
A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 1

A Study of Control Independence in Superscalar Processors
Eric Rotenberg, Quinn Jacobson, Jim Smith

University of Wisconsin - Madison
ericro@cs.wisc.edu, {qjacobso, jes}@ece.wisc.edu

Abstract
An instructionis controlindependentof a precedingconditionalbranch if thedecisionto exe-

cutethe instructiondoesnot dependon the outcomeof the branch -- this typically occurs if the
two pathsfollowing thebranch re-converge prior to thecontrol independentinstruction.A specu-
lative instructionthat is control independentof an earlier predictedbranch doesnot necessarily
haveto besquashedandre-executedif thebranch is predictedincorrectly. Consequently, control
independencehasbeenput forward asa significantnew sourceof instructionlevel parallelismin
future generation processors. However, its performancepotentialunderpractical hardware con-
straints is not known,andevenlessis understoodaboutthefactors that contributeto or limit the
performance of control independence.

A studyof control independencein the context of superscalar processors is presented.First,
importantaspectsof control independenceare identifiedandsingledout for study, anda seriesof
idealizedmachinemodelsare usedto isolateandevaluatetheseaspects.It is shownthat much of
the performancepotentialof control independenceis lost dueto data dependencesand wasted
resourcesconsumedby incorrect control dependentinstructions.Evenso,control independence
can close the performance gap between real and perfect branch prediction by as much as half.

Next, importantimplementationissuesare discussedandsomedesignalternativesare given.
This is followedby a more detailedsetof simulations,where thekey implementationfeaturesare
realisticallymodeled.Thesesimulationsshowtypical performanceimprovementsof 10 to 30per-
cent over a baseline superscalar processor.

Keywords: control dependences, selective squashing, branch prediction, speculation, ILP

1. Introduction

In orderto exposeinstruction-level parallelismin sequentialprograms,dynamicallyscheduled
superscalarprocessorsform a “window” of fetchedinstructions.Eachcycle, theprocessorselects
andissuesa groupof independentinstructionsfrom this window. Maintaininga sufficiently large
window of instructionsis essentialfor high instruction-level parallelism-- the moreinstructions
in the window, the greater the chance of finding independent ones for parallel execution.

Branchinstructionsarea majorobstacleto maintaininga largewindow of usefulinstructions
becausethey introducecontrol dependences-- thenext groupof instructionsto befetchedfollow-
ing a branchinstructiondependson theoutcomeof thebranch.Typically, high performancepro-
cessorsdealwith controldependencesby usingbranchprediction.Theninstructionfetchingand
speculative issuecanproceeddespiteunresolvedbranchesin thewindow. Unfortunately, branch
mispredictionsstill occur, andcurrentsuperscalarimplementationssquashall instructionsaftera
mispredictedbranch,therebylimiting theeffective window size.Following a squash,thewindow
is oftenemptyandseveralcyclesarerequiredto re-fill it beforeinstructionissuingproceedsat full
efficiency. Furthermore,wearefastapproachingthepointwherethehardwarewindow thatcanbe
constructed exceeds the average number of instructions between mispredictions.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 2

Thereare threeways of dealingwith the conditionalbranchproblem.The first, and most
widely studied,is to improve branchprediction.This approachhasreceived considerable(suc-
cessful)researcheffort for nearlytwo decades.Thesecondis to fetchandexecutebothpathsfol-
lowing a branch,andkeeponly the computationof the correctpath.Of coursethis can leadto
exponentialgrowth in hardware, so recently, more selective approacheshave beenadvocated,
wheremulti-pathexecutionis only usedfor hard-to-predictbranches[2, 3, 4, 5, 6, 7]. Predicated
executionis asoftwaremethodfor achieving asimilareffect [8, 9]. Thethird approachis aimedat
reducingthe penaltyafter a mispredictionoccurs.This approachexploits the fact that not all
instructions following a mispredicted branch have performed useless computation.

The third approachis probablylesswell understoodthantheothertwo, andin this paperwe
exploreits potential.Thekey point is thatonly a subsetof dynamicinstructionsimmediatelyfol-
lowing thebranchmaytruly dependon thebranchoutcome.Theseinstructionsarecontrol depen-
dent on the branch.Other instructionsdeeperin the window may be control independent of the
mispredictedbranch:they will befetchedregardlessof thebranchoutcome,anddo not necessar-
ily have to be squashed and re-executed [10, 11]. This can be illustrated with a simple example.

Figure1 shows a control flow graph(CFG) containingfour basicblocks.(Basicblocksare
usedfor simplicity and, in general,may be substitutedwith arbitrarycontrol flow.) The condi-
tionalbranchterminatingblock1 is mispredicted,with dashedarrows indicatingthemispredicted
path 1, 2, and 4. Two data dependences, through registers r4 and r5, are also shown.

FIGURE 1. An example of control independence.

At the time themispredictionis detected,blocks1, 2, and4 have alreadybeenspeculatively
fetchedandsomeof their instructionsmayhavealreadystartedexecuting.Becauseonly block2 is
controldependenton themisprediction,it is theonly block whoseinstructionsmustbesquashed.
Immediatelyafter the mispredictionis found, the fetch unit goesback and fetchesblock 3 to
replace the squashed instructions of block 2.

Control independentinstructionsfollowing themispredictedbranch,specificallyblock 4, are
not squashed,but they do needto be inspectedfor datadependenceviolations causedby the
mispredictedcontrolflow, andsomeinstructionsmayhave to bere-executed.Thevalueidentified
with r5 mustbecorrectedsothatblock 4 usesthevalueproducedearlierin block 1 insteadof the
oneincorrectlyproducedin block 2. Likewise,whenblock 3 is eventuallyinsertedinto thewin-
dow, thedatadependencethroughregisterr4 mustalsobeestablished.Notethatdatadependences
throughmemorymustsimilarly berepaired.After theinstructionsusingr4 andr5 in block 4 cor-
recttheirdatadependencesandreissue,all subsequentdatadependentinstructionsmustalsoreis-
sue. Hence, selective instruction reissue [12, 1] in some form is necessary.

r5

r5

r4

r5
r4

1

2 3

4

actual path

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 3

Lam andWilson’s limit studyon control independence[10] showed that substantialperfor-
manceimprovementsmay be possible.However, as a limit study, most implementationcon-
straints were not considered.Further, important aspectsof programsthemselves were not
modeled; in particular, a significant subsetof data dependenceswere ignored due to the
trace-drivennatureof thestudy. Severalmicroarchitectureimplementationshave sincebeenpro-
posedthatincorporatecontrol independencein someform [11, 13,14,15,16,17,18,1]. In these
studies,however, either the impact of control independenceis not isolated,or insight into the
reported performance gains is limited and obscured by artifacts of the particular design.

In this paperwe have threeprimary objectives and contributions. The first objective is to
establish new bounds on the performance potential of control independence under implementa-
tion constraints. The studyfocuseson two fundamentalconstraintsthat characterizesuperscalar
processors:instructionwindow sizeand instructionfetch/issuebandwidth. Otheraspectsof the
study remain ideal and aggressive to avoid design artifacts that might obscure the analysis.

Thesecondobjective is to provide insight into the factors that contribute to or limit the perfor-
mance of control independence. Datadependencesbetweencontrol dependentandcontrol inde-
pendentinstructionsplayanimportantrole.In Figure1, thereis a true data dependence (register
r4) betweenthecorrect control dependent instructions in block 3 andsubsequentcontrol inde-
pendentinstructionsin block4. Similarly, thereis a false data dependence (registerr5) produced
by theincorrect control dependent instructions in block2. Resolvingbothtypesof datadepen-
dencesis delayedby thebranchmispredictionin spiteof control independence.Anotherimpor-
tant factor is the waste of fetch and execution resourcesby incorrect control dependent
instructions.Having to first fetchthemisspeculatedinstructionsdelaysfilling theinstructionwin-
dow with correct, control independentinstructions.Also, if there are more incorrect control
dependentinstructionsthan correctones,e.g. block 2 is larger than block 3, window spaceis
wasted that might have gone to more control independent instructions.

The third objective is to assess the complexity of implementing aggressive control indepen-
dence mechanisms in superscalar processors. Althoughit is beyondthescopeof this paperto put
forth detaileddesigns,implementationrequirementsareidentifiedandhardware/softwarealterna-
tives for meeting the requirementsare proposed.We have also developeda detailedexecu-
tion-driven simulator that implements the outlined requirements.

Several conclusionsemerge from our study. First, the performancegap betweenbranchpre-
dictionwith conventionalspeculationandoraclebranchpredictionis quitelarge,but controlinde-
pendenceholds the potential for closing the gap by as much as half. Second,the effects of
incorrectcontrol dependentinstructions-- both wastedresourcesandfalsedatadependences--
significantly limit the benefitsof control independence,with wastedresourcesbeing the chief
problem.The impactof true datadependencesis slightly smallerthanthat of falsedatadepen-
dences.Third, for the chosendesignalternativesin the detailedexecution-driven model,perfor-
mance improvements ranging from 10% to 30% are measured.

In orderto keepthe studymanageable,we limit our scopeto oneof two major schemesfor
exploiting control independence.In particular, thestudytargetsprocessorsthatusea singleflow
of control,i.e. a singlefetchunit, asin today’s superscalarprocessors.Otherschemes,usingmul-
tiple flows of control,arenot studiedhere,althoughextendingthestudyof control independence
to multiple (yet finite) fetch units is an interesting problem to be explored.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 4

1.1 Prior work

Lam andWilson’s limit study [10] demonstratesthat control independenceexposesa large
amountof instruction-level parallelism,on the orderof 10 to 100, for control-intensive integer
benchmarks.Althoughtheseresultsareimportant,full interpretationis obscuredfor bothtechni-
cal andpracticalreasons.As pointedout in an analysisby SundararamanandFranklin [19], the
limit studymakescertainassumptionsthat may inflate the apparentbenefitsof control indepen-
dence.Staticbranchpredictionbasedonprofiling is used,asopposedto higheraccuracy dynamic
branchpredictors.More importantly, becausethe simulation is fully trace-driven, it doesnot
accountfor falsedatadependencescreatedon mispredictedpaths(asdiscussedpreviously), thus
allowing incorrect-datadependentinstructionsto bescheduledearlierthanthey wouldbein prac-
tice.Furthermore,limit studies,by definition,areunconstrainedin orderto measureinherent par-
allelism in programs,anddonotconsiderpracticalimplementationissues.In theLamandWilson
limit study, several fundamentalfeaturesof processorsarenot modeled.In particular, thereis no
conceptof a limited instructionwindow or instructionfetch bandwidth,whetherconsideringa
single or multiple flows of control. The limit study schedulesthe entire dynamic instruction
streamat once;exposing the observed parallelismmay requirebuffering speculative statefor
thousands of instructions and using an impractical number of parallel fetch units.

Anotherunconstrainedlimit studyby Uht andSindagi[2] usesa similar simulationapproach,
but in additionto studying“minimal control dependences”,a form of selective eagerexecution
called disjoint eager execution is also studied.

Multiscalarprocessors[11,13] andothermultithreadedarchitectures[16, 17, 14, 15] exploit
control independenceby pursuingmultiple flows of control. In thecaseof multiscalar, thecom-
piler partitionstheprograminto tasks,or subgraphsof theCFG.Arbitrary controlflow mayexist
within a task,andthecompilerneednot guaranteethat tasksbecontrolanddataindependent.At
run-time,a tasksequencerpredictsandallocatestasksto run on distributedprocessingelements,
eachcapableof pursuingits own flow of control.In this way, branchmispredictionswithin a task
maynot causesubsequenttasksto squashif they arecontrol independentof thebranch.To date,
however, therehasbeenno study that separatesthe impactof control independenceanddeter-
mines its contribution to performance in the multiscalar paradigm.

Trace processors[20,1] are in somesensea variant of multiscalarprocessorswhere the
dynamic instruction streamis divided into traces-- frequently executeddynamic instruction
sequences.An internalmispredictedconditionalbranchcausesits traceto besquashed,but subse-
quenttracesare not squashedif, after repairingthe mispredictedbranchand predictinga new
sequenceof traces,the new tracesmatchthosealreadyresidingin the processingelements[1].
Only modestimprovementsarereportedbecauseno optimizationin traceselectionor processor
assignment was done to enhance performance benefits of control independence.

Theinstructionreusebuffer [18] providesanotherway of exploiting control independence.It
savesinstructioninputandoutputoperandsin abuffer -- recurringinputscanbeusedto index the
buffer anddeterminethe matchingoutput; i.e. the instructionoutputsare “reused”. In the pro-
posedsuperscalarprocessorwith instructionreuse,thereis completesquashingaftera branchis
mispredicted.However, controlindependentinstructionsafterthesquashcanbequickly evaluated
via thereusebuffer. Overall speedupsdueto reuseareon theorderof 10%,over half of which is
due to squash reuse.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 5

1.2 Paper organization

In Section2, we considera seriesof idealizedmachinemodelsin orderto betterunderstand
the relative importanceof someof the bigger issuesaffecting control independence.Section3
lists thekey featuresin a superscalarprocessorfor exploiting control independenceanddiscusses
implementationalternatives for eachof the features.Next, in Section4, we studyperformance
considering timing constraints imposed by practical implementations.

2. The potential of control independence

In this sectionwe begin evaluating the performancepotential of control independencein
superscalarprocessors.It is an idealizedstudyin the sensethat someof the modelshave oracle
knowledgesothat(1) performanceboundscanbeestablishedand(2) aspectsthatlimit theperfor-
manceof control independencecanbe isolated.The latterhasimportantimplications:by under-
standingthelimiting aspects,techniquesmaybedevelopedto overcomethem.On theotherhand,
thestudyis not anunconstrained“parallelismlimit study” -- aparticularclassof implementations
is targeted, and some of the basic resources are limited.

2.1 Control independence models

In the modelsgiven below, the performanceimpactof threeimportantaspectsof a control
independent design are singled out for study.

• Thefirst aspectconcernstruedatadependencesbetweencorrectcontroldependentinstructions
andcontrol independentinstructions.In suchcases,issuingthe control independentinstruc-
tions is delayeduntil after the mispredictionis resolved and the correctcontrol dependent
instructions are fetched/issued.

• Thesecondaspectis thehandlingof falsedatadependencescreatedby incorrectcontroldepen-
dentinstructions.As discussedearlier, thesecausetheselective reissueof somecontrol inde-
pendentinstructions.Delays brought on by this repair and selective reissuecan inhibit
performance gains.

• The third aspectis the useof machineresourcesby instructionson an incorrectpaththat are
eventually squashed.Even if control independenceis ideally implementedotherwise,this
waste of resources and time will reduce performance.

Six differentmodelsareevaluated.Figure2 illustratesthedifferencesamongthesesix mod-
els, using the exampleCFG in Figure1. Only two resources,instruction fetch and issue,are
shown. Time progressesdownward in the fetch/issueschedules.Fetchingeachbasicblock con-
sumesfetchbandwidth;this is shown usingbasicblock labelswithin their respective fetchslots.
Likewise, instructionsconsumeissuebandwidth,and are labeledfirst with the corresponding
basicblock, followedby theproduction/consumptionof avalue.For clarity, only instructionsthat
ultimatelyretire(i.e. correctinstructions)areshown; for these,only thefinal issuetime is shown.
Thelabels“M” and“D” in thediagramsindicatethetimeof thebranchmisprediction(M) andthe
time that the misprediction is detected (D).

Theoracle model(Figure2(a))usesoraclebranchpredictionandthereforethebranchtermi-
natingblock 1 is not mispredicted.Blocks 1, 3, and4 are fetchedin correctdynamicprogram
order.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 6

Thenext four modelsuserealbranchpredictioncoupledwith completeknowledgeof control
dependences to exploit control independence. The following notations are used.

• WR (“WastedResources”):Misspeculatedinstructionsconsumewindow resourcesandband-
width, thus delaying other, correct instructions.

• FD (“FalseDataDependences”):Theeffectsof falsedatadependencesbetweenincorrectcon-
trol dependent instructions and control independent instructions are modeled.

The inversenotations,nWR and nFD, indicatethe correspondingfactor is not modeled.Thus,
there are four possible models:nWR-nFD, nWR-FD, WR-nFD, andWR-FD.

FIGURE 2. Fetch and issue timing for the six models, corresponding to the example CFG in Figure 1.

In the nWR-nFD model(Figure2(b)), mispredictedbranchesdelayfetchingthe correctcon-
trol dependentinstructions.But betweenthetime thatabranchis mispredictedandthemispredic-
tion is detected,fetchandwindow resourcesarekeptbusywith control independentinstructions.
Incorrectcontrol dependentinstructionsarenot considered(for example,block 2 is not fetched
into thewindow), therebyeliminatingfalsedependencesanddevoting resourcessolelyto control
independent work while the misprediction is resolved.

3

4

FETCH ISSUE

1

1: r5<=
3: r4<=

4: <=r4

(a) ORACLE

M

4: <=r5

D
3

1

2 1: r5<=

3: r4<=
4: <=r4

4: <=r5

(d) WR-nFD

TIME

M

4

FETCH ISSUE

(c) nWR-FD

3

4

1

1: r5<=

3: r4<=
4: <=r4

4: <=r5
DD

FETCH ISSUE

(b) nWR-nFD

3

1

4
1: r5<=
4: <=r5

3: r4<=
4: <=r4

M

M

D
3

1

4

2 1: r5<=

3: r4<=
4

4: <=r5
4: <=r4

(f) BASE

M

(e) WR-FD

D
3

1

4

2 1: r5<=

3: r4<=
4: <=r4

4: <=r5

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 7

Theonly differencebetweenthis modelandoracle is that instructionsarefetchedin a differ-
ent order following mispredictedbranches.This hasa negative performanceimpactonly when
true datadependencesare delayedwith respectto oracle. For example, instruction “4: <=r4”
issues later because the producer instruction in block 3 is delayed by the misprediction.

Interestingly, therearesituationswhereperformanceof nWR-nFD mayactuallyexceedthatof
oracle. For example,instruction“4: <=r5” issuesslightly earlierwith respectto oracle, because
block 4 is fetchedout-of-orderandearlier. If this instructionis on thecritical path,schedulingit
earlier may improve overall performance.

The nWR-FD model, shown in Figure2(c), also doesnot wastetime with misspeculated
instructions,however their effectson datadependencesarefelt. For example,we do not know the
trueproducerof “r5” until themispredictionis resolved,delayinginstruction“4: <=r5” until that
time. The repairof falsedatadependencesis assumedto occur in a singlecycle, at the time a
misprediction is resolved -- this is the best that can be achieved.

Thedualof this modelis WR-nFD (Figure2(d)): misspeculatedinstructionstake up time and
resources(indicatedby shadedregions),but falsedependencesarehidden.Performancedegrada-
tion with respectto nWR-nFD is causedby anunderutilizedwindow anddelayedfetchingof cor-
rect (control independent) instructions.

The WR-FD model(Figure2(e)) usesno oracleknowledgeregardingmisspeculatedinstruc-
tions-- they wastebothtime andresources,andinterferewith datadependences.This modelrep-
resentsan upperboundon the performanceof superscalarprocessorsexploiting basiccontrol
independence.

Finally, thebase model (Figure2(f)) squashes all instructions after a branch misprediction.

2.2 Hardware constraints and assumptions

We areinterestedin the performanceimpactof instructionwindow sizeandmachinewidth
(peakfetch,issue,andretirerate)on control independence.In our study, themachinewidth is 16
instructionsper cycle for all simulations,andwindow size is varied.This is wider thancurrent
processors,but may be suitablefor a future generationwhencontrol independenceis seriously
considered for implementation [21,22,23].

We implement the following additional hardware constraints and assumptions:

• An ideal fetchunit is assumed.That is, all instructionshit in thecache,andfetchingcanpro-
ceed past any number of branches, taken or not taken, in a single cycle (up to 16 instructions).

• A 5-stagepipelineis modeled:instructionfetch,dispatch,issue,execute,andretire.Fetchand
dispatchtake 1 cycle each.Issuetakesat least1 cycle, possiblymoreif the instructionmust
stall for operands.An instructionis in theexecutionstagefor somefixed latency basedon its
type, plus any time spentwaiting for a resultbus. Addressgenerationtakes1 cycle, andall
cache accesses are 1 cycle, i.e. a perfect data cache is assumed. Instructions retire in order.

• Any 16 instructionsmayissuein acyclebecausefully symmetricfunctionalunitsareassumed.

• Outputandanti-dependencesareeliminatedby assuminganunlimitednumberof physicalreg-
isters for register renaming and unlimited speculative store buffering for memory renaming.

• Oraclememorydisambiguationis used.However, storesfetcheddown thewrongcontrolpath
may still interferewith subsequent,control independentloads-- aswith registervalues,false
memory dependences may be created in this case.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 8

• A 216 entry gshare predictor[24] is implementedfor predictingthe directionof conditional
branches.All direct target addressesareassumedto be predictedcorrectlysincethey canbe

computedat the time of instructionfetch.For indirect calls andjumps,a 216 entry correlated
target buffer [25] is used. Returns are predicted using a perfect return address stack [26].

2.3 Benchmarks

Dynamic instructiontraces,including both correctly speculatedand misspeculatedinstruc-
tions,aregeneratedby theSimplescalarsimulator[27]. Five of theintegerSPEC95benchmarks,
gcc, go, compress, jpeg, andvortex weresimulatedto completion.Thesebenchmarkswerechosen
to reflect a variety of prediction accuracies,ranging from very predictable(vortex) to diffi-
cult-to-predict(go). Inputdatasets,dynamicinstructioncounts,andbranchmispredictionratesare
shown in Table1. The misprediction rates include both conditional branches and indirect jumps.

2.4 Results

Resultsof simulatingthe six machinemodelsare in Figure3. Performanceis measuredin
instructions per cycle (IPC) and is shown as a function of window size.

First of all, a performanceupperboundis establishedwith the oracle results.Theseresults,
assumingperfectbranchprediction,aretypically over10IPCfor window sizesof 256to 512.The
machinewidth upperboundis 16,andmostof thebenchmarkscomecloseto this mark.Compar-
ing the oracle andbase resultsindicatesa large performancelossdueto branchmispredictions
with a completesquash(but otherwiseideal) model.For a 512 instructionwindow, the loss is
between40%and70%for four of thefive benchmarks.Thebenchmarkthathasthe leastperfor-
mancelossis vortex -- but its branchpredictionaccuracy is quitehigh. Performancefor thebase
modeltypically saturatesat a window sizeof 128or 256instructions.Thereis no suchsaturation
point for theoracle model.Theseresultsareconsistentwith thoseproducedby othersandindicate
the importance of branch mispredictions on overall performance.

The differencebetweenoracle andnWR-nFD illustratesperformancelossesfrom deferring
instructionson a correctcontrol dependentpathuntil after a mispredictedbranchis resolved. In
nWR-nFD, however, machineresourcesdo not sit idle while themispredictedbranchis resolved
-- all machineresourcesarekeptasbusyaspossiblefetchingandexecutingthecontrol indepen-
dent path. The performance loss is typically only 1 to 2 IPC for the medium to large windows.

The base modelalsodefersexecutionof the correctcontrol pathfollowing a misprediction,
but it getsnobenefitfrom themachineresourcesbeforethemispredictedbranchis resolved-- any
work doneafter the branchis squashed.Whenviewed in this way, nWR-nFD indicatesthat the
otherwisewastedresourcesin base canleadto large performancebenefits.In termsof the way
controlflow is managed,nWR-nFD is mostsimilar to LamandWilson’smodel[10], becausemis-
speculated instructions are ignored.

TABLE 1. Benchmark information.

benchmark input dataset instruction count misprediction rate

gcc -O3 genrecog.i 117 million 8.3%

go 9 9 133 million 16.7%

compress 400000 e 2231 104 million 9.1%

ijpeg vigo.ppm 166 million 6.8%

vortex modified train input 101 million 1.4%

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 9

FIGURE 3. Performance of the six control independence models.

With nWR-FD, the impactof falsedatadependencesis isolated.For four of the five bench-
marks,theperformancedropis significant,another1 to 2 IPCbelow nWR-nFD. Compress experi-
encesamuchlargerdropin performance.Falsedependencesin compress limit IPC to under5 for
all window sizes.

2

4

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

go

oracle

nWR-nFD

nWR-FD

WR-nFD
WR-FD

base

4

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

gcc

oracle

nWR-nFD

nWR-FD

WR-nFD

WR-FD

base

4

5

6

7

8

9

10

11

12

13

14

15

64 128 256 512 1024 2048

IP
C

window size (log2)

ijpeg

oracle
nWR-nFD
nWR-FD

WR-nFD
WR-FD

base

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048

IP
C

window size (log2)

compress

oracle

nWR-nFD

nWR-FD
WR-nFD

WR-FD

base

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

vortex
oracle
nWR-nFD
nWR-FD
WR-nFD
WR-FD

base

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 10

With WR-nFD, we isolate the effects of wasting resourcesby executing incorrect control
dependentinstructionsuntil the branchis resolved.Someresourcesarestill usedfor the control
independentpath-- but not until andunlessthefetchunit reachesthecontrol independentregion.
This resultsin a major drop in performance,bigger than the drop causedby nWR-FD. For all
benchmarksexcept compress, the effect of wastedtime and resourcesdominatesthat of false
dependences, by about a factor of 2.

With WR-FD, we seethecombinedimpactof wastedresourcesandfalsedependencescaused
by incorrectcontroldependentinstructions.Fortunately, theeffectsarenotadditive.TheWR com-
ponentalreadydominates,so thereis little additionalpenaltycausedby repairingandreissuing
falsedatadependentinstructionsin thecontrol independentstream(exceptfor compress). At this
point performance gains are about 100% over thebase machine.

2.5 Summary and applications of the study

This initial studyhasestablishedperformanceboundsfor control independencein thecontext
of superscalarprocessors.TheWR-FD modelreducesthegapbetweentheoracle andbase mod-
els by half, and a realistic implementation will fall somewhere betweenbase andWR-FD.

Theotherthreecontrol independencemodelsalsohave interestingimplications.A majorper-
formancelimiter is theincorrectcontroldependentpath,primarily becauseof wastedfetchingand
window space(WR-nFD), but alsofalsedatadependences(nWR-FD). If theselimitations could
bemitigatedin someway, performanceof thenWR-nFD modelindicatestheremainingproblem
is lesssignificant,i.e. theproblemof truedatadependencesbetweenthedeferred,correctcontrol
dependent path and control independent instructions.

A possibleapproachto mitigatingtheeffectsof incorrectcontroldependentinstructionsis to
designinstructionwindows andfetchunits thatarelesssensitive to wastedresources.Themulti-
scalararchitectureis acandidatedueto its multipleprogramcountersand“expandable,split-win-
dow” [28]. Althoughstrictly speakingourstudyis only applicableto processorswith asingleflow
of control,weat leastgetahint of thecontrolindependencepotentialfor some multiscalardesign
points. For example,Vijaykumar’s thesis[29] indicatesaveragetask sizeson the order of 15
instructions(comparableto the fetch width of 16 instructions)and effective window sizesof
under200instructionsfor integerbenchmarks.Givenamultiscalarprocessorwith aggressive res-
olution of inter-task data dependencesand selective reissuingcapability, the nWR-FD model
ratherthanWR-FD givesthemoreappropriateperformancebounddueto theexpandablewindow.

The largeperformancedropbetweennWR-nFD andWR-nFD, the resultof wastedfetchand
executionresources,tendsto indicatethatbothhardwareandsoftwareformsof multi-pathexecu-
tion shouldbeperformedcarefully. Thesetechniquesareappliedto bothcorrectlypredictedand
incorrectlypredictedbranches.We have shown thatwastedresourcescausedby incorrectpredic-
tions alone is a problem; adding some fraction of correct predictions worsens the problem.

3. Implementation Issues

In this sectionwe discussimportant implementationissuesfor exploiting control indepen-
dencein superscalarprocessors.This discussionallows us to better understand,qualitatively,
whereimplementationcomplexities may lie. We do not meanto suggestthat the methodswe
describeare the only onespossible,but we feel the approachesoutlined hereare adequatefor
highlighting themajor implementationissuesthatmustbeconsidered,andthey form a basisfor
our later performance simulations in Section4.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 11

3.1 Handling of branch mispredictions

Whena branchmispredictionis detectedin a traditionalsuperscalarprocessor, theprocessor
performsa seriesof stepsto ensurecorrectexecution.Instructionsafter themispredictedbranch
aresquashedandall resourcesthey hold arefreed.Typically, freeingresourcesincludesreturning
physical registersto the freelist and reclaimingentriesin the instructionissuebuffers, reorder
buffer, andload/storequeues.In addition,the mappingof physical registersis backed up to the
point of themispredictedbranch.The instructionfetchunit is alsobackedup to thepoint of the
mispredicted branch and the processor begins sequencing on the correct path.

Exploiting control independencerequiresmodificationsto therecovery sequence.Theoverall
processis illustratedin Figure4. Recovery mayproceedasfollows,althoughnot necessarilyin a
strict time sequence -- some of these steps can potentially be overlapped.

1. After abranchmispredictionis discovered,thefirst controlindependentinstruction(if it exists)
mustbefoundin theinstructionwindow. We call this thereconvergent point, becausein gen-
eral control independence exists when control flow diverges and subsequently re-converges.

2. Instructionsareselectively squashed,dependingon whetherthey areincorrectcontrol depen-
dentinstructionsor control independentinstructions.Squashedinstructionsareremovedfrom
the window, and any resources they hold are released.

3. Instructionfetchingis redirectedto the correctcontrol dependentinstructions,andthesenew
instructionsareinsertedinto thewindow which mayalreadyhold subsequentcontrol indepen-
dent instructions. This step combined with steps 1 and 2 above constitute therestart sequence.

4. Basedon the new, correctcontrol dependentinstructions,datadependencesmust be estab-
lished with the control independentinstructionsalreadyin the window. Any modified data
dependencescausealready-executedcontrol independentinstructionsto bereissuedwith new
data. This step is called theredispatch sequence in Figure4.

FIGURE 4. Misprediction recovery in a superscalar processor implementing control independence.

3.2 Key microarchitecture mechanisms

To supportthe above recovery steps,we have identified four underlyingmicroarchitecture
mechanismsto beimplemented.Theseare:detectingthereconvergentpoint, supportingarbitrary
insertionandremoval of instructionswithin the window, establishingcorrectdatadependences
following a misprediction,andselectively reissuinginstructions.In thefollowing subsectionswe
consider implementation alternatives for each of these.

3.2.1 Detecting the reconvergent point

Ideally, onewould find reconvergentpointsby associatingwith every branchinstructionits
immediate post-dominator: thebasicblock nearestthebranchwhich lies on every pathbetween

Incorrect
Instructions

Correct Instructions

Control Independent Instructions

Redispatch SequenceRestart Sequence

Mispredicted Branch Reconvergent Point

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 12

the branchandthe CFG exit block [30, 31]. In Figure1, for example,block 4 is the immediate
post-dominatorof themispredictedbranch.Althoughthepost-dominatordoesnotdirectlyspecify
theprogram’s controldependences,it is sufficient for identifying all reconvergentpoints.Finding
immediatepost-dominatorscouldbevery difficult usinghardwarealone.If binarycompatibility
doesnot have to bemaintained,softwarecanaid thehardwareby encodingthis information.For
example,the compilercould encodethis informationby including in eachbranchinstructionan
offsetto its post-dominatorinstruction.In mostcasesthisoffsetis quitesmall.A secondoptionis
to incorporatepost-dominatorregistersinto the architecture.Software can load theseregisters
with the addressesof post-dominatorinstructionsfor soon-to-be-executedbranchesand then
specify a post-dominator register in each branch instruction.

Hardware-onlysolutionsfor detectingreconvergentpointsprobablyrequireheuristicsthatare
less accuratethan using completepost-dominatorinformation. One less aggressive hardware
alternative is to identify pointsin aprogramwheremultiple pathsconverge.Therearesomecom-
mon constructsin a programthat exhibit this behavior, such as targets of subroutinereturn
instructions,or targetsof backward branchesthat form a loop. Thesepointscanbe determined
with hardwaretablesthatmonitorthedynamicstreamandrecordprogramcountervaluesof such
reconvergentpoints.Whena branchmispredictionis detected,hardwarecanconsultthetablefor
thefirst suchreconvergentpointandassumeit to bethecorrectreconvergentpoint for themispre-
dicted branch.This approachpreserves only a subsetof the control independentcodeafter a
branchmisprediction,but requireslessinformationto be learnedby hardware.A morecompli-
catedapproachcould attemptto learn pairs of branchesand their correspondingreconvergent
points.

3.2.2 Instruction removal/insertion

Following thedetectionof a reconvergentpoint, the instructionwindow mustbe repairedby
selectively removing incorrectcontrol dependentinstructionsprecedingthe reconvergentpoint,
andfetchinginstructionsfrom thecorrectcontroldependentpath.We refer to this processasthe
restart sequence, shown in Figure4.

Therestartsequencerequiresselectively removing andinsertinginstructionswhile maintain-
ing acorrectordering.Thereorderbuffer (ROB) of a traditionalsuperscalarprocessorcanbeaug-
mentedto supportthis. One option is to have the ROB supportarbitrary physical shifting of
instructionsto collapseandexpandthewindow for restartsequences.This first optioncausesthe
physical ROB slots to move, and any instruction tags in the pipelinespointing to them will
become out-of-date. This complication can be partially solved by adding a level of indirection.

A secondoption is to implementtheROB asa linked list. Then,any outstandinginstruction
tagsdo not changeasthe ROB is repaired,but dispatchandretirementwill be complicatedby
multiple linked list operationsbeingdonein parallel.Thecomplexity of manipulatingthe linked
list canbe reducedby implementingit at a granularitylarger thana single instruction.That is,
ROB spacecanbepartitionedinto multi-instructionblocks.For example,a 256 instructionROB
canbeimplementedas16 blocksof 16 instructionseach.Then,a block at a time canbeinserted
or removed from theROB in a more-or-lessconventionalway. This reducescomplexity but also
reducesfull utilizationof thewindow asROB blockswill oftennotbefully utilized.For example,
whentheprocessorneedsto inserteightinstructionsinto themiddleof theROB, it will allocatea
full block of 16 but use only half the entries.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 13

Load/storebufferswith insertionandremoval canbeimplementedin a similar mannerasthe
ROB, but they have the addedcomplicationthat they may requiresequence-sensitive address
comparisons to resolve dependences.

Freeingresourcesfor selectively squashedinstructionsis likely to be lessefficient thancom-
plete squashing.Reclaimingresourcesincludesreturningphysical registersto the freelist and
freeing load/storebuffer entries. Reclaiming resourcesselectively may require sequencing
throughthesquashedinstructionsanditeratively reclaimingtheir resources.However, if selective
squashingis donein parallelwith fetchingnew instructions,at leastsomeof the latency maybe
effectively hidden.In theprocess,new instructionsmayacquiretheresourcesbeingfreedby the
old instructions.

Finally, anothercomplicationoccursif the window fills with new instructionsbefore the
reconvergentpoint is reached.That is, therearemorenew correctcontroldependentinstructions
thantherewereold incorrectones.In thiscase,it is necessaryto begin squashingcontrolindepen-
dent instructions (youngest first), allowing the restart sequence to proceed.

3.2.3 Forming correct data dependences

As pointedout earlier, althoughinstructionsmay be control independentwith a preceding
block of instructions,they may not be data independent.Consequently, correctorderingof data
dependences,both through registers and memory, must be recovered when a misprediction
occurs.Registerdependencesmaybemaintainedthroughtheexisting physical registermapping
mechanisms.To updatedependenceinformation, instructionsin a control independentregion
must be redispatched[1]. During redispatchof instructionstheir register sourceoperandsare
remappedwhile their register destinationoperandsmaintain their original assignments.If an
instruction’s registersourceoperandis mappedto a new physicalregister, theinstructionmustbe
reissued.

Memorydependencescanbemaintainedthroughanaugmentedmemory-orderingbuffer. The
memory-orderingbuffer mustdetectwhena precedingstoreis removed or insertedby a restart
sequenceanddirectsubsequentloadsto reissue.This functionalitycanbeaddedto anaddressres-
olutionbuffer [32] or largeload/storequeue,themainmodificationsbeingthatthestructureshave
to support selective insertion and removal similar to the reorder buffer.

3.2.4 Selective reissuing of instructions

If aninstruction’s registersourceoperandis mappedto anew physicalregister, theinstruction
mustbe reissued.As theseinstructionsarereissued,they will producenew values,andinstruc-
tions in data dependence chains following these instructions will also need to reissue.

Ultimately, instructionsmay issueandexecutemultiple timesbeforethey eventually retire.
Reissuing,therefore,becomesa commoncaseand the microarchitecturemust be modified to
reflect this. To reducethe complexity and latency of reissuinginstructions,they remainin the
instructionissuebuffers until they retire [1, 12]. Instructionissuebuffers canbe built to reissue
their instructionsautonomouslywhenthey observeanew valuebeingproducedfor asourceoper-
and.This functionality canbe built into the normal issuelogic. Thus,the redispatchlogic need
only identify instructionsdirectly affectedby incorrectdatadependences,andthefollowing data
dependent chain of instructions will automatically reissue.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 14

4. Performance of control independence in a superscalar processor

Theidealizedstudiesof Section2 provide insight into thefactorsthatgovernperformanceof
controlindependence.Having doneso,wenow proceedwith amorerefinedanalysis,focusingon
an implementationof the model WR-FD. The analysisis basedon a detailed,fully-execution
drivensimulator, andreflectstheperformanceimpactof implementingthebasicmechanismsout-
lined in Section3.

4.1 Simulator detail

Many of thebasichardwareconstraintsarethesameasin Section2. Themachinewidth is 16
instructionsandtheunderlyingpipelineis similar. Instructionfetchingremainsideal,but a more
realisticdatacacheis modeled.Thedatacacheis 64KB, 4-way setassociative.Thecacheaccess
latency is two cyclesfor a hit insteadof one,andthemisslatency to theperfectL2 datacacheis
14 cycles.Also, realistic,but aggressive, addressdisambiguationis performed.Loadsmay pro-
ceedaheadof unresolvedstores,andany memoryhazardsaredetectedasstoreaddressesbecome
available[32] -- recovery is via the selective reissuingmechanism.Lastly, the branchpredictor,
while identicalto that in theidealstudy, mayhave lower accuracy dueto delayedupdates(tables
are updated at retirement).

Thekey mechanismsfor supportingcontrol independence,outlinedin Section3, aremodeled
as follows.

Detecting the reconvergent point is donevia softwareanalysisof post-dominatorinforma-
tion. Several hardware-only mechanisms are discussed and evaluated in AppendixA.5.

Instruction removal/insertion gives equivalent performancewhetherthe shift register or
linkedlist approachesareused.In thesimulator, we implementeda linkedlist approachthatuses
single instruction granularity. Larger granularities are evaluated in AppendixA.4.

Forming correct data dependences is delayedsomenumberof cyclesafter the mispredic-
tion is detected,unlike theidealstudy, becausetheredispatchsequencecannotproceeduntil after
therestartsequencecompletes.Further, redispatchproceedsat themaximumdispatchrate.How-
ever, we alsomodeledsingle-cycle redispatchof all control independentinstructions(after the
restart phase completes), in order to study its performance impact.

Selective reissuing is modeledin detail,whereastheidealstudymodelsonly thedelay caused
by repaireddependences,i.e. only the final instructionissue.The sourceof reissuingincludes
both register renamerepairsand loadssquashedby stores,followed by a cascadeof reissued
instructions along the dependence chains.

4.2 Performance results

Figure5 showstheinstructionspercycle(IPC) for threedifferentmachines:asuperscalarpro-
cessorthatsquashesall instructionsafterbranchmispredictions(BASE),aprocessorwith control
independencecapability (CI), and one with the addedcapability to instantaneouslyrepair data
dependencesandredispatchall control independentinstructionsafter the restartsequencecom-
pletes (CI-I). Measurements are made for three window sizes, 128, 256, and 512 instructions.

For lesspredictableworkloads,control independenceoffersa significantperformanceadvan-
tageover completesquashing,althoughlessthanthe ideal study indicated.The relative perfor-
manceimprovementof CI over BASE for eachof the window sizesis summarizedin Figure6.
Go, compress, andjpeg show improvementson theorderof 20%to 30%.While jpeg is fairly pre-
dictable,it is alsorich in parallelismandany mispredictioncyclesresultin a largepenalty. Go on

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 15

the otherhandis a very control-intensive workloadwith frequentmispredictions,andit demon-
strates the most performance benefit.

Gcc alsoshows a substantialperformancegain, about10%. Statisticspresentedin the next
sectionshow thatapproximately60%of gcc’s mispredictionshave a correspondingreconvergent
point in thewindow, while for go, jpeg, andcompress thesamestatisticis over70%.Thefactthat
less control independence is exposed may partially account for the lower performance gain.

FromFigure5 we seethatCI-I, asexpected,givesbetterperformancethanCI. However, the
gain is surprisinglysmall -- between1% and4%. This is a positive resultbecauseit meansthe
time spentduring redispatchsequenceshaslessimpact thananticipated.Redispatchties up the
sequencer, preventing it from fetching new instructionsinto the window, and also delaysthe
repairof someregisterdependences.As for thelatter, statisticsin Section4.3 (Table2) show that
not many instructionsneedto repairregisterdependences,andwe alsosuspectthat thosein need
of repair are close to the reconvergent point and thus repair quickly.

Compress actuallyshowsasmalldropin performancefor theCI processorswhenthewindow
is increasedfrom 256to 512(althoughperformanceis still betterthanBASE).As will beseenin
the next section,compress exhibits an unusuallyhigh numberof memoryorderingviolations.
Thissituationis only worsenedwith largerwindow size-- andparticularlywherecontrolindepen-
dentinstructionsaresaved-- becausemoreloadshave theopportunityto proceedbeforedepen-
dentstores.Thedropin performanceis dueto a1-cyclepenaltyfor loadssquashedby stores.The
effect is amplifiedin compress becausethereareextremelylong dependencechainsin thebench-
mark, as can be seen by the large number of reissued instructions presented in the next section.

FIGURE 5. Performance with and without control independence, for three window sizes.

FIGURE 6. Percent improvement in IPC due to control independence.

0

1

2

3

4

5

6

7

8

9

10

gc
c/1

28

gc
c/2

56

gc
c/5

12

go
/1

28

go
/2

56

go
/5

12

co
m

p/
12

8

co
m

p/
25

6

co
m

p/
51

2

jpe
g/

12
8

jpe
g/

25
6

jpe
g/

51
2

vo
rte

x/1
28

vo
rte

x/2
56

vo
rte

x/5
12

benchmark/window size

IP
C

CI-I
CI
BASE

Improvement of CI over BASE

0%

5%

10%

15%

20%

25%

30%

35%

gcc go comp jpeg vortex

%
 IP

C
 im

p
ro

ve
m

en
t

128
256
512

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 16

We would expectwith largerwindow sizes,morecontrol independenceis exposed.However,
accordingto Figure6, only two of the benchmarksshow a substantialvariationwith increasing
window size-- go and jpeg -- andeven thenmostof the variationoccursbetween128 and256.
Yet our idealstudyshows morevariationwith window size.In additionto theobviousconfigura-
tion differencesenumeratedin Section4.1, therearea hostof subtleissuesthatcontributeto dif-
ferencesbetweenthe ideal and implementationstudies;some of theseissuesare treatedin
AppendixA.

4.3 Other control independence measures

Thissectionexploresthebehavior of controlindependencein asuperscalarprocessorto better
understandtheperformanceresultsgivenin theprevioussection.Theresultsin thissectionarefor
the intermediate window size of 256 instructions.

The first columnof Table2 shows how often a control independentreconvergentpoint is in
thewindow at thetime a controlmispredictionis detected.In all thebenchmarksexceptvortex a
reconvergent point is present for over 60% of mispredictions.

The secondandthird columnsof Table2 show the averagenumberof instructionsremoved
andinsertedfor those restart sequences that reconverge in the window. The averagenumberof
instructionsremoved for a restart,the dynamicdistancebetweenthe mispredictionpoint and
reconvergentpointon theincorrectpath,is lessthan14 for all thebenchmarks.Theaveragenum-
berof instructionsinsertedfor arestart,thedynamicdistancebetweenthemispredictionpointand
reconvergentpoint on the correctpath,is lessthan20 for all the benchmarks.For both removal
and insertion the distance is 32 or less for over 80% of the restarts (not shown in the table).

The averagenumber of insertedinstructionsis higher than that of removed instructions
becauseweonly considermispredictionsthathaveacorrespondingreconvergentpoint in thewin-
dow. Consequently, mispredictionswith many incorrectcontrol dependentinstructionsdo not
contribute to the average number of removed instructions if the reconvergent point is not reached.

The fourth columnin Table2 shows that theaveragenumberof control independentinstruc-
tionsafter the reconvergentpoint is greaterthan50 for all thebenchmarks.Further, the last col-
umn in Table2 shows that on average,only 2 to 3 of the control independentinstructionswill
acquirenew physicalregisternamesduringredispatch,requiringthemto reissue.Additional con-
trol independentinstructionswill reissuedueto memorydependencesor datadependenceswith
other control independentinstructionsthat reissue.Also, someof thesecontrol independent
instructions may be parts of incorrect control paths and will later be squashed.

TABLE 2. Statistics for restart/redispatch sequences.

Benchmark

% of
mispredictions
that
reconverge

Avg. # of
removed
control dep.
instr.

Avg. # of
inserted
control dep.
instr.

Avg. # of
control indep.
instr.

Avg. # of control
indep. instr.
squashed due to new
register name(s)

gcc 61.8 13.2 16.5 51.8 2.75

go 71.2 13.5 18.1 62.4 2.18

compress 90.8 6.8 6.6 122.1 1.74

jpeg 81.6 9.0 10.7 79.8 2.17

vortex 46.8 9.2 12.8 81.5 2.10

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 17

Table3 shows theamountof usefulwork thatcanbesavedwith control independentinstruc-
tions.In this tablewe look only at correctinstructionsthatultimatelyretire.Ignoringvortex, 13%
(jpeg) to 70% (compress) of all retiredinstructionsarefetchedbeforea precedingmispredicted
branchis resolved.Withoutusingcontrolindependencetheseinstructionswouldbesquashedand
fetchedagain. More importantly, 11% (jpeg) to 39% (compress) of all retired instructionsissue
andhave their final valuebeforea precedingmispredictedbranchis resolved.Without usingcon-
trol independencethis work would be lost. Of control independentinstructionsthat do not have
their final valueat thetime themispredictionis resolved,mosthave issuedandareforcedto reis-
sue due to data dependences (the column labeled “work discarded”).

Table4 shows how often andwhy instructionsreissue.Even without control independence,
memoryorderingviolationsdueto incorrectdisambiguationcauseinstructionsto reissue.With-
out control independence,instructionsissueon average1.04 (jpeg) to 1.24 (compress) times.
0.5%to 6%of instructionsareloadsthatreissuedueto memoryorderingviolations,which in turn
cause chains of dependent instructions to reissue.

With control independence,theaveragenumberof timeseachinstructionissuesincreasesto
1.10(jpeg) to 2.44(compress). Memoryorderingviolationsresultfrom (1) incorrectdisambigua-
tion and(2) incorrectmemorydependencescausedby branchmispredictions.The two compo-
nentstendto beequal.Otherinstructionsreissuebecauseof incorrectregisterdependencescaused
by branchmispredictions.Wheninstructionsreissuedueto memoryor registerdatadependences,
they cause chains of dependent instructions to reissue.

5. Conclusions and Future Work

This researchrefinesourunderstandingof controlindependence,perhapstheleastunderstood
solutionto the conditionalbranchproblem.The studyestablishesnew performanceboundsthat
accountfor practicalimplementationconstraintsand incorporateall datadependences.To gain
insight,thestudyidentifiesthreeimportantfactorsandisolatestheir impacton performance:true

TABLE 3. Work saved by exploiting control independence, as a fraction of retired instructions.

benchmark fetch saved work saved work discarded had only fetched

gcc 27% 20% 5% 2%

go 39% 30% 6% 3%

comp 70% 39% 27% 4%

jpeg 13% 11% 2% 0%

vortex 5% 4% 1% 0%

TABLE 4. Instruction issues per retired instruction.

no control independence control independence

Benchmark total due to memory
violations

total due to memory
violations

due to register
violations

gcc 1.07 0.015 1.19 0.027 0.033

go 1.10 0.015 1.32 0.032 0.025

comp 1.24 0.061 2.44 0.063 0.051

jpeg 1.04 0.005 1.10 0.010 0.007

vortex 1.12 0.019 1.14 0.021 0.002

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 18

datadependencesbetweencorrectcontroldependentinstructionsandcontrolindependentinstruc-
tions, false data dependencescreatedby incorrect control dependentinstructions,and wasted
resourcesconsumedby incorrectcontrol dependentinstructions.A conclusionis thatboth types
of datadependenceslimit thepotentialof control independencein perhapsunavoidableways,but
the biggestperformancelimiter is wastedresourcesconsumedby incorrectcontrol dependent
instructions.This limitation maybereducedin designscapableof “absorbing”wastedinstruction
fetch and execution bandwidth.

This paperalsodiscussesimportantimplementationissuesandprovidessomedesignalterna-
tives.Simplified alternatives are also discussedto addresssomeof the more complex aspects,
suchasthesegmentedROB for arbitraryinsertion/removal of instructions,andhardwareheuris-
tics for identifying thereconvergentpoint.Detailedsimulationsof a superscalarprocessorimple-
menting the key featuresshow typical performanceimprovementsof 10 to 30 percentover a
baselinesuperscalarprocessor. The speedupis derived from 20 percentof retired instructions
whose computation is saved as a result of control independence.

Thepurposeof this work is not somuchto advocatecontrol independencein superscalarpro-
cessorsasto promoteothercontrol independencearchitectures.This researchis a necessarystep
towardsimproving control independencein traceprocessors,whosehierarchicalstructurepro-
vides a simpler implementationin many respects,including arbitrary instruction insertion/
removal. Further, theabstractnWR-FD machinemodelsuggestscombiningtheexpandablewin-
dow modelof multiscalarprocessorswith theaggressivedatadependenceresolutionandrecovery
model of trace processors.

 Appendix

A. Detailed issues in control independent designs

This sectiondescribesmany of the issueswe encounteredwhen trying to understandand
exploit control independence.Theseissuesonly becameapparentduring the translationfrom
idealstudyto detailedimplementation,andthey partiallyexplaindiscrepanciesbetweentheideal-
ized experiments and the measurements taken from the detailed execution-driven simulator.

While a few of theproblemsareuniqueto control independenceprocessorswith a singlepro-
gramcounter(e.g.handlingmultipleconcurrentbranchmispredictions),severalapplyto any con-
trol independencearchitecture,including thosewith multiple flows of control. In particular, the
problemof falsemispredictions(SectionA.2) andthe interactionbetweencontrol independence
and global branch history (SectionA.3) have more far-reaching implications.

Unless otherwise stated, all results are for a 256 instruction window.

A.1 Handling multiple branch mispredictions

In Section3, implementationissueswerediscussedin the context of recovery from a single
mispredictedbranch.In reality, the recovery processcanpotentiallyconsumemany cycles,and
while a recovery is in progress,theprocessormaydeterminethatabranchlogically precedingthe
current restartsequencehasalso beenmispredicted.This can easily occur when branchesare
allowed to executeout-of-order. Even if branchesarerequiredto executein-order this canstill
occurin limited cases-- while fetchinginstructionsfor a restartsequence,anewly fetchedbranch
mayexecuteanddeterminethatits predictionwasincorrect.Ourpreliminaryperformancestudies
indicatedthathandlingrestartsequencesseriallywithout preemptioncanleadto significantper-

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 19

formancedegradation,becausetheprocessormaybedelayedfrom bringinggoodinstructionsinto
the window while it is fetching and/or redispatching instructions from an incorrect path.

We have determinedthis effect to bequitesignificantandsomeform of preemptionis neces-
sary. We begin with a simplepreemptionstrategy that resultsin someperformancelossbut has
minimal impacton the instructionfetchunit. This methodwasusedin theprimaryperformance
evaluationof Section4. To determinetheperformancedegradationof simplepreemption,optimal
preemption is also presented (the ideal study of Section2 models optimal preemption).

A.1.1 Simple preemption

Figure7 shows three possiblecaseswhere a branchmispredictionlogically precedingan
active restart/redispatchsequenceis detected.The logical sequenceof instructionsis represented
by the solid line going from left to right. The terms“later” and“earlier” refer to the timesthat
mispredictionsaredetected.So,in thefigurethelatermispredictedbranchin factappearsfirst in
the logical programsequence.Thethreecaseslistedbelow differ in the locationof thereconver-
gent point of the later mispredicted branch.

FIGURE 7. Three cases for preemption of a restart/redispatch sequence.

CASE 1: the later mispredictedbranchmay not have a correspondingreconvergentpoint in
the window. In this case,all the instructionsin the window following the later mispredicted
branch can be squashed.

CASE 2: the latermispredictedbranchhasa reconvergentpoint that occursafter the current
reconvergentpoint (causedby theearliermisprediction).In this caseall theinstructionsfrom the
currentrestartsequencewill be squashedandinstructionsafter the new reconvergentpoint will
have to go throughredispatchagain. In thesefirst two scenarios,it is reasonableto preemptthe
active restart/redispatchsequence,i.e. thebehavior is identicalto recovery from a singlemispre-
diction.

CASE 3: the later mispredictedbranchhasits reconvergentpoint beforethe currentrestart
sequence.In this casetheinstructionsin thecurrentrestartsequenceandthosefollowing thecur-
rent reconvergentpoint maystill bepartof thecorrectpath.In orderto avoid delaysin servicing
thenew mispredictionandto avoid addingextra stateto thesequencer, themoststraight-forward
approachis to preempttheactive restartsequence,andsquashinstructionsfollowing thecurrent
reconvergentpoint. The morecomplex alternative is to have the sequencerrememberthat there
wasa restartin progress,andafterservicingthenew restartsequence,thesequencermustreturn
to the preempted restart to continue filling the gap in the instruction window.

The simplepreemptionstrategy for CASE 3 resultsin a performanceloss(comparedto the
complex alternative).However, thesequencerdoesnot have to keeptrackof multiple outstanding
restart sequences, only the most recent one.

Later Mispredict Earlier Mispredict

Current Restart
CASE 1CASE 2CASE 3

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 20

Note that preemptinga re-dispatchsequenceis simpler becausebackingup the sequencer
ensures that the instructions will eventually be re-dispatched by the latest recovery process.

A.1.2 Optimal preemption

As describedabove, optimalpreemptionrequiresmaintainingstatefor all outstandingrestart
sequences.Thismaynotbeoverly complex: aminimumof sequencerstate(PC,wherein thewin-
dow instructionsare to be inserted,and information about the reconvergent point) might be
pushedontoahardwarestackto preemptarestartsequence,andresumingrestartsequencesin the
properorderis achievedby poppingstatefrom thestack.However, preemptionstatemayhave to
be selectively deletedfrom the middle of the stackif the correspondingrestartsequencesthem-
selves belong to a mispredicted path and are squashed.

A.1.3 Preemption results

Figure8 shows theperformanceof bothsimpleandoptimalpreemptionmodels.Simplepre-
emptionperformsaswell asoptimal preemption,at leastfor a 256 instructionwindow, because
restartsequencesthatreconvergein thewindow have a durationof only 1 or 2 cycleson average.
Gcc, go, compress, and jpeg have averagedurationsof 1.6, 1.6, 1.1, and1.2 cyclesrespectively.
For all of thebenchmarks,about90%of all restartsrequire3 or fewercycles.As aresult,preemp-
tions (including case-3 preemptions) are rare.

Preemptionswill becomemorefrequentin largerwindows,dueto morebranchesandahigher
chancefor concurrentmispredictiondetection.A lower fetch bandwidthalso increasesthe fre-
quency of preemptions, because restarts take longer to service.

FIGURE 8. Evaluation of simple and optimal preemption for handling multiple branch mispredictions.

In theexperimentsthat follow, optimalpreemptionis usedbecauseotherenhancementsmay
beartificially limited by simplepreemption.Thisprobablyis not thecase,but ratherthansimulate
all combinations, we chose the least restrictive preemption model.

A.2 False mispredictions

A false misprediction occurswhena branchthat is predictedcorrectlyexecuteswith specula-
tive, incorrectoperands,andasa result,thebranchpredictionis assumedto beincorrect.A false
misprediction causes what are actually correct instructions to be squashed.

preemption models

0

1

2

3

4

5

6

7

8

gcc go comp jpeg

benchmark

IP
C simple

optimal

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 21

The operandsof a branchmay be incorrectfor variousreasons.In a processorwith control
independence,a mispredictedbranchcanintroduceincorrectdatadependenceswhich ultimately
affect subsequentcontrol independentbranches.Othersourcesincludeincorrectvaluesproduced
by dataspeculation,e.g.valuepredictionandmemorydependencespeculation.In compressfor
example,thehigh frequency of loadsthat issuebeforedependentstoresmaycausefalsemispre-
dictions.

A.2.1 Performance impact of false mispredictions

False mispredictionis one sourceof discrepancy betweenthe idealized models and the
detailedexecution-drivensimulator. Theimpactof falsemispredictionsis measuredin theexecu-
tion-drivensimulatorby usingoracleinformationto detectandpreventfalsemispredictionsfrom
occurring.Thefollowing configurationsaresimulated(all in thecontext of a processorwith con-
trol independence mechanisms).

• non-spec: Branchesarenotallowedto completeuntil theiroperandsareknown to benon-spec-
ulative.Thismeans(1) branchesmustexecutein-order, sothatoperandsarenon-speculative in
termsof control flow, and(2) all instructionsthat may affect a branch’s operandsmustthem-
selvesbenon-speculative beforethebranchcanexecute,so thatoperandsarenon-speculative
in terms ofdata flow. In this branch completion model, there are no false mispredictions.

• spec-D: Branchesmustexecutein-order, but branchesneednot wait for any otherinstructions
to be non-speculative. Hence,spec-Drefersto the fact that operandsmay still be speculative
due todata speculation, in our case loads issuing early.

• spec-D-HFM: This is thesameasspec-D, exceptoracleinformationis usedto detectbranches
thatwill causefalsemispredictionsif allowedto complete.In thesecases,branchcompletionis
delayed, thereby preventing false mispredictions:HFM = hide false mispredictions.

• spec-C: This is thedualof spec-D. Branchesmaycompleteout-of-order, but otherinstructions
thatmayaffect a branch’s operandsmustbenon-speculative beforethebranchcancomplete.
Hence,spec-Crefersto the fact thatoperandsmaystill bespeculative dueto control specula-
tion.

• spec-C-HFM: This is the same asspec-C, but false mispredictions are prevented.

• spec: Branchesmaycompletewheneveroperandsareavailable.Thismeansbranchescomplete
without regard to speculative operands.

• spec-HFM: This is the same asspec, but false mispredictions are prevented.
The resultsof the seven modelsareshown in Figure9. The first graphshows IPC for each

model,andthesecondgraphshows thepercentIPCdifferencebetweenany two specifiedmodels.
Referringto thesecondgraph,it is clearfrom thefirst bar (spec-Cover non-spec) that com-

pletingbranchesout-of-orderis important,abouta 10%impact.This performanceimprovement
comesfrom detectingtrue mispredictionsquickly, althoughnot as early as possiblebecause
branchoperandscannotbe data-speculative. Further, from the fourth bar (spec-C-HFMover
spec-C) it is clearthatthis earlyevaluationdoesnot resultin many falsemispredictions;prevent-
ing false mispredictions inspec-C results in less than 1% improvement.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 22

FIGURE 9. Performance impact of branch completion models and false mispredictions.

From the secondandthird bars(spec-D andspec over non-spec, respectively), we conclude
that (1) exceptfor jpeg, allowing data-speculative operands(spec-D) is lessimportantthancom-
pletingbranchesout-of-order(spec-C), but (2) allowing data-speculative operandsbecomesmore
important when branchesare allowed to completeout-of-order(spec). That is, the combined
effect of spec-C andspec-D is greaterthanthesumof the two. Theonly exceptionis compress,
for which allowing data-speculative operandshasnegative consequences.This is understandable
considering the large number of load-store ordering violations incompress.

From the fifth bar (spec-D-HFM over spec-D), it is apparentthat allowing data-speculative
operandsresultsin morefalsemispredictionsthanallowing control-speculative operands.Still, if

branch completion and false misprediction
experiments

0

1

2

3

4

5

6

7

8

9

gcc go comp jpeg

benchmark

IP
C

non-spec
spec-C
spec-C-HFM
spec-D
spec-D-HFM
spec
spec-HFM

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

gcc go comp jpeg

benchmark

IP
C

 d
el

ta
:

m
o

d
el

 X
 w

.r
.t

. m
o

d
el

 Y

spec-C/non-spec
spec-D/non-spec
spec/non-spec
spec-C-HFM/spec-C
spec-D-HFM/spec-D
spec-HFM/spec

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 23

falsemispredictionscanbepreventedin thespec-D model,theresultis only abouta3%improve-
mentfor threeof thebenchmarks.Compress, asexpected,canbenefitsignificantlyby eliminating
false mispredictions -- a 24% improvement over spec-D.

Finally, from the sixth bar (spec-HFM over spec) we can assessthe total impact of false
mispredictionswhen branchesare allowed to executeas soonas operandsare available.False
mispredictions affect performance by 5% forgcc andgo, 2% forjpeg, and 37% forcompress.

Fromtheseresults,weconcludethatwith only asmalldegreeof dataspeculation(i.e.memory
dependencespeculation,but not value prediction), it is probably best to implementthe spec
model.Wehaveshown thatit is moreimportantto resolve truemispredictionsasearlyaspossible
thantry to avoid falsemispredictionsby beingconservative. In thefollowing section,we present
intelligent techniquesfor identifying falsemispredictions,so that branchesmay be selectively
identified for early or late completion.Thesetechniquesmay be usedas a hedgeagainst false
mispredictionsif they area majorproblemin otherworkloads,or otherprocessorconfigurations
(e.g. larger, more speculative windows).

Spec-C is the branchcompletionmodelusedin our primary resultssection(Section4) and
unlessotherwisestatedis usedfor the remainderof the experiments.Spec-C waschosenfor its
robustnessacrossall of our benchmarks.Compress, however, is somewhatof a microbenchmark
(asseenin the next section)andits anomaliesshouldnot have too muchinfluencein designing
control independent processors.

A.2.2 Identifying and preventing false mispredictions

In thissectionwaysof detectingandavoiding falsemispredictionsarediscussed.Oneobvious
solutionis to usea branchpredictionconfidencemechanism[33], which assessesthe likelihood
that a given branchpredictionwill turn out to be incorrect.A high-confidenceassessmentof a
branchpredictiondelaysthe completionof a branchif its operandsarespeculative. Delayinga
correctly-predictedbranchdoesnot degradeperformanceandmay prevent falsemispredictions
from occurring.On the otherhand,delayinga true mispredictionfrom beingresolved canseri-
ously degrade performance.

Our earlyexperimentsusingbranchconfidenceto prevent falsemispredictionshave not pro-
ducedgoodresults.All too oftenmoretruemispredictionsaredelayedthanfalsemispredictions
prevented.

Theseearlyexperimentsmotivatea secondtechniqueto identify falsemispredictions.Branch
predictionconfidenceis indirect in that thehistoryof correctandincorrectbranchpredictionsis
monitored.It mayprove moreusefulto directly monitor thehistoryof trueandfalsemispredic-
tions instead.

We begin by collectingtrue/falsemispredictionstatisticsper staticbranch,analogousto the
staticconfidencemeasurementsin [33]. For eachstaticbranch,we measurethe total numberof
truemispredictionsit contributesaswell asthetotalnumberof falsemispredictionsit contributes.
This datais usedto computethe false misprediction rate per branch,that is, the ratio of false
mispredictionsto total mispredictionsfor a given branch.The branchesare then sortedfrom
higherto lower falsemispredictionrate.Finally, usingthesortedlist of mispredictedbranches,the
cumulative fractionsof trueandfalsemispredictionsarecomputed.Theresultinggraphis shown
in Figure10, with cumulative fractionsof true andfalsemispredictionsplottedalongthe x-axis
and y-axis respectively.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 24

FIGURE 10. Using true/false misprediction history to detect false mispredictions.

Fromthecurve labeledstatic, we canseethat90%of all falsemispredictionscanbedetected
andpreventedat the expenseof delayingonly 20% of all true mispredictions,for gcc and jpeg.
For go, 75% of falsemispredictionscan be detectedfor the samepoint. In compress,a single
branchaccountsfor over 50% of the true mispredictionsand75% of the falsemispredictions--
clearly a static identification scheme is ineffective in such cases.

The static implementationimplies profiling per-branchfalsemispredictionrates,choosinga
thresholdrate,andmarkingbranchesabovethethreshold.At run-time,thesebranchesaredelayed
until their operands are non-speculative.

Thestatic schemedoesnotexploit dynamicbehavior in thatabranchis eitheralwaysdelayed
or never delayed.A dynamicschememaybemoreeffective in separatingtruefrom falsemispre-
dictions.A hardwaretableis usedto collect true/falsemispredictionhistory. Ratherthanpropose
a specificautomaton,we begin by maintaininga 16-bit shift registerof history, calledthe TFR
(“True/False mispredictionRegister”). This is analogousto the CIR in [33], but the TFR is
updatedonly for mispredictedbranches.A ‘1’ is shiftedin for a falsemispredictionanda ‘0’ for a

true misprediction.In theseexperimentsa 216-entry tableof TFRsis maintained,indexed either
by the PC or the PC XORed with global branch history (like gshare).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

%
 o

f
fa

ls
e

m
is

pr
ed

ic
tio

ns

cumulative % of true mispredictions

false mispredictions (jpeg)

static
dynamic (pc)

dynamic (xor)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

%
 o

f
fa

ls
e

m
is

pr
ed

ic
tio

ns

cumulative % of true mispredictions

false mispredictions (go)

static
dynamic (pc)

dynamic (xor)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

%
 o

f
fa

ls
e

m
is

pr
ed

ic
tio

ns

cumulative % of true mispredictions

false mispredictions (gcc)

static
dynamic (pc)

dynamic (xor)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

%
 o

f
fa

ls
e

m
is

pr
ed

ic
tio

ns

cumulative % of true mispredictions

false mispredictions (compress)

static
dynamic (pc)

dynamic (xor)

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 25

The sameprocessdescribedabove is usedto generatecurvesfor the dynamicschemes,but
insteadof gatheringmispredictionstatisticsperstaticbranch,they aregatheredperTFR pattern.
TheTFR patternsaresortedby falsemispredictionrateandcumulative fractionsof trueandfalse
mispredictions are plotted.

FromFigure10, it is apparentthatdynamicschemesidentify morefalsemispredictionswhile
delayinglesstruemispredictions.Thecurve labeleddynamic(pc)usesonly thePCto index into
the TFR table, and the curve labeleddynamic(xor)usesa gshare index. If only 10% of true
mispredictionsare to be delayed,90%, 80%, 60%, and95% of all falsemispredictionscanbe
detectedfor gcc, go, compress, andjpeg, respectively. This is for thedynamic(xor)scheme.If we
can tolerate delaying 20% of true mispredictions,then 75% of false mispredictionscan be
detected incompress.

Theresultsfor thedynamictechniquesdemonstratethepotentialfor identifying falsemispre-
dictions. Developing reductionfunctions[33] that capturethe desiredTFR patternsis left for
futurework. It is not clearthat resettingcounters,which performwell for confidenceestimation,
are well-suited for identifying false mispredictions.

A.3 Branch prediction issues

For themostpart,branchpredictorshave beendesignedfor processorsthatsequentiallypre-
dict andfetch instructions,with the implicit assumptionthat all instructionsfollowing a branch
mispredictionaresquashedandre-predictedwith themostup-to-datebranchhistory. This poses
problemsfor any form of out-of-orderinstructionfetching,e.g.controlindependencein supersca-
lar processors,or hierarchicalsequencingin multiscalarandmultithreadedprocessors.Theprob-
lem is a branchmay have to be predictedbasedon an incompleteor incorrect history of prior
branches.

Two-level predictorsthatuseglobalbranchhistory, suchasthegshare predictorusedin this
work, while highly accurate,are potentially problematicin control independencemachines.In
Figure11,thetwo branchesb1andb2arecorrelatedandb1is mispredicted.Becauseof thecorre-
lation, thegshare predictoris likely to alsomispredictb2. In a conventionalprocessorwith com-
plete squashing,the secondmispredictionb2 is irrelevant: the sequencerbacksup to b1 and
re-predictsbranchinstructions,this time with the up-to-datehistory including b1’s correction.
Thus, b2 is likely to be predicted correctly.

FIGURE 11. Example of using incorrect global branch history to predict branches.

This has two implications.

• Control independencedoesnot obviate theneedfor re-predictingbranches.As with complete
squashing,thebranchpredictormustbebackedup to themisprediction,theglobalhistorycor-
rected, and instructions re-predictedduring the re-dispatchsequence.Thus, re-dispatch

b1

b2 b2 is strongly correlated with b1

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 26

sequencesare not only neededto repair data dependences,but also to iteratively improve
branchpredictionswithin the instructionwindow asglobalhistory is corrected.Without these
early corrections,the advantagesof correlationare negated and performancemay actually
worsen with respect to a simpler, local-history branch predictor.

• Simulationmodelsthat assumea correctglobal history for every branchpredictionaremis-
leadingin the context of control independence.The conventionalbranchpredictionaccuracy
metric doesnot hold. For example, the initial prediction for b2 would in fact appearas a
mispredictionandreducestheapparentbenefitof controlindependence.Theidealizedstudyin
thispaper, LamandWilson’s limit study, andUht andSindagi’s limit studyareoverly optimis-
tic in this respect:the studiesassumecorrectglobal history for predictingbranchb2 the first
time, sob2 is predictedcorrectly, whereastheaccuratetiming modelusedin Section4 of this
paper mispredicts b2.

A.3.1 Global branch history

Thesecondbullet above is potentiallyasourceof discrepancy betweentheidealizedstudyand
the detailedtiming model.To evaluatethe impactof assumingcorrectglobal history, we imple-
mentedoracle global history in the detailedexecution-driven simulator:a given branchis pre-
dicted using what is ultimately the correct global branch history leading up to that branch.

Thegraphin Figure12shows thattheeffect is not large,amaximumchangein IPCof plusor
minus5% with respectto usingtiming-accurate,possiblyincorrectglobalhistory. Strangely, jpeg
exhibits worseperformancewith oraclebranchhistory. We do not have a definitereasonfor why
this is thecase.Jpeg maylegitimatelyperformbetterwith thepatternscreatedby delayedcorrec-
tions to the global history register.

Or thismaybeanartifactof thesimulationmethod,whichcannotguarantee matchingagiven
branchwith its correctglobalbranchhistory. Thesimulatorrunsa second,fully-accurateinstruc-
tion window in parallel with the actualprocessorwindow, and maintainsa mappingof good
instructionsin theprocessorto counterpartsin thefully-accuratewindow; thesecounterpartspro-
vide theoraclebranchhistory. Becauseloop iterationsandfunction instancesmaybe insertedat
any time into the middle of the instructionwindow, initial mappingsmay be incorrectdue to
instance mismatches.

FIGURE 12. Impact of assuming oracle global branch history.

impact of oracle branch history

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

gcc go comp jpeg

benchmark

d
el

ta
 w

.r
.t

. r
ea

l b
ra

n
ch

 h
is

to
ry

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 27

A.3.2 Re-predict sequences

It is quitepossiblefor a re-predictionto overturna correctprediction,or worse,to overturna
branchthat hasalreadyexecuted.We have determinedthat the latter caseis importantandcan
often be avoided.A good heuristicthat is implementedin the execution-driven simulatoris to
force thebranchpredictorif a branchis in the“completed”state.On theotherhand,if thebranch
is not in the “completed” state, the branch predictor dictates the re-prediction.

In Figure13, we first evaluatethe importanceof re-predictingbranches.The bar labeled
CI-NR showstheperformanceof controlindependencemechanismswith nore-predictsequences.
Thatis, initial predictionsaremaintaineduntil andunlessbranchescompleteandoverturnthepre-
dictions.Thus,thereareno early corrections of predictionsasglobalhistorychanges.For refer-
ence, the performance of a processor without control independence is also shown, labeledbase.

Second,to assessthere-predictionheuristicsimplementedin our design,labeledCI, they are
comparedwith oracle re-predict sequences,labeledCI-OR. The model CI-OR is oraclein the
sensethat correctpredictionsarenever overturnedduring re-predictsequences.CI differs from
CI-OR in two ways:(1) branchesnot in the“completed”statecannotforcethepredictorwherethe
oraclemodelmightand(2) branchesin the“completed”statemayhaveanincorrectoutcomeand
wrongly force the predictor.

The importantconclusionis that re-predictsequencesarenecessary. For gcc andcompress,
not having re-predictsequencesdegradesperformanceto nearor below thebase machine.For go
and jpeg, not having re-predictsequencesreducesthe benefitof control independenceby half:
from 30% to 15% forgo, and 20% to 12% forjpeg.

ComparingCI to CI-OR, weseethatour re-predictionmechanismperformswithin 5%of ora-
cle re-predictionfor threeof thebenchmarks.For compress, however, CI-OR performs25%better
thanCI. All too often, either the predictoroverturnscorrectpredictionsor completedbranches
incorrectlyoverridethepredictor. Becausetheseresultsarefor thespec-C completionmodel,we
suspect the branch predictor to be at fault (re-predictions overturning correct predictions).

FIGURE 13. Evaluation of re-predictions.

A.4 Segmented reorder buffers

Thenon-hierarchical,inflexible, contiguouswindow organizationof superscalarprocessorsis
a primarysourceof complexity for implementingcontrol independence.In Section3.2.2we pro-

re-prediction models

0

1

2

3

4

5

6

7

8

gcc go comp jpeg

benchmark

IP
C

base
CI-NR
CI
CI-OR

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 28

posedimplementingthe reorderbuffer (ROB) as a linked-list to supportarbitrary instruction
insertionandremoval. To reducethenumberof concurrentlinked-listoperations,we proposeda
hierarchicalorganizationcomposedof ROB segments.Thelogical (program)orderof instructions
within a segmentcorrespondsdirectly with their physicalorder, asin a conventionalROB. How-
ever, the logical orderingamongsegmentsvaries.In this way, the linked-list datastructureneed
only specifythe logical orderof physical segments.The complex alternative to this hierarchical
approach is to maintain an instruction-granularity linked-list.

A.4.1 Segment size

Maintainingthe linked-listmappingis lesscomplex for largersegments.For example,if the
numberof instructionsper segmentis equalto the dispatch/retirerate,up to 3 linked-list opera-
tions needto be performedeachcycle: insertingonesegmentfor dispatchingnew instructions,
removing onesegmentfor retiring instructions,andremoving onesegmentfor squashinginstruc-
tions (we envision a processorthatconcurrentlyfreesresourcesheldby incorrectcontroldepen-
dentinstructionsandallocatesresourcesfor correctcontroldependentinstructions).Halving the
segmentsizedoublesthenumberof concurrentlinked-listoperations,resultingin amorecomplex
implementation.

On the otherhand,larger segmentsresult in internalfragmentationof ROB entries,i.e. poor
ROB utilization. This occursbecausesegmentsareallocatedasa unit. If fewer instructionsare
insertedin the window thanthereareinstructionsin a segment,spacein the segmentis wasted.
Likewise,somefractionof leadingor trailing instructionswithin asegmentmaybesquashed,also
leaving the segment underutilized.

In Figure14theROB segmentsizeis varied.In all casesthetotalROB sizeis 256instructions
andthemachinewidth is 16 instructionspercycle.Segmentsof 1, 4, and16 instructionsaresim-
ulated.1 instructionpersegmentamountsto exploiting controlindependenceat thegranularityof
individual instructions;it is clearly themostflexible approach,resultingin optimalROB utiliza-
tion andhigh performance,but may be overly complex. Using larger segmentsdegradesperfor-
mancein two ways.First, fragmentationdue to insertionand removal of instructionsfrom the
middleof theROB resultsin wastedbuffer spacethatis not reclaimeduntil retirementor until the
entiresegmentis squashed.Second,segmentsmustbe retiredasa unit. This delaysreclaiming
ROB entries untilall instructions in the segment are ready to retire.

Both IPC and performanceimprovement over a processorwithout control independence
(base) are shown in Figure14. For compress and jpeg, 4-instructionsegmentsexploit control
independenceaswell as1-instructionsegments,and16-instructionsegmentsreduceperformance
by lessthan5%.Likewise,for go andgcc 4-instructionsegmentsreduceperformanceby lessthan
5%.However, 16-instructionsegmentsreducetheperformanceimprovementdueto control inde-
pendenceby half in gcc and by a third in go. Thesebenchmarksexhibit more fragmentation
because their control flow is much more irregular thancompress andjpeg.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 29

FIGURE 14. Varying ROB segment size.

A.4.2 Control for logically ordering instructions

The processormust maintain the correct program order of instructionsfor two reasons:
in-order retirementandestablishingdatadependences.Thusfar we have only briefly discussed
instruction ordering for establishing memory dependences, but it deserves some attention.

A conceptualview of the contentsof the linked-list control structureis shown in Figure15.
ThestructureholdsoneentryperROB segmentandis indexedby physicalsegmentnumber. An
entryconsistsof threefields: logical segmentnumber(headsegmentin thelist is logical segment
0), previous physicalsegmentnumber, andnext physicalsegmentnumber. Insertingandremoving
segments(correspondingto allocatingandreclaimingsegments,respectively) involvesupdating
the previous and next pointersof logically adjacentsegments.Further, insertingor removing a
segmentrequiresincrementingor decrementingthe logical numberof all segmentsthat logically
follow the segment.

Thefirst field, calledthephysical-to-logical segment translation, andtheprevious-next point-
ersareessentiallyredundantinformation,sincethey bothrepresenta linked-list.However, thedif-
ferent representationsmay simplify different tasks.As will be seenin the next section, the
physical-to-logical segment translation may prove useful for resolving memory dependences.

impact of segment size

0

1

2

3

4

5

6

7

8

gcc go comp jpeg

benchmark

IP
C

base
16
4
1

performance improvement over base for various
segment sizes

0%

5%

10%

15%

20%

25%

30%

35%

gcc go comp jpeg

benchmark

%
 IP

C
 im

p
ro

ve
m

en
t

16
4
1

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 30

FIGURE 15. Linked-list control structure.

A.4.3 Resolving memory dependences

A schemefor orderingloadsandstoresbasedon physicalsequencenumberswasproposedin
thecontext of traceprocessorsin [1]. Assigningphysicalsequencenumbersbasedon instruction
buffer numberto all loadsandstores,themechanismallows for memoryoperationsto beselec-
tively insertedand removed from anywherewithin the window, while still maintainingcorrect
load-storeordering.However, the approachrelieson a very simple,circular mappingof physi-
cal-to-logicalsequencenumber. That is, the processingelements(segments)areorganizedin a
ring.

This requirementis alleviatedif ageneralmechanismis providedto translatephysicalto logi-
cal sequencenumbers,like thelinked-listcontrolstructurein Figure15.Therefore,we canapply

thesamememoryorderingalgorithmusedin the traceprocessor1, theonly changesto thealgo-
rithm being a translation step before any sequence number comparison.

A.5 Hardware heuristics for detecting reconvergent points

Thus far we have assumedaccurate,per-branchpost-dominatorinformation for identifying
reconvergent points. In this sectionwe discusstwo other generalapproachesfor identifying
reconvergenceandmeasuretheperformanceof oneof them.Clearly, otherheuristicsarepossible,
and hardware identification of reconvergence is a topic for future study.

A.5.1 Associative-search technique

As arestartsequenceprogresses,oneapproachis to comparethePCsof theincominginstruc-
tionswith thePCsof all instructionslogically after themispredictedbranch.If the reconvergent
point is in the window, in most cases it will be found using this associative-search technique.

1. Becausetheload-storeorderingalgorithmis involved,wedonot reproduceit hereandthereaderis referredto [1].

head tail
7 1

segment id
physical

0 1 32

physical

logical

Example:

7 3 4 1

0
1
2
3
4
5
6
7 0

2
1

3

segment id
logical

3

13
7 4

4 //

//

logical
segment id

prev next

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 31

Thereis onemajorproblemwith this approach.Becausewe do not know before-handwhere
incorrectcontroldependentinstructionsendandcontrolindependentinstructionsbegin, dispatch-
ing new instructionsrequiresreclaiminginstructionbuffers from the tail of the reorderbuffer,
whenin factbufferscouldbereclaimedfrom incorrectcontroldependentinstructionsfirst. Thus
some control independent instructions are unnecessarily squashed.

A.5.2 Identifying reconvergent points by instruction type

In Section3.2.1we proposedexaminingthedynamicinstructionstreamfor commoncontrol
flow constructssuchasloopsandprocedures.Both loopsandproceduresexhibit obvious recon-
vergenceand,as a first approximation,they are identifiableby examining instructionwords at
decode time.

Thefollowing two heuristicsidentify “global” reconvergentpoints:thesepointsarenotneces-
sarily theprecise,i.e.nearest, controlindependentpointof any onebranch,but they cover regions
of branches and their mispredictions.

• procedurereturnpoints (return heuristic):The decoderidentifiesall return instructions.The
predicted target instruction of a return is remembered as a potential reconvergent point.

• top-of-loopandloop-exit points(loop heuristic):Thedecoderidentifiesall backwardbranches
by examiningbranchoffsets.Thepredictedtarget instructionof a backwardbranchis remem-
beredasa potentialreconvergentpoint. Dependingon the prediction,this may be either the
taken or not taken target of the branch,correspondingto the top-of-loop or loop-exit point,
respectively.

Whetherthereturn andloop heuristicsareusedsingly or in combination,theglobalreconvergent
point nearest a mispredicted branch is assumed to be the branch’s reconvergent point.

Thethird heuristicis anexampleof preciselyidentifying thereconvergentpoint of a classof
branches.

• mispredictedloop-terminatingbranches(ltb heuristic):If a backward branchis mispredicted,
thenot taken targetof thebranchis found in thewindow andassumedto be thereconvergent
point of the branch.

If the ltb heuristicis usedin conjunctionwith the return and/orloop heuristics,the ltb heuristic
takes priority if the mispredicted branch is a backward branch.

Thetwo globalheuristicsareshown in Figure16(a)andtheltb heuristicin Figure16(b).Can-
didatereconvergentpointsaremarkedwith a blackdot andmispredictionswith anX. Thereturn
heuristiccoversall mispredictionswithin a function,andevensomemispredictionsbeforethecall
if the call is amongthe control independentinstructions.Likewise, the loop heuristiccoversall
mispredictionswithin a loop andpossiblysomebeforethe loop. Finally, the ltb heuristicspecifi-
cally and precisely covers the mispredicted backward branch of a loop.

In general,heuristicswill not performaswell ascompletepost-dominatorinformationfor the
following reasons.

1. Choosingthenearestglobalreconvergentpoint from amongmany in thewindow will yield no
benefitif thechosenpoint is in theincorrectcontroldependentpathof themispredictedbranch.

2. Even if thechosenglobal reconvergentpoint is amongthecontrol independentinstructions,it
may be too distant from the mispredicted branch’s immediate post-dominator to yield benefit.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 32

3. Thereis acasewheretheltb heuristicfails. If theloop is exitedvia someotherbranch,thenthe
not taken target of the mispredictedbackward branchis possiblyamongthe incorrectcontrol
dependent instructions.

FIGURE 16. Instruction-type heuristics for identifying reconvergent points.

Performanceof all combinationsof the threeheuristicsis shown in Figure17. Performance
improvementis measuredwith respectto a machinewith no controlindependence.For reference,
a processor using full post-dominator information is shown as well, labeledCI.

When the threeheuristicsareappliedindividually (first threebarsin Figure17), the return
heuristicis generallythebestperformer. Theonly exceptionis jpeg, for which the loop heuristic
performsbest.Jpeg hasoneloop in particularthathasmany internalmispredictions,andcontrol
independence is easily exploited across loop iterations.

FIGURE 17. Performance of simple instruction-type heuristics for identifying reconvergent points.

(a) global reconvergent points

call

ret

"loop" heuristic

"return" heuristic

"ltb" heuristic

(b) precise reconvergent point
of a loop-terminating branch

0%

5%

10%

15%

20%

25%

30%

35%

gcc go comp jpeg

%
 IP

C
 im

p
ro

ve
m

en
t

o
ve

r
b

as
e

return
loop
ltb
return/loop
return/ltb
loop/ltb
return/loop/ltb
CI

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 33

Except for compress, using all heuristicstogether(return/loop/ltb) yields the best perfor-
mance.For gcc, heuristicsachieve only a third of CI’s performancepotential;for go, nearlyhalf
of the potential is achieved; and forjpeg, nearly three quarters of the potential is achieved.

Interestingly, for compress, thereturn heuristicandcombinedreturn/ltb heuristicperformbet-
ter thanCI. Conceivably, heuristicscanidentify betterreconvergentpointsthanacompilercan,as
shown in Figure18. The branchin basicblock A is mispredictedin the direction of block B
(dashededge).According to the compiler, block D is the reconvergent point becauseit is the
immediatepost-dominatorof block A. But if theleft edgeof block C is taken,thenblock B is the
closestreconvergentpoint -- dynamically thecontrolindependentinstructionsbegin with blockB.
In fact, if the left edgeof block C is taken very often (e.g. 99% as shown), then the compiler
would bewiser to indicateblock B is the immediatepost-dominator. In this example,the return
heuristicby chanceselectsa reconvergentpoint thatis closerto block A, saving potentiallymany
useful instructions in the region of E.

FIGURE 18. An example where the heuristic-based reconvergent point is closer than the compiler-based
reconvergent point.

B. A philosophy of control independence

In the introductionto this paper, exploiting control independenceis describedas“selectively
squashinginstructionsaftera branchmispredictionto reducethepenalty”,primarily becausethis
descriptionis simple.However, thereare more fundamentalformulationsof the problemthat,
while academicand perhapsnot so useful to a designer, I feel provide better motivation for
researchingcontrol independence.Theformulationpresentedin SectionB.1 is basedon theview
that thereareanalogsbetweencontroldependencesanddatadependences,andthatconceptually
the same techniques should be applied to both.

In SectionB.2, a rangeof control independencesolutionsis discussed,focusingon themerits
of usingmultiple flows of controlor a singleflow of control.To completethediscussion,control
independence is contrasted with other branch-misprediction tolerant architectures in SectionB.3.

B.1 Control independence is evolutionary

Controlandtruedatadependencesin a programimposea partialorderingamonginstructions
to beexecuted.This orderingcanbesatisfiedtrivially by executinginstructionsin strict program

A

B

C

D

E

call

ret

immediate
post-dominator

99%

1%

mispredicted branch

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 34

order. However, modernhigh performanceprocessorsuse several techniquesto more closely
approachthepartialorderingconstraints,andthey oftengo even furtherby usingpredictionand
speculationto reducethe performanceeffects of the true dependences.Thus, the techniques
applied to control and data dependences can be classified into two categories.

1. Non-speculative techniques to achieve the partial ordering of true dependences. This classof
techniqueshas beenapplied primarily to data dependences.First, to eliminate all but true
dependences,renaming of registerandmemorystorageis used.Second,to achieve thepartial
ordering implied by true data dependences,out-of-order issue is used.

2. Speculative techniques to eliminate ordering altogether. This techniquehasbeenappliedpri-
marily to control dependences.Predictingbranchesallows the processorto continuefetching
andexecutinginstructionsdespiteunresolvedbranches.As long asthepredictionsarecorrect,
all ordering constraints due to control are essentially eliminated.

It is interestingthatthedominantprocessingparadigm(superscalar)hasevolvedsuchthatthe
non-speculative techniquesarereserved for datadependencesandthespeculative techniquesare
reservedfor controldependences.Thereareat leasttwo explanationsfor this evolution.First, this
arrangementmaybesufficient. For example,branchpredictiontechniquesareperhapssufficient
to keepprocessorsbusywith instructionsfor thewindows beingdesignedtoday. But clearly, this
will not alwaysbethecase.Second,this arrangementhappensto bethe“path of leastresistance”
for achieving thecurrentlevel of performance.It is easierto speculatecontroldependencesthan
datadependencesbecausetherearefewerof them,andbecausethey arequitepredictable.And as
demonstratedin this paper, applying non-speculative out-of-orderconceptsto control depen-
dences is not particularly intuitive.

Nevertheless,datapredictionandspeculationtechniquesarenow beginning to appearin the
literature[12,34,35],and we argue that non-speculative techniquesnormally reserved for data
dependencesshould also be consideredfor control dependences.There are subtle analogies
between data and control dependences that suggest conceptually similar solutions.

B.1.1 True dependences

An instructionstallswhenits dataoperandsareunavailable.In anin-ordermachine,all subse-
quentinstructions,whetherdatadependentor independentof the stalledinstruction,must also
stall. Instructionsare totally orderedat run-time despitethe partial ordering implied by data
dependences.Similarly, if all instructions after a branch misprediction are squashedand
re-fetched,anorderingbetweentheseinstructionsandthemispredictedbranchis createddespite
the partial ordering implied by control dependences.

But neither data stalls nor control mispredictionsshould force a total ordering. Just as
out-of-order issue mechanismsallow data independent instructionsto proceeddespiteprior
stalledinstructions,control independencemechanismsallow control independent instructionsto
proceeddespiteprior branchmispredictions.Themicroarchitectureshouldresolvemispredictions
muchthesameway stallsareresolved.Viewedin this way, control independenceis anevolution-
ary extensionof out-of-orderinstructionissue,generalizingindependenceandcarrying it to its
logical conclusion.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 35

B.1.2 Artificial dependences

Anti-dependences,outputdependences,andstructuralhazardsareartificial dependencesthat
can be alleviated by renamingregistersand memorylocations(in the caseof anti- and output
dependences) and providing more resources in general (structural hazards).

In terms of control flow, the single programcounter introducesan artificial dependence,
becauseinstructionsarefetchedsequentiallyandnot necessarilyin the order in which they are
needed.For example,theremaybeseveralindependentinstructionsthatarereadyto issuebut are
too far into the instructionstreamto be reachedby the PC.The PC mustfirst sequencethrough
lessurgentinstructionsto getto thereadyinstructions.ThesinglePCis a resourcelimitation that
canartificially delaythecritical paththroughtheprogram,just asa lack of registersor functional
unitsartificially delaysexecution.To alleviatethis, thesinglePCcanbe“renamed”into multiple
PCs just as a single architected register can be renamed into multiple physical registers.

Thefollowing architecturesimplementmultipleprogramcounterseitherdirectlyor implicitly.

• VLIW: Hardwaremaintainsa singlePC,but the compilerpreparesinstructionssuchthat the
order in which they are fetched is identical to the order in which they issue.

• Wide superscalar:A singlePCmaynot besomuchof a bottleneckif it is a “wide PC”, thatis,
if many instructionscanbe broughtin at once.Much of the effect of multiple control flows
mayberealizable,but thesolutionis somewhatbrute-force.On theotherhand,it is robust in
thatit doesnot rely on thecompileror hardwaredoingagoodjob of placingmultipleprogram
counters across the dynamic instruction stream.

• Multiscalarandmultithreading:Architecturally, thereis only asinglelogicalPC.But thehard-
waremaintainsmultiplephysicalprogramcounters,andtheplacementof theprogramcounters
acrossthe dynamic instructionstreamis guidedby the compiler (althougha fully-dynamic
scheme is possible).

• Dataflow: Thereis essentiallyanunlimitednumberof controlflows, dictatedby thedataflow
graph of the program.

B.2 Control independence architectures

Control independenceis a propertyof a dynamicallyexecutedprogram.Waysof exploiting
controlindependencecanvarywith thehardwareandsoftwaretechniquesbeingused.Weidentify
two general classes of implementations (although hybrids are possible).

• Multiple flowsof control with a noncontiguousinstructionwindow. This classof machineshas
multiple instruction fetch units and can simultaneouslyfetch from disjoint points in the
dynamicinstructionstream.Theinstructionwindow, i.e. thesetof instructionssimultaneously
being consideredfor issueand execution,doesnot have to be a contiguousblock from the
dynamicinstructionstream.Clearly, control independentcoderegionsaregoodcandidatesfor
parallel fetching,thoughthis is not a requirement.Multiscalarprocessorsandparallelmulti-
processors fall into this class.

• Singleflow of control with a contiguousinstructionwindow. This classof machineshasa sin-
gleprogramcounterandcanfetchalongasingleflow of controlatany giventime.Theinstruc-
tion window is acontiguoussetof dynamicinstructions.Controlindependenceis implemented
by allowing the programcounterto skip back and forth in the dynamic instructionstream.
(This paper focuses on this class of machines.)

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 36

Eachclassof machineshasadvantages.With implementationshaving multiple flows of con-
trol, thereis a naturalhierarchicalstructure:eachflow of control fetchesandoperateson its own
“task” or thread.Control decisionsareseparatedinto inter-taskand intra-tasklevels. Intra-task
mispredictionscanbeisolatedto thetaskcontainingthemisprediction,andlatercontrol indepen-
denttaskscanproceedin a fairly straightforward manner. This hierarchicaltask-basedstructure
leadsto what is effectively a non-contiguousinstructionwindow whereinstructionscanbefairly
easily insertedand removed as control mispredictionsoccur. Further, the hierarchy allows for
multiple branch mispredictions to be serviced simultaneously if they are in different tasks.

An advantageof a singlecontrolflow implementationis thatthesinglefetchunit canscanall
the instructionsas it builds the single instruction window and, therefore,has more complete
knowledgeof potentialdependences.This leadsto morerobustandlessconservative datadepen-
denceresolutionandrecovery mechanisms(discussedbelow). In addition,thesemethodsmaybe
ableto take advantageof finer graincontrol independence,at thelevel of individual basicblocks,
for example.

Theaggressive datadependenceresolutionandrecovery mechanismspresentedin this paper
are important distinctions with other control independencearchitectures.Specifically, some
designpointsof the multiscalarandmultithreadingapproachesresolve inter-threaddatadepen-
dencesconservatively [29]. That is, even thoughcontrol flow within a threaddoesnot directly
affect otherthreads,valuesdependenton thecontrolflow arenot forwardedto otherthreadsuntil
the control flow is resolved. If speculative data forwarding is performed,entire threadsare
squashedwhenincorrectvaluesarereferenced,losingsomeor all of thebenefitsof control inde-
pendence.This is only true for designswithout selective reissuingcapability, e.g. large threads
may precludebeing selective. In a sense,this approachto control independencemore closely
resemblesguarding[36,37,8,9],which shiftstheproblemof controlflow to dataflow. But clearly
theseare not fundamentalrestrictions[38]; conservatism reflectsa simpler and perhapsmore
practical design.

B.3 Other misprediction-tolerant solutions

B.3.1 Instruction reuse

Instructionreuse[18] is a mechanismthatexploits control independence.Ratherthanexplic-
itly preservinginstructionswithin the instruction window, input andoutputvaluesof completed
instructionsarebufferedin a cache-like structure. Whena mispredictionis detected,the instruc-
tion window is notpreserved,but thecontrolanddataindependentstateof thewindow is in some
senserestoredfrom the reusebuffer. Control independentinstructionsthat werewritten into the
reusebuffer before the mispredictionis detected,and whoseinputs do not changedue to the
misprediction, bypass re-execution.

The reusebuffer greatlysimplifiespreservingthe instructionwindow. In additionto its sim-
plicity, thereareat leasttwo performanceadvantagesof instructionreusewith respectto explicit
controlindependence.First, if theincorrectcontroldependentpathis shorterthanthecorrectcon-
trol dependentpath,morecontrol independentinstructionscanbeexecutedandpreserved in the
reusebuffer thancanbepreserved in the instructionwindow (theadditionalcontrol independent
instructionsare“pushedout” of thewindow by the longer, correctcontroldependentpath).Sec-
ond, instruction reuseis a unified approachfor exploiting both control independence(squash
reuse) andgeneral reuse.

Reusehas potential disadvantages,however, when comparedwith explicitly preserving
instructionsin thewindow. First,with explicit controlindependence,controlindependentinstruc-

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 37

tions that have not issued,executed,or broadcasttheir resultsby the time the mispredictionis
detectedmaycontinueprocessingin spiteof themisprediction.Instructionreusemaynot capture
theseinstructions.With very large instructionwindows, explicitly preservinginstructionsin the
window andallowing work to proceedin parallelwith servicingmispredictionsmayaccountfor
muchof the benefitof control independence;this is an areathat deservesfurther study. Second,
becauseinstructionsarestoredin thereusebuffer basedon PC,thenumberof dynamicinstances
of aninstructionthatmayberecoveredis constrainedby theassociativity of thereusebuffer. This
may be a problemfor instructionsin loops.Clearly, otherreusebuffer organizationsmay over-
come this limitation.

Instructionreuserequiresre-fetchinginstructions.On the otherhand,conceivably thereare
explicit control independenceimplementationsthatdo not requirere-fetchingandre-dispatching
instructions.Moreadvancedregisterrepairmodelsthanthoseproposedin this reportarepossible.
However, re-fetchingmaybenecessaryfor maintaininghigh predictionaccuracy -- this wasdis-
cussed in AppendixA.3.2 in terms of the need for re-predict sequences.

B.3.2 Predication and selective multi-path execution

Predication[36,37,8,9]and selective multi-path execution [2,3,4,5,6,7]attemptto identify
hard-to-predictbranches,eitherthroughprofiling or branchconfidenceestimators(respectively),
andfetch both pathsof thesebranches.In the caseof multi-pathexecution,both pathsarefully
renamedand executedas separatethreads.When the branchis resolved, one of the threadsis
squashed and the other becomes the primary thread of execution.

Predicationis in somesensethe softwareequivalentof multi-pathexecutionappliedto for-
ward-branchingregionsof the CFG. In oneform of predication,the control dependentinstruc-
tions do not executeuntil their predicatesarecomputed,i.e. multiple pathsarefetchedbut only
thecorrectpathis executed.Alternatively, with predicatepromotion[39] or predicatedstatebuff-
ering [9], instructionsfrom multiplepathsmayexecuteconcurrently, andonly theresultsfrom the
correct path are committed.

Predicationandmulti-pathexecutionwasteresourcesby fetchingandpossiblyexecutingboth
thecorrectandincorrectcontroldependentpathsof branches.This resultsin a performancegain
over conventionalspeculationif thebranchesaremispredicted.Unfortunately, multi-pathexecu-
tion is appliedto somefractionof correctlypredictedbranches,andalternatively, somefractionof
incorrectlypredictedbranchesarenot coveredby multi-pathexecution.In our experiencewith
staticanddynamicconfidenceestimation[33], it is not often the casethat specificbranchesare
always predictedcorrectly or incorrectly. Rather, most branches-- or patternsin the caseof
dynamicschemes-- identifiedas“unpredictable”areactuallyin agrayarea,with predictionaccu-
raciesof 80%or more.To covera significantfractionof mispredictions,anevenlarger numberof

correct predictions must also be covered.1

A problemspecific to predicationis the aggravation of datadependences.The purposeof
branchprediction is two-fold: (1) quickly determinewhich instructionsto fetch next and (2)

1. For example,a dynamicconfidencemechanismcan concentrate90% of all mispredictionswithin 20% of all
dynamicpredictionsfor theIBS benchmarks[33]. Assuminga90%branchpredictionaccuracy, this means9%of
predictionsare correctly identified for multi-path execution,11% of predictionsare incorrectly identified for
multi-pathexecution,and1%of predictionsarenot identifiedfor multi-pathexecutionwhenthey shouldbe.For a
staticprofiling scheme,which predicationmay rely on, thesamenumbersare6%, 14%,and4% respectively, to
concentrate 60% of all mispredictions within 20% of all dynamic predictions.

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 38

quickly establishand resolve datadependencesamonginstructions.Predicationonly addresses
thefirst aspect.It “removes” branches,sotheinstructionsto befetchedareknown in advance(all
instructionsin thepredicatedregion arefetched).It doesnot,however, addressthesecondaspect.
Withoutpredicatedstatebuffering,all predicatedinstructionsmustwait for theircontrollingpred-
icateto beresolved.Branchpredictioneliminatesthis controldependenceif thepredictionis cor-
rect, and it is correct more often than incorrect.With predicatedstatebuffering, instructions
within a region neednot wait for predicates,but their computedresultsarenot forwardedoutside
the region until predicate conditions are resolved.

Predicationandmulti-pathexecutioncanpotentiallyreducethebranchmispredictionpenalty
morethancontrolindependence,becauseonly part(or none)of thepathafterthebranchis recov-
eredin the caseof control independence.On the otherhand,becauseonly a singlepath is fol-
lowed,control independencemay still capturemorecontrol independentinstructionswithin the
window than predication or multi-path execution.

The ideabehindcontrol independenceis to always trust branchpredictionandspeculation,
and take measuresonly when a mispredictionoccurs,therebyavoiding the above difficulties.
After all, branchpredictionperformswell mostof thetime,soit makessenseto exploit its poten-
tial fully and employ other optimizations when it does not perform.

References
[1] E. Rotenberg,Q. Jacobson,Y. Sazeides,andJ.Smith.Traceprocessors.30th Intl. Symp. on Microarchitecture,

Dec 1997.
[2] A. Uht andV. Sindagi.Disjoint eagerexecution:An optimalform of speculativeexecution.28th Intl. Symp. on

Microarchitecture, Dec 1995.
[3] T. Heil andJ.Smith.Selectivedualpathexecution.Technicalreport,Universityof Wisconsin,ECEDepart-

ment, Nov 1996.
[4] G. Tyson,K. Lick, andM. Farrens.Limiteddualpathexecution.TechnicalReportCSE-TR-346-97,University

of Michigan, EECS Department, 1997.
[5] A. Klauser,A. Paithankar,andD. Grunwald.Selectiveeagerexecutionon thepolypatharchitecture.25th Intl.

Symp. on Computer Architecture, June 1998.
[6] S.Wallace,B. Calder,andD. Tullsen.Threadedmultiplepathexecution.25th Intl. Symp. on Computer Archi-

tecture, June 1998.
[7] P.Ahuja, K. Skadron,M. Martonosi,andD. Clark. Multipath execution:Opportunitiesandlimits. Intl. Conf.

on Supercomputing, July 1998.
[8] S.Mahlke,R. Hank,J.McCormick,D. August,andW. Hwu. A comparisonof full andpartialpredicatedexe-

cution support for ilp processors.22nd Intl. Symp. on Computer Architecture, June 1995.
[9] H. Ando, C. Nakanishi,T. Hara,andM. Nakaya.Unconstrainedspeculativeexecutionwith predicatedstate

buffering.22nd Intl. Symp. on Computer Architecture, June 1995.
[10] M. S.LamandR. P.Wilson.Limits of controlflow onparallelism.19th Intl. Symp. on Computer Architecture,

pages 46–57, May 1992.
[11] M. Franklin.The Multiscalar Architecture. PhD thesis, University of Wisconsin, Nov 1993.
[12] M. Lipasti.Value Locality and Speculative Execution. PhD thesis, Carnegie Mellon University, April 1997.
[13] G. S.Sohi,S.Breach,andT. N. Vijaykumar.Multiscalarprocessors.22nd Intl. Symp. on Computer Architec-

ture, pages 414–425, June 1995.
[14] P.Dubey,K. O’Brien,K. M. O’Brien,andC. Barton.Single-programspeculativemultithreading(spsm)archi-

tecture:Compiler-assistedfine-grainedmultithreading.Intl. Conf. on Parallel Architecture and Compilation
Techniques, 1995.

[15] J.-Y. Tsai andP.-C.Yew. The superthreadedarchitecture:Threadpipeliningwith run-timedatadependence
checking and control speculation.Intl. Conf. on Parallel Architecture and Compilation Techniques, 1996.

[16] J.Oplinger,D. Heine,S.-W.Liao,B. Nayfeh,M. Lam,andK. Olukotun.Softwareandhardwarefor exploiting
speculativeparallelismin multiprocessors.TechnicalReportCSL-TR-97-715,StanfordUniversity,Computer
Systems Laboratory, Feb 1997.

[17] J.SteffanandT. Mowry. Thepotentialfor usingthread-leveldataspeculationto facilitateautomaticparallel-

A Study of Control Independence in Superscalar ProcessorsDecember 18, 1998 39

ization.4th Intl. Symp. on High Performance Computer Architecture, Feb 1998.
[18] A. Sodani and G.S. Sohi. Dynamic instruction reuse.24th Intl. Symp. on Computer Architecture, June 1997.
[19] K. Sundararaman and M.Franklin. Multiscalar execution along a single flow of control.ICPP’97, Aug 1997.
[20] S.VajapeyamandT. Mitra. Improvingsuperscalarinstructiondispatchandissueby exploitingdynamiccode

sequences.24th Intl. Symp. on Computer Architecture, pages 1–12, June 1997.
[21] M. LipastiandJ.Shen.Superspeculativemicroarchitecturefor beyondad2000.IEEEComputer,Billion-Tran-

sistor Architectures, Sep 1997.
[22] Y. Patt,S.Patel,M. Evers,D. Friendly,andJ.Stark.Onebillion transistors,oneuniprocessor,onechip. IEEE

Computer, Billion-Transistor Architectures, Sep 1997.
[23] J.SmithandS.Vajapeyam.Traceprocessors:Moving to fourth-generationmicroarchitectures.IEEEComput-

er, Billion-Transistor Architectures, Sep 1997.
[24] S.McFarling. Combining branch predictors. Technical Report TN-36, WRL, June 1993.
[25] P.Chang,E. Hao,andY. Patt.Targetpredictionfor indirectjumps.24thIntl. Symp.onComputerArchitecture,

June 1997.
[26] D. Kaeli andP.Emma.Branchhistory tablepredictionof moving targetbranchesdueto subroutinereturns.

18th Intl. Symp. on Computer Architecture, pages 34–42, May 1991.
[27] D. Burger,T. Austin, andS.Bennett.Evaluatingfuturemicroprocessors:Thesimplescalartoolset.Technical

Report CS-TR-96-1308, University of Wisconsin, CS Department, July 1996.
[28] M. FranklinandG. S.Sohi.Theexpandablesplit windowparadigmfor exploitingfine-grainparallelism.19th

Intl. Symp. on Computer Architecture, May 1992.
[29] T. Vijaykumar.Compiling for the Multiscalar Architecture. PhD thesis, University of Wisconsin, Jan 1998.
[30] D. BernsteinandM. Rodeh.Globalinstructionschedulingfor superscalarmachines.ACMConf.onProgram-

ming Language Design and Implementation, June 1991.
[31] R. Cytron,J.Ferrante,B. Rosen,M. Wegman,andF. Zadeck.An efficient methodof computingstaticsingle

assignment form.ACM Symp. on Principles of Programming Languages, Jan 1989.
[32] M. FranklinandG. S.Sohi.ARB: A hardwaremechanismfor dynamicreorderingof memoryreferences.IEEE

Transactions on Computers, 45(5):552–571, May 1996.
[33] E. Jacobsen,E. Rotenberg,andJ.Smith. Assigningconfidenceto conditionalbranchpredictions.29th Intl.

Symp. on Microarchitecture, pages 142–152, Dec 1996.
[34] Y. Sazeides,S.Vassiliadis,andJ.E.Smith.Theperformancepotentialof datadependencespeculationandcol-

lapsing.29th Intl. Symp. on Microarchitecture, pages 238–247, Dec 1996.
[35] F. GabbayandA. Mendelson.Speculativeexecutionbasedonvalueprediction.TechnicalReport1080,Tech-

nion - Israel Institute of Technology, EE Dept., Nov 1996.
[36] J.Allen, K. Kennedy,C. Porterfield,andJ.Warren.Conversionof control dependenceto datadependence.

10th Symp. on Principles of Programming Languages, Jan 1983.
[37] D. PnevmatikatosandG. Sohi.Guardedexecutionandbranchpredictionin dynamicilp processors.21stIntl.

Symp. on Computer Architecture, April 1994.
[38] T. N. Vijaykumar,S.E. Breach,andG. S. Sohi.Registercommunicationstrategiesfor themultiscalararchi-

tecture. Technical Report 1333, CS Dept., Univ. of Wisc. - Madison, Feb 1997.
[39] P.Tirumalai,M. Lee,andM. Schlansker.Parallelizationof loopswith exitsonpipelinedarchitectures.Super-

computing ’90, Nov 1990.

