolved.

The only differencebetweenthis model and oracle is
that instructionsarefetchedin a differentorder following
mispredictedbranches.This has a negative performance
impactonly whentrue datadependencesaredelayedwith
respectto oracle. For example,instruction“4: <=r4” issues
laterbecausetheproducerinstructionin block 3 is delayed
by the misprediction.

Interestingly, therearesituationswhereperformanceof
nWR-nFD may actuallyexceedthat of oracle. For exam-
ple, instruction “4: <=r5” issues slightly earlier with

respectto oracle, becauseblock 4 is fetchedout-of-order
andearlier. If this instructionis on thecritical path,sched-
uling it earlier may improve overall performance.

The nWR-FD model, shown in Figure2(c), also does
not wastetime with misspeculatedinstructions,however
their effectson datadependencesarefelt. For example,we
do not know the trueproducerof “r5” until themispredic-
tion is resolved, delayinginstruction“4: <=r5” until that
time. The repair of falsedatadependencesis assumedto
occur in a single cycle, at the time a misprediction is
resolved -- this is the best that can be achieved.

The dual of this model is WR-nFD (Figure2(d)): mis-
speculatedinstructionstake up time and resources(indi-
cated by shaded regions), but false dependencesare
hidden. Performance degradation with respect to
nWR-nFD is causedby an underutilized window and
delayedfetchingof correct(control independent)instruc-
tions.

The WR-FD model(Figure2(e))usesno oracleknowl-
edge regarding misspeculatedinstructions-- they waste
both time and resources,and interfere with data depen-
dences.This modelrepresentsanupperboundon theper-
formanceof superscalarprocessorsexploiting basiccontrol
independence.

Finally, the base model (Figure2(f)) squashesall
instructions after a branch misprediction.

2.2 Hardware constraints and assumptions

We areinterestedin theperformanceimpactof instruc-
tion window sizeandmachinewidth (peakfetch,issue,and
retire rate) on control independence.In our study, the
machinewidth is 16 instructionsper cycle for all simula-
tions,andwindow sizeis varied.Weimplementthefollow-
ing additional hardware constraints and assumptions:

• Instructionfetch is ideal: up to 16 instructions,includ-
ing any numberof branches,canbefetchedeverycycle.

• Instruction fetch, dispatch,issue,execute,and retire
stagesare modeled.Fetch and dispatchtake 1 cycle
each.Issuetakesat least1 cycle, possiblymore if the

3

4

FETCH

1

ISSUE

3: r4<=
1: r5<=

4: <=r4

(a) ORACLE

TIME

M

D

FETCH

4: <=r5

ISSUE

(b) nWR-nFD

3

1

4
1: r5<=
4: <=r5

3: r4<=
4: <=r4

M

D

FETCH ISSUE

(c) nWR-FD

3

4

1

1: r5<=

3: r4<=
4: <=r4

4: <=r5

FETCH ISSUE

D
3

1

4

2 1: r5<=

3: r4<=
4: <=r4

4: <=r5

(d) WR-nFD

FETCH ISSUE

M

D
3

1

4

2 1: r5<=

3: r4<=
4: <=r4

4: <=r5

(e) WR-FD

M

FETCH ISSUE

M

D
3

1

4

2 1: r5<=

3: r4<=
4

4: <=r5
4: <=r4

(f) BASE

instructionmust stall for operands.Execution takes a
fixed latency basedon instructiontype, plus any time
spentwaiting for a resultbus.Addressgenerationtakes
1 cycle,andall datacacheaccessesare1 cycle (i.e.per-
fect data cache). Instructions retire in order.

• Any 16 ready instructions may issue in a cycle.

• Output and anti-dependencesfor both registers and
memory are eliminated (i.e. perfect renaming).

• Oracle memory disambiguationis used. (However,
storesfetcheddown the wrong control path may still
interfere with subsequent, control independent loads.)

• A 216-entry gshare predictor [22] is implementedfor
predicting the direction of conditional branches.All
direct targetaddressesareassumedto bepredictedcor-

rectly. For indirect calls and jumps,a 216-entry corre-
lated target buffer [23] is used.Returnsare predicted
using a perfect return address stack [24].

2.3 Benchmarks

Dynamic instruction traces, including both correctly
speculatedand misspeculatedinstructions,are generated
by the Simplescalarsimulator[25]. Five integer SPEC95
benchmarks-- chosento reflect a variety of prediction
accuracies (Table1) -- were simulated to completion.

2.4 Results

Resultsof simulating the six machinemodelsare in
Figure3. Performanceis measuredin instructionspercycle
(IPC) and is shown as a function of window size.

First of all, a performanceupperboundis established
with the oracle results.Theseresults,assumingperfect
branchprediction,are typically over 10 IPC for window
sizesof 256to 512.Themachinewidth upperboundis 16,
andmostof thebenchmarkscomecloseto thismark.Com-
paringtheoracle andbase resultsindicatesa largeperfor-
mancelossdueto branchmispredictionswith a complete
squash(but otherwiseideal) model.For a 512 instruction
window, the lossis between40% and70% for four of the
five benchmarks.Thebenchmarkthathasthe leastperfor-
mancelossis vortex -- but its predictionaccuracy is quite
high.Performancefor thebase modeltypically saturatesat
a window sizeof 128 or 256. Thereis no suchsaturation
point for the oracle model. Theseresultsare consistent
with thoseproducedby othersandindicatethe importance
of branch mispredictions on overall performance.

Thedifferencebetweenoracle andnWR-nFD illustrates
performancelossesfrom deferringinstructionsonacorrect
controldependentpathuntil aftera mispredictedbranchis
resolved.In nWR-nFD, however, machineresourcesdo not
sit idle while the mispredictedbranch is resolved -- all
machineresourcesare kept as busy as possiblefetching
and executing the control independentpath. The perfor-
mancelossis typically only 1 to 2 IPC for the mediumto
large windows.

The base model also defersexecution of the correct
controlpathfollowing a misprediction,but it getsno bene-
fit from the machineresourcesbefore the mispredicted
branchis resolved -- any work done after the branchis
squashed.Viewedin this way, nWR-nFD indicatesthat the
otherwisewastedresourcesin base can lead to large per-
formancebenefits.In termsof thewaycontrolflow is man-
aged, nWR-nFD is most similar to Lam and Wilson’s
model [9], because misspeculated instructions are ignored.

With nWR-FD, the impactof falsedatadependencesis
isolated.For four of thefive benchmarks,theperformance
drop is significant,another1 to 2 IPC below nWR-nFD.
Compress experiencesa muchlargerdrop in performance.
Falsedependencesin compress limit IPC to under5 for all
window sizes.

With WR-nFD, we isolate the effects of wasting
resourcesby executingincorrectcontroldependentinstruc-
tions until the branchis resolved.Someresourcesarestill
usedfor the control independentpath -- but not until and
unless the fetch unit reachesthe control independent
region.This resultsin a majordropin performance,bigger
than the drop causedby nWR-FD. For all benchmarks
except compress, the effect of wastedtime and resources
dominatesthatof falsedependences,by abouta factorof 2.

With WR-FD, we seethe combinedimpact of wasted
resourcesandfalsedependencescausedby incorrectcon-
trol dependentinstructions.Fortunately, theeffectsarenot
additive.TheWR componentalreadydominates,sothereis
little additionalpenaltycausedby repairingandreissuing
falsedatadependentinstructionsin thecontrolindependent
stream(except for compress). At this point performance
gains are about 100% over thebase machine.

2.5 Summary and applications of the study

This initial study hasestablishedperformancebounds
for control independencein thecontext of superscalarpro-
cessors.The WR-FD model reducesthe gap betweenthe
oracle andbase modelsby half, anda realisticimplemen-
tation will fall somewhere betweenbase andWR-FD.

Theotherthreecontrol independencemodelsalsohave
interestingimplications. A major performancelimiter is
the incorrectcontrol dependentpath,primarily becauseof
wastedfetching and window space(WR-nFD), but also
false data dependences(nWR-FD). If these limitations

TABLE 1. Benchmark information.
benchmark input dataset dyn. instr. count misp. rate

gcc -O3 genrecog.i 117 M 8.3%
go 9 9 133 M 16.7%
compress 400000 e 2231 104 M 9.1%
ijpeg vigo.ppm 166 M 6.8%
vortex modified train input 101 M 1.4%

could be mitigated in some way, performanceof the
nWR-nFD model indicatesthe remainingproblemis less
significant, i.e. the problem of true data dependences
betweenthe deferred,correctcontrol dependentpath and
control independent instructions.

A possibleapproachto mitigating the effectsof incor-
rect control dependentinstructionsis to designinstruction
windows and fetch units that are lesssensitive to wasted
resources.The multiscalararchitectureis a candidatedue
to its multiple program counters and “expandable,
split-window” [10]. Althoughstrictly speakingourstudyis
only applicableto processorswith a singleflow of control,
we at leastgeta hint of thecontrol independencepotential
for some multiscalardesignpoints.For example,Vijayku-
mar’s thesis[26] indicatesaveragetasksizeson the order
of 15 instructions(comparableto the fetch width of 16
instructions) and effective window sizes of under 200
instructionsfor integer benchmarks.Given a multiscalar
processorwith aggressive resolution of inter-task data
dependencesand selective reissuing capability, the
nWR-FD modelratherthanWR-FD givesthemoreappro-
priate performance bound due to the expandable window.

The large performancedrop betweennWR-nFD and
WR-nFD, the result of wasted fetch and execution
resources,tendsto indicate that both hardware and soft-
ware forms of multi-path executionshouldbe performed
carefully. Thesetechniquesare applied to both correctly
predicted and incorrectly predicted branches.We have
shown that wastedresourcescausedby incorrectpredic-
tions aloneis a problem;addingsomefraction of correct
predictions worsens the problem.

3. Implementation issues

In this section we discussimportant implementation
issuesfor exploiting control independencein superscalar
processors.This discussionallows us to betterunderstand,
qualitatively, whereimplementationcomplexities may lie.
We do not meanto suggestthat the methodswe describe
aretheonly onespossible,but we feel theapproachesout-
lined hereareadequatefor highlighting the major imple-

mentationissuesthatmustbeconsidered,andthey form a
basis for our later performance simulations in Section4.

FIGURE 3. Performance of the six models.

2

4

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

go

oracle

nWR-nFD

nWR-FD

WR-nFD
WR-FD

base

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048

IP
C

window size (log2)

compress

oracle

nWR-nFD

nWR-FD
WR-nFD

WR-FD

base

4

5

6

7

8

9

10

11

12

13

14

15

64 128 256 512 1024 2048

IP
C

window size (log2)

ijpeg

oracle
nWR-nFD
nWR-FD

WR-nFD
WR-FD

base

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

vortex
oracle
nWR-nFD
nWR-FD
WR-nFD
WR-FD

base

4

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

gcc

oracle

nWR-nFD

nWR-FD

WR-nFD

WR-FD

base

3.1 Handling of branch mispredictions

Whena branchmispredictionis detectedin a traditional
superscalarprocessor, the processorperformsa seriesof
steps to ensurecorrect execution. Instructionsafter the
mispredictedbranchare squashedand all resourcesthey
holdarefreed.Typically, freeingresourcesincludesreturn-
ing physical registersto the freelist andreclaimingentries
in the instruction issuebuffers, reorderbuffer, and load/
storequeues.In addition,themappingof physicalregisters
is backed up to the point of the mispredictedbranch.The
instructionfetch unit is alsobacked up to the point of the
mispredictedbranchand the processorbegins sequencing
on the correct path.

Exploiting control independencerequiresmodifications
to the recovery sequence,as illustrated in Figure4 and
describedbelow. Steps1-3 below constitute the restart
sequence, and step 4 theredispatch sequence.

1. After detectinga branchmisprediction,thefirst control
independentinstruction(if it exists) must be found in
the window. We call this the reconvergent point,
because,in general,control independenceexists when
control flow diverges and subsequently re-converges.

2. Instructions are selectively squashed,dependingon
whetherthey are incorrect control dependentinstruc-
tions or control independentinstructions. Squashed
instructionsare removed from the window, and any
resources they hold are released.

3. Instructionfetching is redirectedto the correctcontrol
dependentinstructions,and thesenew instructionsare
insertedinto the window which may alreadyhold sub-
sequent control independent instructions.

4. Basedon the new, correct control dependentinstruc-
tions, data dependencesmust be establishedwith the
control independentinstructionsalreadyin thewindow.
Any modifieddatadependencescausealready-executed
control independent instructions to be reissued.

FIGURE 4. Misprediction recovery sequence.

3.2 Key microarchitecture mechanisms

To supporttheabove recovery steps,we have identified
four underlyingmicroarchitecturemechanisms.Theseare:
detecting the reconvergent point, supporting arbitrary
insertionand removal of instructionswithin the window,
establishingcorrectdatadependencesfollowing a mispre-
diction, and selectively reissuing instructions.

3.2.1 Detecting the reconvergent point

Ideally, onewould find reconvergentpointsby associat-
ing with everybranchinstructionits immediate post-dom-
inator: the basicblock nearestthe branchwhich lies on
every path betweenthe branchand the CFG exit block
[27]. In Figure1, for example,block 4 is the immediate
post-dominatorof the mispredictedbranch.Although the
post-dominatordoes not directly specify the program’s
control dependences,it is sufficient for identifying all
reconvergent points. Finding immediatepost-dominators
could be difficult usinghardwarealone.Softwarecanaid
the hardware by encodingthis information.For example,
thecompilercouldencodethis informationby includingin
eachbranchinstructiona smalloffsetto its post-dominator
instruction.A secondoptionis to incorporatepost-domina-
tor registersinto the architecture.Softwarecanload these
registerswith theaddressesof post-dominatorinstructions
for soon-to-be-executed branches and then specify a
post-dominator register in each branch instruction.

Hardware-only solutions for detecting reconvergent
pointsprobablyrequireimpreciseheuristics.Onealterna-
tive is to exploit easily-identifiedcontrol flow constructs
such as loops and functions. The targets of subroutine
return instructionsand backward branchesare detectable
by hardware,andthey mayserve as“global” reconvergent
points.While thesepointsarenot the precise,i.e. nearest,
reconvergent point of any particular branch, they often
identify a subsetof control independentinstructionscom-
mon to many branchesin a region. Hardware can easily
detectandrecordthelocationof suchpointsin thewindow,
and when a mispredictionis detected,the nearestsuch
point is assumed to be the correct reconvergent point.

3.2.2 Instruction removal/insertion

The restartsequencerequiresselectively removing and
insertinginstructionswhile maintaininga correctordering.
The reorderbuffer (ROB) of a traditionalsuperscalarpro-
cessorcanbe augmentedto supportthis. Oneoption is to
havetheROB supportarbitraryphysicalshiftingof instruc-
tions to collapse and expand the window for restart
sequences.This first optioncausesthephysicalROB slots
to move, andany instructiontagsin thepipelinespointing
to them will become out-of-date.

A secondoption is to implementthe ROB as a linked
list. Then,any outstandinginstructiontagsdo not change
astheROB is repaired,but dispatchandretirementwill be
complicatedby multiple linked list operationsbeingdone
in parallel.The complexity of manipulatingthe linked list
canbe reducedby implementingit at a granularitylarger
thana singleinstruction.That is, ROB spacecanbeparti-
tioned into multi-instruction blocks. For example,a 256
instructionROB can be implementedas 16 blocks of 16

Incorrect
Instructions

Correct Instructions

Control Independent Instructions

Redispatch SequenceRestart Sequence

Mispredicted Branch Reconvergent Point

instructionseach.Then,ablockata timecanbeinsertedor
removed from the ROB in a more-or-less conventional
way. This reducescomplexity but alsoreducesfull utiliza-
tion of the window asROB blockswill often not be fully
utilized. For example,when the processorneedsto insert
eight instructionsinto the middle of the ROB, it will allo-
cate a full block of 16 but use only half the entries.

During the restartsequence,resources(physical regis-
tersandload/storebuffers) of squashedcontrol dependent
instructionsare iteratively reclaimed.In parallel, as the
correctcontroldependentpathis fetched,new instructions
may acquirethe resourcesfreedby the old instructions.If
therearemorecorrectcontrol dependentinstructionsthan
incorrect ones, the resourcesof control independent
instructions, youngest first, are reclaimed to make room.

3.2.3 Forming correct data dependences

Although instructionsmaybecontrol independentwith
a precedingblock of instructions,they may not be data
independent.Consequently, both register and memory
dependencesof control independentinstructionsmust be
repaired after a misprediction.

When the restart sequencecompletes, the register
renamemapsreflect stateup to the re-convergent point.
Control independentinstructions are redispatched[12]
using the up-to-date register maps. During redispatch,
sourceoperandsareremappedwhile destinationoperands
maintain their original assignments.If an instruction’s
sourceoperandis mappedto a new physical register, the
instruction reissues with new data.

To repair memory dependences,the memory-ordering
mechanismdetectswhena precedingstoreis removed or
insertedby a restartsequenceanddirectsaffectedloadsto
reissue. An implementation can be found in [12].

3.2.4 Selective reissuing of instructions

If a control independentinstruction reissuesdue to
incorrect register/memorydependences,then subsequent
data dependent instructions will also need to reissue.

Ultimately, instructionsmay issueandexecutemultiple
times before they eventually retire. Reissuing,therefore,
becomesacommoncaseandthemicroarchitecturemustbe
modified to reflect this. To reduce the complexity and
latency of reissuinginstructions,they remainin theinstruc-
tion issuebuffersuntil they retire[11,12]. Instructionissue
buffers can be built to reissuetheir instructionsautono-
mouslywhenthey observe a new valuebeingproducedfor
a sourceoperand.This functionality can be built into the
normal issuelogic. Thus, the redispatchlogic needonly
identify instructions directly affected by incorrect data
dependences,and the following data dependentchain of
instructions will automatically reissue.

4. Performance of control independence in a
superscalar processor

The idealizedstudiesof Section2 provide insight into
the factors that govern performanceof control indepen-
dence.We now proceedwith a more refined analysis,
focusingon an implementationof the modelWR-FD. The
analysisis basedon a detailed,fully-executiondrivensim-
ulator, andreflectsthe performanceimpactof implement-
ing the basic mechanisms outlined in Section3.

4.1 Simulator detail

Many of thebasichardwareconstraintsarethesameas
in Section2. Themachinewidth is 16 instructionsandthe
underlyingpipelineis similar. Instructionfetchingremains
ideal,but a morerealisticdatacacheis modeled.Thedata
cacheis 64KB, 4-way set associative. The cacheaccess
latency is two cyclesfor a hit insteadof one,andthemiss
latency to theperfectL2 datacacheis 14cycles.Also, real-
istic, but aggressive, addressdisambiguationis performed.
Loadsmay proceedaheadof unresolved stores,and any
memory hazardsare detectedas store addressesbecome
available [12] -- recovery is via the selective reissuing
mechanism.Lastly, thebranchpredictor, while identicalto
that in the ideal study, may have lower accuracy due to
delayed updates and temporarily incorrect global history.

The key mechanismsfor supportingcontrol indepen-
dence, outlined in Section3, are modeled as follows.

Detecting the reconvergent point is donevia software
analysis of post-dominator information.

Instruction removal/insertion is implementedvia the
linked list approach, using single-instruction granularity.

Forming correct data dependences is delayeda vari-
ablenumberof cyclesafter the mispredictionis detected,
unlike the idealstudy, because(1) theredispatchsequence
cannotproceeduntil after the restartsequencecompletes
and (2) redispatch proceeds at the maximum dispatch rate.

Selective reissuing is modeledin detail, whereasthe
ideal study models only the delay causedby repaired
dependences,i.e. only the final instruction issue. The
sourceof reissuingincludesboth register renamerepairs
and loads squashedby stores,followed by a cascadeof
reissued instructions along the dependence chains.

4.2 Performance results

Figure5 shows theinstructionspercycle (IPC) for three
different machines:a superscalarprocessorthat squashes
all instructionsafterbranchmispredictions(BASE), a pro-
cessorwith control independencecapability(CI), andone
with the addedcapability to instantaneouslyrepair data
dependencesand redispatch all control independent
instructionsafter the restart sequencecompletes(CI-I).
Measurementsaremadefor threewindow sizes,128,256,
and 512 instructions.

For less predictableworkloads,control independence
offers a significantperformanceadvantageover complete
squashing,althoughlessthantheidealstudyindicated.The
relative performanceimprovementof CI over BASE for
eachof the window sizesis summarizedin Figure6. Go,
compress, and jpeg show improvementson the order of
20%to 30%.While jpeg is fairly predictable,it is alsorich
in parallelismandany mispredictioncyclesresultin a large
penalty. Go on the other handis a very control-intensive
workload with frequent mispredictions,and it demon-
strates the most performance benefit.

Gcc also shows a substantialperformancegain, about
10%. Statisticspresentedin the next section show that
approximately60% of gcc’s mispredictionshave a corre-
spondingreconvergentpoint in the window, while for go,
jpeg, andcompress thesamestatisticis over 70%.Thefact
that lesscontrol independenceis exposedin gcc may par-
tially account for the lower performance gain.

FromFigure5 weseethatCI-I, asexpected,givesbetter
performancethan CI. However, the gain is small --
between1% and 4% -- meaningthe time spent during
redispatch sequences has less impact than anticipated.

FIGURE 5. Performance of the three models.

FIGURE 6. Percent improvement in IPC.

4.3 Other control independence measures

This sectionexploresthe behavior of control indepen-
dencein a superscalarprocessorto betterunderstandthe

performanceresults given in the previous section. The
results in this section are for a 256-instruction window.

Thefirst row of Table2 showshow oftenacontrolinde-
pendentreconvergentpoint is in the window at the time a
mispredictionis detected.Exceptfor vortex, a reconvergent
point is present for over 60% of mispredictions.

Thesecondandthird rows of Table2 show theaverage
number of instructions removed and inserted for those
restart sequences that reconverge in the window. On aver-
age,fewer than14 incorrectcontroldependentinstructions
areremoved,andfewer than20 correctcontrol dependent
instructionsareinserted.For over 80% of the restartsthat
reconverge in thewindow, both thenumberof instructions
insertedandremovedis fewer than32(notshown in table).

The fourth row in Table2 shows that the averagenum-
ber of control independentinstructionsafter the reconver-
gent point is greaterthan 50 for all the benchmarks.The
fifth row in Table2 shows that on average,only 2 to 3 of
thecontrolindependentinstructionswill acquirenew phys-
ical register namesduring redispatch,requiring them to
reissue(aswell assubsequentdatadependentinstructions).

The last row in Table2 shows the amountof useful
work that can be saved with control independentinstruc-
tions.Ignoringvortex, 11%(jpeg) to 39%(compress) of all
retiredinstructionsissueandhave their final valuebeforea
precedingmispredictedbranchis resolved. Without using
control independence this work would be lost.

5. Conclusions and future work

This researchrefinesour understandingof control inde-
pendence,perhapstheleastunderstoodsolutionto thecon-
ditional branch problem. The study establishesnew
performanceboundsthataccountfor practicalimplementa-
tion constraintsand incorporateall datadependences.To
gain insight,thestudyidentifiesthreeimportantfactorsand
isolates their impact on performance:true data depen-
dencesbetweencorrectcontroldependentinstructionsand
control independentinstructions,false data dependences
createdby incorrect control dependentinstructions,and
wastedresourcesconsumedby incorrectcontroldependent
instructions.A conclusionis thatbothtypesof datadepen-
denceslimit the potentialof control independencein per-
haps unavoidable ways, but the biggest performance
limiter is wastedresourcesconsumedby incorrectcontrol
dependentinstructions.This limitation may be reducedin

0

1

2

3

4

5

6

7

8

9

10

gc
c/1

28
gc

c/2
56

gc
c/5

12

go
/1

28
go

/2
56

go
/5

12
co

m
p/

12
8

co
m

p/
25

6
co

m
p/

51
2

jpe
g/

12
8

jpe
g/

25
6

jpe
g/

51
2

vo
rte

x/1
28

vo
rte

x/2
56

vo
rte

x/5
12

benchmark/window size

IP
C

CI-I
CI
BASE

Improvement of CI over BASE

0%

5%

10%

15%

20%

25%

30%

35%

gcc go comp jpeg vortex

%
 IP

C
 im

p
ro

ve
m

en
t

128
256
512

TABLE 2. Control independence measures.
statistic gcc go comp jpeg vortex

% of misp.thatreconverge 62% 71% 91% 82% 47%
removed ctl. dep. instr. 13.2 13.5 6.8 9.0 9.2
inserted ctl. dep. instr. 16.5 18.1 6.6 10.7 12.8
control indep. instr. 51.8 62.4 122 79.8 81.5
instr. w/ new reg. names 2.8 2.2 1.7 2.2 2.1
work saved 20% 30% 39% 11% 4%

designscapableof “absorbing” wastedinstruction fetch
and execution bandwidth.

This paper also discussesimportant implementation
issuesand provides somedesignalternatives. Simplified
alternativesareproposedto addresssomeof themorecom-
plex aspects,such as the segmentedROB for arbitrary
insertion/removal of instructions,and hardware heuristics
for identifyingreconvergentpoints.Detailedsimulationsof
a superscalarprocessorimplementing the key features
show typical performance improvements of 10-30%,
derivedfrom the20%of retiredinstructionswhosecompu-
tation is saved as a result of control independence.

The purposeof this work is not so much to advocate
control independencein conventionalsuperscalarproces-
sors as to promoteother control independencearchitec-
tures.This researchis a necessarysteptowardsimproving
control independencein traceprocessors,whosehierarchi-
cal structureprovides a simpler implementationin many
respects,including arbitrary instructioninsertion/removal.
Further, the abstractnWR-FDmodel suggestscombining
the expandablewindow model of multiscalarprocessors
with theaggressive datadependenceresolutionandrecov-
ery model of trace processors.

A muchmorecomprehensive treatmentof control inde-
pendence can be found in [28], an extension of this paper.

Acknowledgments
This work was supported in part by NSF Grant

MIP-9505853and by the U.S. Army IntelligenceCenter
and Fort Huachucaunder Contract DABT63-95-C-0127
and ARPA order no. D346. The views and conclusions
containedhereinarethoseof theauthorsandshouldnot be
interpretedasnecessarilyrepresentingthe official policies
or endorsements,eitherexpressedor implied, of the U.S.
Army IntelligenceCenterandFort Huachuca,or the U.S.
Government.Eric Rotenberg is supportedby an IBM Fel-
lowship, and Quinn Jacobson by an Intel Fellowship.

References
[1] A. Uht andV. Sindagi.Disjoint eagerexecution:An optimal

form of speculativeexecution.28th Intl. Symp.on Microar-
chitecture, Dec 1995.

[2] T. Heil andJ.Smith.Selectivedualpathexecution.Technical
report, Univ. of Wisc., ECE Dept., Nov 1996.

[3] G. Tyson,K. Lick, andM. Farrens.Limited dualpathexecu-
tion. TechnicalReportCSE-TR-346-97,Univ. of Michigan,
EECS Dept., 1997.

[4] A. Klauser,A. Paithankar,andD. Grunwald.Selectiveeager
executionon the polypatharchitecture.25th Intl. Symp.on
Comp. Arch., June 1998.

[5] S.Wallace, B. Calder, and D. Tullsen. Threadedmultiple
path execution.25th Intl. Symp. on Comp. Arch., June 1998.

[6] P.Ahuja,K. Skadron,M. Martonosi,andD. Clark.Multipath
execution:Opportunitiesandlimits. Intl. Conf.onSupercom-
puting, July 1998.

[7] S.Mahlke,R. Hank,J.McCormick,D. August,andW. Hwu.
A comparisonof full andpartialpredicatedexecutionsupport
for ilp processors.22nd Intl. Symp.on Comp.Arch., June
1995.

[8] H. Ando, C. Nakanishi, T. Hara, and M. Nakaya. Uncon-
strainedspeculativeexecutionwith predicatedstatebuffering.
22nd Intl. Symp. on Comp. Arch., June 1995.

[9] M. S.LamandR. P.Wilson.Limits of controlflow onparal-
lelism.19th Intl. Symp. on Comp. Arch., May 1992.

[10] M. Franklin.TheMultiscalarArchitecture. PhDthesis,Univ.
of Wisc., Nov 1993.

[11] M. Lipasti. ValueLocality and SpeculativeExecution. PhD
thesis, Carnegie Mellon University, April 1997.

[12] E. Rotenberg,Q. Jacobson,Y. Sazeides,andJ.Smith.Trace
processors.30th Intl. Symp. on Microarchitecture, Dec 1997.

[13] G. S.Sohi,S.Breach,andT. N. Vijaykumar.Multiscalarpro-
cessors.22nd Intl. Symp. on Comp. Arch., June 1995.

[14] P.Dubey, K. O’Brien, K. M. O’Brien, and C. Barton. Sin-
gle-programspeculativemultithreading(spsm)architecture:
Compiler-assisted fine-grained multithreading.PACT, 1995.

[15] J.-Y. Tsai and P.-C. Yew. The superthreadedarchitecture:
Threadpipelining with run-time datadependencechecking
and control speculation.PACT, 1996.

[16] J.Oplinger,D. Heine,S.-W. Liao, B. Nayfeh,M. Lam, and
K. Olukotun.Softwareandhardwarefor exploiting specula-
tive parallelism in multiprocessors. Technical Report
CSL-TR-97-715, Stanford University, CSL, Feb 1997.

[17] J.SteffanandT. Mowry. Thepotentialfor usingthread-level
dataspeculationto facilitateautomaticparallelization.4th In-
tl. Symp. on High Perf. Comp. Arch., Feb 1998.

[18] A. SodaniandG. S.Sohi.Dynamicinstructionreuse.24thIn-
tl. Symp. on Comp. Arch., June 1997.

[19] H. Akkary andM. Driscoll. A dynamicmultithreadingpro-
cessor.31st Intl. Symp. on Microarchitecture, Dec 1998.

[20] K. Sundararamanand M. Franklin. Multiscalar execution
along a single flow of control.ICPP’97, Aug 1997.

[21] S.Vajapeyamand T. Mitra. Improving superscalarinstruc-
tion dispatchandissueby exploitingdynamiccodesequenc-
es.24th Intl. Symp. on Comp. Arch., June 1997.

[22] S.McFarling. Combiningbranchpredictors.TechnicalRe-
port TN-36, WRL, June 1993.

[23] P.Chang,E. Hao,andY. Patt.Targetpredictionfor indirect
jumps.24th Intl. Symp. on Comp. Arch., June 1997.

[24] D. Kaeli and P.Emma.Branch history table prediction of
moving targetbranchesdueto subroutinereturns.18th Intl.
Symp. on Comp. Arch., May 1991.

[25] D. Burger,T. Austin, andS.Bennett.Evaluatingfuture mi-
croprocessors:The simplescalartoolset. Technical Report
CS-TR-96-1308, Univ. of Wisc., CS Dept., July 1996.

[26] T. Vijaykumar.Compilingfor the Multiscalar Architecture.
PhD thesis, Univ. of Wisc., Jan 1998.

[27] R. Cytron,J.Ferrante,B. Rosen,M. Wegman,andF. Zadeck.
An efficient methodof computingstatic single assignment
form. Symp. on Principles of Prog. Languages, Jan 1989.

[28] E. Rotenberg,Q. Jacobson,andJ.Smith.A studyof control
independence in superscalar processors. Technical
Report1389, Univ. of Wisc., CS Dept., Nov 1998.

