A Study of Control Independence in Superscalar Processors

Eric Rotenbay, Quinn Jacobson, Jim Smith
University of Wisconsin - Madison
ericro@cs.wisc.edu, {gjacobso, jes}@ece.wisc.edu

Abstract

Aninstructionis controlindependentf a precedingconditionalbrand if the decisionto exe-
cutethe instructiondoesnot dependon the outcomeof the brand -- this typically occuss if the
two pathsfollowing the brand re-corverge prior to the control independeninstruction.A specu-
lative instructionthat is contol independenof an earlier predictedbrand doesnot necessarily
haveto be squashedndre-executedf the branch is predictedincorrectly Consequentlycontrol
independenchasbeenput forward as a significantnew source of instructionlevel parallelismin
future geneation processos. However, its performancepotentialunderpractical hardware con-
straintsis not known,and evenlessis undesstoodaboutthe factors that contribute to or limit the
performance of contt independence

A studyof contol independencen the context of supescalar processas is presentedFir st,
importantaspectof control independencare identifiedand singledout for study anda seriesof
idealizedmadine modelsare usedto isolateand evaluatetheseaspectslt is shownthat mud of
the performancepotential of control independencés lost due to data dependenceand wasted
resoucesconsumedy incorrect control dependeninstructions.Evenso, control independence
can close the performance gap betwesal and perfect and prediction by as mucas half

Next, importantimplementationssuesare discusse@nd somedesignalternativesare given.
Thisis followedby a more detailedsetof simulationswhete the key implementatiorfeatuesare
realisticallymodeledThesesimulationsshowtypical performanceamprovement®f 10to 30 per-
cent wwer a baseline supscalar pocessar

Keywords: control dependences, selgetsquashing, branch prediction, speculation, ILP

1. Introduction

In orderto exposeinstruction-lerel parallelismin sequentiaprogramsdynamicallyscheduled
superscalaprocessorgorm a“window” of fetchedinstructions Eachcycle, the processoselects
andissuesa groupof independeninstructionsfrom this window. Maintaininga sufficiently large
window of instructionsis essentiafor high instruction-level parallelism-- the moreinstructions
in the windav, the greater the chance of finding independent ones for paratelten.

Branchinstructionsarea major obstacleto maintaininga large window of usefulinstructions
becausehey introducecontrol dependences the next groupof instructionsto befetchedfollow-
ing a branchinstructiondependson the outcomeof the branch.Typically, high performanceoro-
cessorglealwith controldependencelsy usingbranchprediction.Theninstructionfetchingand
speculatre issuecanproceeddespiteunresoled branchesn the window. Unfortunately branch
mispredictionsstill occut andcurrentsuperscalamplementationsquashall instructionsaftera
mispredictedranch therebylimiting the effective window size.Following a squashthewindow
is oftenemptyandseveralcyclesarerequiredto re-fill it beforeinstructionissuingproceedstfull
efficiengy. Furthermorewe arefastapproachinghe pointwherethe hardwarewindow thatcanbe
constructedxxceeds theverage number of instructions between mispredictions.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 1

There are threeways of dealingwith the conditionalbranchproblem. The first, and most
widely studied,is to improve branchprediction. This approachhasreceved considerablgsuc-
cessful)researcteffort for nearlytwo decadesThe seconds to fetchandexecuteboth pathsfol-
lowing a branch,and keeponly the computationof the correctpath. Of coursethis canleadto
exponentialgrowth in hardware, so recently more selectve approachesave beenadwcated,
wheremulti-pathexecutionis only usedfor hard-to-predicbrancheg2, 3, 4, 5, 6, 7]. Predicated
executionis asoftwaremethodfor achieving asimilar effect[8, 9]. Thethird approachs aimedat
reducingthe penalty after a mispredictionoccurs.This approachexploits the fact that not all
instructions folleving a mispredicted branch\eperformed useless computation.

Thethird approachs probablylesswell understoodhanthe othertwo, andin this paperwe
exploreits potential. Thekey pointis thatonly a subsebf dynamicinstructionsmmediatelyfol-
lowing the branchmaytruly dependbonthe branchoutcome Thesenstructionsarecontrol depen-
dent on the branch.Otherinstructionsdeeperin the windon may be control independent of the
mispredictedbranch:they will befetchedregardlessof the branchoutcome anddo not necessar-
ily have to be squashed and reeeuted [10, 11]. This can be illustrated with a simpneple.

Figurel shaws a control flow graph(CFG) containingfour basicblocks. (Basic blocks are
usedfor simplicity and,in general,may be substitutedwith arbitrary control flow.) The condi-
tional branchterminatingblock 1 is mispredictedwith dashedarrowns indicatingthe mispredicted
path 1, 2, and 4.\Wo data dependences, througbiseers r4 and r5, are also sho

actual path
r5e
//
5S¢ @ e rd<
4
<rb
&r4

FIGURE 1. An example of control independence.

At the time the mispredictionis detectedplocks 1, 2, and4 have alreadybeenspeculatrely
fetchedandsomeof theirinstructionamay have alreadystartedexecuting.Becausenly block 2 is
controldependenbn the mispredictionjt is the only block whoseinstructionsmustbe squashed.
Immediatelyafter the mispredictionis found, the fetch unit goesback and fetchesblock 3 to
replace the squashed instructions of block 2.

Controlindependeninstructionsfollowing the mispredictedoranch,specificallyblock 4, are
not squashedbut they do needto be inspectedfor datadependenceiolations causedby the
mispredictectontrolflow, andsomeinstructionsmay have to bere-executed.Thevalueidentified
with r5 mustbe correctedsothatblock 4 usesthe valueproducecearlierin block 1 insteadof the
oneincorrectlyproducedn block 2. Likewise,whenblock 3 is eventuallyinsertedinto the win-
dow, thedatadependencthroughregisterr4 mustalsobe establishedNotethatdatadependences
throughmemorymustsimilarly berepaired After theinstructionsusingr4 andr5 in block 4 cor-
recttheir datadependenceasndreissueall subsequerdatadependeninstructionsmustalsoreis-
sue. Hence, selegt instruction reissue [12, 1] in some form is necessary

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 2

Lam and Wilson’s limit study on controlindependencgl0] shaved that substantiaperfor-
manceimprovementsmay be possible.However, as a limit study most implementationcon-
straints were not considered.Further important aspectsof programsthemseles were not
modeled;in particular a significant subsetof data dependencesvere ignored due to the
trace-drven natureof the study Several microarchitecturemplementationdave sincebeenpro-
posedhatincorporatecontrolindependencen someform[11, 13,14,15,16,17,18,1]. In these
studies,however, eitherthe impactof control independencés not isolated,or insight into the
reported performanceas is limited and obscured by aatits of the particular design.

In this paperwe have three primary objectves and contributions. The first objective is to
establish new bounds on the performance potential of control independence under implementa-
tion constraints. The studyfocuseson two fundamentatonstraintghat characterizesuperscalar
processorsinstructionwindow size andinstructionfetch/issuebandwidth Otheraspectsof the
study remain ideal and aggres&sto aoid design artécts that might obscure the analysis.

Thesecondbjectiveis to provide insight into the factors that contribute to or limit the perfor-
mance of control independence. Datadependenceletweencontrol dependenand control inde-
pendeninstructionsplay animportantrole. In Figurel, thereis atrue data dependence (register
r4) betweenthe correct control dependent instructionsin block 3 andsubsequentontrolinde-
pendeninstructionsn block 4. Similarly, thereis afalse data dependence (registerr5) produced
by theincorrect control dependent instructionsin block 2. Resolvingbothtypesof datadepen-
dencesds delayedby the branchmispredictionin spite of controlindependenceAnotherimpor-
tant factor is the waste of fetch and execution resourcesby incorrect control dependent
instructions Having to first fetchthe misspeculatethstructionsdelaysfilling theinstructionwin-
dow with correct, control independeninstructions.Also, if there are more incorrect control
dependentnstructionsthan correctones,e.g. block 2 is larger than block 3, window spaceis
wasted that might v gone to more control independent instructions.

The third objective is to assess the complexity of implementing aggressive control indepen-
dence mechanisms in superscalar processors. Althoughit is beyondthe scopeof this paperto put
forth detaileddesignsjmplementatiorrequirementsreidentifiedandhardware/softvarealterna-
tives for meetingthe requirementsare proposed.We have also developeda detailed execu-
tion-driven simulator that implements the outlined requirements.

Several conclusionsemege from our study First, the performancegap betweenbranchpre-
dictionwith conventionalspeculatiorandoraclebranchpredictionis quitelarge, but controlinde-
pendenceholds the potential for closing the gap by as much as half. Second,the effects of
incorrectcontrol dependentinstructions-- both wastedresourcesandfalsedatadependences
significantly limit the benefitsof control independencewith wastedresourceseing the chief
problem.The impactof true datadependencess slightly smallerthanthat of falsedatadepen-
dencesThird, for the chosendesignalternatvesin the detailedexecution-drven model, perfor-
mance impraeements ranging from 10% to 30% are measured.

In orderto keepthe study manageablewe limit our scopeto one of two major schemedor
exploiting controlindependencdn particular the studytargetsprocessorshat usea singleflow
of control,i.e. asinglefetchunit, asin today’s superscalaprocessorsOtherschemesysingmul-
tiple flows of control,arenot studiedhere,althoughextendingthe studyof controlindependence
to multiple (yet finite) fetch units is an interesting problem toxXptoeed.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 3

1.1 Prior work

Lam and Wilson’s limit study[10] demonstrateshat control independencexposesa large
amountof instruction-level parallelism,on the orderof 10 to 100, for control-intenste integer
benchmarksAlthoughtheseresultsareimportant,full interpretationis obscuredor bothtechni-
cal andpracticalreasonsAs pointedout in ananalysisby SundararamaandFranklin [19], the
limit study makes certainassumptionshat may inflate the apparenbenefitsof controlindepen-
dence Staticbranchpredictionbasedn profiling is used,asopposedo higheraccurag dynamic
branch predictors.More importantly becausehe simulationis fully trace-drven, it doesnot
accountfor falsedatadependencesreatedon mispredictecdpaths(asdiscussegreviously), thus
allowing incorrect-datalependeninstructionsto be scheduleatarlierthanthey would bein prac-
tice. Furthermorelimit studiespy definition,areunconstrainedh orderto measurenherent par-
allelismin programsanddo not considerpracticalimplementationssuesin the Lam andWilson
limit study severalfundamentafeaturesof processorsrenot modeled.In particulay thereis no
conceptof a limited instructionwindow or instructionfetch bandwidth,whetherconsideringa
single or multiple flows of control. The limit study scheduleghe entire dynamic instruction
streamat once; exposing the obsened parallelismmay require buffering speculatre statefor
thousands of instructions and using an impractical number of parallel fetch units.

Anotherunconstrainedimit studyby Uht andSindagi[2] usesa similar simulationapproach,
but in additionto studying“minimal control dependences’a form of selectve eagerexecution
called disjoint eagerxecution is also studied.

Multiscalarprocessor$11,13] and othermultithreadedarchitecture$16, 17, 14, 15] exploit
controlindependencéy pursuingmultiple flows of control. In the caseof multiscalay the com-
piler partitionsthe programinto tasks,or subgraph®f the CFG. Arbitrary controlflow may exist
within atask,andthe compilerneednot guaranteehattasksbe controlanddataindependentAt
run-time,a tasksequencepredictsandallocatesasksto run on distributedprocessinglements,
eachcapableof pursuingits own flow of control.In this way, branchmispredictionswithin atask
may not causesubsequentasksto squashf they arecontrolindependenof the branch.To date,
however, therehasbeenno study that separateshe impactof control independenceand deter-
mines its contribtion to performance in the multiscalar paradigm.

Trace processord20,1] are in some sensea variant of multiscalar processorsvhere the
dynamic instruction streamis divided into traces-- frequently executeddynamic instruction
sequenced®n internalmispredictedconditionalbranchcausests traceto be squashedyut subse-
guenttracesare not squashedf, after repairingthe mispredictedbranchand predictinga new
sequencef traces,the new tracesmatchthosealreadyresidingin the processingelementq1].
Only modestimprovementsare reportedbecausano optimizationin traceselectionor processor
assignment as done to enhance performance benefits of control independence.

Theinstructionreusebuffer [18] providesanothemway of exploiting controlindependencdt
savesinstructioninput andoutputoperandsn a buffer -- recurringinputscanbe usedto index the
buffer and determinethe matchingoutput; i.e. the instructionoutputsare “reused”. In the pro-
posedsuperscalaprocessoith instructionreuse thereis completesquashingafter a branchis
mispredictedHowever, controlindependeninstructionsafterthe squastcanbe quickly evaluated
via thereusebuffer. Overall speedupsiueto reuseareon the orderof 10%,over half of whichis
due to squash reuse.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 4

1.2 Paper organization

In Section2, we considera seriesof idealizedmachinemodelsin orderto betterunderstand
the relative importanceof someof the biggerissuesaffecting control independenceSection3
lists thekey featuredn a superscalaprocessofor exploiting controlindependencanddiscusses
implementationalternatves for eachof the features.Next, in Section4, we study performance
considering timing constraints imposed by practical implementations.

2. The potential of control independence

In this sectionwe begin evaluating the performancepotential of control independencen
superscalaprocessorslt is anidealizedstudyin the sensethat someof the modelshave oracle
knowledgesothat(1) performancdoundscanbe establishe@nd(2) aspectshatlimit the perfor-
manceof controlindependenceanbe isolated.The latter hasimportantimplications:by under-
standinghelimiting aspectstechniquesnaybe developedto overcomethem.Ontheotherhand,
thestudyis not anunconstrainedparallelismlimit study”-- aparticularclassof implementations
is tageted, and some of the basic resources are limited.

2.1 Control independence models

In the modelsgiven below, the performancampact of threeimportantaspectsof a control
independent design are singled out for study

» Thefirst aspectoncerngrue datadependencdsetweercorrectcontroldependeninstructions
and control independentnstructions.In suchcasesjssuingthe control independentnstruc-
tions is delayeduntil after the mispredictionis resolhed and the correctcontrol dependent
instructions are fetched/issued.

» Thesecondspects thehandlingof falsedatadependencesreatedy incorrectcontroldepen-
dentinstructions.As discusseckarlier thesecausethe selectve reissueof somecontrolinde-
pendentinstructions. Delays brought on by this repair and selectve reissuecan inhibit
performance gins.

» Thethird aspects the useof machineresourcedy instructionson an incorrectpaththatare
eventually squashedEven if control independenceas ideally implementedotherwise,this
waste of resources and time will reduce performance.

Six differentmodelsare evaluated.Figure?2 illustratesthe differencesamongthesesix mod-
els, using the example CFG in Figurel. Only two resourcesjnstructionfetch and issue,are
shawvn. Time progresseslovnward in the fetch/issueschedulesFetchingeachbasicblock con-
sumedetch bandwidth;this is shavn usingbasicblock labelswithin their respectie fetch slots.
Likewise, instructionsconsumeissue bandwidth,and are labeledfirst with the corresponding
basicblock, followedby the production/consumptioaf a value.For clarity, only instructionsthat
ultimatelyretire(i.e. correctinstructions)areshown; for these pnly thefinal issuetime is showvn.
Thelabels*M” and“D” in thediagramsndicatethetime of the branchmisprediction(M) andthe
time that the misprediction is detected (D).

The oracle model(Figure2(a)) usesoraclebranchpredictionandthereforethe branchtermi-
natingblock 1 is not mispredictedBlocks 1, 3, and4 arefetchedin correctdynamicprogram
order

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 5

Thenext four modelsusereal branchpredictioncoupledwith completeknowledgeof control
dependences txploit control independence. The faNng notations are used.

* WR (“WastedResources”)Misspeculatednstructionsconsumewindow resourcesand band-
width, thus delaying othecorrect instructions.

* FD (“FalseDataDependences”)Iheeffectsof falsedatadependencesetweenncorrectcon-
trol dependent instructions and control independent instructions are modeled.

The inversenotations,nWR and nFD, indicatethe correspondingactoris not modeled.Thus,
there are four possible modeAVR-nFD, NWR-FD, WR-nFD, andWR-FD.

FETCH ISSUE FETCH ISSUE FETCH ISSUE
L M- 1 M- 1
3 1: rb<= 4 1: rb<= 4 1: rb<=
4 3. rd<= 4. <=r5
TIME 4: <=r5 . :
o 4. <=r4 . .
. D=3 D371 g <rs
' 3: r4<= 3: r4<=
4. <=r4 4. <=r4
(a ORACLE (b) NWR-nFD (c) NWR-FD
M 1 M— L M— 1
1: r5<= 2 1: r5<= 2 1: r5<=
41 g <ers 4 &
D=3 D121 b <rs D=3
3: rd<= 3: rd<= 4 3: rd<=
4: <=r4 4: <=r4 4. <=r5
4. <=r4
(d) WR-nFD (e) WR-FD (f) BASE

FIGURE 2. Fetch and issuetiming for the six models, corresponding to the example CFG in Figure 1.

In the nWR-nFD model (Figure2(b)), mispredictedbranchegelayfetchingthe correctcon-
trol dependeninstructions But betweerthetime thata branchis mispredictecandthe mispredic-
tion is detectedfetchandwindow resourcesrekeptbusywith controlindependeninstructions.
Incorrectcontrol dependeninstructionsare not consideredfor example,block 2 is not fetched
into the window), therebyeliminatingfalsedependenceanddevoting resourcesolelyto control
independent wrk while the misprediction is res@d.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 6

The only differencebetweerthis modelandoracle is thatinstructionsarefetchedin a differ-
ent orderfollowing mispredictedoranchesThis hasa negative performancampactonly when
true datadependenceare delayedwith respectto oracle. For example,instruction“4: <=r4"
issues later because the producer instruction in block 3 is delayed by the misprediction.

Interestinglytherearesituationswhereperformancef nWR-nFD mayactuallyexceedthatof
oracle. For example,instruction“4: <=r5" issuesslightly earlierwith respecto oracle, because
block 4 is fetchedout-of-orderandearlier If this instructionis on the critical path,schedulingt
earlier may impree overall performance.

The nWR-FD model, shavn in Figure2(c), also doesnot wastetime with misspeculated
instructions however their effectson datadependencearefelt. For example,we do notknow the
true producerof “r5” until the mispredictionis resolhed, delayinginstruction“4: <=r5" until that
time. The repair of falsedatadependences assumedo occurin a single cycle, at the time a
misprediction is resokd -- this is the best that can be acbie

Thedual of this modelis WR-nFD (Figure2(d)): misspeculate¢hstructionstake up time and
resourcegindicatedby shadedegions),but falsedependencearehidden.Performancelegrada-
tion with respecto nWR-nFD is causedy anunderutilizedwindow anddelayedfetchingof cor-
rect (control independent) instructions.

The WR-FD model(Figure2(e)) usesno oracleknowledgeregarding misspeculatedhstruc-
tions-- they wastebothtime andresourcesandinterferewith datadependenced.his modelrep-
resentsan upperboundon the performanceof superscalaprocessorsexploiting basic control
independence.

Finally, thebase model (Figure(f)) squashes all instructions after a branch misprediction.

2.2 Hardware constraints and assumptions

We areinterestedn the performancampactof instructionwindow size and machinewidth
(peakfetch,issue,andretirerate)on controlindependencdn our study the machinewidth is 16
instructionsper cycle for all simulations,andwindow sizeis varied. This is wider thancurrent
processorshut may be suitablefor a future generationvhen control independences seriously
considered for implementation [21,22,23].

We implement the follving additional hardare constraints and assumptions:

* An idealfetchunitis assumedThatis, all instructionshit in the cache andfetchingcanpro-
ceed past gnnumber of branches, tak or not tak&n, in a singleycle (up to 16 instructions).

» A 5-stagepipelineis modeledinstructionfetch, dispatchjssueexecute andretire. Fetchand
dispatchtake 1 cycle each.Issuetakesat leastl cycle, possiblymoreif the instructionmust
stall for operandsAn instructionis in the executionstagefor somefixed lateny basedon its
type, plus ary time spentwaiting for a resultbus. Addressgeneratiorntakes 1 cycle, andall
cache accesses areytle, i.e. a perfect data cache is assumed. Instructions retire in order

* Any l6instructionsmayissuein acycle becauséully symmetricfunctionalunitsareassumed.

* Outputandanti-dependencemeeliminatedby assuminganunlimitednumberof physicalreg-
isters for rgister renaming and unlimited speculatstore bffering for memory renaming.

» Oraclememorydisambiguations used.However, storesfetcheddown the wrong control path
may still interferewith subsequentontrolindependentoads-- aswith registervalues,false
memory dependences may be created in this case.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 7

« A 26 entry gshare predictor[24] is implementedfor predictingthe direction of conditional
branchesAll directtargetaddresseare assumedo be predictedcorrectly sincethey canbe

computedat the time of instructionfetch. For indirect calls andjumps,a 216 entry correlated
target uffer [25] is used. Returns are predicted using a perfect return address stack [26].

2.3 Benchmarks

Dynamic instructiontraces,including both correctly speculatecand misspeculatednstruc-
tions,aregeneratedby the Simplescalasimulator[27]. Five of the integer SPEC9%henchmarks,
gcce, go, compress, jpeg, andvortex weresimulatedo completion.Thesebenchmarksverechosen
to reflect a variety of prediction accuraciesyanging from very predictable(vortex) to diffi-
cult-to-predict(go). Inputdatasetsjgynamicinstructioncounts.andbranchmispredictiorratesare
shavn in Tablel. The misprediction rates include both conditional branches and indirect jumps.

TABLE 1. Benchmark information.

benchmark | input dataset instruction count | misprediction rate
gce -O3 genrecog.i 117 million 8.3%
go 99 133 million 16.7%
compress 400000 e 2231 104 million 9.1%
ijpeg Vigo.ppm 166 million 6.8%
vortex modified train input 101 million 1.4%
2.4 Results

Resultsof simulatingthe six machinemodelsare in Figure3. Performancds measuredn
instructions perycle (IPC) and is shvan as a function of winde size.

First of all, a performanceaupperboundis establishedvith the oracle results.Theseresults,
assumingerfectbranchprediction,aretypically over 10 IPC for window sizesof 256t0 512.The
machinewidth upperboundis 16, andmostof the benchmarkgsomecloseto this mark. Compar-
ing the oracle and base resultsindicatesa large performancdossdueto branchmispredictions
with a completesquash(but otherwiseideal) model. For a 512 instructionwindow, the lossis
betweend0% and70% for four of the five benchmarksThe benchmarkhathasthe leastperfor-
mancelossis vortex -- but its branchpredictionaccurag is quite high. Performancédor the base
modeltypically saturatestawindow sizeof 128 or 256instructions.Thereis no suchsaturation
pointfor theoracle model. Theseresultsareconsistentvith thoseproducedy othersandindicate
the importance of branch mispredictions eerall performance.

The differencebetweenoracle and nWR-nFD illustratesperformancdossesfrom deferring
instructionson a correctcontrol dependenpathuntil after a mispredictedoranchis resolhed. In
nNWR-nFD, however, machineresourceslo not sit idle while the mispredictedoranchis resohed
-- all machineresourcesrekeptashbusy aspossiblefetchingandexecutingthe control indepen-
dent path. The performance loss is typically only 1 to 2 IPC for the mediung¢odardavs.

The base modelalsodefersexecutionof the correctcontrol pathfollowing a misprediction,
but it getsno benefitfrom themachineresourcedeforethe mispredictedranchis resohed-- ary
work doneafter the branchis squashedwhenviewed in this way, nWR-nFD indicatesthat the
otherwisewastedresourcesn base canleadto large performancebenefits.In termsof the way
controlflow is managednWR-nFD is mostsimilarto Lam andWilson’s model[10], becausenis-
speculated instructions are ignored.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 8

gce go

16 16
oracl
oracle— oracle
1 14 S
NWR-nED- NWR-nED-
12
12 nWR-FD
NWR-FD . 10 L
€ 10 — S WR-nFD
B - WR-nFD - 8 WR-FD
8 - NR-FD |
gl 6
6 e U A Ko Jbase E 4 A ase
4 *= 2
64 128 256 512 1024 2048 64 128 256 512 1024 2048
window size (log2) window size (log2)
compress ijpey
10 15 oracl
/W 14 —T=-AWR=nAD
’ _IWRnFD| g - WR
8 R-nED
WR-FD
7
2 6 £
o base]
5 (. WR-nFD
O T B NWR-FD
S B R-FD
e Y T
.] base
2
64 128 256 512 1024 2048 64 128 256 512 1024 2048
window size (log2) window size (log2)
vortex
16
14
12 hase 3
T10
8
6 i
64 128 256 512 1024 2048

window size (log2)
FIGURE 3. Performance of the six control independence models.

With nWR-FD, the impactof falsedatadependencess isolated.For four of the five bench-
marks,the performancealropis significant,anotherl to 2 IPC belov nWR-nFD. Compress experi-
encesamuchlargerdropin performanceFalsedependences compress limit IPC to under5 for

all window sizes.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998

With WR-nFD, we isolate the effects of wasting resourcedy executing incorrectcontrol
dependeninstructionsuntil the branchis resohed. Someresourceare still usedfor the control
independenpath-- but notuntil andunlessthe fetch unit reacheshe controlindependentegion.
This resultsin a major drop in performancebigger than the drop causedoy nWR-FD. For all
benchmarksexcept compress, the effect of wastedtime and resourcesilominatesthat of false
dependences, by aboutastor of 2.

With WR-FD, we seethe combinedmpactof wastedresourcesindfalsedependencesaused
by incorrectcontroldependeninstructions Fortunately the effectsarenot additve. The WR com-
ponentalreadydominatesso thereis little additionalpenaltycausedoy repairingandreissuing
falsedatadependeninstructionsin the controlindependenstream(exceptfor compress). At this
point performanceajns are about 100%er thebase machine.

2.5 Summary and applications of the study

Thisinitial studyhasestablishegherformancéoundsfor controlindependence the context
of superscalaprocessorsThe WR-FD modelreduceghe gap betweernthe oracle andbase mod-
els by half, and a realistic implementation wélllfsomevhere betweebase andWR-FD.

Theotherthreecontrolindependencenodelsalsohave interestingmplications.A majorper-
formancdimiter is theincorrectcontroldependenpath,primarily becausef wastedietchingand
window space(WR-nFD), but alsofalsedatadependence§WR-FD). If theselimitations could
be mitigatedin someway, performancef the nWR-nFD modelindicatesthe remainingproblem
is lesssignificant,i.e. the problemof true datadependencelsetweerthe deferred correctcontrol
dependent path and control independent instructions.

A possibleapproacho mitigating the effectsof incorrectcontroldependeninstructionsis to
designinstructionwindows andfetch unitsthatarelesssensitve to wastedresourcesThe multi-
scalararchitecturas a candidatedueto its multiple programcountersand“expandablesplit-win-
dow” [28]. Althoughstrictly speakingour studyis only applicableto processorsvith asingleflow
of control,we atleastgeta hint of the controlindependencpotentialfor some multiscalardesign
points. For example, Vijaykumars thesis[29] indicatesaveragetask sizeson the order of 15
instructions(comparableto the fetch width of 16 instructions)and effective window sizesof
under200instructionsfor integerbenchmarksGivena multiscalarprocessowith aggressie res-
olution of inter-task data dependenceand selectve reissuingcapability the nWR-FD model
ratherthanWR-FD givesthe moreappropriatgperformancdéounddueto the expandablevindow.

Thelarge performancedrop betweemWR-nFD and WR-nFD, the resultof wastedfetch and
executionresourcestendsto indicatethatboth hardwareandsoftwareforms of multi-pathexecu-
tion shouldbe performedcarefully Thesetechniquesareappliedto both correctlypredictedand
incorrectlypredictedbranchesWe have shavn thatwastedresourcegsausedy incorrectpredic-
tions alone is a problem; adding some fraction of correct predictiorsens the problem.

3. Implementation I ssues

In this sectionwe discussimportantimplementationissuesfor exploiting control indepen-
dencein superscalaprocessorsThis discussionallows us to better understandgualitatively,
whereimplementationcompleities may lie. We do not meanto suggestthat the methodswe
describeare the only onespossible,but we feel the approachesutlined here are adequatdor
highlighting the majorimplementationssueshat mustbe consideredandthey form a basisfor
our later performance simulations in Secibn

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 10

3.1 Handling of branch mispredictions

Whena branchmispredictionis detectedn a traditionalsuperscalaprocessaqrthe processor
performsa seriesof stepsto ensurecorrectexecution.Instructionsafterthe mispredictedoranch
aresquashea@ndall resourceshey hold arefreed.Typically, freeingresourcesncludesreturning
physical registersto the freelist and reclaimingentriesin the instructionissuebuffers, reorder
buffer, andload/storequeuesin addition,the mappingof physical registersis backed up to the
point of the mispredictedbranch.The instructionfetch unit is alsobacled up to the point of the
mispredicted branch and the processgiresequencing on the correct path.

Exploiting controlindependencesquiresmodificationsto the recovery sequencerl he overall
processs illustratedin Figure4. Recovery may proceedasfollows, althoughnot necessarilyn a
strict time sequence -- some of these steps can potentialyedapped.

1. After abranchmispredictionis discovered thefirst controlindependeninstruction(if it exists)
mustbe foundin theinstructionwindow. We call this the reconver gent point, becausen gen-
eral control independencegists when control flv diverges and subsequently re-gemyes.

2. Instructionsare selectvely squasheddependingon whetherthey areincorrectcontrol depen-
dentinstructionsor controlindependeninstructions.Squashedhstructionsareremoved from
the windav, and ag resources thehold are released.

3. Instructionfetchingis redirectedto the correctcontrol dependeninstructions,andthesenew
instructionsareinsertedinto the window which may alreadyhold subsequentontrolindepen-
dent instructions. This step combined with steps 1 and & atmnstitute theestart sequence.

4. Basedon the new, correctcontrol dependentnstructions,datadependencemust be estab-
lished with the control independeninstructionsalreadyin the window. Any modified data
dependencesausealready-&ecutedcontrolindependeninstructionsto be reissuedvith new
data. This step is called thedispatch sequence in Figure4.

Restart Sequence Redispatch Sequence
—————— D i e
., Incorrect ~ Control Independent Instructions
7 Instructions ~_
Mispredicted Branch Reconvergent Point

Correct Instructions

FIGURE 4. Misprediction recovery in a superscalar processor implementing control independence.

3.2 Key microarchitecture mechanisms

To supportthe above recovery steps,we have identified four underlying microarchitecture
mechanisms$o beimplementedTheseare:detectingthe recorvergentpoint, supportingarbitrary
insertionand removal of instructionswithin the window, establishingcorrectdatadependences
following a misprediction andselectvely reissuinginstructions.In thefollowing subsectionsve
consider implementation alternads for each of these.

3.2.1 Detecting the reconvergent point

Ideally, one would find recorvergent points by associatingvith every branchinstructionits
immediate post-dominator : thebasicblock nearesthebranchwhich lies on every pathbetween

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 11

the branchandthe CFG exit block [30, 31]. In Figurel, for example,block 4 is the immediate
post-dominatoof the mispredictedranch Althoughthe post-dominatodoesnot directly specify
the programs controldependence4, is sufficient for identifying all recorvergentpoints.Finding

immediatepost-dominatorgould be very difficult usinghardwarealone.If binary compatibility
doesnot have to be maintained softwarecanaid the hardware by encodingthis information.For

example,the compilercould encodethis informationby including in eachbranchinstructionan
offsetto its post-dominatomstruction.In mostcaseshis offsetis quite small. A secondptionis

to incorporatepost-dominatoregistersinto the architecture Software can load theseregisters
with the addresse®f post-dominatorinstructionsfor soon-to-be-gecutedbranchesand then
specify a post-dominatorgester in each branch instruction.

Hardware-onlysolutionsfor detectingrecorvergentpointsprobablyrequireheuristicshatare
less accuratethan using complete post-dominatorinformation. One less aggressie hardware
alternatve is to identify pointsin a programwheremultiple pathscorverge. Therearesomecom-
mon constructsin a programthat exhibit this behaior, such as targets of subroutinereturn
instructions,or targetsof backward brancheghat form a loop. Thesepoints canbe determined
with hardwaretablesthatmonitorthe dynamicstreamandrecordprogramcountervaluesof such
recorvergentpoints.Whena branchmispredictionis detectedhardware canconsultthe tablefor
thefirst suchrecorvergentpointandassumet to bethecorrectrecorvergentpointfor the mispre-
dicted branch.This approachpreseres only a subsetof the control independentode after a
branchmisprediction but requireslessinformationto be learnedby hardware. A more compli-
catedapproachcould attemptto learn pairs of branchesand their correspondingecorvergent
points.

3.2.2 Instruction removal/insertion

Following the detectionof a recorvergentpoint, the instructionwindow mustbe repairedby
selectvely remaoving incorrectcontrol dependentnstructionsprecedingthe recorvergent point,
andfetchinginstructionsfrom the correctcontroldependenpath.We referto this processasthe
restart sequence, shavn in Figure4.

Therestartsequenceequiresselectvely removing andinsertinginstructionswhile maintain-
ing acorrectordering.Thereorderbuffer (ROB) of atraditionalsuperscalaprocessocanbeaug-
mentedto supportthis. One option is to have the ROB supportarbitrary physical shifting of
instructionsto collapseandexpandthe window for restartsequenceslhis first option causeshe
physical ROB slots to move, and ary instructiontagsin the pipelinespointing to them will
become out-of-date. This complication can be partiallyesbby adding a ieel of indirection.

A secondoptionis to implementthe ROB asa linked list. Then,arny outstandingnstruction
tagsdo not changeasthe ROB is repaired,but dispatchandretirementwill be complicatedby
multiple linked list operationseingdonein parallel. The compleity of manipulatingthe linked
list canbe reducedby implementingit at a granularitylarger thana singleinstruction.Thatis,
ROB spacecanbe partitionedinto multi-instructionblocks. For example,a 256 instructionROB
canbeimplementedas 16 blocksof 16 instructionseach.Then,a block at atime canbeinserted
or removed from the ROB in a more-orlesscornventionalway. This reducessompleity but also
reducedull utilization of thewindow asROB blockswill oftennotbefully utilized. For example,
whenthe processoneeddo inserteightinstructionsinto the middle of the ROB, it will allocatea
full block of 16 lut use only half the entries.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 12

Load/storebufferswith insertionandremoval canbeimplementedn a similar mannerasthe
ROB, but they have the addedcomplicationthat they may require sequence-sensigé address
comparisons to resawdependences.

Freeingresourcedor selectvely squashednstructionsis likely to be lessefficient thancom-
plete squashingReclaimingresourcesncludesreturning physical registersto the freelist and
freeing load/store buffer entries. Reclaiming resourcesselectvely may require sequencing
throughthe squashedhstructionsanditeratively reclaimingtheir resourcesHowever, if selectve
squashings donein parallelwith fetchingnew instructions at leastsomeof the latenyy may be
effectively hidden.In the processnew instructionsmay acquirethe resourcebpeingfreedby the
old instructions.

Finally, anothercomplicationoccursif the window fills with new instructionsbefore the
recorvergentpointis reachedThatis, therearemorenew correctcontrol dependeninstructions
thantherewereold incorrectones.n this casejt is necessaryo begin squashingontrolindepen-
dent instructions (youngest first), allmg the restart sequence to proceed.

3.2.3 Forming correct data dependences

As pointedout earlier althoughinstructionsmay be control independentvith a preceding
block of instructions,they may not be data independentConsequentlycorrectorderingof data
dependencedhoth through registers and memory must be recovered when a misprediction
occurs.Registerdependencesiay be maintainedthroughthe existing physical registermapping
mechanismsTo updatedependencenformation, instructionsin a control independentegion
must be redispatched1]. During redispatchof instructionstheir register sourceoperandsare
remappedwhile their register destinationoperandsmaintain their original assignmentslif an
instructions registersourceoperands mappedo a new physicalregister theinstructionmustbe
reissued.

Memorydependencesanbe maintainedhroughanaugmenteanemory-orderinduffer. The
memory-orderingouffer mustdetectwhena precedingstoreis removed or insertedby a restart
sequencanddirectsubsequerbadsto reissueThis functionalitycanbeaddedo anaddresses-
olution buffer [32] or largeload/storequeue the mainmodificationsbeingthatthe structurehave
to support seleate insertion and renval similar to the reordernuifer.

3.2.4 Selectivereissuing of instructions

If aninstructions registersourceoperands mappedo anew physicalregister theinstruction
mustbe reissuedAs theseinstructionsare reissuedthey will producenew values,andinstruc-
tions in data dependence chains feilog these instructions will also need to reissue.

Ultimately, instructionsmay issueand executemultiple times beforethey eventually retire.
Reissuing,therefore,becomesa commoncaseand the microarchitecturanust be modified to
reflectthis. To reducethe complity andlateng of reissuinginstructions,they remainin the
instructionissuebuffers until they retire [1, 12]. Instructionissuebuffers canbe built to reissue
their instructionsautonomouslyvhenthey obsene a new valuebeingproducedor a sourceoper-
and. This functionality canbe built into the normalissuelogic. Thus,the redispatchogic need
only identify instructionsdirectly affectedby incorrectdatadependencesndthe following data
dependent chain of instructions will automatically reissue.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 13

4. Performance of control independencein a superscalar processor

Theidealizedstudiesof Section2 provide insightinto the factorsthatgovern performanceof
controlindependenceédaving doneso,we now proceedvith a morerefinedanalysisfocusingon
an implementationof the model WR-FD. The analysisis basedon a detailed,fully-execution
drivensimulator andreflectsthe performancempactof implementingthe basicmechanismsut-
lined in Sectior8.

4.1 Simulator detail

Marny of the basichardwareconstraintsarethe sameasin Section2. Themachinewidth is 16
instructionsandthe underlyingpipelineis similar. Instructionfetchingremainsideal, but a more
realisticdatacacheis modeled.The datacacheis 64KB, 4-way setassociatie. The cacheaccess
lateng is two cyclesfor a hit insteadof one,andthe misslateng to the perfectL2 datacacheis
14 cycles.Also, realistic, but aggressie, addresslisambiguatioris performed.Loadsmay pro-
ceedaheaddf unresoledstoresandarny memoryhazardsaredetectedasstoreaddressebecome
available[32] -- recovery is via the selectve reissuingmechanismLastly, the branchpredictor
while identicalto thatin theideal study may have lower accurag dueto delayedupdategtables
are updated at retirement).

Thekey mechanismsor supportingcontrolindependenceayutlinedin Section3, aremodeled
as follows.

Detecting the reconvergent point is donevia software analysisof post-dominatoinforma-
tion. Several hardvare-only mechanisms are discussed amatliated in AppendiA.5.

Instruction removal/insertion gives equivalent performancewhetherthe shift register or
linkedlist approacheareused.In the simulator we implementeda linkedlist approachthatuses
single instruction granularity.arger granularities arevaluated in AppendiA.4.

Forming correct data dependences is delayedsomenumberof cyclesafter the mispredic-
tion is detectedunlike theideal study becausé¢heredispatchsequenceannotproceeduntil after
therestartsequenceompletesFurther redispatchproceedst the maximumdispatchrate.How-
ever, we also modeledsingle-gcle redispatchof all control independentnstructions(after the
restart phase completes), in order to study its performance impact.

Selectivereissuing is modeledn detail, whereagheideal studymodelsonly thedelay caused
by repaireddependences,e. only the final instructionissue.The sourceof reissuingincludes
both register renamerepairsand loads squashedy stores,followed by a cascadeof reissued
instructions along the dependence chains.

4.2 Performanceresults

Figure5 shavstheinstructiongpercycle (IPC) for threedifferentmachinesa superscalapro-
cessothatsquasheall instructionsafterbranchmisprediction{BASE), a processowith control
independenceapability (Cl), and one with the addedcapability to instantaneouslyepair data
dependenceandredispatchall controlindependentnstructionsafter the restartsequenceom-
pletes (CI-l). Measurements are made for three winglzes, 128, 256, and 512 instructions.

For lesspredictablewvorkloads,controlindependenceffers a significantperformanceadwan-
tageover completesquashingalthoughlessthanthe ideal study indicated.The relative perfor-
manceimprovementof Cl over BASE for eachof the window sizesis summarizedn Figure6.
Go, compress, andjpeg shav improvementson the orderof 20%to 30%. While jpeg is fairly pre-
dictable,it is alsorich in parallelismandarny mispredictioncyclesresultin alarge penalty Go on

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 14

the otherhandis a very control-intensre workloadwith frequentmispredictionsandit demon-
strates the most performance benefit.

Gcce also shavs a substantiaperformancegain, about10%. Statisticspresentedn the next
sectionshowv thatapproximately60% of gcc’'s mispredictionshave a correspondingecorvergent
pointin thewindow, while for go, jpeg, andcompress the samestatisticis over 70%. Thefactthat
less control independence ipesed may partially account for thevier performanceain.

From Figure5 we seethat Cl-I, asexpected givesbetterperformancehanCl. However, the
gain is surprisinglysmall -- betweenl% and4%. This is a positive resultbecausat meansthe
time spentduring redispatchsequencebaslessimpactthan anticipated Redispatchies up the
sequencerpreventing it from fetching new instructionsinto the window, and also delaysthe
repairof someregisterdependenceg\s for thelatter, statisticsn Section4.3 (Table2) shawv that
not mary instructionsneedto repairregisterdependencesndwe alsosuspecthatthosein need
of repair are close to the res@ment point and thus repair quickly

Compress actuallyshovs asmalldropin performancdor the Cl processorsvhenthewindow
is increasedrom 256to 512 (althoughperformancas still betterthanBASE). As will beseenin
the next section,compress exhibits an unusuallyhigh numberof memory orderingviolations.
This situationis only worsenedwith largerwindow size-- andparticularlywherecontrolindepen-
dentinstructionsaresaved -- becausanoreloadshave the opportunityto proceedbeforedepen-
dentstores.Thedropin performances dueto a 1-cycle penaltyfor loadssquashedby storesThe
effectis amplifiedin compress becausehereareextremelylong dependencehainsin the bench-
mark, as can be seen by thegganumber of reissued instructions presented in tkieseetion.

i
o

IPC
O L, N W A OO N ®©® ©
. I

S P

benchmark/window size

FIGURE 5. Performance with and without control independence, for three window sizes.

Improvement of Cl over BASE
35% 1

30% -

25%
20% m128
10% ~ SEEE—
SEEEE=
0% - f f f
gcc go

% IPC improvement

comp ipeg vortex

FIGURE 6. Percent improvement in | PC dueto control independence.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 15

We would expectwith largerwindow sizes,morecontrolindependences exposed However,
accordingto Figure6, only two of the benchmarkshav a substantiavariationwith increasing
window size-- go andjpeg -- andeventhenmostof the variationoccursbetweenl28 and 256.
Yet our ideal studyshovs morevariationwith window size.In additionto the obvious configura-
tion differencesenumeratedh Sectiond.1,therearea hostof subtleissueshat contritute to dif-
ferencesbetweenthe ideal and implementationstudies; some of theseissuesare treatedin
AppendixA.

4.3 Other control independence measures

This sectionexploresthe behaior of controlindependence a superscalaprocessoto better
understandhe performanceesultsgivenin the previoussection.Theresultsin this sectionarefor
the intermediate windw size of 256 instructions.

The first columnof Table2 shavs how often a control independentecorvergentpointis in
thewindow atthetime a controlmispredictionis detectedIn all the benchmark®xceptvortex a
recorvergent point is present fower 60% of mispredictions.

The secondandthird columnsof Table2 shav the averagenumberof instructionsremoved
andinsertedfor those restart sequences that reconverge in the window. The averagenumberof
instructionsremoved for a restart,the dynamic distancebetweenthe mispredictionpoint and
recorvergentpointon theincorrectpath,is lessthan14 for all thebenchmarksThe averagenum-
berof instructiongnsertedfor arestartthedynamicdistancebetweerthe mispredictionpointand
recorvergentpoint on the correctpath,is lessthan 20 for all the benchmarksFor both removal
and insertion the distance is 32 or less @r@0% of the restarts (not st in the table).

The averagenumber of insertedinstructionsis higher than that of removed instructions
becauseave only considemispredictionghathave a correspondingecorvergentpointin thewin-
dow. Consequentlymispredictionswith mary incorrectcontrol dependeninstructionsdo not
contribute to the gerage number of remied instructions if the recgamgent point is not reached.

TABLE 2. Statisticsfor restart/redispatch sequences.

% of Avg. # of Avg. # of Avg. # of control
mispredictions | removed inserted Avg. # of indep. instr.
that control dep. control dep. control indep. | squashed duetonew
Benchmark J reconverge instr. instr. instr. register name(s)
gcc 61.8 13.2 16.5 51.8 2.75
go 71.2 135 18.1 62.4 2.18
compress 90.8 6.8 6.6 122.1 1.74
ipeg 81.6 9.0 10.7 79.8 2.17
vortex 46.8 9.2 12.8 81.5 2.10

Thefourth columnin Table2 shaws thatthe averagenumberof controlindependeninstruc-
tions after the recorvergentpoint is greaterthan50 for all the benchmarksFurther the last col-
umnin Table2 shaws that on average,only 2 to 3 of the control independentnstructionswill
acquirenew physicalregisternamesduringredispatchrequiringthemto reissue Additional con-
trol independeninstructionswill reissuedueto memorydependencesr datadependencewith
other control independentinstructionsthat reissue.Also, some of thesecontrol independent
instructions may be parts of incorrect control paths and will later be squashed.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 16

Table3 shaws the amountof usefulwork thatcanbe saved with controlindependeninstruc-
tions. In this tablewe look only at correctinstructiongthatultimatelyretire.lgnoringvortex, 13%
(jpeg) to 70% (compress) of all retiredinstructionsare fetchedbeforea precedingmispredicted
branchis resoled. Without usingcontrolindependencehesenstructionsvould be squashe@nd
fetchedagain. More importantly 11% (jpeg) to 39% (compress) of all retiredinstructionsissue
andhave their final valuebeforea precedingnispredictedoranchis resohed. Without usingcon-
trol independencéhis work would be lost. Of controlindependeninstructionsthat do not have
their final valueat thetime the mispredictionis resoled, mosthave issuedandareforcedto reis-
sue due to data dependences (the column labelek ‘tiscarded”).

TABLE 3. Work saved by exploiting control independence, as a fraction of retired instructions.

benchmark fetch saved work saved work discarded had only fetched
gcc 27% 20% 5% 2%
go 39% 30% 6% 3%
comp 70% 39% 27% 4%
ipeg 13% 11% 2% 0%
vortex 5% 4% 1% 0%

Table4 showvs how often and why instructionsreissue Even without control independence,
memoryorderingviolationsdueto incorrectdisambiguatiorcausenstructionsto reissue With-
out control independenceinstructionsissueon averagel1.04 (jpeg) to 1.24 (compress) times.
0.5%to 6% of instructionsareloadsthatreissuedueto memoryorderingviolations,whichin turn
cause chains of dependent instructions to reissue.

With control independencehe averagenumberof timeseachinstructionissuesncreaseso
1.10(jpeg) to 2.44 (compress). Memory orderingviolationsresultfrom (1) incorrectdisambigua-
tion and (2) incorrectmemorydependencesausedby branchmispredictionsThe two compo-
nentstendto beequal.Otherinstructiongeissuebecaus®f incorrectregisterdependencesaused
by branchmispredictionsWheninstructionsreissuedueto memoryor registerdatadependences,
they cause chains of dependent instructions to reissue.

TABLE 4. Instruction issues per retired instruction.

no control independence control independence
Benchmark total dueto memory total due to memory duetoregister
violations violations violations
gcc 1.07 0.015 1.19 0.027 0.033
go 1.10 0.015 1.32 0.032 0.025
comp 1.24 0.061 2.44 0.063 0.051
ipeg 1.04 0.005 1.10 0.010 0.007
vortex 1.12 0.019 1.14 0.021 0.002

5. Conclusions and Future Work

Thisresearchefinesour understandingf controlindependencegerhapgsheleastunderstood
solutionto the conditionalbranchproblem.The study establishesien performanceésoundsthat
accountfor practicalimplementationconstraintsand incorporateall datadependenceslo gain
insight, the studyidentifiesthreeimportantfactorsandisolatestheirimpacton performancetrue

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 17

datadependencdsetweercorrectcontroldependeninstructionsandcontrolindependeninstruc-
tions, false data dependencesreatedby incorrect control dependeninstructions,and wasted
resourcexonsumedy incorrectcontrol dependeninstructions. A conclusionis thatboth types
of datadependencenit the potentialof controlindependencen perhapsinasoidableways,but
the biggestperformancedimiter is wastedresourcesconsumedby incorrectcontrol dependent
instructions.This limitation maybereducedn designscapableof “absorbing”wastednstruction
fetch and recution bandwidth.

This paperalsodiscussegmportantimplementatiorissuesandprovidessomedesignalterna-
tives. Simplified alternatves are also discussedo addresssomeof the more complex aspects,
suchasthe sgmentedROB for arbitraryinsertion/remwal of instructions,andhardware heuris-
tics for identifying the recorvergentpoint. Detailedsimulationsof a superscalaprocessormple-
mentingthe key featuresshaw typical performancemprovementsof 10 to 30 percentover a
baselinesuperscalaprocessarThe speedups derived from 20 percentof retired instructions
whose computation isgad as a result of control independence.

The purposeof thiswork is not somuchto advocatecontrolindependencen superscalapro-
cessorsasto promoteothercontrolindependencarchitecturesThis researchs a necessargtep
towardsimproving control independencén trace processorswhosehierarchicalstructurepro-
vides a simpler implementationin mary respects,including arbitrary instruction insertion/
removal. Further the abstracnWR-FD machinemodelsuggestEombiningthe expandablewin-
dow modelof multiscalarprocessorsvith theaggressie datadependenceesolutionandrecovery
model of trace processors.

Appendix

A. Detailed issuesin control independent designs

This sectiondescribesmary of the issueswe encounteredvhen trying to understandand
exploit control independenceTheseissuesonly becameapparentduring the translationfrom
idealstudyto detailedimplementationandthey partially explain discrepanciebetweertheideal-
ized experiments and the measurement&taikom the detailedxecution-drven simulatar

While afew of the problemsareuniqueto controlindependencprocessorsvith asinglepro-
gramcounter(e.g.handlingmultiple concurrenbranchmispredictions)severalapplyto arny con-
trol independencarchitecturejncluding thosewith multiple flows of control. In particulay the
problemof falsemispredictiongSectionA.2) andthe interactionbetweencontrolindependence
and global branch history (Secti&n3) have more &r-reaching implications.

Unless otherwise stated, all results are for a 256 instruction windo

A.1 Handling multiple branch mispredictions

In Section3, implementationssueswere discussedn the contet of recovery from a single
mispredictedoranch.In reality, the recovery processcan potentially consumemary cycles,and
while arecovery s in progressthe processomay determinehatabranchlogically precedinghe
currentrestartsequencéias also beenmispredicted.This can easily occur when branchesare
allowed to executeout-of-order Even if branchesarerequiredto executein-orderthis canstill
occurin limited cases- while fetchinginstructionsfor arestartsequencea newly fetchedbranch
may executeanddeterminehatits predictionwasincorrect.Our preliminaryperformancestudies
indicatedthat handlingrestartsequenceserially without preemptioncanleadto significantper-

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 18

formancedegradationpecauséhe processomaybedelayedrom bringinggoodinstructionsnto
the windav while it is fetching and/or redispatching instructions from an incorrect path.

We have determinedhis effect to be quite significantandsomeform of preemptions neces-
sary We bggin with a simple preemptionstratgy that resultsin someperformancdoss but has
minimal impacton the instructionfetch unit. This methodwasusedin the primary performance
evaluationof Section4. To determinethe performancelegradationof simplepreemptionpptimal
preemption is also presented (the ideal study of Se2tiondels optimal preemption).

A.1.1 Simple preemption

Figure7 shaws three possiblecaseswhere a branchmispredictionlogically precedingan
active restart/redispatcbequences detectedThelogical sequencef instructionsis represented
by the solid line going from left to right. The terms“later” and“earlier” refer to the timesthat
mispredictionsaredetectedSo, in thefigure the later mispredictedbranchin factappeardirst in
thelogical programsequenceThe threecasedisted below differ in the locationof therecorver-
gent point of the later mispredicted branch.

Later Mispredict Earlier Mispredict

J

FIGURE 7. Three cases for preemption of arestart/redispatch sequence.

CASE 1: the later mispredictedoranchmay not have a correspondingecorvergentpoint in
the window. In this case,all the instructionsin the window following the later mispredicted
branch can be squashed.

CASE 2: the later mispredictedbranchhasa recorvergentpoint that occursafter the current
recorvergentpoint (causedy the earliermisprediction)In this caseall the instructionsfrom the
currentrestartsequencevill be squashe@ndinstructionsafter the newv recorvergentpoint will
have to go throughredispatchagain. In thesefirst two scenariosit is reasonabléo preemptthe
active restart/redispatchequencei,e. the behaior is identicalto recovery from a single mispre-
diction.

CASE 3: the later mispredictedoranchhasits recorvergent point beforethe currentrestart
sequencen this casetheinstructionsin the currentrestartsequenceandthosefollowing the cur-
rentrecorvergentpoint may still be partof the correctpath.In orderto avoid delaysin servicing
the new mispredictionandto avoid addingextra stateto the sequencetthe moststraight-forvard
approachs to preemptthe active restartsequenceand squashnstructionsfollowing the current
recorvergentpoint. The more comple alternatve is to have the sequenceremembethat there
wasa restartin progressandafter servicingthe new restartsequencethe sequencemustreturn
to the preempted restart to continue filling tlg g0 the instruction winda

The simple preemptionstratgy for CASE 3 resultsin a performancdoss (comparedo the
comple alternatve). However, the sequencedoesnot have to keeptrack of multiple outstanding
restart sequences, only the most recent one.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 19

Note that preemptinga re-dispatchsequencas simpler becausebacking up the sequencer
ensures that the instructions willemtually be re-dispatched by the latest vecy process.

A.1.2 Optimal preemption

As describedabore, optimal preemptiorrequiresmaintainingstatefor all outstandingestart
sequenceds his maynotbeoverly comple: aminimumof sequencestate(PC,wherein thewin-
dow instructionsare to be inserted,and information about the recorvergent point) might be
pushedntoahardwarestackto preempiarestartsequenceandresumingestartsequences the
properorderis achievzed by poppingstatefrom the stack.However, preemptiorstatemay have to
be selectvely deletedfrom the middle of the stackif the correspondingestartsequencethem-
selves belong to a mispredicted path and are squashed.

A.1.3 Preemption results

Figure8 shaws the performanceof both simpleandoptimal preemptiormodels.Simple pre-
emptionperformsaswell asoptimal preemptionat leastfor a 256 instructionwindow, because
restartsequencethatrecorvergein thewindow have adurationof only 1 or 2 cycleson average.
Gcc, go, compress, andjpeg have averagedurationsof 1.6,1.6,1.1,and 1.2 cyclesrespectiely.
For all of thebenchmarksabout90%of all restartgequire3 or fewer cycles.As aresult,preemp-
tions (including case-3 preemptions) are rare.

Preemptionsvill becomemorefrequentin largerwindows, dueto morebranchesanda higher
chancefor concurrentmispredictiondetection.A lower fetch bandwidthalsoincreaseghe fre-
gueng of preemptions, because restartethnger to service.

preemption models

8

7

6
O ° dsimple
= 44 M optimal

34

2

14

0

gce go comp jpeg
benchmark

FIGURE 8. Evaluation of simple and optimal preemption for handling multiple branch mispredictions.

In the experimentgthat follow, optimal preemptions usedbecausetherenhancementsay
beatrtificially limited by simplepreemptionThis probablyis notthe case put ratherthansimulate
all combinations, we chose the least restricpreemption model.

A.2 False mispredictions

A false misprediction occurswhena branchthatis predictedcorrectlyexecuteswith specula-
tive, incorrectoperandsandasa result,the branchpredictionis assumedo beincorrect.A false
misprediction causes what are actually correct instructions to be squashed.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 20

The operandsf a branchmay be incorrectfor variousreasonsin a processomwith control
independenceg mispredictedoranchcanintroduceincorrectdatadependenceshich ultimately
affect subsequentontrolindependenbranchesOthersourcesncludeincorrectvaluesproduced
by dataspeculationg.g.value predictionand memorydependencspeculationln compessfor
example,the high frequeng of loadsthatissuebeforedependenstoresmay causefalsemispre-
dictions.

A.2.1 Performance impact of false mispredictions

False mispredictionis one sourceof discrepang betweenthe idealized models and the
detailedexecution-drven simulator Theimpactof falsemispredictionss measuredn the execu-
tion-driven simulatorby usingoracleinformationto detectandpreventfalsemispredictiongrom
occurring.Thefollowing configurationsaresimulated(all in the context of a processowith con-
trol independence mechanisms).

* non-specBranchesarenotallowedto completeuntil their operandsreknown to benon-spec-
ulative. This meang1) branchesnustexecutein-order sothatoperandsrenon-speculate in
termsof contol flow, and(2) all instructionsthat may affect a branchs operandsnustthem-
selvesbe non-speculatie beforethe branchcanexecute,so that operandsare non-speculatie
in terms ofdata flow In this branch completion model, there arealsd mispredictions.

» spec-D Branchegnustexecutein-order but branchesieednot wait for any otherinstructions
to be non-speculatie. Hence,spec-Drefersto the factthat operandsmay still be speculatre
due todata speculation, in our case loads issuing early

» spec-D-HFM Thisis the sameasspec-D) exceptoracleinformationis usedto detectbranches
thatwill causedalsemispredictionsf allowedto completeln thesecasesbranchcompletionis
delayed, thereby pventing filse mispredictiondiFM = hide false misgdictions

» spec-C Thisis thedualof spec-D Branchesnay completeout-of-order but otherinstructions
thatmay affect a branchs operandsnustbe non-speculatie beforethe branchcancomplete.
Hence,spec-Crefersto the factthatoperandsnay still be speculatre dueto control specula-
tion.

» spec-C-HFM This is the same apec-C but false mispredictions are pented.

» spec Branchesnaycompletewhen&er operandsreavailable.This meandranchesomplete
without regard to speculate operands.

» spec-HFM This is the same &pe¢ but false mispredictions are pented.

The resultsof the seven modelsare shavn in Figure9. The first graphshows IPC for each
model,andthe secondyraphshowns the percentPC differencebetweerary two specifiednodels.

Referringto the secondgraph,it is clearfrom thefirst bar (spec-Cover non-speg thatcom-
pleting branchesut-of-orderis important,abouta 10% impact. This performancemprovement
comesfrom detectingtrue mispredictionsquickly, althoughnot as early as possiblebecause
branch operandscannotbe data-speculate. Further from the fourth bar (spec-C-HFMover
spec-@ it is clearthatthis early evaluationdoesnot resultin mary falsemispredictionsprevent-
ing false mispredictions ispec-Cresults in less than 1% immement.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 21

branch completion and false misprediction
experiments

9

8 -

! E non-spec

6 B spec-C
O 51 Ospec-C-HFM
T, Ospec-D

W spec-D-HFM

3 M spec

2 A B spec-HFM

l -

O il

gcce go comp jpeg
benchmark

40%

35%

>
2 30%
o
E 25%
- N O spec-C/non-spec
= 20% 1 Ospec-D/non-spec
X 15% W spec/non-spec
3 W spec-C-HFM/spec-C
g 10% — M O spec-D-HFM/spec-D
-g: 59 | O spec-HFM/spec
S
o 0%
T gy | gcc go ﬂwmp jpeg

-10%

benchmark

FIGURE 9. Performanceimpact of branch completion models and false mispredictions.

From the secondandthird bars(spec-D and spec over non-spec, respectrely), we conclude
that (1) exceptfor jpeg, allowing data-speculate operandgspec-D) is lessimportantthancom-
pleting brancheout-of-order(spec-C), but (2) allowing data-speculate operanddecomesnore
importantwhen branchesare allowed to completeout-of-order(spec). That is, the combined
effect of spec-C andspec-D is greaterthanthe sumof the two. The only exceptionis compress,
for which allowing data-speculate operand$iasnegative consequencedhis is understandable
considering the lge number of load-store ordering violationsampress.

From the fifth bar (spec-D-HFM over spec-D), it is apparenthat allowing data-speculate
operandsesultsin morefalsemispredictionghanallowing control-speculatie operandsStill, if

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 22

falsemispredictionanbe preventedin the spec-D model,theresultis only abouta 3% improve-
mentfor threeof the benchmarksCompress, asexpected canbenefitsignificantlyby eliminating
false mispredictions -- a 24% impBEIment oer spec-D.

Finally, from the sixth bar (spec-HFM over spec) we can assesghe total impact of false
mispredictionswhen branchesare allowed to executeas soonas operandsare available. False
mispredictions déct performance by 5% fgcc andgo, 2% forjpeg, and 37% focompress.

Fromtheseresults we concludethatwith only asmalldegreeof dataspeculatior{i.e. memory
dependencespeculation,but not value prediction), it is probably bestto implementthe spec
model.We have shavn thatit is moreimportantto resole true mispredictionsasearlyaspossible
thantry to avoid falsemispredictiongy beingconserative. In the following section,we present
intelligent techniquedor identifying false mispredictions so that branchesmay be selectvely
identified for early or late completion.Thesetechniquesmay be usedas a hedgeagainstfalse
mispredictiongf they area major problemin otherworkloads,or otherprocessoconfigurations
(e.g. lager, more speculate windaws).

Spoec-C is the branchcompletionmodel usedin our primary resultssection(Sectiond4) and
unlessotherwisestatedis usedfor the remainderof the experiments.Spec-C was chosenfor its
robustnessacrossall of our benchmarksCompress, however, is somavhat of a microbenchmark
(asseenin the next section)andits anomaliesshouldnot have too muchinfluencein designing
control independent processors.

A.2.2 ldentifying and preventing false mispredictions

In this sectionwaysof detectingandavoiding falsemispredictionsarediscussedOneohlvious
solutionis to usea branchpredictionconfidencanechanisni33], which assessethe likelihood
that a given branchpredictionwill turn out to be incorrect.A high-confidenceassessmerdf a
branchpredictiondelaysthe completionof a branchif its operandsare speculatre. Delayinga
correctly-predictedbranchdoesnot degradeperformanceand may prevent false mispredictions
from occurring.On the otherhand,delayinga true mispredictionfrom beingresoled can seri-
ously dgrade performance.

Our early experimentsusingbranchconfidenceo preventfalsemispredictionshave not pro-
ducedgoodresults.All too often moretrue mispredictionsare delayedthanfalsemispredictions
prevented.

Theseearly experimentanotivatea secondechniqueto identify falsemispredictionsBranch
predictionconfidences indirectin thatthe history of correctandincorrectbranchpredictionsis
monitored.It may prove moreusefulto directly monitor the history of true andfalsemispredic-
tions instead.

We beagin by collecting true/false mispredictionstatisticsper static branch,analogoudo the
staticconfidencemeasurementi [33]. For eachstatic branch,we measurdhe total numberof
truemispredictionst contributesaswell asthetotal numberof falsemispredictionst contributes.
This datais usedto computethe false misprediction rate per branch,that is, the ratio of false
mispredictionsto total mispredictionsfor a given branch.The branchesare then sortedfrom
higherto lowerfalsemispredictiorrate.Finally, usingthe sortedlist of mispredictedbranchesthe
cumulatve fractionsof true andfalsemispredictionsaarecomputedTheresultinggraphis shavn
in Figure10, with cumulatve fractionsof true andfalsemispredictiongplotted alongthe x-axis
and y-axis respectely.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 23

false mispredictions (go)

100 T e——co— e e— 100 -
%] L ,),,,Ziif,ii’?f‘.ﬁi ST Satic —— " *M”:j‘_i,fif—:—jjj_i ”Sﬂic .
g ¥ /77 dynamic(p) | & % o dynamic (pc)
S 80 dynamic (xor) -=--{ 8 gp dynamic (xor) =
g / g /
=3 70 =3 70 /
; 60 I ; 60 /
8 50 ; 3 50
S 0 S 0 /
2 % 2 %
Z 2 Z 2 ‘
IS IS
3 10 3 10?
0 0 -
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
cumulative % of true mispredictions cumulative % of true mispredictions
fal se mispredictions (compress) false mispredictions (jpeg)

100 , 100 L weemeee -
i) static_—— i) W e static_——
IS / dynamic (pc) -+ 5 0 / dynamic (pc) -+
% 80 / dynaﬂ".i"("r) sifinn % 80 H dynarnir(nr) -
5 70 / 5 70
£ 60 / / £ &0
8 / / 8
8 50 8 50
s wif / =
o 40 o 40
S l // S ;/
£ 30 5 / £ 30 /,

Z 2 Z 2
% 10 % 10
0 0 -
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
cumulative % of true mispredictions cumulative % of true mispredictions

FIGURE 10. Using true/false misprediction history to detect false mispredictions.

Fromthe curve labeledstatic, we canseethat90% of all falsemispredictionsanbe detected
and preventedat the expenseof delayingonly 20% of all true mispredictionsfor gcc andjpeg.
For go, 75% of false mispredictionscan be detectedfor the samepoint. In compressa single
branchaccountdor over 50% of the true mispredictionsand 75% of the falsemispredictions-
clearly a static identification scheme is fieefive in such cases.

The static implementationmplies profiling perbranchfalsemispredictionrates,choosinga
thresholdrate,andmarkingbranchesbove thethreshold At run-time,thesebranchesredelayed
until their operands are non-specuwlati

The static schemedoesnot exploit dynamicbehaior in thata branchis eitheralwaysdelayed
or never delayed A dynamicschemeamay be moreeffective in separatingrue from falsemispre-
dictions.A hardwaretableis usedto collecttrue/falsemispredictionhistory Ratherthanpropose
a specificautomatonwe begin by maintaininga 16-bit shift register of history, calledthe TFR
(“Truefalse mispredictionRegister”). This is analogousto the CIR in [33], but the TFR is
updatedbnly for mispredictedbranchesA ‘1’ is shiftedin for afalsemispredictionanda ‘0’ for a

true misprediction.In theseexperimentsa 21%-entry table of TFRsis maintainedjndexed either
by the PC or the PC XORed with global branch histor @ghare).

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 24

The sameprocessdescribedabove is usedto generatecurvesfor the dynamicschemesbut
insteadof gatheringmispredictionstatisticsper staticbranch they aregatheredper TFR pattern.
The TFR patternsaresortedby falsemispredictionrateandcumulatve fractionsof true andfalse
mispredictions are plotted.

FromFigurel0, it is apparenthatdynamicschemesdentify morefalsemispredictionsvhile
delayinglesstrue mispredictionsThe curve labeleddynamic(pclusesonly the PC to index into
the TFR table, and the curve labeleddynamic(xor)usesa gshae index. If only 10% of true
mispredictionsare to be delayed,90%, 80%, 60%, and 95% of all falsemispredictionscanbe
detectedor gcc go, compess andjpeg, respectrely. Thisis for the dynamic(xor)schemelf we
can tolerate delaying 20% of true mispredictions,then 75% of false mispredictionscan be
detected ircompess

Theresultsfor the dynamictechniqueslemonstratéhe potentialfor identifying falsemispre-
dictions. Developing reductionfunctions[33] that capturethe desiredTFR patternsis left for
futurework. It is not clearthatresettingcounterswhich performwell for confidenceestimation,
are well-suited for identifyingalse mispredictions.

A.3 Branch prediction issues

For the mostpart, branchpredictorshave beendesignedor processorshat sequentiallypre-
dict andfetch instructions,with the implicit assumptiorthat all instructionsfollowing a branch
mispredictionare squashe@ndre-predictedvith the mostup-to-datebranchhistory This poses
problemsfor any form of out-of-ordernstructionfetching,e.g.controlindependence supersca-
lar processorspr hierarchicalsequencingn multiscalarandmultithreadedprocessorsThe prob-
lem is a branchmay have to be predictedbasedon an incompleteor incorrect history of prior
branches.

Two-level predictorsthat useglobal branchhistory, suchasthe gshae predictorusedin this
work, while highly accurate are potentially problematicin control independencenachinesin
Figurell,thetwo branche®1andb2 arecorrelatedandblis mispredictedBecausef thecorre-
lation, the gshae predictoris likely to alsomispredictb2. In a corventionalprocessowith com-
plete squashingthe secondmispredictionb2 is irrelevant: the sequencebacksup to bl and
re-predictsbranchinstructions,this time with the up-to-datehistory including b1’s correction
Thus, b2 is likely to be predicted correctly

/®

Q b2 is strongly correlated with bl
N

FIGURE 11. Example of using incorrect global branch history to predict branches.

This has tw implications.

» Controlindependenceoesnot obviate the needfor re-predictingbranchesAs with complete
squashingthe branchpredictormustbe backed up to the mispredictionthe globalhistory cor-
rected, and instructions re-predictedduring the re-dispatchsequence.Thus, re-dispatch

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 25

sequencesre not only neededto repair datadependencedyut also to iteratively improve
branchpredictionswithin the instructionwindow asglobal historyis corrected Without these
early corrections,the adwvantagesof correlationare negated and performancemay actually
worsen with respect to a simplécal-history branch predictor

» Simulationmodelsthat assumea correctglobal history for every branchpredictionare mis-
leadingin the context of controlindependencerlhe conventionalbranchpredictionaccurag
metric doesnot hold. For example,the initial predictionfor b2 would in fact appearas a
mispredictionandreduceghe apparenbenefitof controlindependencel heidealizedstudyin
this paper LamandWilson’s limit study andUht andSindagis limit studyareoverly optimis-
tic in this respectthe studiesassumecorrectglobal history for predictingbranchb?2 the first
time, sob2 is predictedcorrectly whereaghe accuratdiming modelusedin Section4 of this
paper mispredicts b2.

A.3.1 Global branch history

Thesecondoullet aboveis potentiallya sourceof discrepang betweertheidealizedstudyand
the detailedtiming model. To evaluatethe impactof assumingcorrectglobal history, we imple-
mentedoracle global history in the detailedexecution-drven simulator:a given branchis pre-
dicted using what is ultimately the correct global branch history leading up to that branch.

Thegraphin Figure12 shavs thatthe effectis notlarge,a maximumchangen IPC of plusor
minus5% with respecto usingtiming-accuratepossiblyincorrectglobal history. Strangelyjpeg
exhibits worseperformancevith oraclebranchhistory. We do not have a definitereasorfor why
thisis the case.Jpeg maylegitimately performbetterwith the patternscreatedoy delayedcorrec-
tions to the global history gester

Or thismaybeanartifactof the simulationmethod which cannotguarantee matchinga given
branchwith its correctglobal branchhistory The simulatorrunsa secondfully-accurateinstruc-
tion window in parallel with the actual processomwindow, and maintainsa mappingof good
instructionsin the processoto counterpart$n the fully-accuratewindow; thesecounterpartgro-
vide the oraclebranchhistory Becausdoop iterationsandfunctioninstancesnay be insertedat
ary time into the middle of the instructionwindow, initial mappingsmay be incorrectdue to
instance mismatches.

impact of oracle branch history

6.00%

4.00%

2.00% +

0.00% T
gcc go comp jpeg
-2.00% -

delta w.r.t. real branch history

-4.00% —

-6.00%

benchmark

FIGURE 12. Impact of assuming oracle global branch history.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 26

A.3.2 Re-predict sequences

It is quite possiblefor are-predictionto overturna correctprediction,or worse,to overturna
branchthat hasalreadyexecuted.We have determinedthat the latter caseis importantand can
often be avoided. A good heuristicthat is implementedn the execution-drven simulatoris to
force the branchpredictorif abranchis in the“completed”’state.Onthe otherhand,if thebranch
is not in the “completed” state, the branch predictor dictates the re-prediction.

In Figurel3, we first evaluatethe importanceof re-predictingbranches.The bar labeled
CI-NR shavs the performancef controlindependencemechanismsvith no re-predictsequences.
Thatis, initial predictionsaremaintaineduntil andunlessoranchesompleteandoverturnthe pre-
dictions.Thus,thereareno early corrections of predictionsasglobal history changesFor refer-
ence, the performance of a processor without control independence is alaplabeledase.

Secondjo assesshere-predictionheuristicsmplementedn our design,labeledCl, they are
comparedwith oracle re-predict sequencedabeledCI-OR. The model CI-OR is oraclein the
sensethat correctpredictionsare never overturnedduring re-predictsequence<Cl differs from
CI-ORin two ways:(1) branchesotin the“completed’statecannotforcethepredictorwherethe
oraclemodelmightand(2) branchesn the“completed”statemay have anincorrectoutcomeand
wrongly force the predictor

The importantconclusionis that re-predictsequencesre necessaryfor gcc and compress,
not having re-predictsequencedegradesperformanceo nearor belown the base machine For go
andjpeg, not having re-predictsequenceseduceshe benefitof control independencéy half:
from 30% to 15% fogo, and 20% to 12% fgpeg.

ComparingCl to CI-OR, we seethatour re-predictiormechanisnperformswithin 5% of ora-
clere-predictiorfor threeof the benchmarksi-or compress, however, CI-OR performs25%better
thanCl. All too often, eitherthe predictoroverturnscorrectpredictionsor completedbranches
incorrectlyoverridethe predictor Becausaheseresultsarefor the spec-C completionmodel,we
suspect the branch predictor to beaaiitf (re-predictionswerturning correct predictions).

re-prediction models

|| |@base
ECI-NR
ocl
OCI-OR

IPC

o = N w » (4] o ~ [ee)
I I I I I

gcc go comp ipeg
benchmark

FIGURE 13. Evaluation of re-predictions.

A.4 Segmented reorder buffers

Thenon-hierarchicalinflexible, contiguousvindow organizationof superscalaprocessorss
a primary sourceof compleity for implementingcontrolindependencdn Section3.2.2we pro-

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 27

posedimplementingthe reorderbuffer (ROB) as a linked-list to supportarbitrary instruction
insertionandremoval. To reducethe numberof concurrentinked-listoperationsyve proposeda
hierarchicabrganizationcomposeaf ROB segmentsThelogical (program)orderof instructions
within a segmentcorrespondslirectly with their physical order asin a corventionalROB. How-

ever, the logical orderingamongsegmentsvaries.In this way, the linked-list datastructureneed
only specifythe logical orderof physical sgments.The complec alternatve to this hierarchical
approach is to maintain an instruction-granularity dishist.

A.4.1 Segment size

Maintainingthe linked-listmappingis lesscomple for larger segments.For example,if the
numberof instructionsper sggmentis equalto the dispatch/retirgate,up to 3 linked-list opera-
tions needto be performedeachcycle: insertingone segmentfor dispatchingnew instructions,
removing onesegmentfor retiring instructionsandremaoving onesegmentfor squashingnstruc-
tions (we ernvision a processothat concurrentlyfreesresourceseld by incorrectcontrol depen-
dentinstructionsandallocatesresourcegor correctcontrol dependeninstructions).Halving the
sggmentsizedoubleghe numberof concurrentinked-listoperationsresultingin amorecomple
implementation.

On the otherhand,larger segmentsresultin internalfragmentatiorof ROB entries,i.e. poor
ROB utilization. This occursbecausesegmentsare allocatedas a unit. If fewer instructionsare
insertedin the window thanthereareinstructionsin a sggment,spacen the segmentis wasted.
Likewise,somefractionof leadingor trailing instructionswithin a sggmentmaybe squashedalso
leaving the sgment underutilized.

In Figure14the ROB segmentsizeis varied.In all caseghetotal ROB sizeis 256instructions
andthe machinewidth is 16 instructionsper cycle. Segmentsof 1, 4, and16 instructionsaresim-
ulated.l instructionper segmentamountgo exploiting controlindependencat the granularityof
individual instructions;it is clearly the mostflexible approachresultingin optimal ROB utiliza-
tion andhigh performanceput may be overly comple. Using larger segmentsdegradesperfor-
mancein two ways. First, fragmentationdue to insertionand removal of instructionsfrom the
middle of the ROB resultsin wastedouffer spacethatis notreclaimeduntil retirementr until the
entire sggmentis squashedSecond segmentsmustbe retired asa unit. This delaysreclaiming
ROB entries untibll instructions in the ggnent are ready to retire.

Both IPC and performanceimprovementover a processorwithout control independence
(base) are showvn in Figurel4. For compress and jpeg, 4-instructionsegmentsexploit control
independencaswell asl1-instructionsggmentsandl16-instructionsegmentsreduceperformance
by lessthan5%. Lik ewise,for go andgcc 4-instructionsggmentseduceperformancdy lessthan
5%. However, 16-instructionsggmentsreducethe performancemprovementdueto controlinde-
pendenceby half in gcc and by a third in go. Thesebenchmarksexhibit more fragmentation
because their control flois much more irgular thancompress andjpeg.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 28

impact of segment size

base
16
4

Tl

comp ipeg
benchmark

IPC

o B N W M OO N ©
L

performance improvement over base for various
segment sizes

35%

30%

25% -
20% — 16
15% - .i
10% -
5% +— I — — e —
gce go

% IPC improvement

0%
comp ipeg
benchmark

FIGURE 14. Varying ROB segment size.

A.4.2 Control for logically ordering instructions

The processormust maintain the correct program order of instructionsfor two reasons:
in-orderretirementand establishingdatadependences husfar we have only briefly discussed
instruction ordering for establishing memory dependencgst deseres some attention.

A conceptualiew of the contentsof the linked-list control structureis shavn in Figurel15.
The structureholdsoneentry per ROB sggmentandis indexed by physical sggmentnumber An
entry consistf threefields: logical ssgmentnumber(headsegmentin thelist is logical segment
0), previous physicalsggmentnumberandnext physicalsggmentnumberInsertingandremoving
segments(correspondingo allocatingandreclaimingsegments respectrely) involves updating
the previous and next pointersof logically adjacentsggments.Further insertingor removing a
segmentrequiresincrementingor decrementinghe logical numberof all sggmentsthatlogically
follow the sgment.

Thefirst field, calledthe physical-to-logical segment translation, andthe previous-next point-
ersareessentiallyredundantnformation,sincethey bothrepresenalinked-list. However, the dif-
ferent representationsnay simplify different tasks.As will be seenin the next section,the
physical-to-logical sgment translation may pve useful for resolving memory dependences.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 29

prev next

logical
segment id
\
0
1 3 4
2
physical >3 1 7 4 logical
segmentid—/ 4 2 3 1 —7 segmentid
5
6
7 0 I3
head tall
7 1
Example:
a—e—g—e physical
0 1 2 3 logical

FIGURE 15. Linked-list control structure.

A.4.3 Resolving memory dependences

A schemdor orderingloadsandstoresbasedon physical sequenc@umbersvasproposedn
the context of traceprocessor#n [1]. Assigningphysical sequenceaumbershasedon instruction
buffer numberto all loadsandstoresthe mechanismallows for memoryoperationgo be selec-
tively insertedand removed from anywherewithin the window, while still maintainingcorrect
load-storeordering.However, the approachrelies on a very simple, circular mappingof physi-
cal-to-logicalsequencenumber Thatis, the processingelementgsegments)are organizedin a
ring.

Thisrequirements alleviatedif ageneraimechanisms providedto translatephysicalto logi-
cal sequenc@umberslik e the linked-listcontrol structurein Figure15. Therefore we canapply

the samememoryorderingalgorithmusedin thetraceprocessd'r, the only changedo the algo-
rithm being a translation step beforey@equence number comparison.

A.5 Hardware heuristics for detecting reconver gent points

Thus far we have assumedaccurate perbranchpost-dominatotinformation for identifying
recorvergent points. In this sectionwe discusstwo other generalapproachedor identifying
recorvergenceandmeasurehe performancef oneof them.Clearly, otherheuristicsarepossible,
and hardwre identification of recaergence is a topic for future study

A.5.1 Associative-search technique

As arestartsequenc@rogressegyneapproachs to comparehe PCsof theincominginstruc-
tions with the PCsof all instructionslogically afterthe mispredictedoranch.If the recorvergent
point is in the windw, in most cases it will be found using this assogasiearch technique.

1. Becauseheload-storeorderingalgorithmis involved,we do not reproducet hereandthereadeiis referredto [1].

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 30

Thereis onemajor problemwith this approachBecauseve do not know before-handvhere
incorrectcontroldependeninstructionsendandcontrolindependeninstructionsbegin, dispatch-
ing new instructionsrequiresreclaiminginstructionbuffers from the tail of the reorderbuffer,
whenin factbuffers could be reclaimedfrom incorrectcontrol dependeninstructionsfirst. Thus
some control independent instructions are unnecessarily squashed.

A.5.2 ldentifying reconvergent points by instruction type

In Section3.2.1we proposedexaminingthe dynamicinstructionstreamfor commoncontrol
flow constructsuchasloopsandproceduresBoth loopsandprocedurexhibit obviousrecon-
vergenceand, as a first approximation they areidentifiableby examininginstructionwords at
decode time.

Thefollowing two heuristicsdentify “global” recorvergentpoints:thesepointsarenot neces-
sarilytheprecisej.e. nearest, controlindependenpoint of ary onebranch but they coverregions
of branches and their mispredictions.

» procedurereturn points (return heuristic): The decodendentifiesall returninstructions.The
predicted taget instruction of a return is remembered as a potentialvegamt point.

» top-of-loopandloop-exit points(loop heuristic):The decodeidentifiesall backwardbranches
by examiningbranchoffsets.The predictedtargetinstructionof a backward branchis remem-
beredasa potentialrecorvergent point. Dependingon the prediction,this may be eitherthe
taken or not taken target of the branch,correspondingo the top-of-loop or loop-&xit point,
respectely.

Whetherthereturn andloop heuristicsareusedsingly or in combinationthe globalrecorvergent
point nearest a mispredicted branch is assumed to be the Breswnergent point.

Thethird heuristicis an exampleof preciselyidentifying the recorvergentpoint of a classof
branches.

* mispredictedoop-terminatingoranchegltb heuristic):If a backward branchis mispredicted,
the not taken target of the branchis foundin thewindow andassumedo be therecorvergent
point of the branch.

If the Itb heuristicis usedin conjunctionwith the return and/orloop heuristicsthe Itb heuristic
takes priority if the mispredicted branch is a baaksvbranch.

Thetwo globalheuristicsareshovn in Figurel16(a)andtheltb heuristicin Figure16(b).Can-
didaterecorvergentpointsaremarkedwith a blackdot andmispredictionsvith anX. Thereturn
heuristiccoversall mispredictionswithin afunction,andevensomemisprediction$eforethecall
if the call is amongthe control independeninstructions.Likewise, the loop heuristiccoversall
mispredictionswithin aloop andpossiblysomebeforethe loop. Finally, the Itb heuristicspecifi-
cally and precisely a@rs the mispredicted backwd branch of a loop.

In generalheuristicswill not performaswell ascompletepost-dominatomformationfor the
following reasons.

1. Choosingthe nearesglobalrecorvergentpoint from amongmary in thewindow will yield no
benefitif thechoserpointis in theincorrectcontroldependenpathof the mispredictedranch.

2. Evenif the chosenglobalrecorvergentpointis amongthe controlindependeninstructions,it
may be too distant from the mispredicted bras@mmediate post-dominator to yield benefit.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 31

3. Thereis acasewheretheltb heuristicfails. If theloop is exited via someotherbranch thenthe
not taken target of the mispredictedbackward branchis possiblyamongthe incorrectcontrol
dependent instructions.

Cal@ 3
N
"return” heuristic

‘loop" heuristic ‘Itb" heuristic

(a) global reconvergent points (b) precise reconvergent point
of aloop-terminating branch

FIGURE 16. Instruction-type heuristics for identifying reconver gent points.

Performanceof all combinationsof the threeheuristicsis shavn in Figurel7. Performance
improvementis measureavith respecto a machinewith no controlindependence-or reference,
a processor using full post-dominator information isnghas well, labelel.

Whenthe threeheuristicsare appliedindividually (first threebarsin Figurel7), the return
heuristicis generallythe bestperformer The only exceptionis jpeg, for which the loop heuristic
performsbest.Jpeg hasoneloop in particularthathasmary internalmispredictionsandcontrol
independence is easily@oited across loop iterations.

Oreturn
H loop

3504 - Olth
30% |Oreturnfloop | _
M return/Itb
“@loop/lth 7
20% - Ereturn/loop/itb |1 | : gl

acl

N
&
>

[EEN
<
>
\
I

[EEN
3
>
—
\
I

5% -

0% - =
gcc go comp jpeg

FIGURE 17. Performance of simpleinstruction-type heuristics for identifying reconver gent points.

% IPC improvement over base

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 32

Exceptfor compress, using all heuristicstogether(return/loop/Itb) yields the best perfor-
mance For gcc, heuristicsachieve only a third of ClI’s performancepotential;for go, nearlyhalf
of the potential is achwed; and foijpeg, nearly three quarters of the potential is actde

Interestinglyfor compress, thereturn heuristicandcombinedreturn/ltb heuristicperformbet-
terthanCl. Concevably, heuristicscanidentify betterrecorvergentpointsthana compilercan,as
shavn in Figurel8. The branchin basicblock A is mispredictedin the direction of block B
(dashededge).According to the compiler block D is the recorvergent point becausat is the
immediatepost-dominatoof block A. But if theleft edgeof block C is taken,thenblock B is the
closestrecorvergentpoint -- dynamically the controlindependeninstructionsbegin with block B.
In fact, if the left edgeof block C is taken very often (e.g. 99% as shawn), thenthe compiler
would be wiserto indicateblock B is the immediatepost-dominatarin this example,the return
heuristicby chanceselectsarecorvergentpointthatis closerto block A, saving potentiallymary
useful instructions in the geon of E.

mispredicted branch

/
/
i

immediate
post-dominator

FIGURE 18. An example where the heuristic-based reconvergent point is closer than the compiler-based
reconver gent point.

B. A philosophy of control independence

In the introductionto this paper exploiting controlindependences describedas“selectvely
squashingnstructionsaftera branchmispredictionto reducethe penalty”, primarily becausehis
descriptionis simple. However, there are more fundamentalformulationsof the problemthat,
while academicand perhapsnot so useful to a designer | feel provide better motivation for
researchingontrolindependencelheformulationpresentedn SectionB.1 is basedon theview
thatthereareanalogsbetweencontrol dependenceanddatadependencesndthat conceptually
the same techniques should be applied to both.

In SectionB.2, arangeof controlindependenceolutionsis discussedfocusingon the merits
of usingmultiple flows of controlor a singleflow of control. To completethe discussiongcontrol
independence is contrasted with other branch-misprediction tolerant architectures inEs8ction

B.1 Control independenceisevolutionary

Controlandtrue datadependenceis a programimposea partialorderingamonginstructions
to be executed.This orderingcanbe satisfiedtrivially by executinginstructionsin strict program

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 33

order However, modernhigh performanceprocessoraise several techniquesto more closely
approachhe partial orderingconstraintsandthey often go even further by usingpredictionand
speculationto reducethe performanceeffects of the true dependencesrhus, the techniques
applied to control and data dependences can be classified intatgories.

1. Non-speculative techniques to achieve the partial ordering of true dependences. This classof
techniqueshas beenapplied primarily to datadependencedg=irst, to eliminate all but true
dependencesenaming of registerandmemorystorages used.Secondto achieve the partial
ordering implied by true data dependencoes,of-order issue is used.

2. Speculative techniques to eliminate ordering altogether. This techniquehasbeenappliedpri-
marily to control dependence®redictingbranchesllows the processoto continuefetching
andexecutinginstructionsdespiteunresoled branchesAs long asthe predictionsarecorrect,
all ordering constraints due to control are essentially eliminated.

It is interestingthatthe dominantprocessingaradigm(superscalarasevolved suchthatthe
non-speculatie techniquesareresenedfor datadependenceandthe speculatre techniquesare
resenedfor controldependenced.hereareatleasttwo explanationdor this evolution. First, this
arrangemeninay be sufficient. For example,branchpredictiontechniquesare perhapssufiicient
to keepprocessorsvusy with instructionsfor the windows beingdesignedoday But clearly, this
will notalwaysbethe case Secondthis arrangementappengo bethe “path of leastresistance”
for achieving the currentlevel of performancelt is easierto speculatecontroldependencethan
datadependencedsecauseherearefewer of them,andbecause¢hey arequite predictable And as
demonstratedn this paper applying non-speculatie out-of-orderconceptsto control depen-
dences is not particularly intuig.

Neverthelessdatapredictionand speculatiortechniquesare now beginningto appeaiin the
literature[12,34,35],and we argue that non-speculatie techniquesnormally resened for data
dependenceshould also be consideredfor control dependencesThere are subtle analogies
between data and control dependences that suggest conceptually similar solutions.

B.1.1 Truedependences

An instructionstallswhenits dataoperandsreunavailable.In anin-ordermachineall subse-
guentinstructions,whetherdatadependenbr independentf the stalledinstruction,mustalso
stall. Instructionsare totally orderedat run-time despitethe partial orderingimplied by data
dependencesSimilarly, if all instructions after a branch misprediction are squashedand
re-fetchedan orderingbetweenheseinstructionsandthe mispredictedoranchis createddespite
the partial ordering implied by control dependences.

But neither data stalls nor control mispredictionsshould force a total ordering. Just as
out-of-orderissue mechanismsallow data independent instructionsto proceeddespite prior
stalledinstructions,control independencenechanismsllow control independent instructionsto
proceeddespiteprior branchmispredictionsThe microarchitectureshouldresole mispredictions
muchthe sameway stallsareresohed. Viewedin this way, controlindependences anevolution-
ary extensionof out-of-orderinstructionissue,generalizingindependencand carryingit to its
logical conclusion.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 34

B.1.2 Artificial dependences

Anti-dependencegutputdependencesndstructuralhazardsareartificial dependencethat
can be alleviated by renamingregistersand memorylocations(in the caseof anti- and output
dependences) and prding more resources in general (structural hazards).

In terms of control flow, the single program counterintroducesan artificial dependence,
becausenstructionsare fetchedsequentiallyand not necessarilyin the orderin which they are
neededFor example theremaybe sereralindependeninstructionsthatarereadyto issuebut are
too far into the instructionstreamto be reachedoy the PC. The PC mustfirst sequencehrough
lessurgentinstructionsto getto thereadyinstructions.ThesinglePCis aresourcdimitation that
canatrtificially delaythe critical paththroughthe program just asa lack of registersor functional
unitsartificially delaysexecution.To alleviate this, the single PC canbe “renamed”into multiple
PCs just as a single architectediséer can be renamed into multipleypital reyisters.

Thefollowing architecturesmplementmultiple programcounterseitherdirectly or implicitly.

* VLIW: Hardware maintainsa single PC, but the compiler preparesnstructionssuchthat the
order in which the are fetched is identical to the order in whichytlesue.

» Wide superscalarA singlePCmaynot be somuchof abottleneckf it is a“wide PC”, thatis,
if mary instructionscanbe broughtin at once.Much of the effect of multiple control flows
may be realizable but the solutionis someavhat brute-force.On the otherhand,it is robustin
thatit doesnotrely onthecompileror hardwaredoinga goodjob of placingmultiple program
counters across the dynamic instruction stream.

» Multiscalarandmultithreading:Architecturally thereis only asinglelogical PC.But the hard-
waremaintainsmultiple physicalprogramcountersandthe placemenbf the programcounters
acrossthe dynamicinstructionstreamis guidedby the compiler (althougha fully-dynamic
scheme is possible).

» Dataflav: Thereis essentiallyan unlimited numberof control flows, dictatedby the dataflow
graph of the program.

B.2 Control independence achitectures

Controlindependencées a propertyof a dynamicallyexecutedprogram.Ways of exploiting
controlindependenceanvary with the hardwareandsoftwaretechniquedeingused We identify
two general classes of implementations (althoudiritls are possible).

» Multiple flowsof control with a noncontiguousnstructionwindow This classof machinesas
multiple instruction fetch units and can simultaneouslyfetch from disjoint points in the
dynamicinstructionstream.Theinstructionwindow, i.e. the setof instructionssimultaneously
being consideredor issueand execution,doesnot have to be a contiguousblock from the
dynamicinstructionstream Clearly, controlindependentoderegionsaregoodcandidategor
parallelfetching,thoughthis is not a requirementMultiscalar processorand parallel multi-
processorsdil into this class.

» Singleflow of control with a contiguoudnstructionwindow This classof machineshasa sin-
gle programcounterandcanfetchalonga singleflow of controlatary giventime. Theinstruc-
tion window is acontiguoussetof dynamicinstructions Controlindependences implemented
by allowing the programcounterto skip back and forth in the dynamicinstructionstream.
(This paper focuses on this class of machines.)

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 35

Eachclassof machineshasadwantagesWith implementation$iaving multiple flows of con-
trol, thereis a naturalhierarchicalstructure:eachflow of controlfetchesandoperateson its own
“task” or thread.Control decisionsare separatednto inter-task and intra-tasklevels. Intra-task
mispredictiongcanbeisolatedto the taskcontainingthe misprediction andlater controlindepen-
denttaskscanproceedn a fairly straightforvard manner This hierarchicaltask-basedtructure
leadsto whatis effectively a non-contiguousnstructionwindow whereinstructionscanbe fairly
easily insertedand removed as control mispredictionsoccur Further the hierarcly allows for
multiple branch mispredictions to be serviced simultaneouslyyfdahein diferent tasks.

An adwantageof a singlecontrolflow implementations thatthe singlefetch unit canscanall
the instructionsas it builds the single instruction window and, therefore,has more complete
knowledgeof potentialdependenced his leadsto morerobustandlessconserative datadepen-
denceresolutionandrecorery mechanismsgdiscussedbelow). In addition,thesemethodamaybe
ableto take adwvantageof finer grain controlindependenceat the level of individual basicblocks,
for example.

The aggressie datadependenceesolutionandrecorery mechanism@resentedn this paper
are important distinctions with other control independencearchitectures.Specifically some
designpoints of the multiscalarand multithreadingapproachesesole inter-threaddatadepen-
dencesconseratively [29]. Thatis, even thoughcontrol flow within a threaddoesnot directly
affect otherthreadsyaluesdependenon the control flow arenot forwardedto otherthreadsuntil
the control flow is resohed. If speculatre data forwarding is performed,entire threadsare
squashedavhenincorrectvaluesarereferencedlosing someor all of the benefitsof controlinde-
pendenceThis is only true for designswithout selectve reissuingcapability e.g.large threads
may precludebeing selectve. In a sense this approachto control independencenore closely
resembleguarding[36,37,8,9],which shiftsthe problemof controlflow to dataflow. But clearly
theseare not fundamentalrestrictions[38]; conseratism reflectsa simpler and perhapsmore
practical design.

B.3 Other misprediction-tolerant solutions

B.3.1 Instruction reuse

Instructionreuse[18] is a mechanisnthat exploits controlindependenceRatherthanexplic-
itly preservinginstructionswithin the instruction window, input and outputvaluesof completed
instructionsare bufferedin a cache-like structure. Whena mispredictionis detectedthe instruc-
tion window is not presered, but the controlanddataindependenstateof thewindow is in some
senseestoredirom the reusebuffer. Control independeninstructionsthat werewritten into the
reusebuffer beforethe mispredictionis detected and whoseinputs do not changedue to the
misprediction, bypass re«ecution.

The reusebuffer greatly simplifies preservingthe instructionwindow. In additionto its sim-
plicity, thereareat leasttwo performanceadwantagef instructionreusewith respecto explicit
controlindependencérirst, if theincorrectcontroldependenpathis shorterthanthecorrectcon-
trol dependenpath, more controlindependeninstructionscanbe executedandpreseredin the
reusebuffer thancanbe preseredin the instructionwindow (the additionalcontrolindependent
instructionsare“pushedout” of the window by thelonger correctcontrol dependenpath).Sec-
ond, instructionreuseis a unified approachfor exploiting both control independencésquash
reuse) angeneral reuse.

Reuse has potential disadwantages,howvever, when comparedwith explicitly preserving
instructionsin thewindow. First, with explicit controlindependencesontrolindependeninstruc-

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 36

tions that have not issued,executed,or broadcastheir resultsby the time the mispredictionis
detectednay continueprocessingn spiteof the mispredictionlInstructionreusemay not capture
theseinstructions.With very large instructionwindows, explicitly preservingnstructionsin the
window andallowing work to proceedn parallelwith servicingmispredictionamay accountfor
much of the benefitof controlindependencehis is an areathat deseresfurther study Second,
becausenstructionsarestoredin thereusebuffer basedon PC,the numberof dynamicinstances
of aninstructionthatmayberecoveredis constrainedy theassociatiity of thereusebuffer. This
may be a problemfor instructionsin loops. Clearly, otherreusebuffer organizationsmay over-
come this limitation.

Instructionreuserequiresre-fetchinginstructions.On the other hand,concevably thereare
explicit controlindependencéenplementationshatdo not requirere-fetchingandre-dispatching
instructions More advancedregisterrepairmodelsthanthoseproposedn thisreportarepossible.
However, re-fetchingmay be necessaryor maintaininghigh predictionaccurag -- this wasdis-
cussed in AppendiA.3.2 in terms of the need for re-predict sequences.

B.3.2 Predication and selective multi-path execution

Predication[36,37,8,9] and selectve multi-path execution[2,3,4,5,6,7]attemptto identify
hard-to-predicbranchesegitherthroughprofiling or branchconfidenceestimatorqrespectrely),
andfetch both pathsof thesebranchesin the caseof multi-path execution,both pathsare fully
renamedand executedas separatdhreads.When the branchis resoled, one of the threadsis
squashed and the other becomes the primary threxeaiten.

Predicationis in somesensethe software equivalentof multi-path executionappliedto for-
ward-branchingegions of the CFG. In oneform of predication,the control dependentnstruc-
tions do not executeuntil their predicatesare computedj.e. multiple pathsarefetchedbut only
the correctpathis executed Alternatively, with predicatepromotion[39] or predicatedstatebuff-
ering[9], instructiondrom multiple pathsmayexecuteconcurrentlyandonly theresultsfrom the
correct path are committed.

Predicatiorandmulti-pathexecutionwasteresource$y fetchingandpossiblyexecutingboth
the correctandincorrectcontrol dependenpathsof branchesThis resultsin a performancegain
over conventionalspeculationf the branchesare mispredictedUnfortunately multi-pathexecu-
tion is appliedto somefractionof correctlypredictedoranchesandalternatvely, somefractionof
incorrectly predictedbranchesare not coveredby multi-path execution.In our experiencewith
staticanddynamicconfidenceestimation[33], it is not often the casethat specificbranchesare
always predictedcorrectly or incorrectly Rather most branches-- or patternsin the caseof
dynamicschemes- identifiedas“unpredictable”areactuallyin agrayareawith predictionaccu-
raciesof 80% or more.To cover a significantfractionof mispedictions,an evenlarger numberof

correct pedictions must also be wered?!
A problemspecificto predicationis the aggraation of datadependenceslhe purposeof
branchpredictionis two-fold: (1) quickly determinewhich instructionsto fetch next and (2)

1. For example,a dynamic confidencemechanismcan concentrate90% of all mispredictionswithin 20% of all
dynamicpredictionsfor thelBS benchmark$33]. Assuminga 90% branchpredictionaccurag, this mean9% of
predictionsare correctly identified for multi-path execution, 11% of predictionsare incorrectly identified for
multi-pathexecution,and1% of predictionsarenotidentifiedfor multi-pathexecutionwhenthey shouldbe.For a
staticprofiling schemewhich predicationmay rely on, the samenumbersare 6%, 14%, and4% respectiely, to
concentrate 60% of all mispredictions within 20% of all dynamic predictions.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 37

quickly establishand resohe datadependenceamonginstructions.Predicationonly addresses
thefirst aspectlt “removes” branchessotheinstructionsto befetchedareknown in advance(all
instructionsin the predicatedegion arefetched).lt doesnot, however, addresshe secondaspect.
Without predicatedstatebuffering, all predicatednstructionsmustwait for their controllingpred-
icateto beresohed. Branchpredictioneliminatesthis controldependencéd the predictionis cor-
rect, and it is correct more often than incorrect. With predicatedstate buffering, instructions
within aregion neednot wait for predicatesbut their computedesultsarenot forwardedoutside
the region until predicate conditions are resadv

Predicatiorandmulti-pathexecutioncanpotentiallyreducethe branchmispredictionpenalty
morethancontrolindependencéyecausenly part(or none)of the pathafterthe branchis recov-
eredin the caseof control independenceOn the other hand,becausenly a single pathis fol-
lowed, control independencenay still capturemore control independeninstructionswithin the
window than predication or multi-pathxecution.

The ideabehindcontrol independencés to always trust branchpredictionand speculation,
and take measurenly when a mispredictionoccurs,therebyavoiding the above difficulties.
After all, branchpredictionperformswell mostof thetime, soit makessenseo exploit its poten-
tial fully and emplg other optimizations when it does not perform.

References

[1] E. RotenbergQ. Jacobsony. SazeidesandJ. Smith.Traceprocessors30th Intl. Symp. on Microarchitecture,
Dec 1997.

[2] A.UhtandV. Sindagi.Disjoint eagerexecution’An optimalform of speculativeexecution28th Intl. Symp. on
Microarchitecture, Dec 1995.

[3] T.Heil andJ. Smith. Selectivedual pathexecution.Technicalreport, University of Wisconsin,ECE Depart-
ment, Nov 1996.

[4] G.TysonK. Lick, andM. FarrensLimited dualpathexecutionTechnicaReportCSE-TR-346-97University
of Michigan, EECS Department, 1997.

[5] A. Klauser,A. PaithankarandD. Grunwald.Selectiveeagerexecutionon the polypatharchitecture25th Intl.
Symp. on Computer Architecture, June 1998.

[6] S.WallaceB. Calder,andD. Tullsen.Threadednultiple pathexecution25th Intl. Symp. on Computer Archi-
tecture, June 1998.

[7] P.Ahuja, K. SkadronM. Martonosi,andD. Clark. Multipath execution:Opportunitiesandlimits. Intl. Conf.
on Supercomputing, July 1998.

[8] S.Mahlke,R.Hank,J.McCormick,D. August,andW. Hwu. A comparisorof full andpartialpredicatedexe-
cution support for ilp processo22nd Intl. Symp. on Computer Architecture, June 1995.

[9] H. Ando, C. Nakanishi,T. Hara,and M. Nakaya.Unconstrainedpeculativeexecutionwith predicatedstate
buffering.22nd Intl. Symp. on Computer Architecture, June 1995.

[10] M. S.LamandR.P.Wilson.Limits of controlflow on parallelism19th Intl. Symp. on Computer Architecture,
pages 46-57, May 1992.

[11] M. Franklin.The Multiscalar Architecture. PhD thesis, University of Wisconsin, Nov 1993.

[12] M. Lipasti.Value Locality and Speculative Execution. PhD thesis, Carnegie Mellon University, April 1997.

[13] G.S.Sohi,S.Breach,andT. N. Vijaykumar.Multiscalarprocessors22nd Intl. Symp. on Computer Architec-
ture, pages 414-425, June 1995.

[14] P.DubeyK. O'Brien,K. M. O’'Brien,andC. Barton.Single-progranspeculativemultithreadingspsm)archi-
tecture:Compiler-assistefine-grainedmultithreadingIntl. Conf. on Parallel Architecture and Compilation
Techniques, 1995.

[15] J.-Y.TsaiandP.-C.Yew. The superthreadedrchitectureThreadpipelining with run-time datadependence
checking and control speculatidntl. Conf. on Parallel Architecture and Compilation Techniques, 1996.

[16] J.Oplinger,D. Heine,S.-W.Liao, B. Nayfeh,M. Lam,andK. Olukotun.Softwareandhardwareor exploiting
speculativeparallelismin multiprocessorsTechnicalReportCSL-TR-97-715 StanfordUniversity, Computer
Systems Laboratory, Feb 1997.

[17] J.SteffanandT. Mowry. The potentialfor usingthread-levelataspeculatiorto facilitate automaticparallel-

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 38

[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]
[27]
[28]

[29]
[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]

ization.4th Intl. Symp. on High Performance Computer Architectiied 1998.

A. Sodani and GS. Sohi. Dynamic instruction reusith Intl. Symp. on Computer Architectudene 1997.
K. Sundararaman and Mranklin. Multiscalar execution along a single flow of conttGPP’97, Aug 1997.
S.VajapeyamandT. Mitra. Improving superscalainstructiondispatchandissueby exploitingdynamiccode
sequencex4th Intl. Symp. on Computer Architectupages 1-12, June 1997.

M. LipastiandJ. Shen.Superspeculativeicroarchitecturéor beyondad2000.IEEE ComputerBillion-Tran-
sistor ArchitecturesSep 1997.

Y. Patt,S. Patel,M. Evers,D. Friendly,andJ. Stark.Onebillion transistorspneuniprocessormpnechip.|IEEE
Computer, Billion-Transistor ArchitectureSep 1997.

J.SmithandS. VajapeyamTraceprocessorsvioving to fourth-generatiomicroarchitecturedEEE Comput-
er, Billion-Transistor ArchitecturesSep 1997.

S.McFarling. Combining branch predictors. Technical Report TN-36, WRL, June 1993.

P.ChangE. Hao,andY. Patt.Targetpredictionfor indirectjumps.24thintl. Sympon ComputerArchitecture
June 1997.

D. Kaeli and P. Emma.Branchhistory table predictionof moving targetbrancheslueto subroutinereturns.
18th Intl. Symp. on Computer Architectupages 34—42, May 1991.

D. Burger,T. Austin, andS. Bennett.Evaluatingfuture microprocessorsthe simplescalatoolset. Technical
Report CS-TR-96-1308, University of Wisconsin, CS Department, July 1996.

M. FranklinandG. S. Sohi.Theexpandableplit window paradigmfor exploitingfine-grainparallelism.19th
Intl. Symp. on Computer Architectyidday 1992.

T. Vijaykumar.Compiling for the Multiscalar ArchitecturéhD thesis, University of Wisconsin, Jan 1998.
D. BernsteinandM. Rodeh.Globalinstructionschedulingor superscalamachinesACM Conf.on Program-
ming Language Design and Implementatidumne 1991.

R. Cytron,J. Ferrante B. Rosen M. Wegman andF. Zadeck.An efficient methodof computingstaticsingle
assignment formACM Symp. on Principles of Programming Languades 1989.

M. FranklinandG. S.Sohi.ARB: A hardwaranechanisnfior dynamicreorderingof memoryreferencedEEE
Transactions on Computeré5(5):552-571, May 1996.

E. JacobsenE. Rotenbergand J. Smith. Assigningconfidenceto conditionalbranchpredictions.29th Intl.
Symp. on Microarchitectur@ages 142-152, Dec 1996.

Y. Sazeides$. VassiliadisandJ. E. Smith.The performancgotentialof datadependencepeculatiorandcol-
lapsing.29th Intl. Symp. on Microarchitecturpages 238-247, Dec 1996.

F. GabbayandA. MendelsonSpeculativeexecutiorbasedn valueprediction.TechnicalReport1080,Tech-
nion - Israel Institute of Technology, EE Dept., Nov 1996.

J.Allen, K. Kennedy,C. Porterfield,and J. Warren.Conversionof control dependencéo datadependence.
10th Symp. on Principles of Programming Languadas 1983.

D. PnevmatikatoandG. Sohi. Guardedexecutionandbranchpredictionin dynamicilp processors21stintl.
Symp. on Computer Architecturpril 1994.

T. N. Vijaykumar, S.E. Breach,andG. S. Sohi. Registercommunicatiorstrategiegor the multiscalararchi-
tecture. Technical Report 1333, CS Dept., Univ. of Wisc. - Madison, Feb 1997.

P.Tirumalai,M. Lee,andM. SchlanskerParallelizatiorof loopswith exitson pipelinedarchitecturesSuper-
computing ‘99 Nov 1990.

A Study of Control Independence in Superscalar ProcessBrscember 18, 1998 39

