
Instruction Fetch Deferral using Static Slack

Gregory A. Muthler David Crowe Sanjay J. Patel Steven S. Lumetta
Center for Reliable and High-Performance Computing
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Abstract

In this paper we present an approach to boosting per-
formance and tolerating latency by deferring non-critical
instructions into a deferred queue for later processing. As
such, instruction deferral allows more critical instructions
to be fetched, dispatched, and possibly executed, earlier.

We present methods for identifying deferrable instruc-
tions using previously investigated notions of instruction
slack. In particular we use static slack to determine if an
instruction is deferrable. The static slack of an instruction
corresponds to the number of cycles an instruction can be
delayed without impacting overall execution time when con-
sidering all dynamic paths from that instruction. A signifi-
cant fraction of the dynamic instruction stream has enough
static slack to be deferred by 10 or more cycles on an ag-
gressive execution model. Futhermore, the small amount of
register-based communication from deferred instructions to
non-deferred instructions makes a deferral-based approach
to fetch and execution very attractive.

We use a trace cache based microarchitecture to over-
come some significant implementation challenges associ-
ated with instruction deferral. Overall, instruction deferral
boosts the performance of a 4-wide processor by approxi-
mately 11% and an 8-wide processor by 6% on eight of the
SPEC2000 integer benchmarks.

1 Introduction

Many conventional approaches to boosting processor
performance rely on reordering instruction execution. In
this paper, we describe a complementary approach to boost-
ing performance by reordering instruction fetch. The ba-
sic premise is to identify those instructions that can be de-
ferred for later fetch without increasing overall execution
time. Deferring such non-critical instructions offers the pos-
sibilities of processing critical instructions earlier, and of
using deferred instructions to fill execution bandwidth oth-
erwise lost to instruction cache misses or branch mispredic-

tions. While many instruction deferral techniques are possi-
ble, this paper focuses on deferring the fetch of non-critical
instructions.

Figure 1 demonstrates instruction fetch deferral through
a conceptual example. Instructions A through H are about
to be fetched. Instructions A, B, G, and H are identified as
critical, whereas instructions C, D, E, and F are determined
to be deferrable. Instructions A, B, G, and H will be the next
to be fetched and C, D, E, and F are queued to be fetched
at some convenient point in the future. Instructions within
each category are still fetched in order. That is, all critical
instructions are fetched in program order relative to each
other, and all deferred instructions are fetched in program
order relative to each other. Deferred instructions can slip
backwards relative to critical instructions. The key benefit
of instruction deferral lies in the possibility of fetching the
critical instructions G and H earlier.

C
D
E
F
G
H

C
D
E
F

A
B

H
G

Fetch Addr

Deferrable
Instructions

Critical
Insts Insts

A

Deferred

B

Figure 1. The block on the left is a block of
instructions about to be fetched. The block is
divided into instructions that are critical, and
fetched immediately, and those that are de-
ferred, fetched when bandwidth is available.

Estimates of slack provide the basis for separating in-
structions into critical and deferrable categories. We build
on the foundation developed by Fields et al. [3], which de-
fines and quantifies global, local, and apportioned slack at
the instruction execution level, and investigates the benefits
of prioritizing instruction execution according to dynamic
measurements of slack.

We extend this work by introducing a static notion of

slack based on estimate of dynamic global slack, and use
a threshold in this static slack to determine whether or not
to defer an instruction. An instruction’s global slack is the
number of cycles an instruction’s execution can be delayed
without impacting the overall execution time of the appli-
cation. An instruction’s static slack is then the minimum
global slack over all dynamic instances of the instruction.
Identifying deferrable instructions in this manner creates
computation clumps, as static and global slack are functions
of instruction dataflow. The process of estimating and using
slack is described in more detail in Section 2.

Instructions identified as deferrable using the global
slack property are promising candidates for separation into
a deferred instruction stream. Over 30% of all dynamic
instructions have a static slack of ten or more cycles, for
example. The similarity between this result and those
of Fields et al. demonstrates that most dynamic instruc-
tions with substantial global slack can also be identified
with a static measure generated by a profiler or compiler.
Equally importantly, the deferrable instructions have sig-
nificant register-independence from the critical instructions
(those with smaller values of static slack). In particular, de-
ferred instructions selected in this manner produce values
that are predominately consumed by other deferred instruc-
tions, generating few register values that are required by the
critical instructions. The deferred stream can therefore slip
backwards in time relative to the critical stream, provided
that values generated by the critical stream are correctly de-
livered to any deferred instruction that requires them, and
that all memory-based communication happens correctly.

As such, instruction deferral is similar to the slack-based
instruction scheduling performed by compilers [4]. The key
difference is that dynamic deferral allows an instruction to
be delayed without regard to region boundaries. Compil-
ers using slack for instruction scheduling must either oper-
ate within region boundaries (e.g., hyperblock boundaries)
or must replicate instructions that percolate across bound-
aries into all possible adjacent blocks. In dynamic deferral,
an instruction with slack can move freely within the static
regions spanned by the dynamic instruction window until
spare fetch bandwidth is available or a critical instruction
requires the output of the deferred instruction (a rare event).

While a conceptual description of instruction fetch de-
ferral is fairly straightforward, two key issues must be ad-
dressed in devising a feasible microarchitectural mecha-
nism. First, to enable fetch deferral, instructions must be
arranged to allow separation of critical and deferred instruc-
tions prior to fetch. Second, the mechanism must maintain
a consistent view of architectural state between critical and
deferred instructions. That is, a deferred instruction must
obtain proper source values and must provide any depen-
dent instructions with its output value, even if the deferred
instruction is fetched many cycles after its correct position

in program order.
We propose the use of a modified trace cache mecha-

nism to solve both problems in a hardware-centric manner.
With the modified trace cache, traces are divided into two
portions: critical and deferred. Traces are analyzed at con-
struction time to identify dataflow to and from deferred in-
structions. This dataflow is encoded into the trace header
and used at fetch time. The details of the hardware mecha-
nism are provided in Section 3.

The instruction deferral mechanism is able to boost the
performance of a deeply pipelined 4-wide machine by 11%
on the average benchmark, and by 6% on a less-fetch con-
strained 8-wide machine.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the process of identifying deferrable in-
structions using static slack and presents measurements on
the deferrable instruction stream. Section 3 describes our
microarchitectural extensions for supporting instruction de-
ferral. Section 4 provides details on our experimental setup.
In Section 5, we present a performance characterization of
instruction deferral. Related work is discussed in Section 6,
and our conclusions appear in Section 7.

2 Instruction Deferral

The core of the instruction deferral technique is the no-
tion of instruction slack. This section begins with an ex-
ample motivating the use of slack for deferral and provid-
ing some insight on potential performance benefits. We
next describe a compiler/profiler-based method for estimat-
ing static slack and present some characteristics of the de-
ferred instruction stream that illustrate the potential benefits
of using instruction fetch deferral.

2.1 Deferral using Slack

A recent study by Fields et al. [3] explores the notion of
instruction slack. Broadly speaking, an instruction’s slack
refers to the number of cycles that its execution can be de-
layed without increasing the execution time of the program.
An instruction on a critical path, for example, has no slack.

The study defines several variants of slack. Local slack
refers to the time between execution of an instruction and
execution of its consumers. If an instruction completes exe-
cution in cycle M , and the first of its consumers executes in
cycle N , the instruction has a local slack of N − M − 1 cy-
cles. In other words, the local slack of an instruction is the
number of cycles that an instruction can be delayed with-
out delaying any consumer instruction. Global slack of an
instruction corresponds to the number of cycles that the in-
struction can be delayed without delaying the last instruc-
tion in the application. An instruction’s global slack is equal
to the sum of its local slack and the minimum global slack

2

of all consumers, and can be calculated by propagating lo-
cal slack backwards through the dataflow graph. Fields et
al. estimates that 40% of all dynamic instructions have at
least 50 cycles of global slack on a 6-wide, dynamically
scheduled machine.

For our deferral criterion, we introduce a static mea-
sure of instruction slack based on measurement of dynamic
global slack. Global slack has the beneficial property of
identifying clumps of instruction dataflow: that is, if an in-
struction has a large global slack, its consumers probably
also do. We define the static slack of a static instruction
to be the minimum global slack over all dynamic instances
of the instruction. The deferral criterion is then a thresh-
old based on static slack. In effect, static instructions with
global slack above a threshold in all dynamic instances are
identified as potential candidates for deferral.

Figure 2 shows a simple example that demonstrates the
potential value of using static slack for instruction deferral.
In the source code for this example, a small loop increments
the elements of an array for use later in the code. The figure
also shows the loop in terms of Alpha-like instructions and
as a dataflow graph. The dashed boxes in the dataflow sec-
tion represent loop iterations, and the load (LDQ, or load
quad) instructions to the right represent array value con-
sumers (not part of the loop). As illustrated by the dataflow,
the instructions that increment the array elements (shaded)
do not interact with the iteration control of the loop (un-
shaded).

As the consumption of the array elements occurs much
later in the code, the store (STQ) instructions have substan-
tial local slack, whereas the results of other instructions in-
volved in the increment sequence are needed by the stores
and are likely to have little or no local slack. In contrast,
all instructions in the shaded region have substantial global
slack. The local slack available to each store propagates
backwards to the shaded add and load instructions. When
the global slack is available for all loop iterations, static
slack is also large, and the instructions are candidates for
deferral.

The iteration control of the loop, on the other hand, is
unlikely to have substantial static slack. In particular, the
loop-ending branch is likely to be mispredicted on the last
loop iteration, giving a global slack of zero for that dynamic
branch instance. The dynamic instances of the loop iteration
control instructions feeding into the final branch also have
little global slack, thus static slack for these instructions is
small.

A static slack above a sufficient threshold can thus sepa-
rate the deferrable instructions in the array increment code
from the critical instructions in the iteration control. Clas-
sifying the static loop iteration instructions as critical is im-
portant: although these instructions can be delayed in early
iterations of the loop without affecting program execution

.

r3 <− 0 /* i */
r4 <− n
r5 <− base of a
sub r2 <− r4, r3
ble done
addq r3 <− r3, 1
ldq r6 <− 0(r5)
addq r6 <− r6, 1
stq r6, 0(r5)
addq r5 <− r5, 8
br loop
...

loop:

done:

.
 a[i]++

r4 r3

ldq

sub addq

addq
stq

addqble

sub

for (i = 0; i < n; i++)

Assembly Code

addq

ble

r5

/* later use of a[] */
.

ldq

addq

stq
addq

ldq

ldq

Source Code

Figure 2. A simple loop shown as source, as-
sembly, and dataflow. The array increment
dataflow is not connected to that of the itera-
tion control. Static slack is large for the incre-
ment code, but small for the iteration control.

time, the end of the loop is unpredictable, and should be
detected as early as possible to avoid any misprediction
penalty. With instruction deferral, critical instructions can
be fetched ahead of deferred instructions, even if the de-
ferred instructions precede the critical instructions in pro-
gram order. For the loop of Figure 2, instruction deferral
enables a 4-wide machine to fetch and execute one loop it-
eration control per cycle, whereas a machine without defer-
ral takes two cycles to fetch a single iteration. Executing
these iteration control instructions early can reduce execu-
tion time, as a processor without deferred fetch is likely to
waste more cycles on the branch misprediction penalty at
the end of the loop.

2.2 Estimating Slack

Instruction fetch deferral based on static slack requires
that static slack be estimated in advance and used to reor-
ganize instructions into deferrable and critical streams. Al-
though dynamic identification techniques are possible, this
paper focuses on an offline approach based on profiling. Us-
ing a profile-driven analysis, we estimate static slack for
each instruction in a program binary and add a one-bit an-
notation marking the instruction as deferrable if its static
slack is estimated to be above a threshold. As the profile
execution may not contain all possible execution paths, we
regard the slack value as an estimate.

Although we chose to use profiling to produce the in-

3

struction annotations, a compiler-based approach should
produce comparable results. The binary decision necessary
for each instruction should be a fairly straightforward calcu-
lation given a local dependence and control graph. While a
compiler may lack some of the dynamic information avail-
able with a profile, our analysis similarly lacks some of the
source-level information available to a compiler.

We use a fast execution model simulating a target ma-
chine to determine dispatch, execution, and retire times for
all dynamic instructions. Given a small, profile data set,
this simulator produces a trace file containing execution and
dataflow information. The trace is then reversed to permit
analysis starting from the last dynamic instruction back-
wards. This reversal process renders the slack calculation
a linear-time scan of the execution trace file. Each instruc-
tion is processed from last to first. That is, consumers are
encountered before producers, and slack is calculated by
walking upwards through the instruction dataflow graph,
monitoring both register and memory dataflow. For each
static instruction, we maintain a record of minimum ob-
served global slack. Once the entire trace is analyzed, the
per-static-instruction slack measure is, in effect, the static
slack for each instruction, as estimated from all dynamically
observed paths.

The profiler annotates each static instruction as de-
ferrable or critical based on the relation between the instruc-
tion’s static slack and a threshold value. The experiments in
this paper, for example, use threshold values of five, ten,
and twenty cycles. The instruction deferral bit serves only
as a hint to the hardware in the sense that, while incorrect
deferral bits may degrade performance, they do not lead to
incorrect program outputs. The marking policy used by the
profiler can change the pool of deferrable instructions, but
cannot impact the correctness of the code.

The potential impact of branch mispredictions make
branch instructions a particularly interesting case for defer-
ral. As mentioned earlier, a mispredicted branch is assigned
a global slack of zero due to the fact that delaying execution
of the branch further delays recovery and increases execu-
tion time. Correctly predicted branches, on the other hand,
may be given large global slack, as their execution has no
impact on performance. This assignment implies that the
static slack of a branch is only non-zero if the branch is
successfully predicted in every dynamic instance. Branches
that are sometimes mispredicted are considered risky, and
their condition calculations are pushed ahead of deferrable
instructions to avoid misprediction penalties. While many
different policies are possible in the treatment of branches
for deferral, for this study we assigned all conditional and
indirect branches to have no static slack.

2.3 Characteristics of the Deferred Stream

Deferring instructions based on static slack generates a
deferred instruction stream that has some promising prop-
erties. In particular, deferrable instructions are plentiful, but
their results are rarely used by critical instructions, and even
more rarely used by critical instructions within the next few
cycles.

Figure 3 shows the fraction of all static and dynamic
instructions that are identified as deferred using the static
analysis technique described above, using a threshold of
ten cycles. The results exclude NOP instructions—they ac-
count for neither deferred nor critical instructions. On av-
erage across all benchmarks shown, approximately 30% of
dynamic instructions are deferrable. The generation of a
sizeable set of deferred instructions using a static annota-
tion is an important result. Obtaining performance benefits
through instruction reordering techniques such as instruc-
tion fetch deferral requires both that some instructions can
be deferred and that other instructions benefit from their
deferral. The results in the graph are also consistent with
the result of Fields et al. showing that 40% of instructions
have at least 50 cycles of slack when measured per dynamic
instance. The static slack measurement thus demonstrates
that most of the dynamically-identified instructions can also
be identified using a conservative, static estimate of slack.

deferred critical

bzip2.dyn 38678450 252583011

bzip2.static 0.645251 0.354749

crafty.dyn 133027591 441223965

crafty.static 0.598694 0.401306

eon.dyn 57266662 70929950

eon.static 0.843638 0.156362

gcc.dyn 62990526 198501815

gcc.static 0.552937 0.447063

parser.dyn 260379623 236702236

parser.static 0.767857 0.232143

perl.dyn 39892083 85539679

perl.static 0.718177 0.281823

twolf.dyn 92038580 455481157

twolf.static 0.659664 0.340336

vortex.dyn 69110765 160755981

vortex.static 0.794716 0.205284

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
z
ip
2
.d
y
n

b
z
ip
2
.s
ta
ti
c

c
ra
ft
y
.d
y
n

c
ra
ft
y
.s
ta
ti
c

e
o
n
.d
y
n

e
o
n
.s
ta
ti
c

g
c
c
.d
y
n

g
c
c
.s
ta
ti
c

p
a
rs
e
r.
d
y
n

p
a
rs
e
r.
s
ta
ti
c

p
e
rl
.d
y
n

p
e
rl
.s
ta
ti
c

tw
o
lf
.d
y
n

tw
o
lf
.s
ta
ti
c

v
o
rt
e
x
.d
y
n

v
o
rt
e
x
.s
ta
ti
c

P
e

r
c

e
n

t
In

s
tr

u
c

ti
o

n
s

critical

deferred

Figure 3. Percentage of dynamic and static in-
structions identified as deferrable according
to a static slack threshold of ten cycles.

Allowing the fetch of deferred instructions to lag behind
the execution of critical instructions requires that no criti-
cal instruction depend on the result of a deferred instruc-
tion. Frequent communication of this form forces synchro-
nization between the two execution streams and defeats any
gains achieved in allowing the critical stream to slip ahead.
Specifically, a synchronization event is induced whenever
an in-flight critical instruction requires a value that will be

4

produced by a deferred instruction (i.e., that instruction is
not yet in-flight).

Figure 4. Communication frequency through
registers as a function of producer and con-
sumer instruction classifications.

Figure 4 shows the frequency of register-based commu-
nication between instructions. Communication is divided
into four categories based on the classifications of the pro-
ducer and the consumer: (1) a critical instruction reads a
value produced by another critical instruction, (2) a de-
ferred instruction reads a value produced by another de-
ferred instruction, (3) a deferred instruction reads a value
produced by a critical instruction, (4) a critical instruction
read a value produced by a deferred instruction. The figure
shows the percentage of all register reads—register commu-
nication arcs in a dataflow graph—that are in each category.
Perhaps the most important feature is that the communi-
cation from deferred instructions to critical instructions is
rare, accounting for approximately 1% of all register-based
communication when averaged over the benchmarks. Fur-
ther, synchronization inducing register-based communica-
tion between deferred instructions and critical instructions
is even more uncommon. In contrast, deferred instructions
often use the results of critical instructions.

With regard to communication through memory, the bulk
of the deferred computation is similar in nature to that de-
scribed in the example in Figure 2. Dataflow segments that
calculate new values for in-memory data structures, such
as the array in the example, are often candidates for defer-
ral. The results of these computations are stored to memory
and not consumed until some later point in the program.
This delay provides the terminal store instruction of the data
structure update with a large amount of local slack, and thus
its associated computation flow a large amount of global
slack. When this slack is available on all execution paths,
static slack is high, and the instructions can be deferred.
The use of global slack as the basis for static slack allows
the computation to be connected to the store.

Clearly, the prevalence and ease of identification of static
slack presents an opportunity. The question is how to ex-
ploit these properties for performance. In particular, we
want to develop a mechanism, whether in hardware or soft-
ware, to exploit the facts that (1) by definition, deferred in-
structions can be delayed, and that (2) deferred-to-critical
register communication is minimal. In the next section, we
describe a hardware model for exploiting this relative inde-
pendence between deferred and critical instructions through
instruction fetch deferral.

3 Fetch Deferral Microarchitecture

This section describes a microarchitecture for perform-
ing instruction fetch deferral. The primary benefit of de-
ferral arises from the ability to optimize the order in which
instructions are fetched. Critical instructions can be fetched
before deferred instructions, even if the deferred instruc-
tions appear earlier in program order. To support such re-
ordering of the fetch stream, the microarchitecture must ad-
dress two challenging problems.

First, for maximum benefit, critical and deferrable in-
structions must be cached in separate stores. That is, for a
particular fetch address, the fetch mechanism must be able
to distinguish between deferrable and critical instructions
without first fetching the instructions. To address this prob-
lem, we use a trace cache.

Second, architectural state must be maintained as if the
program executes in a normal, sequential mode. The diffi-
culty introduced by instruction fetch deferral is that the reg-
ister renaming process typically assumes that the instruction
stream is processed in program order. Usefully deferring in-
struction fetch requires out-of-order renaming. To address
this problem, we use out-of-order register renaming tech-
niques similar to those used in out-of-order and decoupled
fetch techniques [2, 8]. The remainder of this section pro-
vides further detail and discussion of the issues.

3.1 Instruction Deferral Microarchitecture

Our mechanism for instruction fetch deferral builds on a
superscalar processor with a trace cache, such as the Intel
Pentium 4. We make modifications to the fetch and renam-
ing mechanisms of this substrate to support deferral.

3.1.1 Fetch

Figure 5 illustrates changes to the processor’s fetch mecha-
nism. The trace cache storage space is partitioned into criti-
cal and deferrable stores. Each trace created by the trace fill
unit is then divided, at trace construction time, into a critical
section and a deferred section. This separation is facilitated
by the deferrable bit annotation on each instruction. One

5

implication of the use of a trace cache to separate deferrable
instructions is that only those dynamic instructions that oc-
cur in traces can be deferred. Instructions drawn from the
instruction cache are treated as critical, regardless of their
deferrability annotations.

4

Register File

4

4

Instruction Fetch

n Instructions

L/S

4

Decode

Rename

Scheduling Window

Instruction

Deferred Mode

FP

Fetch Buffer

Comp
Int

Retirement

Critical Mode

Trace Cache

Store

Instruction

Critical

Store
Instruction

Deferred
Queue

Cache

Deferrable

Int

Sequencer Fetch Address

Figure 5. Fetch mechanism support for in-
struction deferral.

Each fetch address is presented to the critical partition of
the trace cache on each fetch initiation. A hit in the crit-
ical partition causes the successful request to be enqueued
into a Deferred Queue for later fetch. Fetch requests that
miss in the critical partition are submitted to the supporting
instruction cache and are not enqueued.

In our study, we position the trace fill unit to collect in-
structions at retirement time; the fill unit can also be po-
sitioned to collect instructions at fetch time, as is the case
with the Pentium 4. The decision affects the results only
indirectly: the Pentium 4 may cache speculated instruction
sequences unnecessarily, and our approach may unneces-
sarily delay the caching of instructions. Like the Pentium 4
trace cache, our trace cache contains traces that can span
multiple cache lines. Our traces contain up to 256 instruc-
tions.

While various control strategies between critical and de-
ferred fetch are possible, we use a fairly simplistic one that
gives priority to critical instructions. Fetch cycles that are
empty (or partially empty) because of a cache or BTB miss
or branch recovery, or because of the turn-around time be-
tween a trace cache and icache access, can be populated
by deferred instructions. Furthermore, we use a simplistic
branch confidence mechanism that selects deferred instruc-
tions after each indirect (and non-return) branch instruction.
That is, we assume that prediction of any indirect branch
other than a return instruction is of low-confidence, causing
the deferred stream to be selected until the target address

calculation completes.

3.1.2 Rename

The majority of the complexity involved with instruction
deferral involves maintaining consistent architectural state
while allowing maximum flexibility in deferring instruc-
tions. As noted at the beginning of this section, issues arise
from renaming instructions out-of-order.

A

B

A

C

D D

BC addq r3 <− r6, r7

E addq r9 <− r7, r8 E

After Deferral

addq r9 <− r7, r8

addq r3 <− r1, r2

addq r3 <− r6, r7

Deferrable

addq r3 <− r1, r2

addq r5 <− r3, r4

addq r5 <− r3, r4

addq r7 <− r3, r5addq r7 <− r3, r5

Program Order

Figure 6. Renaming extensions required to
support instruction deferral.

A simple example serves to illustrate the potential prob-
lems. Figure 6 shows five instructions before and after re-
ordering, giving rise to several renaming scenarios associ-
ated with instruction deferral. Of the five instructions in the
example, only B and D are deferrable. With instruction de-
ferral, B and D may be fetched and renamed many cycles
after their original positions in program order.

Three cases are of interest. For the first two, assume
that the actual fetch order is the one shown on the right-
hand side of the figure. Given this ordering (or any other
allowed), the instruction deferral mechanism must establish
dependencies as if the processing happened in program or-
der.

The first case lies in the register dependence between in-
structions A and B. B must obtain the proper physical reg-
ister assignment for R3, as established by A, even though
the mapping of R3 in the Register Alias Table has been re-
assigned by instruction C.

A second case occurs in the dependence between instruc-
tions B and D through R5, which must also be maintained.
Both instructions are deferred. When instruction D is re-
named, it must obtain its source operand tag from the de-
ferred version of R5, whereas D’s version of R3 must be
that produced by the critical instruction C.

Finally, consider instruction E, which uses a value pro-
duced by a deferred instruction. If the deferred instruction
has not yet been fetched, this situation forces the instruction
deferral mechanism to drain the deferred queue in order to

6

resynchronize the streams. In effect, fetch of instruction E
causes instructions B and D to be demand-fetched.

To handle these three scenarios, we must provide each
deferred instruction with a copy of the register mapping of
its source operands as if renaming occurs in program order.
That is, instruction B requires the register mapping of R3
as if it preceded instruction C (and not instruction D, as it
might in deferred order.)

We address these problems by leveraging the notion of
of atomic traces, or frames [6]. These atomic traces contain
no side exits, and therefore are, in effect, similar to basic
blocks. Each trace, when it is constructed, is analyzed and
all internal communication is renamed using a technique
similar to the one described by Vajapeyam and Mitra [9].
That is, each register source operand for each instruction
within the trace is tagged to easily identify the producer. If
the source operand is a live-in, the tag is the register identi-
fier itself. If the particular instruction is deferred, however,
and the source operand is a live-in, an extra level of indi-
rection is required to find the correct source tag. Each trace
is given a header that identifies all register live-ins required
by deferred instructions. This header in effect establishes
an indirect mapping between register live-ins to the tag en-
coded within the deferred instruction.

Coupled with this mechanism is a deferred bit associated
with each entry for each architectural register in the Regis-
ter Alias Table. This bit identifies whether a register is cur-
rently owned by the critical stream or the deferred stream.
The setting of these bits must happen in program order—
each trace header is processed by rename prior to the re-
naming of instructions within the trace. The trace header
information is used to set the deferred bits of registers that
are produced by deferred instructions. A subsequent critical
instruction can overwrite the register, clearing the deferred
bit. A critical instruction that reads a source register with
the deferred bit set causes the machine to synchronize the
deferred and critical streams by draining the deferred queue.

A final issue is that of memory-based dependencies be-
tween critical and deferred instructions. We adopt a simplis-
tic policy by detecting violations at retirement (retirement is
in-order) using the standard memory conflict mechanism–
which in our case is an associative store buffer. If a vi-
olation is detected due to instruction deferral, the proces-
sor pipeline is flushed, and as a precautionary measure to
prevent the situation from reoccurring (it can be a poten-
tial live-lock situation), the trace containing the delinquent
deferred instruction is invalidated in the trace cache.

3.1.3 Retirement

To further simplify machine design, we assume in-order re-
tirement of all instructions. Completed critical instructions
must wait in the retirement queue until all previous deferred

(and critical) instructions have been fetched, executed, and
completed without error before they can retire. Exceptions
and memory ordering violations are all checked at retire-
ment. While in-order is not necessarily a requirement for
instruction deferral, and one can devise mechanisms for out-
of-order retirement, in-order retirement is not a significant
constraint if enough in-flight physical register state is avail-
able.

To facilitate in-order retirement, each trace header must
provide an indication of the position of each deferred in-
struction in order for the retirement logic to recreate the re-
tirement order. In our case, because we use frames (which
are more constrained variant of traces) and each frame is a
single retirement entity, each frame header need only record
the number of instructions in the frame and not the actual or-
der. Once all instructions in a frame have retired, the entire
frame retires. Any exceptional event causes the entire frame
to be discarded.

3.1.4 Pipeline Flushing

Branch misprediction events cause the deferred stream to
be resynchronized with the critical stream. That is, all fetch
targets in the Deferred Queue (in Fetch) that are subsequent
to the mispredicted branch are flushed. All other fetch tar-
gets are drained from the queue and executed.

4 Methodology

Our simulation framework is built upon the Alpha
instruction-level simulator provided as the core of the Sim-
pleScalar 3.0 tool set. Using the instruction simulator, we
created a timing model of a superscalar processor that is
capable of cycle-level simulation, including wrong path ef-
fects. This timing model serves as both the model from
which slack calculation is performed (using the reverse
trace analysis technique described in Section 2) and experi-
mental model upon which all performance estimation is per-
formed.

4.1 Benchmarks

We evaluate instruction deferral using eight of the twelve
SPECINT 2000 benchmarks. The benchmarks were run
to completion on all benchmarks (approximately 200M in-
structions per benchmark) using a set of profile input sets.
Recall that a profiling pass is required to estimate static
slack for each static instruction. Performance data for both
the profile input set and another input set are presented in
Section 5.

7

4.2 Machine model

We evaluate the instruction deferral mechanism in the
context of deeply-pipelined 4-wide and 8-wide superscalar
processor configurations. The specifics of the configura-
tions are provided in Table 1. A trace cache miss results in
a one cycle delay to access the supporting instruction cache.
All NOP’s occurring in the benchmarks consume no band-
width whatsoever in any configuration; they are fetched and
decoded for free. To first order, NOP’s have no effect on the
results in the next section.

Fetch 64KB Trace Cache, 4KB ICache
Sequencer 15-bit gshare, 1K-entry BTB

Pipeline 12 cycles (min) for BR res
Inst Window 512 instructions

L1 DCache 64KB, 2 cycles
L2 Cache 1MB, 10 cycles
Memory 50 cycles

4-wide ExeUnits 4 IALUs, 2 IMULs, 2 FLTs, 2 LdSt
8-wide ExeUnits 7 IALUs, 2 IMULs, 2 FLTs, 2 LdSt

Table 1. Configuration of Superscalar Proces-
sor Core.

With instruction deferral, the trace cache is physically
split into a 48KB critical partition and a 16KB deferred par-
tition. Also, the controlling policy for selecting between
critical and deferred instructions is simplistic. As described
in Section 3, critical instructions are always given priority
over deferred instructions unless an unused fetch slot is en-
countered (e.g., due to a cache miss or branch recovery, etc.)
or a deferred queue draining scenario is encountered. A
maximum of ten fetch targets can be enqueued in the de-
ferred queue.

5 Experimental Results

In this section, we evaluate various performance charac-
teristics of instruction deferral. For the majority of exper-
iments in this section, our tests use the profile input sets.
However, as demonstrated later, the notion of static slack is
a fairly robust metric across input sets.

5.1 Relative Performance

For the first experiment, we evaluate the impact of using
deferral on the 4-wide and 8-wide baseline models. Figure 7
is a plot of the improvement in the number of instructions
retired per cycle (IPC) when instruction deferral is added to
each configuration. That is, the left bar for each benchmark
represents the percentage improvement provided by deferral

over the 4-wide baseline (4-wide vs. 4-wide+deferral), and
the right bar represents improvement provided by deferral
over the 8-wide (8-wide vs. 8-wide+deferral). The IPC for
the baseline is provided below the corresponding bar. The
IPC increases by an average of 11% across benchmarks on
the 4-wide configuration and by 6% on the 8-wide configu-
ration. In the instruction deferral case, all instructions with
a static slack of five or more cycles are marked as candidates
for deferral.

0%

5%

10%

15%

20%

25%

30%

3.5 5.5 1.9 2.4 2.2 2.9 1.4 1.6 3.2 5.3 2.7 3.8 2.0 2.5 2.3 3.1

bzip2 crafty eon gcc parser perl twolf vortex

P
e

r
c

e
n

t
IP

C
 i
n

c
r
e

a
s

e
 o

v
e

r
 b

a
s

e
li
n

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2

4w >5 cycles slack

8w >5 cycles slack

Figure 7. The effects of Instruction Deferral.
The performance is provided for a 4-wide and
an 8-wide configuration. The baseline is a
4-wide configuration.

Instruction deferral derives its benefits from two main
sources:

• Critical instructions are fetched earlier than they are
without deferral. Since deferred instructions only con-
sume spare bandwidth, a deferred instruction rarely
displaces a critical instruction in the fetch stream. De-
ferral enables critical instructions to potentially exe-
cute earlier. The realization of this potential is demon-
strated by the drop in performance benefit between the
4-wide configuration of instruction deferral and the 8-
wide. The 8-wide fetch mechanism delivers enough
bandwidth such that fetching critical instructions ear-
lier is of less benefit.

• Deferred instructions are used to fill fetch holes. Fetch
holes arise from trace cache and instruction cache
misses, partial fetches, BTB misses, and potentially
branch mispredictions. Instruction deferral can be used
to fill these holes with useful work. While avoiding
cycles on an incorrect execution path is a profitable
means for using deferral, branches likely to be mispre-
dicted can not always be identified. Our scheme could
potentially benefit from the use of a confidence predic-
tor [5]. For our baseline models, because of the use of

8

a trace cache, a cycle of fetch is lost when switching
between the trace cache and icache. This lost cycle is
filled with deferred instructions when possible.

5.2 Average Deferral Distance

Recall that our simplistic selection mechanism heavily
favors critical instructions. Deferred instructions are only
fetched if spare bandwidth is available. Because of this pol-
icy, deferred instructions are often deferred by a significant
number of cycles. Table 2 provides the median distance
in number of instructions that a deferred instruction is de-
ferred.

Median deferral distance
bzip2 50
crafty 78

eon 104
gcc 31

parser 245
perl 101

twolf 45
vortex 86

Table 2. Median distance (in number of in-
structions) that a deferred instruction is de-
ferred, as measured on the 4-wide configura-
tion.

The deferral distance averages 90 instructions, corre-
sponding to approximately 20 cycles of deferral. Even
though the threshold for deferral was a static slack of five
of more cycles, the number of synchronizing events (for ex-
ample, caused by a critical instruction requiring a deferred
value) is fairly small, on the order of one event per 100 cy-
cles. The cost of a synchronizing event is not devastating—
a stream of deferred instructions is spooled out from the de-
ferred partition of the trace cache whenever a synchroniza-
tion is required, with a few cycles of overhead to detect (in
rename) that a critical instruction required a deferred value.

5.3 Using Different Slack Thresholds

Figure 8 plots the percentage increase in performance of
the 4-wide+deferral configuration over the basic 4-wide as
the deferral threshold is varied between 5, 10, and 20 cycles.
That is, the profiler only marks an instruction as deferrable
if its static slack is above the threshold. The results indicate
that as the threshold is increased, the performance declines
slightly. The primary reason for this decrease is that fewer
instructions are categorized as deferrable. On average, 17%
fewer dynamic instructions are marked as deferrable when

the threshold is increased from 5 to 20. The benchmark eon
behaves differently. One reason for this is that eon exhibits
a higher incidence of synchronization events; a higher slack
threshold reduces the synchronization frequency.

Figure 8. The performance impact of using
static slack thresholds of 5, 10, and 20 cycles.

5.4 Evaluating the Brittleness of the Profile

Figure 9 provides a comparison between the perfor-
mance benefits of deferral when the profile input set and the
execution input set are the same and when they are differ-
ent. The figure plots the performance of the 4-wide+deferral
configuration when a different input set than the profile set
is used for the measurement. The baselines for the two
cases are different: that is, both the baseline and the 4-
wide+deferral use the same input set for the measurement.
The results for the alternate input sets are quite similar to,
and in several cases better than, execution of the profile in-
put set. The correlation demonstrates that our measurement
of static slack is fairly robust for profiling. Static slack pro-
vides an estimate of global slack across all possible paths,
and our profile-based estimation measures it across all dy-
namically observed paths.

5.5 Deferring Candidate Instructions

In all previous measurements, the only instructions that
can be deferred are those that originate in the trace cache.
Instructions that are fetched from the instruction cache can-
not be deferred. Therefore, a degradation in potential per-
formance arises from trace cache misses. In Figure 10, this
effect is alleviated by allowing all instructions, regardless
of their fetch origin, to be deferred. The results are shown
for the 4-wide configuration with a deferral threshold of ten
cycles. As might be expected, certain benchmarks exhibit

9

Figure 9. Performance increase for an input
set other than the profile input set. Results
are shown for the 4-wide architecture with a
five cycle static slack threshold.

a high miss rate in the trace cache, and thus lower the ob-
served potential performance of instruction deferral.

Figure 10. The effect of a more aggressive
deferral mechanism in which instructions
fetched from the instruction cache can also
be deferred. The results for the trace-cache-
only approach are shown for comparison.

6 Related Work

The most closely related work to instruction deferral is
that of out-of-order fetch [8] and decoupled fetch [7]. Out-
of-order fetch attempts to reorder instruction delivery by
fetching and processing instructions beyond an icache miss
using a non-blocking instruction cache. Decoupled fetch
uses a queue of fetch addresses provided by a sequencer
running ahead of the fetch point. Like deferral, both mech-
anisms attempt to fill vacant fetch slots generated by icache

misses. Instruction deferral has the added advantage that
it allows critical instructions to be moved upwards in the
fetch stream, enabling them to be processed earlier. Fetch
deferral bears similarity to hardware-initiated fetch of con-
trol independent code [1, 2]. In such schemes, the fetch
stream need not follow program order but can jump ahead
to control-independent fetch points.

The renaming mechanisms that enable fetch deferral
are similar to those required any scheme that performs
hardware-centric out-of-order renaming. In particular, out-
of-order fetch [8] and control-indepedent fetch [2] require
a mechanism to reconstruct original program dependencies
in light discontinuities in the fetch stream.

There is a correspondence between this work and pre-
vious work on slack-based instruction scheduling in com-
pilers [4]. As mentioned previously, the dynamic approach
described here provides more flexibility in how late an in-
struction can be fetched. A slack-based scheduler in a com-
piler can defer an instruction until the end of a region, but
must replicate the instruction along all potential target paths
if the instruction is to be deferred further.

The use of slack to control various processor selection
mechanisms was explored by Fields et al [3]. In their work,
they explored the use of dynamically-measured instruction
slack to control (and defer) instruction execution. Execution
deferral is similar in extent to the fetch deferral explored
here. In this paper, all instructions have equal priority once
they have been fetched.

7 Conclusions

Instruction fetch deferral is a novel mechanism for op-
timizing the fetch order in which an application is pro-
cessed. Using static slack as the deferral criterion, we iden-
tify computation dataflow clumps, or streams, whose results
are not needed for some time in the future, and can there-
fore be deferred for later instruction fetch. We demonstrate
that dataflow sections with large static slack have interest-
ing properties that make them amenable to decoupled, or
threaded, processing. In particular, such instructions con-
stitute over 30% of the dynamic instruction stream and pro-
duce relatively few register values that are needed by more
critical, slackless, instructions.

We describe an instruction deferral mechanism con-
structed atop a trace cache-based superscalar processor. The
use of a trace cache helps to address two of the critical hur-
dles associated with instruction deferral. First, critical in-
structions are cached, in trace form (actually, frame form),
separately from deferred instructions, enabling critical in-
structions to be fetched independently of those that are de-
ferred. Second, trace headers help to maintain consistent
architectural state despite the out-of-order renaming associ-
ated with instruction deferral. Trace headers are processed

10

in program order and are used to collect register mappings
for subsequent deferred instructions and to inform the re-
namer of register writes by the deferred stream.

Using a timing simulator, we estimate that an instruc-
tion deferral mechanism boosts the performance of a 4-
wide processor by an average of 11% on eight of the
SPECINT2000 benchmarks. The benefit on an 8-wide pro-
cessor is approximately 6%. The majority of the benefit of
deferral comes from two sources: (1) critical instructions
are potentially fetched and processed earlier, and (2) oth-
erwise unused fetch bandwidth (due, for example, to cache
misses) is filled with useful work. In essence, instruction
deferral discovers cache misses cycles earlier. We also pro-
vide some evidence on the robustness of our profile-derived
static slack estimations. Measurements of instruction defer-
ral performance benefit taken on different input sets yielded
similar results to those taken on the profile set.

We present one hardware-centric framework for optimiz-
ing the instruction fetch via slack-based deferral. Other
frameworks are possible, including holistic approaches
that alleviate the renaming complexity via an integrated
hardware-software approach.

8 Acknowledgements

We thank the other members of the Advanced Comput-
ing Systems group, as well as David Kaeli and Antonio
Gonzalez, for providing feedback during various stages of
this work. This work was funded in part by NSF CAREER
grants NSF-CCR-00-92740 and NSF-ACI-99-84492, and
gracious support from AMD, Intel, and Sun.

References

[1] H. Akkary and M. A. Driscoll. A dynamic multithreading
processor. In Proceedings of the 31th Annual International
Symposium on Microarchitecture, 1998.

[2] C.-Y. Cher and T. N. Vijaykumar. Skipper: A Microarchitec-
ture for Exploiting Control-Flow Independence. In Proceed-
ings of the 34th Annual International Symposium on Microar-
chitecture, 2001.

[3] B. Fields, R. Bodik, and M. Hill. Slack: Maximizing perfor-
mance using technological constraits. In Proceedings of the
29th Annual International Symposium on Computer Architec-
ture, 2002.

[4] P. Gibbons and S. Muchnick. Efficient instruction schedul-
ing for a pipelined architecture. In Proceedings of ACM SIG-
PLAN Symposium on Compiler Construction, pages 11–16,
1986.

[5] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confi-
dence to conditional branch predictions. In Proceedings of the
29th Annual International Symposium on Microarchitecture,
pages 142–152, 1996.

[6] S. J. Patel, T. Tung, S. Bose, and M. M. Crum. Increasing the
size of atomic instruction blocks using control flow assertions.
In Proceedings of the 33th Annual International Symposium
on Microarchitecture, 2000.

[7] G. Reinman, T. Austin, and B. Calder. A scalable front-end
architecture for fast instruction delivery. In Proceedings of the
26th Annual International Symposium on Computer Architec-
ture, 1999.

[8] J. Stark, P. Racunas, and Y. N. Patt. Reducing the performance
impact of instruction cache misses by writing instructions into
the reservation stations out-of-order. In Proceedings of the
30th Annual International Symposium on Microarchitecture,
pages 34 – 43, 1997.

[9] S. Vajapeyam and T. Mitra. Improving superscalar instruction
dispatch and issue by exploiting dynamic code sequences. In
Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 1–12, 1997.

11

