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Abstract

This paper proposes theImplicitly-MultiThreaded
(IMT) architecture to execute compiler-specified specula-
tive threads on to a modified Simultaneous Multithreading
pipeline. IMT reduces hardware complexity by relying on
the compiler to select suitable thread spawning points and
orchestrate inter-thread register communication. To
enhance IMT’s effectiveness, this paper proposes three
novel microarchitectural mechanisms: (1)resource- and
dependence-based fetch policyto fetch and execute suit-
able instructions, (2)context multiplexingto improve utili-
zation and map as many threads to a single context as
allowed by availability of resources, and (3)early thread-
invocationto hide thread start-up overhead by overlapping
one thread’s invocation with other threads’ execution.

We use SPEC2K benchmarks and cycle-accurate simu-
lation to show that an microarchitecture-optimized IMT
improves performance on average by 24% and at best by
69% over an aggressive superscalar. We also compare IMT
to two prior proposals, TME and DMT, for speculative
threading on an SMT using hardware-extracted threads.
Our best IMT design outperforms a comparable TME and
DMT on average by 26% and 38% respectively.

1  Introduction

Architects are now exploring thread-level parallelism
to exploit the continuing improvements in CMOS technol-
ogy to deliver higher performance. Simultaneous Multi-
threading (SMT) [13] has been proposed to improve
system throughput by overlapping multiple (either multi-
programmed or explicitly parallel) threads on a single
wide-issue processor. The proposed Alpha 21464, the
recently-announced IBM Power5, and the HyperThreaded
Pentium 4 currently in production [6] are examples of SMT
processors. Recently, researchers have also advocated
using SMT’s threading support to improve a single sequen-
tial program’s execution time. Examples of these proposals
include Threaded Multipath Execution (TME) [15] and
Dynamically MultiThreaded (DMT) processors [1].

In this paper, we propose the Implicitly-Multi-
Threaded (IMT) processor. IMT executes compiler-spe
fied speculative threads from a sequential program on
wide-issue SMT pipeline. IMT is based on the fundamen
observation that Multiscalar’s execution model — i.e
compiler-specified speculative threads [11] — can b
decoupled from the processor organization — i.e., distr
uted processing cores. Multiscalar [11] employs sophis
cated specialized hardware, the register ring and addr
resolution buffer, which are strongly coupled to the distrib
uted core organization. In contrast, IMT proposes to m
speculative threads on to generic SMT.

IMT differs fundamentally from prior proposals, TME
and DMT, for speculative threading on SMT. While TME
executes multiple threads only in the uncommon case
branch mispredictions, IMT invokes threads in the com
mon case of correct predictions, thereby enhancing exe
tion parallelism. Unlike IMT, DMT creates threads in
hardware. Because of the lack of compile-time inform
tion, DMT uses value prediction to break data dependen
across threads. Unfortunately, inaccurate value predict
incurs frequent misspeculation stalls, prohibiting DM
from extracting thread-level parallelism effectively. More
over, selective recovery from misspeculation in DM
requires fast and frequent searches through prohibitiv
large (e.g., ~1000 entries) custom instruction trace buffe
that are difficult to implement efficiently.

In this paper, we find that a naive mapping of com
piler-specified speculative threads onto SMT perform
poorly. Despite using an advanced compiler [14] to gene
ate threads, aNaive IMT (N-IMT) implementation per-
forms only comparably to an aggressive superscalar.
IMT’s key shortcoming is its indiscriminate approach t
fetching/executing instructions from threads, withou
accounting for resource availability, thread resource usa
and inter-thread dependence information. The resulti
poor utilization of pipeline resources (e.g., issue queu
load/store queues, and register file) in N-IMT negative
offsets the advantages of speculative threading.
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We also identify three key microarchitecture optimi-
zations necessary to alleviate the inefficiencies in N-IMT,
and address them in our proposal, calledOptimized IMT
(O-IMT). These novel optimizations are:

• Novel fetch policy to bring suitable instructions:
Because the choice of instruction fetch policy funda-
mentally impacts performance, O-IMT carefully con-
trols fetch via aresource- and dependence-based fetch
policy. We propose a highly accurate (~97%) dynamic
resource predictor to gauge resource (e.g., physical
registers) availability and avoid thread misspeculation
due to lack of resources midway through execution.
Moreover, we propose ainter-thread dependence heu-
ristic to avoid delaying earlier threads’ instructions in
favor of fetching from later threads that are data-depen-
dent on earlier threads. In contrast, TME, DMT, and N-
IMT use variations of ICOUNT [13] or round-robin
fetch policies that do not account for resource avail-
ability and result in suboptimal performance.

• Multiplexing hardware contexts to bring more suit-
able instructions: As in TME and DMT, N-IMT
assigns a single thread to each SMT context [13] con-
sisting of an active list and a load/store queue. Because
many programs have short-running threads and SMT
implementations are likely to have only a few (e.g., 2-
8) contexts, such an assignment severely limits the
number of instructions in flight. Unfortunately, a brute-
force increase in thread size would result in an increase
in misspeculation frequency and the number of instruc-
tions discarded per misspeculation [14]. To obviate the
need for larger threads, O-IMT multiplexes the hard-
ware contexts by mapping and simultaneously execut-
ing as many in-program-order threads onto a single
context as allowed by the resources.

• Hiding thread start-up delay to increase overlap
among suitable instructions: Speculatively-threaded
processors incur the delay of setting up register rename
tables at thread start-up to ensure proper register value
communication between earlier and newly-invoked
threads. Many prior proposals for speculative threading
(e.g., DMT and Multiscalar) do not explicitly address
the overhead due to thread start-up delay. TME and N-
IMT both account for this overhead and incur extra
start-up delay prior to thread invocation. In contrast, O-
IMT hides the delay by overlapping rename table set-
up with previous threads’ execution, because the com-
piler-specified inter-thread register dependence infor-
mation is available well before the thread starts.

Using the SPEC2K benchmarks, we show that N-IMT
actually degrades performance in integer benchmarks on
average by 3%, and improves performance negligibly in
floating-point benchmarks relative to a superscalar with

comparable hardware resources. In contrast, O-IM
achieves average speedups of 20% and 29% in the inte
and floating-point benchmarks, respectively, over a com
parable superscalar. Our results also indicate that TM
and DMT are on average not competitive relative to
comparable superscalar.

The rest of this paper is organized as follows
Section 2, briefly describes compiler-specified threadin
Section 3, describes our proposals for N-IMT and O-IMT
In Section 4, we present experimental results. We discu
related work in Section 5, and conclude in Section 6.

2 Compiler-Specified Speculative Threads

Speculatively-threaded architectures may use ha
ware [1,7] or compiler [11,5,12,9] to partition a sequentia
program into threads. Architectures extracting speculati
threads in hardware have the key advantage that they o
binary compatibility with superscalar. These architecture
however, may incur high thread speculation overhe
because: (1) hardware has relatively limited scope
selecting suitable threads and thread spawning points,
hardware typically precludes thread-level code optimiz
tion, and (3) these architectures primarily rely on valu
prediction (with potentially low accuracy) to implemen
inter-thread communication.

Instead, IMT uses Multiscalar’s compiler-specifie
speculative threads. The Multiscalar compiler employ
several heuristics to optimize thread selection [14]. Th
compiler maximizes thread size while limiting the numbe
of thread exit points to a pre-specified threshold. To th
extent possible, the compiler exploits loop parallelism b
capturing entire loop bodies into threads, avoids inte
thread control-flow mispredictions by enclosing both
and else paths of a branch within a thread, and reduc
inter-thread register dependences. Typical threads cont
10-20 instructions in integer programs, and 30-10
instructions in floating-point programs. These instructio
counts give an idea of the order of magnitude of resourc
needed and overheads incurred per thread, and help un
stand the optimizations introduced in this paper.

The compiler provides summary information of a
thread’s register and control-flow dependences in t
thread descriptor. In the descriptor, the compiler identi-
fies: (1) the set of live registers entering the thread via t
use mask, and the set of registers written in at least one
the control-flow paths through the thread via thecreate
mask; and (2) the possible control-flow exits out of the
thread via thetargets.

The compiler also annotates the instructions to spe
ify each instance of the dependence summarized in
descriptor. Figure 1 shows an example thread. An instru
tion that is the last write to an architectural register in a
the possible control flow paths is annotated withforward
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bits (labeled “F”) and is referred to as aforward instruc-
tion. There are cases where forward bits are not sufficient.
For instance, in the figure, the write tor1 in B1 is not the
last write in the path B1B2B4 but it is in the path B1B3B4.
To handle this case, the compiler inserts areleaseinstruc-
tion in B3. In Section 3.2, we explain how the hardware
uses forward and release instructions to implement inter-
thread register communication. Instructions that lead to a
target are annotated withstopbits (labeled “S”), signaling
the end of the thread.

3  Implicitly-Multithreaded Processors

We propose the Implicitly-MultiThreaded (IMT) pro-
cessor to utilize SMT’s support for multithreading by exe-
cuting speculative threads. Figure 2 depicts the anatomy of
an IMT processor derived from SMT. IMT uses the
rename tables for register renaming, the issue queue for
out-of-order scheduling, the per-context load/store queue
(LSQ) and active list for memory dependences and
instruction reordering prior to commit. As in SMT, IMT
shares the functional units, physical registers, issue queue,
and memory hierarchy among all contexts.

IMT exploits implicit parallelism, as opposed to pro-
grammer-specified,explicit parallelism exploited by con-
ventional SMT and multiprocessors. Like Multiscalar,
IMT predicts the threads in succession and maps them to
execution resources, with the earliest thread as thenon-
speculative(head) thread, followed by subsequentspecu-
lative threads [11]. IMT honors the inter-thread control-
flow and register dependences specified by the compiler.
IMT uses the LSQ to enforce inter-thread memory depen-
dences. Upon completion, IMT commits the threads in
program order.

We present two IMT variations: (1) aNaive IMT (N-
IMT) that performs comparably to an aggressive supersca-
lar, and (2) anOptimized IMT (O-IMT)that uses novel
microarchitectural techniques to enhance performance.

3.1  Thread Invocation

Like Multiscalar, both IMT variants invoke threads in
program order by predicting the next thread from amon
the targets of the previous thread (specified by the thre
descriptor) using a thread predictor. A descriptor cac
(Figure 2) stores recently-fetched thread descripto
Although threads are invoked in program order, IMT ma
fetch later threads’ instructions out of order prior to fetch
ing all of earlier threads’ instructions, thereby interleavin
instructions from multiple threads. To decide which threa
to fetch from, IMT consults the fetch policy.

3.1.1  Resource Allocation & Fetch Policy

Our base IMT processor, N-IMT, uses an unmodifie
ICOUNT policy [13], in which the thread with the least
number of instructions in flight is chosen to fetch instruc
tions from every cycle. The rationale is that the thread th
has the fewest instructions is the one whose instructio
are flowing through the pipeline with the fewest stalls.

We also make the observation that the ICOUNT po
icy may be suboptimal for a processor in which thread
exhibit control-flow and data dependence and resourc
are relinquished in program (and not thread) order. F
instance, later (program-order) threads may result
resource (e.g., physical registers, issue queue and L
entries) starvation in earlier threads, forcing the lat
threads to squash and relinquish the resources for use
earlier threads. Unfortunately, frequent thread squash
due to indiscriminate resource allocation without regar
to demand incurs high overhead. Moreover, treating (co
trol- and data-) dependent and independent threads alik
suboptimal. Fetching and executing instructions from lat
threads that are dependent on earlier threads may
counter-productive because it increases inter-thre
dependence delays by taking away front-end fetch a
processing bandwidth from earlier threads. Finally, depe
dent instructions from later threads exacerbate issue qu

Figure 1: Compiler-specified speculative threads.
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Figure 2: The anatomy of an IMT processor.
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contention because they remain in the queue until the
dependences are resolved.

To mitigate the above shortcomings, O-IMT employs
a novel resource- and dependence-based fetch policy that
is bimodal. In the “dependent mode”, the policy biases
fetch towards the non-speculative thread when the threads
are likely to be dependent, fetching sequentially to the
highest extent possible. In the “independent mode”, the
policy uses ICOUNT when the threads are potentially
independent, enhancing overlap among multiple threads.
Because loop iterations are typically independent, the pol-
icy employs an Inter-Thread Dependence Heuristic
(ITDH) to identify loop iterations for the independent
mode, otherwise considering threads to be dependent.
ITDH predicts that subsequent threads are loop iterations
if the next two threads’ start PCs are the same as the non-
speculative (head) thread’s start PC.

To reduce resource contention among threads, the pol-
icy employs aDynamic Resource Predictor (DRP)to ini-
tiate fetch from an invoked threadonly if the available
hardware resources exceed the predicted demand by the
thread. The DRP dynamically monitors the threads activ-
ity and allows fetch to be initiated from newly invoked
threads when earlier threads commit and resources
become available.

Figure 3 (a) depicts an example of DRP. O-IMT
indexes into a table using the start PC of a thread. Each
table entry holds the numbers of active list and LSQ slots,
and physical registers used by the thread’s last four execu-
tion instances. The pipeline monitors a thread’s resource
needs, and upon thread commit, updates the thread’s DRP
entry. DRP supplies the maximum among the four
instances for each resource as the prediction for the next
instance’s resource requirement. In Section 4.2, we show
results indicating that overestimating resource usage using
the maximum value works well in practice due to low vari-
ation in resource needs across nearby instances of a thread.

O-IMT’s fetch policy increases instruction throughput
by choosing suitable instructions, thus making room for
earlier threads when necessary. The policy alleviates inter-
thread data dependence by processing producer instruc-
tions earlier and decreasing instruction execution stalls,
thereby reducing pipeline resource contention.

In contrast to O-IMT, prior proposals for speculative
threading using SMT use variants of conventional fetch
policies. TME uses biased-ICOUNT, a variant of
ICOUNT that does not consider resource availability and
thread-level independence. DMT’s fetch policy statically
partitions two fetch ports, and allocates one port for the
non-speculative thread and the other for speculative
threads in a round-robin manner. However, DMT does not
suffer from resource contention because the design
assumes prohibitively large custom instruction trace buff-

ers (holding thousands of instructions) allowing fo
threads to make forward progress without regards
resource availability and thread-level independenc
Unfortunately, frequent associative searches through su
large buffers are slow and impractical.

3.1.2  Multiplexing Hardware Contexts

Much like prior proposals, N-IMT assigns a single
thread to a hardware context. Because many progra
have short threads [14] and real SMT implementations a
bound to have only a few (e.g., 2-8) contexts, th
approach often leads to insufficient instruction overla
Larger threads, however, increase both the likelihood
dependence misspeculation [14] and the number
instructions discarded per misspeculation, and cause sp
ulative buffer overflow [5].

Instead, to increase instruction overlap without th
unwanted side-effects of large threads, O-IMTmultiplexes
the hardware contexts by mapping as many threads
allowed by the resources in one context (typically 3-
threads for SPEC2K). Context multiplexing requires fo
each context only an additional fetch PC register an
rename table pointer per thread for a given maximu
number of threads per context. Context multiplexing di
fers from prior proposals for mapping multiple threads o
to a single processing core [12,3] to alleviate load imba
ance, in that multiplexing allows instructions from multi
ple threads within a context to execute and share resour
simultaneously.

Two design complexities arise due to sharin
resources in context multiplexing. First, conventiona
active list and LSQ designs assume that instructions en
these queues in (the predicted) program order. Such
assumption enables the active list to be a non-searcha
(potentially large) structure, and allows honoring memo
dependences via an ordered (associative) search in
LSQ. If care is not taken, multiplexing would invalidate
this assumption if multiple threads were to place instru

Figure 3: Using DRP (a) and context multiplexing (b).
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tions out of program order in the shared active list and
LSQ. Such out-of-order placement would require an asso-
ciative search on the active list to determine the correct
instruction(s) to be removed upon commit or misspecula-
tion. In the case of the LSQ, the requirements would be
even more complicated. A memory access would have to
search through the LSQ for an address match among the
entries from the accessing thread, and then (conceptually)
repeat the search among entries from the thread preceding
the accessing thread, working towards older threads.
Unfortunately, the active list and LSQ cannot afford these
additional design complications because active lists are
made large and therefore non-searchable by design and the
LSQ’s ordered, associative search is already complex and
time-critical.

Second, allowing a single context to have multiple
out-of-program-orderthreads complicates managing inter-
thread dependence. Because two in-program-order threads
may be mapped to different contexts, honoring memory
dependences would require memory accesses to search
through multiple contexts thereby prohibitively increasing
LSQ search time and design complexity.

Using DRP, O-IMT avoids the first design complexity
by placing instructions in the active list and LSQ in pro-
gram order. O-IMT keeps instructions in both structures in
program order while fetching instructions out of order, by
using DRP’s resource demand estimates for a thread and
creating a gap (as in [2]) in the active list and LSQ for the
thread’s yet-to-be-fetched instructions. The next thread
(invoked in program order) creates its gap after the previ-
ous thread’s gaps, maintaining program order among the
context’s threads. Because the gap lengths are estimates
based on previous thread execution instances, it is possible
that the gaps fill up before all the thread’s instructions are
fetched. In that case, O-IMT simply squashes later threads
in the context to make room for the earlier thread. As such,
DRP helps dynamically partition a context’s active list and
LSQ so that instructions from one thread do not interfere
with those of other threads within the context.

O-IMT avoids the second design complexity by map-
ping threads to a context in program order. Inter-thread
and intra-thread dependences within a single context are
treated similarly. Figure 3 (b) shows how in-program-
order threads X and X+1 are mapped to a context. In addi-
tion to program order within contexts, O-IMT tracks the
global program order among the contexts themselves for
precise interrupts.

3.2  Register Renaming

Superscalar’s register rename table relies on in-order
instruction fetch to link register value producers to con-
sumers. IMT processors’ out-of-order fetch raises two
issues in linking producers in earlier threads to consumers

in later threads. First, IMT has to ensure that the renam
maps for earlier threads’ source registers are not clobbe
by later threads. Second, IMT must guarantee that la
threads’ consumer instructions obtain the correct rena
maps and wait for the yet-to-be-fetched earlier thread
producer instructions. While others [1,7] employ hard
ware-intensive value prediction to address these issu
potentially incurring frequent misspeculation and recove
overhead, IMT uses the create and use masks (Sectio
combined with conventional SMT rename tables.

Both IMT variants address these issues as follow
Upon thread start-up (and prior to instruction fetch), th
processor copies the rename maps of the registers in cre
and use masks from amaster rename table,to a thread’s
local rename table.1 To allow for invoking subsequent
threads, the processor pre-allocates physical registers
pre-assigns mappings for all the create-mask registers i
pre-assign rename table.Finally, the processor updates the
master table with the pre-assigned mappings and ma
them asbusy to reflect the yet-to-be-created register va
ues. Therefore, upon thread invocation the master ta
correctly reflects the register mappings that a thre
should either use or wait for.

Instructions use the local table both to get their sour
rename maps and to put their destination rename ma
Instructions that produce and consume values (local
within a thread allocate new mappings in the local tabl
Instructions that are data-dependent on earlier-threa
instructions wait until the corresponding pre-assigne
physical register isready. Forward and release instructions
(Section 2) wake up waiting instructions in subseque
threads through the pre-assigned physical registers; f
ward instructions write their results in the pre-assigne
physical registers, and release instructions copy valu
from the physical registers given by the local table to th
pre-assigned physical registers. By copying the crea
mask maps at thread start-up, the local table holds the
est rename map for the create-mask registers irrespec
of whether the thread actually writes to the create-ma
registers or not.

3.2.1  Hiding the Thread Start-up Delay

Even though the next thread’s start PC is know
fetching instructions from the next thread has to wait un
the rename tables are set up. This waiting diminishes t
full benefit of the fetch policy and context multiplexing
Updating the local, master and pre-assign tables m
complete before a thread’s instructions can be renam
The updating rate of rename tables is limited by the tab
bandwidth. In conventional pipelines, this bandwidt

1. Conventional superscalar pipelines similarly checkpoint renam
tables upon branch prediction to accelerate misprediction recover
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matches the pipeline width and is sufficient for the peak
demand. In contrast, IMT’s requirement of updating the
tables creates a burst demand that may exceed the band-
width and may take several (e.g., 2-4) cycles to complete.

Our base IMT processor, N-IMT, incurs the thread
start-up overhead immediately prior to fetching instruc-
tions. O-IMT, however, prevents the bandwidth constraint
from delaying thread start-up. While the current thread’s
instructions are fetched, O-IMT invokes the next thread,
obtains the next thread’s descriptor from the descriptor
cache, and sets up the rename tables well before needing
to fetch the next thread’s instructions. O-IMT utilizes the
rename table bandwidth unused by the current thread’s
instructions to update the three tables. For instance if in a
given cycle only six instructions are renamed but the
rename tables have the bandwidth to rename eight instruc-
tions, O-IMT uses the unused bandwidth to modify the
tables. Thus, O-IMT overlaps a thread’s start-up with pre-
vious threads’s execution, hiding the thread start-up delay.

Thread start-up delay also exists in Multiscalar, TME,
and DMT. In Multiscalar, the next thread needs to set up
its rename tables so that the next thread can appropriately
wait for register values from previous threads. However,
Multiscalar does not address this issue. TME incurs extra
cycles to set up the rename tables, and employs an extra
dedicated bus for a bus-based write-through scheme to
copy rename maps. DMT copies not only register values
but also the entire return address stack at the start of a
thread. DMT does not concretely address the delay of the
copying, and instead assumes the delay away using extra
wires to do the copying.

3.3  Load/Store Queues

N-IMT imposes program order in the LSQs to enforce
memory dependences within and across threads. A
thread’s memory search its context’s LSQ to honor mem-
ory dependences. If there is no match in the local LSQ,
accesses proceed to search other contexts’ LSQs. The non-
speculative thread’s loads do not search other contexts, but
its stores search later contexts to identify and squash pre-
mature loads. Speculative threads’ loads search in earlier
contexts for previous matching stores, and stores search in
later contexts for premature loads. Thus, N-IMT uses the
LSQ to achieve the same functionality as ARB’s [4].

Searching other contexts’ LSQs takes extra cycles
which may impact load hit latency. In addition, this
searching makes the hit latency variable, which may com-
plicate early scheduling of instructions dependent on the
load. Fortunately, the non-speculative thread’s loads,
which are the most critical accesses, do not incur any extra
searching, and hence, do not have variable hit latency
problems. In speculative threads, IMT schedules load-
dependent instructions only after loads finish searching.

Thus, IMT gives up early scheduling of load-depende
instructions to avoid scheduling complications. Th
latency incurred by speculative threads’ loads and th
dependent instructions is hidden under instruction-lev
and thread-level parallelism. Upon a memory dependen
violation, IMT squashes the offending threads. IMT use
memory dependence synchronization [8] — e.g., squa
buffer [11] — to avoid frequent dependence violation.

4  Results

We have built a cycle-accurate simulator of an out-o
order SMT pipeline with extensions to evaluate a ba
superscalar processor (using a single SMT context), a
the three speculatively-threaded processors, IMT, DM
and TME. We use the Multiscalar compiler [14] to gene
ate optimized MIPS binaries. The superscalar, TME, a
DMT experiments use the plain MIPS binaries (withou
Multiscalar annotations). The IMT binaries include Multi
scalar’s thread specifications and register communicat
instructions.

Table 1 depicts the system configuration paramete
we assume for this study. Our base pipeline assumes
eight-wide issue out-of-order SMT with eight hardwar
contexts. The pipeline assumes two i-cache ports and
branch predictor allows up to two predictions per conte
per cycle. In addition to the base pipeline, O-IMT als
uses a 64-entry DRP table and a 3-entry ITDH table
optimize fetch.

To gauge speculative threading’s potential conserv
tively, we compare IMT’s performance against an aggre
sive superscalar implementation that assumes the sa
resources available to a single context within the SM

Table 1: System configuration parameters.

Processing Units System

Issue width
Issue queue

8
64 entries

DRP table 64 entries
(3 x 256 bytes)

Number of
contexts

8 ITDH 3 program
counters

Branch unit

BTB
Miss Penalty

hybrid GAg & PAg
4K-entries each,
1K-entry 4-way

7 cycles

L1 cache
2-port i-cache
&
4-port d-cache

64K 2-way,
pipelined

2-cycle hit,
32-byte block

Functional
units

8 integer,
8 pipelined

floating-point

L2 cache 2M 8-way,
pipelined

10-cycle hit,
64-byte block

Register file 356 INT/ 356 FPMemory 80 cycles

Per Context

Active list
LSQ

128 entries
32 entries,

4 ports

Squash buffer
Thread
desc. cache

64 entries
16K 2-way,
2-cycle hit
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pipeline including the high-bandwidth branch prediction
and fetch, and the large register file. We also assume a
large active list of 1024 entries, because active lists are
FIFO structures and are inherently scalable.

Table 2 shows the SPEC2K applications we use in
this study, and the branch prediction accuracy and super-
scalar IPC we achieve per application. We use the refer-
ence input set in all of the benchmarks. To allow for
practical simulation turnaround times, our simulator skips
the first 3 billion instructions before simulating a total of
500 million instructions (plus overhead instructions, in
IMT’s case). We use total number of cycles as our base
metric to compare performance. In the case of IMT, the
cycle counts include the overhead instructions.

The rest of the results are organized as follows. We
first compare the performance of N-IMT and O-IMT to
superscalar, and break down the performance bottlenecks
O-IMT optimizes. Then we present results on the effec-
tiveness of O-IMT’s microarchitectural optimizations.
Then we present O-IMT’s ability to increase issue queue
and LSQ efficiency as compared to superscalar using
thread-level parallelism. Finally, we compare and contrast
O-IMT with TME and DMT, two prior proposals for spec-
ulative threading using SMT hardware.

4.1  Base System Results

Figure 4 motivates the need for optimizing the spec
lative threading performance on SMT hardware. The fi
ure presents execution times under N-IMT and O-IM
normalized to our base superscalar. The figure indica
that N-IMT’s performance is actually inferior to supersca
lar for integer benchmarks. N-IMT reduces performanc
in integer benchmarks by as much as 24% and on aver
by 3% as compared to superscalar. Moreover, while t
results for floating-point benchmarks vary, on average N
IMT only improves performance slightly over superscala
for these benchmarks. The figure also indicates th
microarchitectural optimizations substantially benefi
compiler-specified threading, enabling O-IMT to improv
performance over superscalar by as much as 69% and 6
and on average 20% and 29% for integer and floatin
point benchmarks respectively.

Figure 5 compares the key sources of execution ov
head in superscalar, N-IMT and O-IMT. The breakdow
includes the overhead of squashing instructions due
branch misprediction (both within and across threads) a
resource pressure (in N-IMT and O-IMT), register dat
dependence stalls, memory waiting stalls (due to da
cache misses), underutilized instruction fetch bandwid
and runtime instruction overhead for IMT machines.

Not surprisingly, the dominant execution time compo
nent in superscalar that speculative threading improves
the register data dependence stalls. The IMT machin
extract parallelism across threads and increase the lik
hood inserting suitable instructions (from across th
threads) into the pipeline, thereby reducing data depe
dence stalls. Speculative threading also helps over
latency among cache misses in benchmarks with availa
memory parallelism across threads, reducing memo
stalls as compared to superscalar. These benchmarks m
notably includeperl, applu, mgrid, andswim. Finally, the
cycles spent executing instructions (denoted by “use
run”) across the machines are comparable, indicating th
the instruction execution overhead of compiler-specifie
threading is negligible.

Table 2: Applications, and their branch
misprediction rates and superscalar IPCs.

INT
Bench.

Branch
misp. (%)

 IPC
FP
Bench.

Branch
misp. (%)

 IPC

bzip 5.5 1.6 ammp 1.1 1.1

gap 2.8 3.0 applu 0.1 2.4

gcc 4.7 1.8 art 0.6 0.4

gzip 6.2 1.7 equake 0.5 1.0

mcf 7.6 0.3 mesa 2.0 2.6

parser 3.3 1.2 mgrid 0.8 2.3

perl 5.3 1.7 sixtrack 1.9 2.4

twolf 10.9 1.2 swim 0.1 0.9

vortex 0.6 1.9 wupwise 0.2 2.4

vpr 6.8 1.1

Figure 4: Performance comparison of N-IMT and O-IMT normalized to the baseline superscalar.
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There are a number of benchmarks in which N-IMT
actually reduces performance as compared to superscalar.
In gap, vpr, ammp, and mesa, N-IMT simply fetches
instructions indiscriminately without regards to resource
availability and from the wrong threads (using round-
robin) resulting in high misspeculation/squash frequency.
In mcf, vpr, andart, N-IMT increases the data dependence
or memory stalls by bringing unsuitable instructions into
the pipeline. Inmcf N-IMT increases the L1 data-cache
miss ratio as compared to superscalar because later
threads’ cache accesses conflict with those from the non-
speculative thread. Inart, N-IMT increases the L1 data-
cache miss ratio by delaying the issue of data cache misses
from the non-speculative thread. Finally, inbzip N-IMT
incurs a high thread start-up delay and increases the frac-
tion of stalls due to underutilized fetch.

The graphs also indicate that O-IMT substantially
reduces the stalls as compared to N-IMT. O-IMT’s
resource- and dependence-based fetch policy and context
multiplexing reduce data dependence and memory stalls
by fetching and executing suitable instructions. Accurate
resource allocation minimizes the likelihood of misspecu-
lation and reduces squash stalls. Finally, hiding the thread
start-up delay reduces the likelihood of underutilized fetch
cycles by increasing the overlap among instructions. The
combined effect of these optimizations results in superior
performance in O-IMT as compared to superscalar and N-
IMT. Section 4.2 presents detail analysis on these tech-
niques’ contributions to O-IMT’s performance.

4.2  Optimizing Thread-Level Speculation

Resource Allocation & Prediction.Figure 6 illus-
trates the need for dynamic resource allocation, and t
impact of DRP’s accurate prediction on performance in O
IMT. The figure compares performance under dynam
partitioning using DRP against static partitioning for LSQ
entries (left) and the register file (right). In the register fil
case, the figure also plots demand-based allocation
entries by threads, allowing for threads to allocate registe
upon demand without partitioning or reservation. Th
graphs plot average performance (for integer and floatin
point benchmarks) as a fraction of that in a system wi
unlimited resources. Context multiplexing allows mor
threads per context, thereby requiring a different (optima
number of threads depending on the availability o
resources. In these graphs, we plot the optimal number
threads (denoted by the letter T) for every design point
the x-axis.

The graphs on the left indicate that DRP successfu
eliminates all stalls related to a limited number of LSQ
entries in integer benchmarks with as few as 16 LS
entries per context. In contrast, a static partitioning schem
requires as many as 64 LSQ entries to achieve the sa
results. Similarly, in floating-point benchmarks, DRP ca
eliminate virtually all LSQ stalls with 32 entries per con
text, whereas static partitioning would require two time
as many entries per context. Moreover, static partitionin
can have a severe impact on benchmark performan

Figure 5: Breakdown of execution into instruction execution and pipeline stalls.
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Figure 6: Dynamic vs. static resource partitioning.
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reducing performance on average by 40% given 16 entries
per context.

The graphs on the right indicate that the results for
allocating registers are more dramatic. DRP allocation of
registers can achieve the best performance with four times
fewer registers in integer and floating-point benchmarks.
Moreover, static partitioning of registers for smaller regis-
ter file sizes (<256) virtually brings execution to a halt and
limits performance. Demand-based allocation of registers
substantially improves performance over static partition-
ing, allowing threads to share a large pool of registers
effectively even with as few as 128 registers per integer
and floating-point register files. Demand-based allocation,
however, only reaches within 10% of DRP-based alloca-
tion and, much like static partitioning, requires four times
as many registers to bridge the performance gap with DRP.
Demand-based allocation’s performance improves gradu-
ally beyond 256 registers. Register demand varies drasti-
cally across threads resulting in a slow drop in
misspeculation frequency, and consequently gradual
improvement in performance, with an increase in register
file size.

Table 3 presents statistics on the accuracy of DRP for
the dynamic allocation of registers, active list and LSQ
entries. Unfortunately, demand for resources actually
slightly varies even across dynamic instances of the same
(static) thread. Our predictors learn and predict the worst-
case demand on a per-thread basis, thereby opting for
over-estimating the demand in the common case. Alterna-
tively, predictors that would target predicting the exact
demand for resources may frequently under-estimate,
thereby causing later threads to squash and release
resources for earlier threads (Section 3.1). The table
depicts the fraction of the time and the amount by which
our DRP on average over-estimates demand. The results
indicate that predicting based on the demand for the last
four executed instances of a thread leads to high accuracy
for (over-)estimating the resources. More importantly, the
average number by which the predictors over-estimate is
relatively low, indicating that there is little opportunity lost
due to over-estimation.

Resource- & Dependence-Based Fetch Policy.O-
IMT’s fetch policy gives the priority to the non-speculative
(head) thread and only fetches from other threads when:
(1) ITDH indicates the likelihood of parallelism and the
availability of suitable instructions, and (2) DRP indicates
the availability of resources based on the predicted

demand. In contrast, a round-robin policy (used in DMT
would let later dependent threads hog the resources wh
earlier threads attempt to make forward progress, pote
tially reducing performance. Similarly, an ICOUNT policy
[13] (used in SMT) that favors a thread with the faste
issue rate without regards to resource usage or depende
may indiscriminately allocate resources to speculati
threads, leading to resource bottlenecks. Finally, a co
stant bias in the non-speculative thread’s fetch priority in
biased-ICOUNT policy [15] (used in TME) may improve
performance only slightly when resource usage a
dependence across threads drastically vary.

Figure 7 shows O-IMT’s performance under four dif
ferent fetch policies. The figure plots three priority-base
fetch policies, ICOUNT, biased-ICOUNT, and resource
and dependence-based fetch policy. The graphs plot
average performance improvement for integer and flo
ing-point benchmarks. The figure indicates that indeed
integer benchmarks, ICOUNT reduces performance
average over round-robin, because it allows speculat
threads issuing at a high rate to inadvertently fetch, all
cate resources, and subsequently squash. Biased-ICOU
addresses this shortcoming in ICOUNT by biasing the p
ority towards the non-speculative thread by a consta
value, and improving performance over round-robin. O
IMT’s resource- and dependence-based fetch policy s
nificantly improves performance over round-robin by pre
venting later threads from fetching unless: (1) there a
resources available, and (2) the threads are loop iteratio
and likely to be independent.

The figure also indicates that the floating-point benc
marks actually slightly benefit from ICOUNT and biased
ICOUNT. The floating-point applications exhibit a high
fraction of thread-level parallelism and independenc
across threads. As in SMT, ICOUNT allows for the

Table 3: Accuracy of dynamic resource prediction and allocation.

Benchmarks
LSQ Registers Active List

acc(%) avg. used avg. over acc(%) avg. used avg. over acc(%) avg. used avg. ov

integer 99.2 7.4 0.8 97.5 15.9 3.0 98.9 17.0 2.1

floating-point 99.6 19.7 1.8 98.4 29.8 2.9 99.7 43.9 1.8

Figure 7: The impact of fetch policy.
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threads making the fastest rate of progress to proceed,
improving performance over a round-robin policy. Biased-
ICOUNT reduces the likelihood of misspeculation due to
resource pressure, and as such improves performance over
ICOUNT. O-IMT’s fetch policy performs best by allowing
the most suitable instructions to flow through the pipeline.

Context Multiplexing. Multiplexing offers two key
advantages for applications with short threads. Multiple
threads per context help increase the number of suitable
in-flight instructions. Alternatively, multiplexing makes
unused contexts available to threads across multiple appli-
cations in a multiprogrammed (SMT) environment.
Figure 8 illustrates the impact of multiplexing on O-IMT’s
performance. To accurately gauge the overall impact on
performance with an increase in available resources, we
also vary the register file size linearly from 132 to 356
(adding 32 registers to the base case with every context)
when varying the number of contexts from one to eight.
The figure indicates that without multiplexing, neither
integer nor floating-point benchmarks can on average
reach best achievable performance even with eight hard-
ware contexts. Moreover, performance substantially
degrades (to as low as 35% in integer applications) when
reducing the number of contexts.

Multiplexing’s performance impact is larger with
fewer contexts because context resources are used more
efficiently. Multiplexing best benefits integer benchmarks
with short-running threads allowing for two contexts (e.g.,
as in a HyperThreaded Pentium 4 [6]) to outperform eight
contexts without multiplexing. Multiplexing also benefits
floating-point benchmarks, reducing the required number
of contexts. Floating-point benchmarks’ performance,
however, scales well with an increase in the number of
contexts even without multiplexing due to these bench-
marks’ long-running threads.

Hiding the Thread Start-up Delay.Figure 9 illus-
trates the impact of thread start-up delay on O-IMT’s per-
formance. The graphs represent performance for start-up
latency of two and four cycles as a fraction of that in an
ideal system with no start-up delay. The figure indicates
that a higher start-up delay of four cycles on average can
reduce performance by 9% in integer benchmarks.

Because of their long-running threads, the floating-poi
benchmarks can amortize a higher start-up delay, and
such show less performance sensitivity to start-up delay.
contrast, O-IMT’s mechanism for overlapping thread star
up on average almost achieves ideal performance (inc
ring no start-up overhead).

4.3  Issue Queue & LSQ Performance Sensitivity

In SMT/superscalar pipelines, the issue queue a
LSQ(s) sizes are often the key impediments to perfo
mance scalability [10]. Thread-level speculation help
increase the effectiveness of these queues of a given s
by allowing suitable instructions from across the threads
enter the queues. Figure 10 illustrates improvements
superscalar and O-IMT performance with increasing num
ber of entries in the issue queue and LSQ. The graphs in
cate that as compared to a superscalar with a 32/16 en
queue pair, O-IMT can achieve the same performance w
half as many queue entries. Because issue queue/LSQ
often on the pipeline’s critical path, O-IMT can actually
help reduce the critical path and increases clock speed
requiring smaller queues.

The graphs also indicate that for integer application
performance levels off with 64/32 entry queue pairs, wit
up to 50% performance improvement over a 16/8 ent
queue pair. O-IMT maintains a 25% additional improve
ment in performance over superscalar by extractin

Figure 8: The impact of context multiplexing.
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Figure 9: The impact of start-up delay.
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Figure 10: Issue queue/LSQ sensitivity.
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thread-level parallelism. Moreover, superscalar’s perfor-
mance never reaches that of O-IMT’s even with 256/128
entry queues. High branch misprediction frequency in
integer applications ultimately limits performance even
with a larger issue queue/LSQ. In O-IMT, a mispredicted
branch within a thread only squashes instructions from
that thread, thereby allowing suitable instructions from
future threads to remain in the pipeline while a branch
from an earlier thread mispredicts.

In contrast, superscalar’s performance continues to
scale for floating-point applications with higher levels of
ILP, up to the 256/128 entry queues. O-IMT significantly
enhances queue efficiency over superscalar and achieves
superscalar’s performance at the 256/128 design point
with less than a quarter of the queue entries. Moreover, O-
IMT’s performance levels off at the 64/32 design point,
obviating the need for large queues to extract the available
parallelism.

4.4  Comparison to TME & DMT

In this section, we compare O-IMT’s performance
against TME and DMT. Our models for TME and DMT
are quite aggressive allowing for a conservative compari-
son against these machines. We assume no contention for
TME’s mapping synchronization bus [23]. To favor DMT,
we assume that DMT has a 256-entry custom trace buffer
per context (for a total of 2048 entries) with zero-cycle
access, zero-cycle thread spawning, and selective recovery
(squash) with zero-cycle penalty. As proposed, TME
fetches from two ports using biased-ICOUNT, and DMT
uses a dedicated i-cache port for the non-speculative
thread and a shared i-cache port for speculative threads.
We also assume an improvement over the proposed
machines by allowing TME and DMT to take advantage of
both i-cache ports when there are no speculative threads
running. We compare these improved models against the
original proposals.

Figure 11 compares speedups of our optimized TME
and DMT machines, against O-IMT normalized to our
baseline superscalar. Unlike O-IMT, TME and DMT
reduce performance on average with respect to a compara-

ble superscalar. TME [15] primarily exploits thread-leve
parallelism across unpredictable branches. Because un
dictable branches are not common, TME’s opportunity fo
improving performance by exploiting parallelism acros
multiple paths is limited. TME’s eagerness to invok
threads on unpredictable branches also relies on the ex
to which a confidence predictor can identify unpredictab
branches. A confidence predictor with low accuracy wou
often spawn threads on both paths, often taking away fe
bandwidth from the correct (and potentially predictable
path. An accurate confidence predictor would result in
TME machine that performs close to, or improves perfo
mance slightly over, our baseline superscalar machine.Vpr
and mesaare benchmark examples in which the confi
dence predictor predicts accurately, allowing TME t
improve performance over superscalar.

DMT’s poor performance is due to the following rea
sons. First, DMT often suffers from poor thread selectio
because it spawns a new thread when the fetch u
reaches a function call or a backward branch, and sele
the new thread to include instructionsafter the call or
backward branch. Therefore, DMT precludes exploitin
the potentially high degree of parallelism that exists acro
inner loop iterations. Moreover, DMT’s threads are typ
cally inordinately long, increasing the probability of dat
dependence misspeculation despite using “dataflo
dependence prediction. Second, DMT achieves low con
tional branch and return address prediction accurac
because DMT spawns threads out of program order wh
global branch history and return address stack require
program-order information to result in high prediction
accuracy. Our results indicate that DMT results in lowe
branch and return address prediction accuracies whet
the branch history register and return address stack c
tents are cleared or copied upon spawning new threads

Due to the low accuracy of DMT’s branch and data
dependence prediction, DMT fetches, executes, and sub
quentlysquashestwice as many instructions as it commits
(i.e., DMT’s commit rate is one third of its fetch/execute
rate). With the exception ofmcf, twolf, vpr, andequake, in
which branch prediction accuracies remain high, a

Figure 11: Performance comparison of TME, DMT, and IMT normalized to baseline superscalar.
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benchmarks exhibit a significantly lower branch prediction
accuracy as compared to our baseline superscalar, result-
ing in a lower average performance than superscalar.

5  Conclusions

SMT has emerged as a promising architecture to share
a wide-issue processor’s datapath across multiple program
executions. This paper proposed the IMT processor to uti-
lize SMT’s support for multithreading to execute com-
piler-specified speculative threads from a single sequential
program. The paper presented a case arguing that a naive
mapping of even highly-optimized threads onto SMT per-
forms only comparably to an aggressive superscalar. N-
IMT incurs high thread execution overhead because it
indiscriminately divides SMT’s shared pipeline resources
(e.g., as fetch bandwidth, issue queue, LSQs, and physical
registers) across threads independently of resource avail-
ability, thread resource usage, and inter-thread depen-
dence.

This paper also proposed O-IMT, an IMT variant
employing three key mechanisms to improve speculative
thread execution efficiency in an SMT pipeline. (1) a novel
resource- and dependence-based fetch policy to decide
which thread to fetch from every cycle. (2) context multi-
plexing to map as many threads to a single hardware con-
text as allowed by hardware resources, and (3) a
mechanism to virtually eliminate the thread start-up over-
head of setting up rename tables (to ensure proper register
value communication between earlier threads and the
newly invoked thread). As SMT and speculative threading
become prevalent, O-IMT’s optimizations will be neces-
sary to achieve high performance.

Using results from cycle-accurate simulation and
SPEC2K benchmarks we showed that O-IMT improves
performance by 24% over an aggressive superscalar. We
also presented performance comparisons against two prior
proposals for speculative threading on SMT, and showed
that O-IMT outperforms a comparable TME by 26% and a
comparable DMT by 38%.
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