
Selective Eager Execution
on the PolyPath Architecture�

Artur Klauser, Abhijit Paithankar, Dirk Grunwald
[klauser,pvega,grunwald]@cs.colorado.edu

University of Colorado, Department of Computer Science
Boulder, CO 80309-0430

Abstract

Control-flow misprediction penalties are a major impediment
to high performance in wide-issue superscalar processors. In this
paper we presentSelective Eager Execution(SEE), an execution
model to overcome mis-speculation penalties by executing both
paths after diffident branches. We present the micro-architecture
of thePolyPathprocessor, which is an extension of an aggressive
superscalar, out-of-order architecture. The PolyPath architecture
uses a novel instruction tagging and register renaming mechanism
to execute instructions from multiple paths simultaneously in the
same processor pipeline, while retaining maximum resource avail-
ability for single-path code sequences.

Results of our execution-driven, pipeline-level simulations
show that SEE can improve performance by as much as 36% for
the go benchmark, and an average of 14% on SPECint95, when
compared to a normal superscalar, out-of-order, speculative exe-
cution, monopath processor. Moreover, our architectural model is
both elegant and practical to implement, using a small amount of
additional state and control logic.

1 Introduction

Today’s high-performance processors are plagued by performance
limitations due to branch misprediction recovery cycles. To achieve
high performance in super-scalar out-of-order execution proces-
sors, it is necessary to predict the outcome of conditional branches
in the early stages of the pipeline. Branch prediction redirects in-
struction fetch to the predicted branch target address, ideally with-
out any interruption in the instruction fetch stream. After a branch
misprediction, the instruction stream has diverted from the correct
execution path of the program. It takes many cycles before the
mispredicted branch executes, at which point the misprediction is
discovered and misprediction recovery is initiated. The time from
the first mispredicted instruction entering the pipeline to the first
correct instruction entering the pipeline after misprediction recov-
ery is commonly referred to as branch misprediction latency. The
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average misprediction latency is the sum of the architected latency
(pipeline depth) and a variable latency, which depends on data de-
pendencies of the branch instruction. The overall cycles lost due
to branch mispredictions are the product of the total number of
mispredictions incurred during program execution and the average
misprediction latency. Thus, reduction of either component helps
decrease performance loss due to control mis-speculation.

In this paper we proposeSelective Eager Execution(SEE) and
the PolyPath architecture model, which help to overcome branch
misprediction latency. SEE recognizes the fact that some branches
are predicted more accurately than others, where it draws from re-
search in branch confidence estimation [4, 6]. SEE behaves like
a normal monopath speculative execution architecture for highly
predictable branches; it predicts the most likely successor path of a
branch, and evaluates instructions only along this path. This single
path has access to all machine resources, i.e. execution units and
fetch bandwidth, for maximal performance. On the other hand, if
the branch prediction is diffident, SEE creates a divergence point
and starts fetching and processing instructions from both successor
paths after the conditional branch. At branch resolution, instruc-
tions along the incorrect path are killed, and processing along the
correct path continues without interruption. This eliminates branch
misprediction recovery time for the set of branches that have a high
likelihood of being mispredicted.

SEE can execute instructions from multiple paths simultane-
ously, which is similar to a multi-threaded architecture executing
instructions from multiple threads at the same time. However, in-
structions from different paths are more closely related by register
data flow between these instructions. SEE tracks instructions from
multiple paths using a novel instruction tagging and register renam-
ing scheme described in Section 3.

SEE trades off the reduction in branch misprediction latency
with an increase in processing bandwidth requirement. We believe
that it will be easier in future architectures to provide higher exe-
cution bandwidth, rather than being able to hide increased latency.
Current research in other areas, such as dependence and value pre-
diction [11], makes the same underlying assumption and tries to
hide data-dependence latencies through increased execution band-
width.

The rest of this paper is organized as follows. Section 2 de-
scribes related work and Sec. 3 introduces the details of the SEE
concept. In Sec. 4 we present the simulation environment, which is
followed by the discussion of our results in Sec. 5. Finally in Sec. 6
we give some concluding remarks.



2 Related Work

There are two major categories of work that are concerned with
reducing the adverse effects of control flow on processor perfor-
mance. Work in the first category tackles the control flow problem
by reducing the number of mispredictions. There are numerous
studies on branch prediction, for example Yeh and Patt [23], Mc-
Farling [12], Sprangle [18], and Leeet al [9] to name just a few.
Multi-block ahead prediction [16] and hierarchical prediction in
Multiscalar [7, 14] has been proposed to predict across multiple
basic blocks in one cycle.

The second category of work, which is closer related to SEE,
strives to reduce the cost of each misprediction. Branch delay slots
have been used in some architectures, e.g. MIPS [22], to reduce
the cost of misprediction recovery by pushing the branch instruc-
tion further into the pipeline before the control flow is changed.
Branch delay slots do not provide much advantage in super-scalar,
deeply pipelined architectures, however, and contribute to complex
processor implementations.

In the Y-pipe architecture [8], the first two stages of a 5-stage
pipeline are duplicated. After a branch is fetched, the first two
pipeline stages, fetch and decode, are filled with instructions from
both sides after the branch. In the third cycle, the branch has com-
pleted execution and only the instructions from the correct path
continue to flow through the rest of the pipeline. This eliminates
the branch misprediction penalty in this simple pipeline altogether.

The work on the misprediction recovery cache (MRC) [1] in-
serts a small predecoded instruction cache before the execution
stage into the middle of a super-scalar, in-order pipeline. This
cache holds short instruction sequences following previous mispre-
dictions. After a misprediction, the MRC is searched for a valid en-
try. If one is found, it is used to feed instructions into the execution
stages while instruction fetch is restarted at the correct successor
address. The paper evaluates MRC in the context of an in-order
CISC pipeline without register renaming.

Disjoint eager execution [21] uses a form of eager execution
to speed up the execution of loops. The architecture uses a fixed-
size static instruction window. Iterations are mapped to execution
paths depending on a predetermined average global branch predic-
tion accuracy, which determines the exact structure of the hard-
ware. Given the fixed structure of the static instruction window, the
architecture cannot handle loops larger than the instruction window
at its optimal speed. Also, non-looping, control intensive programs
cannot make optimal use of the eager execution hardware. The au-
thors estimate a cost of approximately 100 million transistors for a
reasonable implementation of the architecture.

Adaptive Branch Tree (ABT) [2] has been proposed to steer
execution in a multi-path processor. ABT uses static branch (taken)
probabilities to decide which path to execute next. Our work uses
similar concepts for tagging instructions from multiple paths, but
we dynamically estimate prediction accuracy of dynamic branch
predictions to make the path traversal decisions.

Additionally we draw from work in the area of branch con-
fidence estimation [4, 6, 20] to determine if branch prediction or
selective eager execution is more effective for each particular oc-
currence of a branch.

3 The PolyPath Architecture

In the following sections, we first outline the operation of a normal
(monopath) speculative architecture, which is commonly found in
today’s high performance processors. We then discuss the neces-
sary changes in the micro-architecture to implement SEE. We call
the resulting architecturePolyPath.
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Figure 1. Super-scalar out-of-order architecture model.

3.1 Monopath – Speculative Execution

Figure 1 depicts the micro-architecture of a speculative, super-
scalar, out-of-order execution, in-order commit processor. Vari-
ations of this architecture model are found in almost all current
high-performance microprocessors. We will use an implementa-
tion of this architecture model throughout our discussion of perfor-
mance results in Sec. 5. We will evaluate the performance of our
PolyPath architecture by comparing it against the performance of
this monopath model. We call this amonopatharchitecture since
it always executes only alongone(speculative) linear sequence of
instructions orpath.

The architecture consists of an in-order front-end and back-end
and an out-of-order execution core. Instructions enter the pipeline
in program order and stay in-order until they reach the instruction
window. The instruction window acts as a buffer between the in-
order and out-of-order domains of the architecture. The out-of-
order execution core takes the instructions out of the instruction
window in data-flow order, computes new results, and puts results
into the physical register file. Results are also forwarded to the in-
struction window and trigger the execution of further instructions.
Instructions leave the instruction window in program order. The
in-order back-end retires the oldest completed instructions from the
instruction window. In this model the central instruction window
also acts as a reorder buffer. Some implementations split this func-
tionality into a separate reorder buffer and out-of-order reservation
stations to increase circuit speed [22].

The instruction fetch stage uses a branch predictor to predict the
fetch address after branches, before the correct address is computed
by the back-end. When the branch is resolved in the execution
stage, the prediction is compared against the correct outcome. If
the prediction was correct, no action is taken. If the prediction was
incorrect, all instructions fetched after the branch are discarded.
This involves all instructions in the front-end as well as all newer
instructions in the instruction window. Instruction fetch is restarted
at the correct successor address after the branch. In either case, the
branch predictor is updated with the correct branch outcome. Some
implementations, such as Pentium Pro, restrict branch resolution
to be in-order, i.e. to happen at instruction retirement rather than
at instruction completion. With this simplification, all instructions
left in the instruction window can be killed at this point, which can
result in a simpler circuit implementation.

The architecture uses register renaming to eliminate false de-
pendencies in register data-flow. Instructions encode logical regis-
ter numbers. The micro-architecture uses physical registers to store
results. In the register rename stage each logical register used in an
instruction is translated to a physical register number with the help
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of the register mapping table (RegMap). If the instruction produces
a register result, a free physical register is assigned to the logical
destination register. The new physical register is assigned from the
free list, and both the free list and the register map are updated.
The decoded instruction carries the old and the new physical reg-
ister name of its destination register. The old physical register is
needed at commit and rollback after exceptions.

When a branch is in the register rename stage, a checkpoint
of the current contents of the RegMap is made. If the branch
was mispredicted, the checkpoint RegMap is restored to the cur-
rent RegMap in order to restore the micro-architecture to the cor-
rect state. If the branch was predicted correctly, the checkpoint
is destroyed. Checkpoint-restore allows fast recovery from mis-
predicted branches. Note that the number of available checkpoint
RegMaps limits the number of pending unresolved branches in the
architecture.

When an instruction retires, its old physical destination regis-
ter is recycled and put into the free list. At this point, no more
instructions can possibly use the old destination register, so it can
be reused. Up to this point, there exists the possibility that restor-
ing a checkpointed RegMap that maps a logical register to the old
physical register can revive this physical register.

This architecture usesprecise exceptions[17]. Exceptions,
which occur during the execution of an instruction in the out-of-
order core, are stored together with the result of the instruction.
They are not signaled until an instruction is ready to retire. This
allows (1) the exact register state to be restored for the exception
handler and (2) prevents instructions on mis-speculated paths from
signaling spurious exceptions.

In the monopath model, the following observations can be
made:

1. If a branch is predicted correctly, no performance penalty is
paid for the control speculation. Also, the predicted (and cor-
rect) path has access to all available machine resources, such
as functional units and fetch bandwidth.

2. If a branch is mispredicted, all cycles between the branch
prediction and misprediction recovery are lost, i.e. they are
spent on fetching wrong instructions which do not contribute
to the final result. Our measurements indicate that, on av-
erage, there are 1.86 times as many instructions fetched as
committed, which means 46% of the fetch cycles are wasted.

3.2 PolyPath – Selective Eager Execution

Based on the observations mentioned above, we propose the Poly-
Path architecture model with the following goals:

1. For correctly predicted branches, no performance penalty
should be paid and all resources should be available to the
(single) successor path.

2. For incorrectly predicted branches, we strive to reduce the
number of lost cycles by introducing some useful work be-
tween the misprediction and its discovery. In this way only a
fraction of these cycles are lost.

Selective eager execution is based on assessing branch prediction
accuracy, which we call branch confidence estimation. Confidence
estimation determines if a given branch prediction is likely to be
correct or incorrect. If the confidence estimator signals high con-
fidence, SEE follows the branch prediction like a monopath archi-
tecture. This is done to achieve goal (1), maximum performance,
for predictable branches. If the confidence estimator signals low
confidence, SEE diverges and starts processing instructions from
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Figure 2. PolyPath architecture model.

both successor paths after the branch. This is done to achieve goal
(2), introducing a mix of correct and incorrect instructions after
a likely mispredicted path. Multiple divergence decisions can be
made before the first divergent branch gets resolved. We call this a
PolyPatharchitecture, because it can execute alongmanydifferent
instruction sequences, orpaths, at the same time.

Incorrectly predicted branches with high confidence are han-
dled no differently on the PolyPath architecture than on a monopath
architecture; only the predicted (incorrect) path is followed and
eventually the misprediction is discovered and the full mispredic-
tion penalty is paid. Correctly predicted branches with low con-
fidence are handled less efficiently in the PolyPath architecture,
since the correct path has to share fetch bandwidth and execution
resources with the incorrect path. Thus, it is important for the per-
formance of SEE to minimize this case and maximize the case of
incorrectly predicted branches with low confidence.

To support the operation of SEE in the PolyPath microarchi-
tecture, several changes are necessary to the monopath architec-
ture model. Figure 2 shows an overview of the PolyPath micro-
architecture. Two major differences to the monopath architecture
exist; (1) a confidence estimator is added to the branch predictor
and (2) context tags are added throughout the pipeline. Context
tags are described in Sec. 3.2.1 and the confidence estimator is de-
scribed in Sec. 3.2.7.

3.2.1 Context Tags

In the PolyPath architecture, instructions from many different paths
are present at the same time. On misprediction recovery, only the
instructions that are in the mispredicted path, or descendants of it,
need to be invalidated. In a monopath architecture this is handled
by killing instructions depending on their position in the architec-
ture, i.e. all instructions “after” the branch in the instruction win-
dow as well as all instructions in the in-order front-end are dis-
carded. In the PolyPath architecture, position alone cannot be used
for this purpose, since instructions from the correct path might have
been fetched after a divergent branch and should not be killed when
this branch resolves.

Context (CTX) tags are used to differentiate instructions from
different paths. A CTX tag encodes the branch history that leads
to this path, as shown in Fig. 3. The branch history includes the
branches between the oldest branch in the pipeline and the current
point, such that each branch in this path takes up one history po-
sition in the CTX tag. CTX tags are unique for all paths that are
present in the pipeline at the same time. However, CTX tags are
being reused as old paths leave the pipeline and vacate their corre-
sponding history position. We use CTX tags with 2 bits per history
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Figure 3. Assigning context tags to execution paths.

valid direction symbol description
0 0 X invalid
0 1 X invalid
1 0 N not taken
1 1 T taken

History Encoding

2-bit encoded
history position

Figure 4. Encoding of branch history in context tags.

position as shown in Fig. 4. The first bit encodes the branch direc-
tion, and the second bit is a valid bit. If the valid bit is set, the
direction bit indicates the appropriate branch direction; otherwise
this history position is invalid. A history position can be invalid
because the tag was created with a tag length that was smaller than
the register that stores the tag. A history position may also be in-
valid if the branch that occupied this history position has already
committed.

We denote the three states of each history position with T, N,
and X for “taken”, “not taken”, and “don’t care” (invalid) respec-
tively, as shown in Fig. 4. We always show 4-wide (8-bit) histories
to simplify our examples, but this is not a limitation of the actual
design. CTX tags are used to define an inheritance relationship be-
tween paths in the pipeline, which is why we need the X indication
for history positions. The oldest branch in the pipeline is always
denoted by a CTX tag of XXXX. Its immediate descendant paths
are TXXX and NXXX, which in turn can have descendant paths
TTXX, TNXX, NTXX, and NNXX and so on. Not all of these
paths might actually be created during an execution sequence. With
this tree-structured CTX tag encoding it is simple to find out if two
paths are related, i.e. if one of them is a descendant of the other. If
we ignore the X (invalid) history positions and find that one tag is
a prefix of the other tag, then the longer tag is a descendant of the
shorter one.

For example, if we compare tags T(XXX) and TNT(X), we can
see that TNT(X) is a second level descendant of T(XXX); compar-
ing TT(XX) with TNT(X), however, shows that they are not related.
This property still holds even if we rotate each tag field two posi-
tions to the right;e.g., (XX)T(X) and T(X)TN are still considered
related. The comparison is independent of the position of branch
histories in the tag. This allows the architecture to simply wrap
around and reuse vacated history positions without having to re-
align CTX tags. New history positions are assigned left to right in
the CTX tag. After all history positions have been used, the assign-
ment of new history positions wraps around to the left side of the
tag and reuses history positions as they are vacated by commiting
branches.

4
tag1 tag2

history position 1

+&

&

match

&

dirvalid dirvalid

2 3

Figure 5. Context tag hierarchy comparator logic.

One possible gate-level implementation of a hierarchy com-
parator is depicted in Fig. 5. This comparator structure com-
prises the core functionality of the control-flow state machine logic
as described later in Sec. 3.2.3, the store buffer forwarding logic
(Sec. 3.2.4), and the CTX table manager (Sec. 3.2.6).

The work onAdaptive Branch Trees(ABT) [2] uses a similar
scheme to encode the tree-structured relationship of branch paths.
ABT uses a 1-bit encoding scheme, which is more restrictive since
it only allows in order branch resolution in the tree. All branch tags
in this architecture must be re-aligned – shifted by one bit position
– when the oldest branch resolves. Our 2-bit scheme is general
enough to handle out-of-order branch resolution and does not need
tag re-alignment.

CTX tags are stored in fixed length fields, which limits the num-
ber of concurrent paths by the bit-width of these fields. Each in-
struction is marked with a CTX tag in the decode stage. The CTX
tag is part of the decoded information stored in the instruction win-
dow, together with logical and physical register designators, opera-
tion codes, and other microarchitectural control information.

3.2.2 Context Tag Management

The front-end and back-end of the machine are responsible for
managing the flow of CTX tags through the microarchitecture.
Managing this flow is similar to managing the flow of physical reg-
ister designators. Whereas physical registers are used to manage
data-flow, CTX tags are used to manage control-flow. Physical reg-
isters are “created” when an instruction creates a new result. CTX
tags are “created” when an instruction creates a new path.

When a divergent branch is decoded, two new CTX tags are
created, one for the taken path and one for the not taken path. Each
succeeding instruction from the taken or not taken path is then
marked with the CTX tag of the respective path. The new CTX
tags are generated by appending the branch direction, T or N, to
the CTX tag of the divergent branch. The branch itself stores its
old CTX tag and the index of its own history position in the new
tags. The history position is used for branch resolution, as we will
see shortly.

At branch resolution time, the resolved branch CTX tag, branch
outcome and its history position are transmitted on the branch
resolution bus into the instruction window (see Fig. 6), where all
instructions from the wrong path and its descendants are killed.
When the branch commits, it is guaranteed that all incorrect suc-
cessor instructions have been killed and only instructions from the
correct path and its descendants remain in the architecture. This
also means that all remaining instructions have the same correct
history state in the history position of the committing branch. Since
this history position is of no more use, it can be invalidated in each
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Figure 6. Instruction window logic.

CTX tag. This is simply a matter of resetting one valid-bit in each
CTX tag in the instruction window. At the same time, the CTX
manager reclaims the history position of the committing branch.
This history position can now be reused for new branches, which
completes the cycle of CTX tag flow.

The MIPS R10000 processor uses a similar scheme to han-
dle the allocation and deallocation of reservation station entries
throughout the architecture. In the R10000 each instruction is
marked with a 4-bitbranch mask, which is equivalent to the valid
bits of our CTX tags. At branch misprediction recovery, the branch
mask is used to kill in-flight instructions if they are control depen-
dent on the branch. Other instructions in the reservation stations are
not affected. When branches resolve correctly, all branch masks in
the pipeline reset the one bit corresponding to the resolved branch
since this bit can be reused for new instructions.

3.2.3 Instruction Window Context Tag Logic

As we have mentioned above and shown in Fig. 2, each entry in the
instruction window stores the CTX tag for its instruction. A small
state machine in each instruction window entry snoops branch res-
olution traffic and matches it with the locally stored CTX tag as
shown in Fig. 6. This state machine parallels the logic that snoops
result busses and determines when an instruction becomes ready
to execute. However, the CTX tag logic is responsible for correct
control-flow, rather than data-flow. The following operations are
performed by this state machine:

� store: The instruction window entry is filled and a new CTX
tag needs to be stored locally.

� resolution: A branch has resolved and sends its information
on the branch resolution bus. The local CTX tag is compared
against this CTX tag on the resolution bus. If the local CTX
tag is a descendant of the transmitted tagand the local tag
is on the wrong path, then the state machine signals that this
instruction window entry should be killed immediately. Oth-
erwise, no action is taken. If support for multiple branch reso-
lutions per cycle is desired, multiple branch resolution busses
are necessary (similar to data-path).

� commit: A branch commits and sends its history index on
the branch commit bus. The local CTX tag invalidates the
history entry corresponding to the transmitted index. This is
necessary for the history index to be reused for new branches.
Only one commit bus is necessary to support multiple branch
retirements per cycle, if the bus carries a decoded valid mask.

� clear: When this entry itself commits, its CTX tag is cleared
by setting all history fields to invalid.

We are confident that the possibly more complex implementa-
tion of the control-flow state-machines, as compared to the data-
flow state machines, will not be in the critical timing path, since its
inputs arrive earlier in the clock cycle. Current implementations of
high performance processors [3] have shown that the result of con-
dition evaluations (branch resolution) is available much earlier in
the clock cycle than results from other ALU operations. The Alpha
AXP-21164 processor, for example, uses this fact to allow forward-
ing of condition evaluation results to dependent instructions in the
same cycle, resulting in a 0-cycle latency for condition evaluation
operations. Also, note that this operation is not in the critical path
of instruction execution. An additional cycle latency here has only
the effect that wrong-path instructions are killed one cycle later.

3.2.4 Store Buffer

Both monopath and PolyPath architecture models use a store buffer
to hold speculative store data before the producing instruction is
committed and the result is passed on to the data cache. The store
buffer is also responsible for forwarding data to dependent load in-
structions in the instruction window. In the PolyPath architecture,
forwarding needs to be restricted to load instructions in the same
path, or a descendant path, of the store instruction. This is achieved
by adding CTX tags to store buffer entries. These CTX tags de-
termine the relationship between store and load instructions and
whether forwarding between these instructions is allowed. The op-
eration to determine path relationships uses hierarchy comparators
as outlined in Sec. 3.2.1 and Fig. 5.

3.2.5 Register Mapping Tables

As described in Sec. 3.1, the active RegMap is checkpointed when
a branch is decoded to allow instant recovery of the RegMap if a
misprediction is discovered. In the PolyPath architecture this con-
cept is still used, but extended in the following way. For a nor-
mal coherent branch with only one successor path, only the normal
checkpointing is performed. For a divergent branch, the same op-
eration is performed, i.e. a RegMap copy is created. However,
since the branch cannot be mispredicted – both successor paths are
followed – we use one copy of the RegMap for each successor
path. Note that the PolyPath architecture uses only two RegMap
copies for every type of branch, the same number of RegMaps that
a monopath architecture needs. The difference is that PolyPath uses
one RegMap copy for each successor path of a divergent branch,
whereas a monopath architecture uses one copy for the predicted
successor path and keeps a backup copy in case the prediction was
wrong and the other path needs to be executed later. The same CTX
tags that are used for marking instructions are also used for tagging
RegMaps. Each logical to physical register translation now also re-
quires the CTX tag of the instruction requesting the translation in
order to index into the correct RegMap for this CTX .

We believe that his operation will be the most time critical in
our PolyPath design, since the additional indexing must fit into the
clock cycle. We are confident that it is possible to build such a
RegMap with the same timing performance as the original RegMap
for a monopath architecture. One promising direction for imple-
menting the RegMap is the use of a 3D register file [19]. However,
in Sec. 5.3.4 we also provide results for the case where an additional
cycle for this operation might become necessary.

3.2.6 Context Management

The front-end also performs CTX management operations. This
involves CTX tag management, as described in Sec. 3.2.2, as well
as CTX fetch path management.
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The CTX manager contains a CTX table with one entry per
possible CTX in the implementation. The number of possible con-
texts is limited by the bit-width of the CTX tag field in instructions
throughout the architecture. Each entry contains the current fetch
PC and the status of the CTX as shown in Fig. 7. The CTX status
consists of information such as fetch status (active/stopped), live-
ness status (live/dead), branch resolution status, etc.

All live, actively fetching paths in the CTX table contend for
fetch bandwidth in the fetch stage. Fetch arbitration can have a con-
siderable impact on PolyPath performance. Investigation of fetch
policies is a topic of future work. However, we keep the same limit
on the aggregate fetch bandwidth for both monopath and PolyPath
architecture models in our performance evaluation.

3.2.7 Confidence Estimator

The PolyPath architecture uses a confidence estimator to assess
the quality of branch predictions and guide SEE decisions during
the execution of a program. If the confidence estimator signals
low confidence in a branch decision, the PolyPath architecture pro-
cesses a branch divergence; otherwise the branch is executed in the
normal (monopath) way. Another possible aspect of the confidence
estimator is the guidance of fetch bandwidth arbitration. However,
we do not explore this dimension in this paper.

To show the effectiveness of the PolyPath model, we use a
dynamic branch confidence estimator as described by Jacobsenet
al [6]. We believe that we can enhance the performance of SEE by
better matching the confidence estimator to our application. For
this matter, we are looking at applying techniques as discussed
in [4] to SEE. An in-depth discussion of alternative confidence es-
timators, however, is outside the scope of this paper.

This concludes the overview of our PolyPath architecture. In
the following sections we will present a performance evaluation of
the PolyPath architectural model and compare it to the performance
of a monopath architecture.

4 Simulation Environment

4.1 Benchmarks

In this paper, we present results for the eight SPECint95 bench-
marks. The benchmarks are compiled with DEC GEM-CC with
the highest optimization level (-migrate -O5 -ifo). We use scaled
down input data sets for some benchmarks to reduce simulation
time. All benchmarks are simulated to completion. Table 1 lists the
characteristics of these benchmarks on our architecture.

Benchmark Instructions Branch
(millions) misprediction

compress 113.8 9.13%
gcc 334.1 11.09%
perl 249.1 8.27%
go 549.1 24.80%

m88ksim 552.7 4.20%
xlisp 216.1 5.20%

vortex 234.4 1.85%
jpeg 347.0 8.37%

average 324.5 7.17%

Table 1. SPECint95 benchmark characteristics

4.2 Architecture Model

We used an extended version of the AINT architecture simulation
tool [13] to build a micro-architecture level simulator for the Poly-
Path architecture as depicted in Fig. 2 and described in Sec. 3.2.
Our AINT simulator is execution-driven and handles native Digi-
talUnix executables with the Alpha instruction set. The simulator
performs a detailed cycle-level simulation of the PolyPath archi-
tecture and faithfully executes all instructions from both paths after
divergent branches until the branch resolves and one path is killed.
All internal contention of the instruction window and functional
units are modeled exactly as a real implementation of the architec-
ture would experience it.

Our simulated baseline machine model is an 8-way super-
scalar, out-of-order execution, in-order commit architecture, with a
256 entry central instruction window/reorder buffer and an 8-stage
pipeline. Instruction latencies and functional unit compositions are
taken from the DEC Alpha AXP-21164 processor [15], and reflect
a 500 MHz execution core. All simple integer instructions have
a latency of one cycle. More complex instructions, like integer
multiply and all floating point operations, have higher latencies as
specified in the AXP-21164 hardware reference manual.

The baseline model has 8 integer execution units (4 Int-
Type0 ALUs, 4 IntType1 ALUs), 8 floating point execution units
(4 FPAdd, 4 FPMult), and 4 Dcache memory ports. Although
this might seem excessive by current standards, we believe that ad-
vances in integrated circuits will make this setup feasible in the near
future. We also provide scalability results for different instruction
window sizes and functional unit configurations in Sections 5.3.2
and 5.3.3. Additionally, we make the following assumptions:

� The instruction and data caches are non-blocking and have
an access time of 1 cycle, which results in a 2-cycle load la-
tency (address computation + cache access). Accesses to both
caches always hit in the cache.

� The instruction fetch mechanism allows accesses to multi-
ple basic blocks in the same cycle. Accesses from multiple
paths are prioritized based on the position of the paths with
respect to the oldest uncommitted branch. Fetch bandwidth
decreases exponentially with the distance of a path from the
oldest branch.

� Perfect memory disambiguation is used. Loads dependent on
previous stores can only execute after the store. The architec-
ture forwards store results to dependent loads in the instruc-
tion window in one cycle.

� We use a gshare branch predictor as described by McFarling
[12], which uses a global historyxor branch address to in-
dex into a table of saturating 2-bit counters. We use a 14-bit
global history and214 (16 k) counters for the baseline archi-
tecture. Section 5.3.1 provides some scalability results on the
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Figure 8. Baseline architecture performance.

influence of the branch predictor size on SEE performance.
The global history is speculatively updated at branch predic-
tion with the predicted branch outcome. The correct history
state is restored at misprediction recovery time. Speculative
history update improved the overall branch prediction accu-
racy by approximately 1% in our simulations.

� We use a modified version of the Jacobsen-Rotenberg-Smith
(JRS) 1-level branch confidence estimator with resetting
counters as described in [6]. The indexing method into the
predictor is the same as for gshare. However, each counter
in the confidence estimator reflects the number of correct pre-
dictions since the last branch misprediction for this index. We
use the same number of counters in the branch confidence es-
timator and in the branch predictor in all cases, e.g. 16 k for
the baseline architecture. Rather than the 4-bit counters advo-
cated by Jacobsenet al, we found that 1-bit counters result in
the best performance for our application. The JRS estimator
with 1-bit counters achieves much higher PVN1 than the 4-
bit counter version, which means that a higher fraction of the
“low-confidence” branches are actually mispredictions. PVN
is the most important design parameter for our application of
branch confidence estimators.

We have enhanced the confidence estimator indexing method
to use the speculative outcome of the current branch as part
of the global history when indexing into the branch confi-
dence estimator counter table. This resulted in a substantial
performance improvement over the original indexing method,
which uses the same global history as used to index into the
branch predictor table [6].

In each cycle our baseline architecture can:

� fetch up to 8 instructions from one or multiple paths;

� decode and rename up to 8 instructions that have been fetched
in previous cycles;

� issue one instruction to each functional unit, dependent on
the availability of (1) data-ready instructions in the instruction
window and (2) free functional units;

� write back one result into the instruction window/reorder
buffer from each functional unit that produces a result in this
cycle;

� commit up to 8 of the oldest instructions from the reorder
buffer if they are already completed;

1PVN: Predictive Value of a Negative Test; the probability that a “low-confidence”
estimation is for a mispredicted branch

5 Results and Discussion

5.1 Baseline Performance

We show the performance for SEE by first giving bounds on the
potential performance improvements that are attainable by better
branch prediction. Figure 8 shows the performance of all bench-
marks on our baseline machine architecture with normal specula-
tive execution (monopath). In the same figure, the performance
of the same architectural model with a perfect branch predictor is
depicted as “oracle”. The difference between these two categories
shows the performance lost due to branch mispredictions. The (har-
monic) mean group shows that performance could be improved by
approximately 94% by reducing the number of cycles spent due
to branch mispredictions. For individual benchmarks, the possible
performance improvement is mainly a function of the branch pre-
diction accuracy for this benchmark. For example, thego bench-
mark, experiencing a misprediction rate of 25%, shows the largest
potential improvement of more than 300%.

Next, we introduce a perfect branch confidence estimator on top
of the gshare branch predictor (gshare/oracle). Although not prac-
tically realizable, the perfect branch confidence estimator provides
a calibration point for the mere concept of SEE without taking into
account the imperfections of specific real confidence estimators.
Figure 8 shows that, on average, SEE is capable of making up one
half of the performance lost due to branch mispredictions. Again,
the performance potential is mainly a function of the accuracy of
the branch predictor.

Finally, the category “gshare/JRS” shows the performance of
SEE when we use a real branch confidence estimator. We see that
we can achieve performance improvements for all but one bench-
mark (m88ksim), with an overall average of 14% improvement
over monopath or an average increase of 0.55 in IPC. This improve-
ment is a function of both the accuracy of the branch predictor as
well as the accuracy of the branch confidence estimator. Note that
we use a branch confidence estimator that has been published else-
where in the literature [6], and have not particularly tuned this es-
timator for our application. We believe that higher speedups are
attainable with realistic confidence estimator implementations.

As we see in Fig. 8, SEE can even improve performance for the
vortexbenchmark, which has a misprediction rate of only 1.85%.
SEE achieves 4% improvement in this case. We believe that this
is also indicative for the potential to obtain performance improve-
ments on other highly predictable programs, like floating point
code.

Form88ksim, the SEE architecture fails to achieve performance
improvements and falls off 8.5% from the baseline monopath
performance. Analyzing this benchmark in detail reveals that
the Jacobsen-Rotenberg-Smith (JRS) confidence estimator only
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achieves a PVN of 16%, i.e. only 16% of the “low confidence”
decisions are mispredictions and 84% are correct predictions. The
average PVN for all other benchmarks is above 40%. A low PVN
means that the confidence estimator often errs on the side of sig-
naling low confidence for a branch which is actually predicted cor-
rectly. In this case SEE looses performance compared to monopath
execution since monopath only executes the correct path, whereas
SEE also executes the incorrect path, which leads to resource con-
tention between the two paths. At first, we thought that the low
PVN would increase functional unit contention which would lead
to the performance loss. However, we found that this is not the case.
To the contrary, functional unit utilization is even slightly decreased
for SEE. The overloaded resource in this case turns out to be in-
struction fetch bandwidth. Due to the high fraction of unnecessary
divergence decisions, the effective instruction fetch bandwidth for
the correct path is diminished to a point where it becomes the pri-
mary system bottleneck. This is also reflected in the total number of
“useless” instructions that are fetched, i.e. instructions that do not
commit. SEE is able to decrease the number of useless instructions
in the other benchmarks on average by 15%. Due to the frequent
confidence estimator mistakes, SEE increases the number of use-
less instructions form88ksimby 29%. The lesson we learned from
this experience is that a successful branch confidence estimator for
SEE should be able to monitor its performance dynamically and
revert back to strict monopath execution (always indicating “high-
confidence”) if it makes too many errors.

5.2 Dual Path Execution

In work reported by Heil and Smith [5] and Lick, Tyson, and Far-
rens [10, 20] the concept ofdual-pathexecution addresses many
of the same problems that we address with SEE. Both concepts are
only evaluated with trace based simulations. Heil and Smith as-
sume a doubled fetch stage to accommodate the second path and
do not model resource contention in the instruction window and
functional units due to wrong path instructions. Lick and Tyson do
not employ a pipeline-level simulator but only count instructions of
executed basic blocks and stop branch fan-out a certain number of
branches after the last divergence.

We compare the idea of dual-path execution to our more gen-
eral notion of SEE by restricting our PolyPath simulator to only
one divergence point, 3 paths2, in the pipeline at any time. Figure
8 shows the performance of oracle dual-path (gshare/oracle/dual-
path) and real dual path (gshare/JRS/dual-path) on our architec-
ture model. From this evaluation we see that oracle dual-path can
achieve on average only 58% of the performance improvement of
oracle SEE. Real dual-path achieves on average 66% of the per-
formance improvement of real SEE (gshare/JRS). Looking at the
path utilization for SEE reveals that the average number of active
paths is only 2.9. SEE uses 3 paths or fewer approximately 75%
of the time, which is why dual-path execution can get a substan-
tial fraction of the performance improvements of SEE. We believe,
however, that the more general concept of SEE has similar imple-
mentation costs as a realistic dual-path implementation, while at
the same time resulting in higher performance improvements.

5.3 Architectural Variations

To validate our results over a range of architectural changes we
have simulated SEE on architectures that vary several parameters of
our baseline machine model and measured its performance. In the

2Dual-path execution is equivalent to using 3 paths in the PolyPath architecture,
since PolyPath assigns one path to the instructions before the divergent branch and
one path each to the instructions in either direction after the branch.

0.25 0.5 1 2 4 8 16

0

1

2

3

4

5

6

7

8

0.1 1 10 100
Branch Predictor + Branch Confidence Estimator State (kByte)

In
st

ru
ct

io
ns

 p
er

 C
yc

le
 (

IP
C

)

oracle

gshare/oracle

gshare/JRS

gshare/monopath

Figure 9. Branch predictor sizes.

64

128

256
512 1024

0

1

2

3

4

5

6

7

8

10 100 1000 10000
Instruction Window Size

In
st

ru
ct

io
ns

 p
er

 C
yc

le
 (

IP
C

)

oracle

gshare/oracle

gshare/JRS

gshare/monopath

Figure 10. Instruction window sizes.

following graphs, we present the performance of oracle branch pre-
diction (oracle), monopath execution (gshare/monopath), and SEE
with oracle confidence estimation (gshare/oracle) and with the JRS
confidence estimator (gshare/JRS). We show the (harmonic) mean
performance across all benchmarks. Whenever we use the unquali-
fied term “SEE” in the following discussion, we are referring to the
SEE architecture with JRS confidence estimation.

5.3.1 Branch Predictor Size

In the first set of scalability experiments, we vary the size of the
branch predictor. Figure 9 shows the performance for branch pre-
dictor sizes of 1k to 64k 2-bit counters (0.25 to 16 kByte state). The
geometric mean misprediction rate ranges from 16.3% to 6.4% re-
spectively. To allow an equal-area comparison between different
architectures we plot the performance as a function of the num-
ber of bytes used for all predictors in the system. The combined
branch predictor and JRS confidence estimator is 1.5 fold the size
of the branch predictor alone because of the additional table of 1-
bit confidence counters. We see that over the entire range of branch
predictor sizes, SEE is able to achieve a constant absolute gain of
approximately 0.5 IPC over monopath. This corresponds to 15%
and 10% relative performance improvement over monopath for the
smallest and largest branch predictors respectively.

Another way to look at this data is to follow iso-performance
lines. This shows that, for example, a SEE architecture with a 12-
bit history scheme (1.5 kB state) can reach a performance of ap-
proximately 4 IPC. To reach the same performance the monopath
architecture needs a branch predictor with a 15-bit history scheme
(8 kB state). Thus, monopath needs to store approximately
5.3 times as much state information as SEE to achieve the same
performance.
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Figure 11. Functional unit configurations.

5.3.2 Instruction Window Size

Our next set of scalability experiments shows the influence of the
instruction window size on SEE performance. Figure 10 shows the
performance for instruction window sizes ranging from 64 to 1024
entries. The performance with oracle branch prediction shows that
instruction window sizes larger than 256 entries only show mini-
mal performance improvements over a 256 entry instruction win-
dow. The performance of gshare-based branch prediction schemes
reaches most of its full potential even earlier, with a 128 size in-
struction window. In fact, the average usage of the instruction win-
dow saturates at approximately 145 instructions (average over all
benchmarks) with the gshare branch predictor. For instruction win-
dow sizes less than 256 entries the performance of some bench-
marks (compress, jpeg) starts to suffer significantly from the re-
duced scheduling freedom, and falls off rapidly. However, note that
SEE is still able to perform approximately 9% better than monopath
for a 64 entry instruction window, which is about 38% of the po-
tential performance improvement for SEE with oracle confidence
estimation.

5.3.3 Functional Unit Configuration

Our baseline architecture has a very potent execution core config-
uration. To test the SEE architecture with less aggressive archi-
tecture implementations, we conducted a set of experiments that
assesses the influence of the number of functional units on SEE
performance. Since SEE uses a more aggressive execution model
than monopath, we assumed that it would benefit more from addi-
tional execution bandwidth then monopath.

Figure 11 shows the performance as a function of the number of
functional units. The x-axis shows the number of functional units
of each type as well as the number of memory ports. There are four
types of functional units in our execution core, IntType0 ALUs,
IntType1 ALUs, FPAdd, and FPMult. For the data points at x=4, we
have a total of 8 integer ALUs and 8 floating point ALUs, as well as
4 Dcache memory ports. We have chosen to scale the number of all
functional units uniformly for this experiment, although this would
probably not be done in a real implementation. In addition, since
we only use integer benchmarks in this paper, having more than one
FPAdd and FPMult only has negligible effects on the performance
of our benchmarks.

We can see from Figure 11 that SEE improves performance
over monopath for all functional unit configurations. The rela-
tive performance improvement ranges from 14% for 3 and more
functional units, down to 6% improvement for 1 functional unit.
So, even in the case where the primary bottleneck of the architec-
tural configuration is the number of functional units (1 and 2 in our
graph), SEE is able to perform consistently better than monopath
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execution.
We conclude from this experiment that high bandwidth execu-

tion cores help to increase the performance improvement of SEE
over monopath but are not imperative to get performance improve-
ments from SEE architectures.

Even the configuration with only 1 functional unit of each type
has enough spare capacity in its functional units to benefit from
putting more pressure on them. The spare capacity is created by
data-dependency stalls. For example, for monopath we see a uti-
lization of IntType0, IntType1, and Dcache port of 81%, 75%, and
75% respectively. For SEE, this increases to 85%, 80%, and 80%
respectively. It is this usage of spare functional unit capacity that
allows SEE to achieve its overall performance improvement of 6%
in this case.

5.3.4 Pipeline Depth

In the final set of experiments, we evaluated the influence of the
pipeline depth on the performance of the SEE architecture. We var-
ied the depth of the processor pipeline by changing the number of
pipeline stages in the in-order front-end of the architecture (fetch,
decode). Figure 12 shows the performance for total pipeline lengths
of 6 to 10 stages. As the pipeline gets longer, branch misprediction
latency gets higher which causes the overall performance to de-
crease slowly.

Comparing the performance for equal length pipelines shows
that SEE with JRS confidence estimator is able to slightly increase
its absolute performance improvement from 0.49 IPC for a 6 stage
pipeline to 0.56 IPC for a 10 stage pipeline. This corresponds to
a relative performance improvement of 11% and 16% respectively.
The higher performance improvement for longer pipelines can be
attributed to the fact that the misprediction penalties, which were
avoided by SEE, are more costly for the monopath architecture in
the longer pipelines.

An alternative way to interpret this data is to look at iso-
performance lines. For example, to get a performance of 4 IPC
we need to implement a monopath architecture with a short 7 stage
pipeline. SEE is able to reach the same performance with a pipeline
as long as 10 stages. If the additional pipeline stages are used to re-
duce the length of the critical timing path, the clock cycle can be
shortened. This again results in higher performance, i.e. shorter
program runtimes.

In Section 3 we have assumed that the additional complexity
of SEE can be included in a pipeline without adverse effects on
cycle time or pipeline length. The results in Figure 12 show that
SEE achieves performance improvements even if we had to extend
the pipeline to accommodate SEE. Comparing the base case of an
8-stage monopath pipeline to an 8, 9, and 10-stage SEE pipeline
shows that SEE is able to increase the performance by 14%, 11%,
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and 7% respectively. Even though performance improvements de-
crease, a one to two stage extended pipeline for SEE is still an
attractive option compared to the shorter monopath pipeline.

6 Concluding Remarks

Processor performance can be severely limited by the penalties in-
curred due to branch misprediction recovery. This is particularly
the case for wide superscalar architectures with deep pipelines.
This problem will get worse in the future as machine widths get
larger and pipelines get deeper to cope with shorter cycle times
and higher complexity. Our model architecture of an 8-way super-
scalar, 8-stage deep pipeline machine shows a 50% performance
loss due to branch misprediction cycles. Two factors contribute to
misprediction recovery cycles: number of mispredictions and aver-
age misprediction latency. We have presented the Selective Eager
Execution (SEE) concept and the PolyPath architecture that strive
to reduce misprediction latency by executing down both paths af-
ter diffident branch predictions. The PolyPath architecture uses a
novel instruction tagging scheme that allows it to handle instruc-
tions from many different paths in the pipeline at the same time.

Our simulation results show that SEE has an average perfor-
mance potential of 48% speedup over monopath speculative exe-
cution, which is approximately half of all performance lost due to
branch mispredictions. We have shown that a sample SEE archi-
tecture with a Jacobsen-Rotenberg-Smith branch confidence esti-
mator is able to achieve an average performance improvement of
14% over monopath, and a maximum improvement of 36% for the
go benchmark.

We have also shown that the performance improvements of SEE
are robust against changes of various parameters of the underlying
machine architecture. SEE achieves its performance improvements
by harnessing unused functional unit capacity.

Several areas of the PolyPath architecture are only covered in
concept in this paper and are subject to future work. In particular,
we think that instruction fetch design and arbitration is a critical
issue that needs to be investigated in more detail.
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