Using Value Prediction to I ncrease the Power of Speculative Execution Hardware

Freddy Gabbay
Department of Eledricd Engineeing
Tedhnion - Israd Institute of Techndogy,

Haifa3200Q Israd.
fredg@psl.technion.acil

Abstract

This paper presents an experimental and andytical
study of value prediction andits impact on speaulative
exeation in superscalar microprocesors. Value
prediction is a new paradigm that suggests predicting
outcome values of operations (at run-time) and wsing these
predicted values to trigger the exeation d true-data
dependent operations eaulativey. As a result, stalls to
memory locations can ke reduced and the amourt of
instruction-leved parallelism can ke exended beyond the
limits of the program's dataflow graph This paper
examines the daracteristics of the \alue prediction
concept from two perspedives: 1. the related phenomena
that are refleded in the nature of computer programs, and
2. the dignificance of these phenomena to bodsting
instruction-leve parallelism of super-scalar
microprocesors that suppat speadlative exeation. In
order to better understand these dharacteristics, our work
combines both andytical andexperimental studies.

1 Introduction

The growing density of gates on a silicon die dlows
modern microprocesors to employ increasing number of
exeaution urits. Current microprocesor architedures
asaime sequential programs as an input and a paralel
exeaution model. Thus, the hardware is expeded to extrad
the parallelism at run time out of the instruction strean
without violating the sequentia corredness of the
exeaution. The dficiency of such architedures is highly
dependent on both the hardware mecdhanisms and the
applicaion charaderistic; i.e.,, the instruction-level
parall elism (ILP) the program exhibits.

Instructions within the sequential program cannot
always be ready for paralel exeauttion due to several
congtraints. These ae traditionally classfied as: true-data
dependencies, name dependencies (false dependencies)
and control dependencies ([21], [35]). Neither control
dependencies nor name dependencies are mnsidered an
upper bound on the extradable ILP since they can be

Avi Mendelson

National Semiconductor Israd
Avi.Mendelson@nsc.com

handled (or even eliminated in several cases) by various
hardware and software techniques ([1], [2], [3], [4], [5],
(6], [8]. [9], [1Q], [12], [13], [14], [21], [22], [23], [24)],
[27], [29], [32], [33], [3€], [37], [38], [39]). As oppced to
name dependencies and control dependencies, only
true-data dependencies are mnsidered to be afundamental
limit on the extradable ILP, since they refled the serial
nature of a program by dictating in which sequence data
should be pased between instructions. This kind of
extradable parallelism is represented by the dataflow
graph d the program ([21]).

In this paper we ded with a superscdar procesor
exeaution model ([9], [11], [20], [21], [34]). This machine
model is divided into two maor subsystems:
instruction-fetch and instruction-exeaution, which are
separated by a buffer, termed the instruction window. The
instruction fetch subsystem ads as a producer of
instructions. It fetches multiple instructions from a
sequential instruction stream, deaodes them simultaneously
and places them in the program appeaance order in the
instruction window. The instruction exeaution subsystem
ads as a mnsumer, sinceit attempts to exeaute instructions
placal in the instruction window. If this gbsystem
exeauted instructions acording to their appeaance order
in the program (in-order exeation), it would have to stall
ead time an instruction proves unrealy to be exeauted. In
order to overcome this limitation and better utilize the
madiine’'s available resources, most existing modern
superscdar architedures are cgable of seaching and
sending the realy instructions for exeaution beyond the
gtaling instruction (out-of-order exeation). Since the
origina instruction sequence is not preserved, superscdar
procesors employ a speda medianism, termed the
reorder buffer ([21]). The reorder buffer forces the
completion of the exeaution of instructions to become
visible (retire) in-order. Therefore, athough instructions
may complete their exeaution, they cannot completely
retire since they are forced to wait in the reorder buffer
until al previous instructions complete @rredly. This

cgpability is esential in order to keep the crred order of
exceptions and interrupts and to ded with control
dependencies as well. In order to tolerate the dfed of
control dependencies, many superscdar processors also
suppart speculative execution. This technique involves the
introduction of a branch prediction medanism ([33], [37],
[38], [39]) and a means for alowing the procesor to
continue exeauting control dependent instructions before
resolving the branch outcome. Exeaution of such control
dependent instructions is termed “speaulative exeaution”.
In order to maintain the rredness of the exeaution, a
speadlatively-exeauted instruction can only retire if the
prediction it relies upon was proven to be wmrred;
otherwise, it is discarded.

In this paper we study the concept of value prediction
introduced in [25], [26], [16], [17] and [18]. The new
approach attempts to eliminate true-data dependencies by
predicting at run-time the outcome values of instructions,
and exeauting the true-data dependent instructions based
on that prediction. Moreover, it has been shown that the
bound of true-data dependencies can be excealed without
violating sequential program corredness This claim
overcomes two commonly remgnized fundamental
principles: 1. the ILP of a sequential program is limited by
its dataflow graph representation, and 2. in order to
guarantee the arredness of the program, true-data
dependent instructions cannot be exeauted in parallel.

The integration of value prediction in superscdar
procesors introduces a new kind of speaulative exeaution.
In this case the eeaution of instructions becomes
speculative when it is not asared that these instructions
were fed with the crred input values. Note that since
present superscdar procesors already employ a cetain
form of speallative eeaution, from the hardware
perspedive value prediction is a feaible axd natural
extenson of the aurrent technology. Moreover, even
though both value prediction and branch prediction use a
similar technology, there ae fundamenta differences
between the goals of these mechanisms. While branch
prediction aims at increasing the number of candidate
instructions for exeaution by exeauting control-dependent
instructions (since the amount of available parallelism
within a basic block is relatively small [21]), value
prediction aims at alowing the procesor to exeaute
operations beyond the limit of true-data dependencies
(given by the dataflow graph).

Related work:

The pionee studies that introduced the concept of
value prediction were made by Lipasti et al. and Gabbay et
al. ([25], [26], [16], [17] and [18]). Lipasti et al. first
introduced the notion of “value locdity” - the likelihood d
a previoudly-seen value to reped itself within a storage
location. They found that load instructions tend to exhibit

value locdity and they suggested exploiting this property
in order to reduce memory latency and incresse memory
bandwidth. They proposed a speda medhanism, termed
“Load Vaue Prediction Unit” (LVP), which attempts to
predict the values that were @out to be loaded from
memory. The LVP was suggested for current processors
models (PowerPC 620and ALPHA AXP 21164 where its
relative performance gain was also examined. In their
further work ([26]), they extended the notion of value
locdity and showed that this property may appea not only
in load instructions but also in other types of instructions
such as arithmetic instructions. As a result of this
observation, they suggested value prediction also in order
to coll apse true-data dependencies.

Gabbay et al. ([16], [17]) have simultaneously and
independently studied the value prediction paradigm. Their
approach was different in the sense that they focused on
exploring phenomena related to value prediction and their
significance for future processor architedure. In addition
they examined the different effeds of value prediction on
an abstrad macdiine model. This was useful since it
adlowed examination of the pure potential of this
phenomenon independent of the limitations of individual
machines. In this paper and our previous dudies we
initially review substantial evidence @nfirming that
computed values during the exeadution of a program are
likely to be mrredly predicted at run-time. In addition, we
extend the notion of value locality and show that programs
may exhibit different patterns of predictable values which
can be exploited by various value predictors. Our focus on
the statisticd patterns of value prediction also provides us
with better understanding of the possble exploitation of
value prediction and its mechanisms.

This paper extends our previous gudies, broadly
examines the potential of these new concepts and presents
an analyticd model that predicts the expeded increase in
the ILP as a result of using value prediction. In addition,
the pionee study presented in this paper aims at opening
new oppatunities for future studies which would examine
the related microarchitedural considerations and solutions
such as[18]. The rest of this paper is organized as foll ows:
Sedion 2 introduces the concept of value prediction and
various value predictors and shows how value prediction
can excea current ultimate limits. Sedion 3 broadly
studies and analyzes the tharaderistics of value prediction.
Sedion 4 presents an anayticd model and experimental
measurements of the extradable ILP. We onclude this
work in Sedion 5.

2. Value prediction and its potential to

over come dataflow graph limits
In this sdion we provide formal definitions related to
the paradigm of value prediction, describe different

techniques to take alvantage of this cgpability and
demonstrate the cncept through a simple, but detailed
example.

2.1. Principlesand formal definitions

Almost any computer operation can be regarded as a
transformation between the input it consumes and the
destination value it computes. We will refer to the process
of computing a destination value & the generation of a
value and to the computed destination value & a generated
value. For instance, the generation of a value can be
explicitly computed in operations sich as arithmetic
operations, load o store operations, or can be implicitly
computed as a result of changing status bits or other side
effeds. The flow of these data values between instructions
inaprogramis represented by the dataflow graph.

The dataflow graph representation of a program is a
direded graph in which the nodes represent the
computations and the acs represent true-data
dependencies:

Definition 1: True-data dependency ([21]) - If an
instruction uwses a value generated by a previous
instruction, the semnd instruction has a true-data
dependency on the first instruction and the first instruction
is also termed a true-data dependent instruction. True-data
dependencies represents the flow of information from the
instructions that generate it to the instructions that
consume it.

Usually, the dataflow graph assumes an infinite number of
resources in terms of exeaution unts, registers etc. (in
order to avoid the need to refer to structural conflicts and
name dependencies) and the ontrol dependencies are
either represented by a speda type of a node, or are
assaumed to be known in advance (and so they do not have
to be mnsidered in the graph). As a result, this
representation of true-data dependencies was recgnized
and considered as the fundamental limit on the ILP that
can ever be gained by current procesors ([21]).

Value prediction aims at predicting generated values
(before their corresponding operations are exeauted) and
allowing their data dependent instructions to be exeauted
on the basis of that prediction. As a result true-data
dependent operations can be exeauted (speadlatively) in
paralel. In this paper we asame that the prediction of
generated values is made in hardware & runtime, by a
spedal medchanism termed value predictor. A description
of the various value predictors is introduced in Subsedion
2.3.

Like branch prediction, value prediction also causes
the eeaution of instructions to bemme speaulative.
However, this time the exeaution of an instruction becomes
speaulative because it consumes values (generated by other

instructions in the program) that have been predicted in
advance and it is not guaranteed that these ae the mrred
values. Thus, we term this way of exeaution speculative
execution based on value prediction:;

Definition 2: Speculative execution based on value
prediction - is an exeaution of a true-data dependent
instruction where: 1. not all its input values have been
computed yet and 2. al the unavail able input values are
supplied by the value predictor.

Note that unlike speadlative exeaution based on branch
prediction, which seeks to tolerate the dfed of control
dependencies and schedule instructions in the manner they
are presented by the program’s dataflow graph, speaulative
exeaution based on value prediction attempts to exceed the
dataflow graph limits. From the hardware perspedive the
two kinds of speallative exeaution resemble eab
one-another, since they use similar medchanisms: prediction
schemes to generate the predicted values, scheduling
medhanisms cgpable of taking advantage of the prediction
and tagging instructions that were exeauted speaulatively, a
validation mecdhanism to verify the crredness of the
prediction and a recovery mechanism to al ow the madine
recover from incorred predictions. Because of the
avail ability of similar mechanisms in current superscdar
procesors, value prediction is considered a feasible
concept.

The patential of using value prediction significantly
depends on the value prediction accuracy that it can
acomplish.

Definition 3: Value prediction accuracy - is the number of
successul value predictions out of the overall number of
prediction attempts gained by the value predictor.

Two dfferent fadors determine the value prediction
acarracy: (1) the value predictor and its capabiliti es (in
terms of resources etc.), and (2) the nature of value
predictability that resides within the data in the program
code.

Definition 4: Value predictability - is the potential that
resides in a program to succesdully predict the outcome
values generated during its exeaution (out of the entire
range of values that the program generates). This
parameter depends on the inherent properties of the
program itself, its data, its computation algorithm and the
cgpabiliti es of the value predictor to reved and exploit
these properties.

In this paper, we suggest distingushing between two
different behavioral patterns of vaue predictability:
last-value predictability and stride value predictability:

Definition 5: Last-value predictability - is a measure of the
likelihood that an instruction generates an outcome value
equal to its most recantly generated value.

Definition 6: Stride value predictability - is a measure of
the likelihood that an instruction generates an outcome
value gual to its most recently generated value plus a
fixed delta (stride), where the delta value is determined by
the difference between the two most recently generated
values.

In Sedion 3 we provide substantial evidence of the
existence of these distinctive patterns and show that
caegorizing value predictability into these two petterns
has amajor significance

2.2. Simpleexample

Sincethe concept of value prediction is quite new, we
now introduce asimple and detailed example in order to
illustrate its potential. Figure 2.1 exhibits a simple C
program segment that sums the values of two vedors (B
and C) into vedor A.

for(x=0;x<100000x++) A[x]=B[x]+C[x];

Figure 2.1 - A sample C program segment.

Compili ng this program with a C compiler which employs
smple @mpiler optimizaions, yields the following
asembly code (for a Sun-Sparc machine):

(1) 22f0:1d [%i4+%g0],%I 7 //Load Bi]

(2) 22f4:1d [%i5+%g0],%i0 //Load CJj]

(3) 22f8:add %i5,0x4,%i5 llincr. index j
(4) 22fc:add %17,%i0,%17 IIA[K]=B[i]+C[]]
(5) 2300 st %I7,[%i3+%g0] //Store A[K]

(6) 2304 cmp %i5,%i2 /[Compare index |
(7) 2308 add %i4,0x4,%i4 lIncr. index i

(8) 230c: bes Oxfffffff 9 <22f0> //Branch
(9) 2310 add %:i3,0x4,%i3 [lincr. index k
(in branch delay dot)

Figure 2.2 illustrates the data flow representation of this
program (ead node is tagged with the crresponding
instruction number), asauuming that al the control and
name dependencies were resolved.

* The compilation was made with the *-O2' optimization flag.

Iteration #1

Iteration #2

Figure 2.2 - The dataflow graph of the sample
program.

In order to read the degree of parall elism ill ustrated
by figure 2.2, the machine should satisfy the following
conditions:

1. It should know the control flow paths of the program in
advance in order to eliminate mntrol dependencies.
The madine can see&k to satisfy this condition by
employing branch prediction.

2. Its resources in term of exeaution urits, register file
ports, memory ports etc., should satisfy the needs of the
program in order to eliminate structural conflicts.

3. The number of registers sould be sufficient to satisfy
all name dependencies.

4. Its instruction window size should be big enough to
evaluate dl the instructions that appea in the dataflow
graph.

5. The macdiine's fetch, demde, issue ad exeaution
bandwidth should be sufficient ([18]). This cgpability is
particularly crucial for the fetch bandwidth, since the
sequence in which instructions are stored in memory
may not necessarily correspond to the exeaution
sequencethat isill ustrated by the dataflow graph.

A maciine that satisfies all these requirements is

considered an ideal machine, since the only limitation that

prevents it from extrading an urimited amournt of
paralelism is the flow of data anong instructions in the
program (true-data dependencies). Note that current
redistic procesor architedures can only seek to approach
these dataflow graph boundaries, and therefore, they are
more properly termed restricted dataflow machines ([30]).

When examining our sample program, it can be
observed that even if both control and name dependencies
were diminated, the index manipulation still prevents
different iterations of the loop from being exeauted in
parallel. Such a phenomenon is termed loop-carried
dependencies. Various compilation techniques gsich as
loop-unrolling ([21], [36]) have been propased to all eviate
this problem. However, these techniques cannot remove
the true-data dependencies inside the basic block of the
loop.

Instructions
executed in
parallel

100,005 [5inst,

100000 branches from all iterations

5 inst
i:gz: ,,,,,,, A5dnste
................... 2inst. | |5inst.]
Iteration #99998 1 inst. 2 inst

Tteration # 100000

Figure 2.3 - The dataflow execution of the sample loop.

In addition loop-unrolling has several disadvantages such
as. 1. dignificantly enlarging the code size, 2. it is
sometimes incapable of evaluating the number of loop
iteration at compile time, 3. increasing the usage of
registers. Therefore, we decide to examine the existing
code, as is generated by a standard gcc compiler (with the
simple optimization) and to leave the analysis of the
impact of other compilation techniques to future studies.
Figure 2.3 exhibits the overlap between different
iterations of the loop during the execution of the program.
From this figure we can caculate the ILP when the
program runs on an ideal machine. It can be seen that the
program is executed in 100,002 clock cycles if we assume
that the execution of each instruction takes a single clock
cycle. Hence, since the instruction count of the entire
program is 900000, the ILP presented by the dataflow
graph is 900000/100002 09 instructions/clock cycle.
Value prediction, in this example can help predict the
values of the index, and if the initial values of the arrays
are predictable (for example if both arrays are 0) then it
can predict the outcome of the load instructions and the
computations (add instruction) as well. In order to
illustrate the potential of value prediction and how it
works, we perform various experiments and present the
ILP in the following cases:
1. No value prediction is allowed.
2. Value prediction is allowed only for loads.
3. Value prediction is allowed only for ALU (arithmetic
logic) instructions.
4. Vaue prediction is alowed for both ALU and load
instructions.
In each experiment the ILP is measured for two different
sizes of instruction windows (the term instruction window
also represents the fetch, decode and execution bandwidth
of our maching): 40 and 200. The summary of these
simulation results is presented in tables 2.1 and 2.2. The
first set of results refers to the case where all the datain the
different arrays was initiadlized to the same vaue, say
arrays of zeroes, before the execution, so that all the

loaded values from memory can be predicted correctly at
run-time (yet it does not matter how). The second table
refers to the situation where the data in arrays was
initialized (before the execution of the code segment) with
random values, so that no predictable pattern can be
observed for its loaded values (the way this effect was
simulated in our experiments is also presented during this
subsection).

The first set of experimental results indicates that
when value prediction is not used, both instruction
windows gain the expected ILP of approximately 9. This
result is also equal to the ILP that was previousy
calculated using the dataflow graph in figures 2.2 and 2.3.
The enlargement of the instruction window size does not
improve the ILP, since loop-level paralelism cannot be
exploited due to the loop-carried dependencies. Allowing
value prediction for both ALU and load instructions,
resolves al true-data dependencies since the index
caculations as well as the add operations (that add
different components from the arrays) and the load
instructions can aways be correctly predicted. Therefore
the ILP in this set of experiments (table 2.1) isonly limited
by the instruction window size, nearly 40 and 200
respectively. Value prediction thus yields a 4 to 20-fold
speedup! Additional results included in the first set of
experiments indicate that value prediction of ALU
instructions is more significant for the sample program,
than value prediction of load instructions. When value
prediction is allowed only for loads, no boost in the ILP is
observed. This observation is indeed accurate since the
elimination of true-data dependencies that are associated
with the load instructions does not allow us to exploit
loop-level parallelism across multiple iterations. The pair
of load instructions in every basic block (iteration) limit
the available parallelism within the basic block itself,
however as long as the loop-level parallelism cannot be
exploited, no further ILP can be gained. When value
prediction is allowed only for ALU instructions it can till
gain asignificant boost in the ILP relative to the case when
value prediction is alowed for both load and ALU

instructions. The explanation of this observation is that
loop-level parallelism can be exploited due to the value
prediction of the indexes that are computed by the ALU
instructions. Only when loop-level parallelism is exploited
does value prediction of loads provide an additional
contribution to boost ILP asillustrated in table 2.1.

Instruction Instruction

window =40 | window =200
No value prediction ILP=9 ILP=9
Load value prediction ILP=9 ILP=9
ALU value prediction ILP=36 ILP=180
Load and ALU value ILP=40 ILP=200
prediction

Table2.1- ThelLP when the arr ayswere
initialized with 0's.

In order to further investigate the impact of the
predictability of the data in the arrays on the overall
performance of this sample code, we repeat the
experiments, but this time prevent our value predictor
predicting the outcome values of the data being read from
the arrays. This means that neither the outcome values of
the load instructions nor the outcome values of the add
instruction (which adds the array components) are
predictable. By such an experiment we can quantify the
effectiveness of value prediction (in our sample program)
when the data in the arrays is initialized to random values
in such a way that they cannot be predicted by our value
predictor. Note that in the previous case where the arrays
were initialized with zero values, even if value prediction
of load instructions was not alowed, the add instruction
always generated zero values and so it could be predicted
correctly. However, in this case the results of the add
instruction can no longer be predicted correctly, since it
adds two random values. Therefore this case eliminates the
capability to predict the load as well as the add
instructions. The results of this set of experiments are
summarized in table 2.2.

Instruction Instruction

window=40 | window=200
No value prediction ILP=9 ILP=9
Load value prediction ILP=9 ILP=9
ALU value prediction ILP=30 ILP=150
Load and ALU value ILP=30 ILP=150
prediction

Table2.2 - ThelLP when the arr ayswere
initialized with random values.

This table indicates that attempting to predict only the
values of load instructions is useless, since the value
predictor cannot predict them correctly. When value
prediction is allowed only for ALU instructions the ILP
becomes nearly 30 when the instruction window size is 40,
and 150 when the size is 200. The significant increase in
ILP is again obtained due to the loop-level parallelism that
can be exploited. Employing both load and ALU value
prediction does not gain ILP beyond the ILP gained by
ALU value prediction since in both cases neither the loads,
nor the add instructions of the array components, can be
predicted correctly.

2.3. Variousvaluepredictors

We propose three different hardware-based value
predictors: the last-value predictor, the stride predictor and
the register-file predictor. All these predictors perform a
dynamic and adaptive prediction, since they collect and
study history information at run-time, and with this
information they determine their value prediction. Each of
the three predictors has a different prediction formula. The

prediction formula determines the predicted value (i.e., the
manner in which a predicted destination value is
determined). The hardware implementation and
considerations of the value predictor are beyond the scope
of this paper and are left for future studies in this area
([18]). In this study our purpose is focused on exploring
value prediction phenomena from a general viewpoint,
hence we discuss the predictor schemes at a high-level
without referring to detailed hardware implementation. In
addition, for the sake of generaity, the size of the
prediction table employed by these schemes is assumed to
be unlimited in our experiments. For simplicity, we also
assume that the predictors only predict destination values
of register operands (even though all these schemes can be
generalized and can be applied to memory storage
operands and condition codes as well) and that they are
updated immediately after the prediction is made.

L ast-value predictor: predicts the destination value
of an individua instruction, based on the Ilast
previously-seen value it has generated. The predictor is

organized as atable (e.g., cache table - see figure 2.4), and
every entry is uniquely associated with an individual
instruction. Each entry contains two fields. tag and
last-value. The tag field holds the address of the
instruction or part of it (high-order bits in case of an
associative cache table), and the last-value field holds the
previously-seen destination value of the corresponding
instruction. In order to obtain the predicted destination
value of a given instruction, the table is searched by the
absolute address of the instruction.

Last-value predictor Stride predictor Register

Tag Lastvaue Tag Lastvalue Stride neriC))er Lestvalue Srride
1
N 2

: \‘ . Indruction's /
Tag | Index Predicted | 120 | ngex . destination register

. value Predicted
|2§c:rUC“0n Instruction value |[number v
ess address Predicted
® e %) { s | e

Figure 2.4 - The“last value’, the “ stride” and the “register-file” predictors.

Performing the table look-up in such a manner can be very
efficient, since it can be done in the ealy stages of the
pipeline (the instruction addressis usualy known at fetch
stage). A version of the last-value predictor (using an
indexed but untagged table) was propaosed by Lipasti et al.
([26)).

Stride predictor: predicts the destination value of an
individual instruction based on its last previousy-seen
value and a cdculated stride. The predicted value is the
sum of the last value and the stride. Each entry in this
predictor holds an additional field, termed stride field, that
stores the previoudy-seen stride of the individua
instruction (figure 2.4). The stride field value is the delta
between two recent conseautive destination values.

Register-file predictor: predicts the destination
vaue of a given instruction acording to the last
previously-seen value ad the stride of its destination
register (the recant value and the stride wuld passhbly have
been determined by different instructions). The
register-file predictor is organized as atable @ well (figure
2.4), where eabt entry is assciated with a different
(architectural) register. The past information of eadh
register is colleded in two fields: a last-value field and a
stride field. The last-value field is determined ac@rding to
the last-value written to the rresponding register, and the
stride value is the delta between two recent conseadutive
values that were written to the spedfic register (possbly
by different instructions).

The last-value predictor can only take alvantage of
last-value predictability since the prediction is made upon
the last value, while the stride predictor can exploit both
the last-value predictability and the stride value
predictability that may reside in a program. The register
file predictor may seem very attradive since its prediction
table is relatively small. However since the predicted
values are determined acording to the history information

of the register, there can be diasing between different
instructions that write to the same register. As a resullt, it
may have aserious influence on the prediction acaracy
that it can accomplish.

3. Experimental characterization of value
predictability

This ®dion presents results of various experiments
that have been made in this research. Substantial evidence
is provided to show that programs exhibit remarkable
potential for value predictability. In addition a broad study
of various aspeds and charaderistics of this phenomenon
are presented.

3.1 Simulation environment

A spedal trace driven simulator was developed in
order to provide measurements for the experiments that are
presented in the following subsedions. The simulation
environment was fed with the Spec95 benchmarks siite
(table 3.1). The benchmarks were traced by the SHADE
simulator ([31]) on Sun-Sparc microprocessor. All
benchmarks were ampiled with the gcc 2.7.2 compil er
with all available optimizations. The set of benchmarks
that was used consisted of 8 integer benchmarks and 5
floating-point benchmarks. Each integer benchmark was
tracad for 100 milli on instructions (our experiments $ow
that using longer traces barely affeds our measurements).
In addition, two of the integer benchmarks, gcc and perl,
were examined using two different input files in order to
evaluate of the dfed of the input file on the charaderistic
of values predictability. The floating point benchmarks
(except mgrid) consist of two major exeaution phases: an
initi ali zation phase and a mmputation phase.

SPEC95 Benchmarks

Benchmarks Type Description

go I nteger Game playing.

m88ksim I nteger A simulator for the 88100 processor.

gecl, gec2 I nteger A C compiler based on GNU C compiler version 2.5.3 compiling 2 different input files.
Compresso5 I nteger Data compression program using adaptive Lempel-Ziv coding.

li I nteger Lisp interpreter.

ijpeg Integer JPEG encoder.

perll, perl2 I nteger Anagram search program with two different input files.

vortex Integer A single-user object-oriented database transaction benchmark.

tomcatv FP A vectorized mesh generation program.

swim FP Shallow water model with 1024 x 1024 grid.

su2cor FP Quantum physics computation of elementary particles masses.

hydro2d FP Hydrodynamical Navier Stokes equations solver to compute galactical jets.
mgrid FP Multi-grid solver in computing a three dimensional potentia field.

Table 3.1 - The Spec95 benchmarks.

In the initialization phase the data is read from large input
files, while the computation phase performs the actual
computation. In the further experimental results we refer to
both these phases respectively. The initialization phase was
traced till it was completed (the instruction count is in the
order of hundreds of millions of instructions) and the
computation phase was traced for 100 million instructions.

3.2. Value prediction accuracy

The potential of value prediction may depend to a
significant degree upon the prediction accuracy of the
value predictor. There are two different fundamental
factors which determine the value prediction accuracy: (1)
the value predictor scheme itself and (2) the potential for
value predictability that resides within the program code.
The first component is related to the structure of the
predictor and its capabilities which eventually determine
the prediction formula. The second component reflects
inherent properties of the program and its data, and also
depends on the capabilities of the value predictor to reveal
and exploit these properties. Initially, our experiments
provide substantial evidence confirming that programs
exhibit value predictability. In addition, they focus on the
relations between these two factors by examining how
efficiently various predictors exploit different value
predictability patterns of computer programs (such as
last-value predictability and stride value predictability).
Note that throughout these experiments our approach is to
focus on the related phenomena from as general a
perspective as possibly rather than arguing about the
hardware implementation and considerations of the
predictors. We are convinced that such an approach allows
us to better integrate the concept of value prediction into
superscalar processors since we first accumulate
substantial knowledge about the related phenomenon
before making decisions about the hardware consideration.

Our experiments evaluaie three value predictors. the
last-value predictor, the stride predictor and the
register-file predictor that were all described in previous
section. Due to our abstract perspective, the prediction
table size of both the last-value predictor and the stride
predictor is considered to be unlimited in the experiments.
The programs that our simulations examine include both
integer and floating-point Spec95 benchmarks. In the
integer benchmarks the prediction accuracy is measured
separately for two sets of instructions; load instructions
and ALU (arithmetic-logic) instructions. In the
floating-point benchmarks, the prediction accuracy is
measured for two additional sets. Floating-point load
instructions and floating-point computation instructions.

The first set of measurements consists of the value
prediction accuracy of each of the value predictors for
integer load instructions in the integer benchmark, as
illustrated by table 3.2. This table illustrates remarkable
results - nearly 50% (on average) of the values that are
generated by load instructions can be correctly predicted
by two of the proposed predictors, the last-value predictor
and the stride predictor. It can be observed that the value
prediction accuracy of the stride predictor and the
last-value predictor is quite similar in al the benchmarks,
indicating that these integer load instructions barely exhibit
stride value predictability. Thisimplies that for this type of
instruction in integer programs the cost of an extra stride
field in the prediction table of the stride-predictor is not
attractive. Moreover, the prediction accuracy of the integer
loads does not spread uniformly among the integer
benchmarks.

Prediction accuracy of integer loads[%] Prediction accuracy of ALU instructions[%]
benchmark Stride Last-value Register file Stride Last-value Register file
go 29.00 36.23 3.08 62.13 61.28 6.84
m88ksim 75.95 75.93 11.60 95.86 75.88 32.04
gecl 47.24 52.06 7.48 60.10 55.99 13.80
gcc2 46.36 51.30 6.55 61.06 54.19 16.90
Compress 9.84 11.87 0.66 35.94 39.49 4.21
li 48.92 48.58 5.95 63.11 55.19 14.96
ijpeg 31.82 36.37 12.54 35.25 25.70 19.90
perll 58.54 62.67 10.38 57.23 57.34 8.60
perl2 57.52 53.29 5.26 57.39 50.18 13.29
vortex 71.41 73.94 8.02 83.17 52.47 38.96
average 47.66 50.22 7.15 61.12 52.77 16.95

Table 3.2 - Value prediction accuracy of integer load and AL U instructionsin Spec-1nt95.

It is apparent that in some benchmarks the loaded values
are relatively highly predictable, like the benchmarks
m88ksim and vortex, where the prediction accuracy of both
last-value and stride predictors is relatively high (more
than 70%), while the prediction accuracy of other
benchmarks, like the compress benchmark, is relatively
low (about 10%). In al the benchmarks, the register-file
predictor yields a relatively poor prediction accuracy (less
than 10% on average) since it can hardly explait in this
case any kind of value predictability.

Table 3.2 presents additional impressive results about
the prediction accuracy which the value predictors gain for
ALU instructions in the integer benchmarks. These
experiments provide additional encouraging evidence
about our capability to predict outcome values. They
indicate that a very significant portion of the values
generated by ALU instructions are likely to be predicted
correctly by our value predictors. In the average case, the
stride predictor gains a prediction accuracy of 61%
compared to the last-value predictor which gains only
52%. In several benchmarks, like go and perl, the
last-value predictor and the stride predictor gain similar
value prediction accuracy. Beyond the last-value
predictability that these programs exhibit, they do not
exhibit stride value predictability, and therefore both
predictors gain similar value prediction accuracy. In these
cases, it is expected that most of the correct value
predictions of the stride predictor are accomplished by
stride values that are actually zero (this expectation would
be verified in later subsections). In some benchmarks, like
m88ksim and vortex, athough the load instructions exhibit
only last-value predictability, their ALU instructions
exhibit a significant amount of both last-value
predictability and stride vaue predictability. This
observation is expressed in the significant gap between the
value prediction accuracy of the stride predictor and the
last-value predictor. Hence, in those benchmarks which

also exhibit stride value predictability it is expected that
the contribution of non-zero strides to the correct value
predictions in the stride predictor will be more significant
compared to the previous benchmarks (this expectation
would be verified as well). As in the previous case, the
register-file predictor yields relatively poor prediction
accuracy compared to the other predictors. The range of its
prediction accuracy varies from 4.2% in the benchmark
compress to 38.96% in vortex, yielding an average value
prediction accuracy of nearly 17%.

An additional preliminary observation is that
different input files do not dramatically affect the
prediction accuracy of programs as illustrated for the
benchmarks gcc (gecl and gec2) and perl (perll and
perl2). This property has tremendous significance when
considering the involvement of the compiler in order to
support value prediction. The compiler can be assisted by
program profiling in order to detect instructions in the
program which tend to be value predictable. This
observation may indicate that the information collected by
the profiler can be significantly correlated to the true
situation where the application runs its real input files. An
extensive study of the use of program profiling to support
value prediction is presented in [17].

The next set of experiments presents the value
prediction accuracy in floating point benchmarks. The
prediction accuracy ig measured in each benchmark for
two execution phases : initialization (denoted by #1) and
computation (denoted by #2). The prediction accuracy
measured for integer instructions (load an ALU) is
summarized in table 3.3 and for the floating point
instructions in table 3.4. It can be observed (table 3.3) that
the behavior of integer load instructions in floating point
benchmarks is different from their behavior in integer
benchmark (table 3.2). Table 3.3 reveals that, unlike the

) except mgrid where the initialization phaseis negligible.

corresponding case in the integer benchmarks where loads
exhibited last-value predictability, in this case these
instruction also exhibit stride value predictability. These
stride patterns are exploited by the stride predictor which
achieves average accuracy of nearly 70% in the
initialization phase and 63% in the computation phase, in
comparison to the last-value predictor which achieves
average accuracy of nearly 66% in the first phase and only
37% in the second. The causes for the significant
prediction accuracy gap between these predictors in the
computation phase are presented later in this paper. In
addition, we also notice that as in the previous cases, the
register-file predictor achieves a relatively poor value
prediction accuracy of only 2-4%.

When the prediction accuracy is measured for ALU
instructions in the floating point benchmarks, it reveals
several more interesting results as illustrated by table 3.3.
In the initialization phase, the three predictors do not
exhibit exceptional behavior in comparison to the integer
benchmarks. However, in the computation phase of al the
floating point benchmarks, the gap between the prediction
accuracy of the last-value predictor and prediction
accuracy of the stride predictor becomes very significant.
In the computation phase most of ALU instructions exhibit
stride patterns rather than repeating their recently
generated values, and therefore the stride predictor can
take advantage of this pattern of value predictability. The
stride predictor gains in the computation phase average
prediction accuracy of 95%, while the last-value predictor
gains only 23%. We discuss in detail the reasons for this
observation in a later subsection. In addition, unlike
previous cases where the register-file predictor gained
relatively poor value prediction accuracy, in this case it
gains prediction accuracy of nearly 65% which even
outperforms the last-value predictor.

Table 3.4 exhibits the prediction accuracy for two
additional sets of floating point instructions: floating point
loads and floating point computation instructions. It
illustrates that our three value predictors can hardly gain
significant prediction accuracy in these instructions, since
floating point values show relatively poor tendency of
last-value predictability as well as stride value
predictability. In floating-point loads the average value
prediction accuracy of the last-value predictor and the
stride predictor is more than 40%, and in the floating point
computation instructions they achieve less than 30% of
average prediction accuracy. One of the reasons that may
explain why it is harder to predict floating values with
these predictors is the representation of these values.
Floating point values are represented by three value fields:
sign, exponent and fraction (mantissa). It is hard to expect
these value predictors, which by their nature tend to fit
prediction of integer values, to successfully perform
prediction of floating point values. In addition, floating

point computations are considerably more complex than
integer computations, making them hard to predict. This
can also explain why floating point loads exhibit more
value predictability in comparison to the floating point
computation, since one can expect to find more patterns of
regularity and re-use of values in floating point loads
rather than in floating point computations.

3.3. Distribution of value prediction accuracy

The value prediction accuracy that was measured in
the previous subsection is an average number that is
important in order to evaluate the performance of the
predictors. However this average number does not provide
information about distribution of the prediction accuracy
among the instructions in the program. The following
measurements attempt to provide a deeper study of the
statistical characteristics of value prediction by examining
the distribution of value prediction accuracy, and aso
discuss how this knowledge can be exploited.

Figure 3.1 illustrates the distribution of value
prediction accuracy of the stride predictor among the
instructions in the program (referring only to the
value-generating instructions). It indicates that the
prediction accuracy does not spread uniformly among the
instructions in the program. More than 40% of the
instructions are very likely to be correctly predicted with
prediction accuracy greater than 70%. In addition,
approximately the same number of instructions are very
unlikely to be correctly predicted. These instructions
exhibit less than 40% a prediction accuracy.

These results motivate us to develop mechanisms that
would alow us to distinguish between the predictable and
unpredictable instructions and avoid the unpredictable
ones. Such classification contributes to each of the
following aspects:

1. The classification can sdignificantly increase the
effective value prediction accuracy of the predictor by
eliminating the value prediction of the unlikely
predictable instructions. A preliminary study of the
effect of such classification on overal performance is
discussed in alater section of this paper.

2. The replacement mechanism of the prediction table can
exploit this classification and prioritize entry
replacement for greater efficiency. Eventualy, this has
the potentia to significantly increase effective
utilization of the prediction table.

3. In certain microprocessor architectures mispredicted
values may cause some an misprediction penalty due to
their pipeline organization. By classifying the
instructions, the processor may refrain from predicting
values from the class of unpredictable instructions and
avoid the misprediction penalty.

10

Prediction accuracy of integer loads[%]

Prediction accuracy of ALU instructions[%]

benchmark Stride Last-value Register file Stride Last-value Register file
tomcatv#l 59.82 53.61 4.95 50.87 46.97 13.88
tomcatv#2 99.22 61.91 7.57 99.54 41.83 19.58
swim#l 80.98 81.56 0.02 88.95 79.43 11.09
Swim#2 14.69 19.48 0.00 99.57 0.07 99.83
su2cor#l 71.31 65.78 5.76 60.09 57.68 14.49
su2cor#2 47.50 34.65 0.02 91.41 44.72 41.22
hydro2d#1 69.51 61.18 7.03 58.42 49.93 15.94
hydro2d#2 - - - 99.23 15.51 87.67
mgrid 91.88 30.47 1.10 88.20 14.21 69.71
average #1 70.40 65.53 4.44 51.66 46.80 11.08
average #2 63.32 36.62 2.17 95.59 23.26 63.60

Table 3.3 - Value prediction accuracy of integer load and AL U instructionsin Spec-FP95.

Prediction accuracy of FP loads[%]

Prediction accuracy of FP computation inst. [%]

benchmark Stride Last-value Register file Stride Last-value Register file
tomcatv#2 22.95 6.32 0.16 21.88 15.08 2.13
swim#l 86.21 82.78 0.00 23.15 19.88 1.79
Swim#2 18.03 26.09 1.57 15.54 21.38 0.16
su2cor#2 38.87 39.44 21.22 16.36 16.63 9.99
hydro2d#2 88.72 89.63 46.56 89.68 89.89 42.79

mgrid 18.81 18.33 4.71 7.11 6.87 4.04
average 45.59 43.76 12.37 28.95 28.28 10.15

Table 3.4 - Value prediction accuracy of FP load and computation instructionsin Spec-FP95.

100%

80% + 80%

60% + 60%

40% + 40%

20% + 20%

0% 0%

“/:H &l; /instructions The distribution of prediction accuracy. % of instructions The distribution of prediction accuracy.
b

go nBeksi gocel goc2 compre i ijpeg perl perl2 vortex SPEC tomcat tomcat swin# swim# su2cor su2cor hydro2 hydro2 mgrid avg#1 avg#2
SPEC m ss FP9s V#l w2 1 2 #1 #2 d#l d#2 a
INT9S Prediction accuracy. |10 @10 020 030 W40 50 m60 070 MB0 M0 | Prediction accuracy. 00 B10 020 030 m40 @50 m60 070 m80 m90]

Figure 3.1 - Thedistribution of instructions according to their value prediction accuracy.

wo methods sugg emselves for classification:

The first method assigns an individual saturated counter /\
(figure 3.2) to each entry in the prediction table. At each N.P.C. C ° 0 ° ° P.C.

occurrence of a successful prediction the counter is
incremented, or conversely decremented. By inspection of
the saturated counter, the processor can decide whether to
consider the suggested prediction or to avoid it. Such a
method for value prediction classification was introduced
by Lipasti et al. in [25].

N.P.C. N.P.C. N.P.C.

0 - Strongly not predicted. P.C. - Predicted correctly.

1- Weakly not predicted. N.P.C. - Not predicted correctly.
2 - Weakly predicted.

3 - Strongly predicted.

Figure 3.2 - A 2-bit saturated counter for value
prediction classification.

Our measurements confirm the results of Lipasti et al.
where it is shown that such a classification mechanism

can work efficiently to eliminate value misprediction.
We observed that in the integer benchmarks almost
94% of the value misprediction can be eliminated and
92% of the correct prediction are correctly classified by
this mechanism. In the floating point benchmarks, the
numbers are very dsmilar: nearly 95% of the
mispredictions are eliminated and almost 95% of the
correct prediction are correctly classified. Beyond the
efficiency of the saturated counters to classify the value
predictability of instructions, we have revealed another
interesting phenomenon related to this mechanism in
our study. We have measured the ratio of the number
state transitions that each of the automates made to the
number of accessesto each of the corresponding entries
in the value prediction table. These measurements
provide significant information concerning the speed
with which this classification method converges to the
correct classification. These measurements are
summarized in figure 3.3, which indicates that most of
the saturated counters are locked on the correct
classification after a relatively very small number of
transitions. This observation also strengthens our
previous experiments about the distribution of the
prediction accuracy that was illustrated in figure 3.1.
For the two sets of instructions, highly predictable and
the unlikely predictable, the classification mechanism
can be very confident about the outcome of the
prediction (whether it succeeds or fails).

Thedistribution of the nurrber of tranisiotnsinthesaturated counters o ension:
1 5]
0 []
o | u]
5]
40 + o
[]
20 T o
u]
0 [}
mBgksim gocl compress i ijpeg pel vortex |

SPEC-INT
The distribution of the number of tranisiotns in the saturated counters 9% transitions
100% - out of
accesses
80% | me0
m8o
60% |- g7o
m6o
40% + ms0
m40
20% + 030
0% 020
swim#l swim#2 su2cor#l su2cor#2 hydro2d#1 hydro2d#2 mgrid | (m10
SPEC-FP mo

Figure 3.3 - Thedistribution of the number of
transitionsin the saturated counters among
instructionsin programs.

Another method that we consider for classification is the
use of compiler profiling. The compiler can collect
information about the value predictability of instructions
according to previous runs of the program. Then it can
place directives in the opcode of the instructions,
providing hints to the processor for classifying the
instructions. From a previous subsection we recall that the
measurements of the expected correlation of value
prediction accuracy between different runs of the program
with different input files are encouraging. The use of
program profiling for value prediction classification is
presented in [17].
3.4, Non-zero strides and immediate
operations

The stride predictor extends the capabilities of the
last-value predictor since it can exploit both last-value
predictability and stride value predictability. In this
subsection we examine how efficiently the stride predictor
takes advantage of its additional stride fields beyond the
last-value predictor to exploit stride value predictability.
We consider the additional stride fields to work efficiently
only when the predictor accomplishes correct value
predictions that are based on non-zero strides. In table 3.5
we present the ratio of successful predictions that were
based on non-zero strides to the overall number of correct
predictions. In the integer benchmarks this ratio is more
than 16%, and in the floating point benchmarks it varies
from 12% in the initialization phase to 43% in the
computation phase. The relatively high ratio of non-zero
strides in the floating point computation phase is explained
by the significant contribution of immediate integer add
and subtract instructions to the successful predictions.

Ratio of successful non-zero stride-based
predictions out of overall successful predictions.
Spec9s integer Spec9s floating point
Benchmark [%0] Benchmark [%0]
go 8.83 || tomcatv#l 13.93
m88ksim 16.42 | tomcatv#2 55.14
geecl 12.79 || swim#l 8.98
gee2 15.44 || swim#2 65.9
compress9s 6.52 || su2cor#l 9.35
li 15.22 | su2cor#2 27.74
ijpeg 36.37 | hydro2d#l 16.28
perll 7.57 | hydro2d#2 15.09
perl2 15.27 || mgrid 51.4
vortex 30.34 | average#l 12.14
average 16.48 || averagett2 43.06

Table 3.5 - Thedistribution of non-zero strides.

12

This table, however, may lead the reader to an
incorred conclusion about the dfediveness of the stride
predictor in exploiting ron-zero strides and its sgnificance
to the expeded ILP improvement. For instance, it shows
that 16.4% out of succesdul predictions in the benchmark
m88ksim are because of non-zero strides and 15.2% in the
benchmark li. Does this mean that the contribution of the
stride predictor and non-zero strides to these two
benchmarks is the same? Obvioudy not; one should be
aware of the fad that these results sould be given the
appropriate weight, i.e. their relative number of
appeaances in the program’'s exeaution. Moreover, the
connedion between the prediction acaracy and the
expeded boast in ILP is not straightforward ([18]) since
the distribution of its contribution may not be uniform. If
the importance of non-zero strides is crucial to the ILP of
the gplicdion, even an improvement of approximately
10% in the prediction acarracy can be very vauable. A
broader study of the contribution of strides to the ILP is
presented in Sedion 4. In addition, knowledge &out the
charaderistics of non-zero strides may motivate future
explorations of the potential for hybrid predictors, which
combine both the last-value predictor and the stride
predictor. Here, the last-value predictor would be
dedicaed for zero strides and the stride predictor would be
dedicated for non-zero strides.

We find that non-zero strides appea for various
ressons, e.g. immediate ald and subtrad instructions, and
computations of addresses of memory references that step
with a fixed stride on arrays in memory. Figure 3.4
ill ustrates the @ntribution of immediate ald and subtrad
instructions to the overall number of successul predictions
in the stride predictor. In the integer benchmarks it is
nealy 20% (on average) and in the floating point
benchmarks it varies from nealy 15% in the initialization
phase to more than 30% in the computation phase (on
average). The significant gap between the @ntributions in
the initialization phase and in the computation phase of the
floating point benchmarks can be explained by the fad that
most memory acceses of floating point benchmarks
consist of stride patterns ([28]). When the fradion of the
successul value predictions which are used for address
cdculations of memory pointers (for data items only) is
examined, it reveds that this number is considerably more
significant in the cmputation phase than the initiali zaion
phase & illustrated by figure 3.5. The next subsedion
confirms this observation as well .

Correct predictions of Add/Sub immediate instructions out of
[%] correct predictions.

100
90
80
70
60
50
40
30
20

Wl A T A T e

go mB8ksim gccl gec2 compress li ijpeg perll perl2 vortex avg

SPEC-INT95

[%]Correct predictions of Add/Sub immediate instructions out
100 of correct predictions.

90
80
70
60
50
40

gg_mm %_ﬂ ﬂ}ﬁ

0

tomcatomeca swinmiswinmi su2co su2co hydro hydro mgrid avg#lavg#2
tvi#l tv#2 1 2l r#2 201 2012

SPEC-FP95

Figure 3.4 - The contribution of Add/Sub immediate
instructionsto the successful predictions.

[%] Correct predictions of addresses calculations out of

100 theoverall correct predictions

tHE-OVEal-CoH-EotPreat Gt ons

S T T

go m88ksimgccl gecc2 compressli ijpeg perll perl2 vortex avg
SPEC-INT95

(%] Correct predictions of addresses calculations out of
100 the overall correct prndir‘finnc

90
80
70
60 —
50
40 1

30

o a ﬁ i
ninininininininin

0 t t t t t t t t t t
tomcatv tomecav swim#1 swim#2 su2cor su2cor hydro2dhydro2d mgrid avg#l avg#2

#1_ #2 #L #2 #1 #2
SPEC-FP95

Figure 3.5 - Correct predictions of addresses
calculations out of successful predictions.

13

3.5. Characteristics of value predictability in

load instructions

In this subsection we focus on the characteristics of
value prediction with respect to load instructions. Load
instructions may have a significant impact on the program
performance in two major aspects: 1. they may cause the
processor to stall due to memory latencies and 2. they may
cause true-data dependencies (since they generate values
that can be consumed by other instructions). Our main
purpose is to examine how the concept of value prediction
can affect and support these two aspects. Up to the present
researchers have addressed the first aspect by improving
the performance of cache memories or by using
prefetching mechanisms.

In order to explore the contribution of value
prediction to the first aspect, we examine all the load
memory references that are cache misses and their loaded
memory values. We only refer to the cache misses since
these are the cases when memory system delays occur.
First, we are interested in studying what portion of these
loaded memory values are value-predictable and what the
relations are between them and the potential to predict
their memory address. The potential to predict memory
address (address predictability) is determined by the
memory locality patterns of the program. This property
was widely exploited by different data prefetching
mechanisms ([7], [15], [19], [28]). Examining the value
predictability patterns in the load cache misses and
comparing them to the address predictability patterns can
provide valuable information to the following questions:

1. What is the effectiveness of value prediction in
reducing the penalty of load cache misses by
attempting to predict their values (as proposed by
Lipasti et al. in[25])?

2. How successfully can value prediction compete with
other techniques such as data prefetching?

The structure of the competitive address predictor
scheme that was used in our experiments is similar to our
value predictor schemes. It is organized as a table (for
instance a cache table) with an unlimited number of
entries, where each entry is uniquely assigned to a
previously-seen load instruction. Each entry contains three
filds. Tag - identifies the individual load instruction
according to its instruction address, Last address - the
address of the last cache block that was fetched by the load
instruction and an Address stride - which is determined
according to the difference between two consecutive
memory accesses of each of the individual loads. The
predicted address which the prefetching scheme fetches is
determined according to the last address field plus the
stride field. The value predictor chosen to compete the
address predictor is the last-value predictor, since it has
gained the best prediction accuracy for load instructions.
The data cache parameters that were chosen for the

experiments are quite typical to common modern
microprocessors (PowerPC™, Pentium™, PentiumPro™):
16 KB size, 4-way set associative and 32 bytesline size.

Figure 3.6 illustrates the correlation between the
address prediction accuracy and value prediction accuracy
out of the load misses. This figure exhibits four possible
sets of load references: 1. load references where both the
data values and addresses values can be predicted
correctly, 2. load references where only the addresses
values can be predicted correctly , 3. load references where
only the data values can be predicted correctly and 4. load
references where neither the data values nor the addresses
values can be predicted correctly. It can be observed that
out of the load misses in the integer benchmarks, the
misses attributable to the third set (predictable data values
only) is comparable to the misses falling into the second
set (predictable addresses values only). Therefore, in these
benchmarks, value prediction can contribute significantly
by handling a substantial set of load references which
cannot be handled by data prefetching. However, it can be
seen that in the floating point benchmarks, most of the load
cache misses which exhibit correctly predicted data values
also exhibit correctly predicted addresses values, i.e., the
portion of the third set is negligible. Figure 3.7 is similar to
figure 3.6 - it illustrates the correlation between the
address prediction accuracy and value prediction accuracy
when the bars of each benchmark are given the appropriate
weight according to the load miss rate.

40%+
30%
20% 1
10% T

0% +

go mB8ksim gccl gec2 compress i ijpeg perdl per2 vortex
PECINTS EPrd. Addand Prd. Data WPrd. Addonly [OPrd. Dataonly W None Prd.

100% - Address regularity versus Value regularity with last value predictor

80% 1
60% 1
40% 1

20%

0% -
tomcatv#ltomcatv#2 swim#l swim#2 su2cor#l su2cor#2 hydro2d#1 hydro2d#2 mgrid

SPEC-FP95 ‘ @Prd. Add and Prd. Data WPrd. Addonly OPrd. Dataonly mNone Prd. ‘

Figure 3.6 - Addressregularity versusvalueregularity
out of the overall load misses.

14

11%] Addressregularity versus Valueregularity with last value predictor

12
10
8
6
4
2
0
go m88ksim gccl gcc2 compress i ijpeg perll perl2 vortex
SPEC-INT% [mPd AddendPrd Daa mPrd Addonly OPd Daaoily mNonePrd

[%] Addressregularity versus Valueregularity with last value predictor

25 +

20 +

15 +

10 +

51

04

tomcatv#1 tomcatv#2 swim#l — swim#2 su2cor#l su2cor#2 hydro2d#1 hydro2d#2 mgrid

SPEC-FP95 WPrd. Addonly OPrd. Dataonly lNonePrd.‘

[mPrd. Add and Prd. Data

Figure 3.7 - Addressregularity versusvalueregularity
weighted with loads missrate.

In order to address the second aspect, we measure the
ILP that can be exploited when using value prediction only
for load instructions. Our experiments assume a perfect
memory system, i.e,, memory references never stall the
processor. We choose to eliminate the contribution of
memory system latency in this set of experiments since the
system can seek satisfying this assumption by using
various data prefetching techniques such as [7], [15], [19]
and [28]. Note that this assumption even degrades the
potential benefits of value prediction since long latency
instructions can even better take advantage of value
prediction ([25], [26]). Moreover, we prefer focusing on
the pure potential of value prediction to collapse true-data
dependencies associated with load instructions rather then
dealing with impact of memory system latency since such
issue is system dependent. In addition, in order to avoid
discussing individual implementation issues, an abstract
machine is considered with an unlimited number of
execution units and physical registers, but with a restricted
instruction window size. Each instruction is assumed to
take only a single cycle. In addition, it is assumed that all
branches are correctly predicted in advance. The ILP that
such a machine can exploit is limited by the dataflow graph
of the program and by the size of the instruction window.
Figure 3.8 shows the ILP that can be gained by employing
the last-value predictor in comparison to a machine that
does not employ value prediction. It indicates that in some
benchmarks like m88ksim, li and perl the contribution of
load value prediction is significant while in some other
benchmarks like compress, vortex and mgrid it is barely
noticeable. These variations are highly dependent on the
value predictability patterns that these programs exhibit

and their contribution, in particular to the value
predictability patterns of the load instructions.

25— P{instruction-window = 40, loadsonly)

20 1

5 M []

10+

go m88ksim gccl compress i ijpeg perll vortex swim#1swim#2 mgrid

‘ W no val-pred. Olast-val ‘

Figure 3.8 - ThelLP gained by loads value prediction.

4, Analytical and experimental analysis

of thelLP increase

The ILP that a processor can exploit in the case of a
serial program is an indicator of the amount of resources
that it can efficiently utilize simultaneoudly. In this section
we quantitatively study the ability of value prediction to
boost the ILP from two viewpoints. analytical and
experimental.

4.1. Ananalytical model

So far we have discussed the characteristics and
potential of using value prediction. Before presenting
actual measurements, which depend on the benchmarks we
use, we present a simple analytical model that can be
employed for both estimating the potential of value
prediction to increasing the ILP and for further
understanding the related phenomena.

The dataflow graph (DFG) presentation of a
program, is given by a directed graph G(V,S). Each node,
V[NV, represents a single operation, or a set of operations
which are executed as a single atom. Each arc, s[JS
represents a true-data dependency between two nodes.
Given a DFG representation, we define the critical path to
be the longest (in term of execution time) path, C, that
connects the entry point to the termination point. The
critical path, C, forms a linear graph. For simplicity, we
assume that each node (operation) of the critical path C
takes T cycles for execution. Since the execution of the
operations in C cannot overlap, the total execution time of
C is nxT cycles (where n is the number of nodes in C). If
we assume that our machine has an unlimited amount of
resources, the execution time of the critical path
determines the execution time of the entire program, since
the execution of the other paths in the DFG can be
overlapped with the execution of the critical path C with
no resources conflict.

15

N

@ o

Figure4.1-The DF\G/,G(V,S), and thecritical path C.

When value prediction is employed, we dtempt to
corredly predict the outcome of ead operation beforeiit is
exeauted. Thus, if we could predict al outcome values
corredly, and we had an urimited number of resources,
we oould exeaute aty program in two steps, one that
exeautes the instructions and the other that verifies the
corrednessof the prediction. In redity, we canot predict
al the values corredly, and so for ead arc s[JS in the
DFG, we atach a number ps (0<ps<1) that represents the
probability to corredly predict the result of node s (note
that al the acs that come from the same node have the
same probability). We term this weighted graph the
speculative dataflow graph (SDFG). An example of an
DFG that corresponds to the DFG in figure 4.1 is
illustrated in figure 4.2.

n-1
n

Figure4.2 - The SDFG, Gg(Vv, 9), and thecritical path
graph C.

From the SDFG we car aso extrad the aiticd path C
(that forms a linea graph) and evaluate the exeaution time
when instruction are exeauted speaulatively based on their
predicted values. In our analysis we only focus on the
exeaution time of the aiticd path, since we assume that it
dictates the exeaution time of the entire program and all
the exeaution of the other paths can overlap. We evaluate
the aiticd path exeaution time in two cases. when the

instruction window sizeis unlimited and when the window

sizeisfinite. In both cases our model asaumptions are:

1. We mnsider an abstrad macdhine with an urlimited
number of exeaution uritsand physicd registers.

2. For simplicity we consider the probabilities p; for
1<i<n to he dtatisticdly independent. We have found
this approximation to be valid since instructions in the
criticd are dso data dependent on instructions from
other paths in the DFG. Moreover, if the value
predictor fails to predict an input value of instruction it
does not necessarily imply that it fails to predict its
output as well.

3. We @mame that p=p for l<i<n, where p is the
measured prediction acarracy of the value predictor.

4. True-data dependent instructions are dlowed to be
exeauted and committed in paralel as long as their
input (possbly predicted) values are found to be
corred. This means that instructions in the linea graph
are dlowed to complete (commit) in parallel until the
first fail ure (value misprediction).

5. An instruction that was fed with an incorred input
value needs to be re-executed when its correct input
valueisready.

4.1.1. Infiniteinstruction window size model

When the instruction window size is infinite, the
procesor can simultaneously examine the potential
ready-to-exeaute instructions of the eitire program. In
order to ill ustrate the parall el exeaution of the aiticd path,
C, we use the eeaution gaph, Gg(Ve, S), which is
illustrated by figure 4.3. The exeaution graph ill ustrates all
the possble exeaution sequences of the aiticd path C.
Each node v[Vg denotes an exeaution of an operation.
Nodes which are exeauted based on speaulative input value
are denoted with the subscript letter ‘s. Each arc, s[US:,
denotes a posshle exeaution sequence. For ead arc, we
assgn two numbers. 1. Pr; - the probability to corredly or
incorredly predict the outcome value of the operation in
node i, and 2. t; - the st in terms of clock cycles of the
transition in cese of a rred or an incorred value
prediction. Notice that the probabilities Pr; for arcs that
comes for speadlatively exeauted instructions can be
extraded from the SDFG (figure 4.2). When instructions
are re-exeauted, due to value misprediction, Pr; is
considered to equal 1. In addition if t;=0, it implies that the
two operations linked by the ac can be eeauted in
paralel. For instance one of the posshle eeaution
sequences is when al the instructions are predicted
corredly. The probability of such an event is p™* and the
entire exeaution time is T since dl the instructions are
exeauted simultaneously.

16

Figure 4.3 - The execution graph of critical path C.

In general, the probability to exeaite acertain path,
n-1
0=(S1, S -..S)0GL(S V), isgivenby P, = |_| Pr, and
1=1
the ettire eeadtion time of o, can be obtained by
n-1

T, =T+T,, where T, = Z'[S . It can be noticed that
=

the dement Tp has a binomial distribution, asiill ustrated by
equation 4.1:

Prob(T. =k M=(1- p)* . 1 0<k<n-1
: Hi g osks
Equation 4.1 - The binomial distribution of Tp.

One can aso otserve that “pladng’” the value
misprediction in the linea graph C is equivaent to
“choasing” k out of n-1 where probability to “choose” is
1-p (value misprediction). As illustrated by equation 4.2
we can cdculate the average of T, i.e, the average
exeaution time of the aiticd path C.

ET)=T+TS ia-p oo o

T+T(n-1)[{1- p)
Equation 4.2 - The average execution time of the
critical path C.

The average boast in the ILP (or in the exeaution time) of
Cisgiven by equation 4.3:

ILP boost,, = NI n O 1
™ E(T,) 1+(n-HUl-p 1-p
Equation 4.3 - The average boost in the ILP of the
critical path C.

4.1.2. Finiteinstruction window size model

We car improve our previous model and consider the
effed of a finite instruction window size when we use
value prediction. For simplicity, we only consider the
exeaution of the aiticd path C and we ignore the dfed of
the exeaution of the other paths. In addition, we dso

assume that instructions which are eeauted corredly
evacuate the instruction window and alow other
instructions to enter the instruction window as potential
candidates for parall el exeaution. When value prediction is
not used the aiticd path will be exeauited in nT cycles
since the exeaution time of the aiticd path is bounded
because of true-data dependencies and not becaise of the
window size In steady state, the number of instructions
that evaauate the instruction window is equa to the
number of new instructions that enter the window. When
value prediction is used, the number of instructions that
evaaate the instruction window is also equal to the
number of instructions that were predicted corredly urtil
the first instruction in the window fails (incorrealy
predicted). Let w be the size of the instruction window
(w>1) and let L be the random variable that denotes the
number of instructions which evaauate the instruction
window at ead step. The distribution of L is given by
equation 4.4:

(1-pp“"t 1sksw-1
p"t k=w
Equation 4.4

Prob(L = k) ={

The average of L isdenoted by equation 4.5:

— (1_ pW-Z) _ _ w-2 _ w-1
E('—)——l_p (W=D " +wl{l-p)[p"" O
1
rp—WEDW_Z[l—(l— p) L]

Equation 4.5

Therefore in this model the arerage ILP boost of value
prediction is.

E(L)

average boost in ILP = 1 O

1 W-2[1 _ (1 _
= p WP P)
Equation 4.6

17

Note that this result consists of two elements: the first

element represents the bocost in the cae of an

1-p
infinite instruction window and the second element takes
into acount the dfed of the window size

4.2. Experimental framework

Our experiments consider an abstrad machine with a
finite instruction window. We have dosen this
experimental model since the mncept of value prediction
is entiredly new and the discusson of particular
implementation issues inherent to dfferent procesor
architedures is beyond of the scope of this paper. The ILP
which such a machine can gain (when it does not employ
value prediction) is dictated by the dataflow graph of the
program and its instruction window size We have
previously indicated that in order to reat the dataflow
graph boundaries, a machine should employ: 1. unlimited
number of resources (exeaution unts etc.), 2. unlimited
number of registers, 3. perfed (either static or dynamic)
branch prediction medchanisms and 4. its instruction fetch
bandwidth should be sufficient. In addition, we dso
asaume, for simplicity, that ead instruction can be
exeauted in asinge gcle. This abstrad machine model is
very useful for the preliminary studies of value prediction,
since it provides us with a means to examine the pure
potential of this phenomenon without being affeded by the
limitations of individual machines. As a part of our
abstrad perspedive, we dso assume that there is no extra
penalty when values are not predicted corredly, since both
Lipasti et al. ([26]) and our previous works ([16], [17])
have shown that most of the value mispredictions can be
eliminated by employing a dassficaion mechanism. In the
following experiments we measure the dfed of various
value prediction pdlicies and prediction schemes on the
ILP under two dfferent instruction window sizes. In the
next subsedion these measurements are cmpared versus
the analyticd model.

In the previous sdion we broadly studied the
charaderistics of the value prediction acarracy that various
value predictors shemes can @ain. It is important to
indicae that the mnnedion between the value prediction
acaracy gained hy these predictors and the expeded boast
in the ILP may not be straightforward. It is not sufficient
that these schemes can corredly predict outcome values,
these predictable values sould also be in the “right
places’, where their contribution to the ILP would be
significant (such as criticd paths). In this sibsedion we
will present a set of measurements that will i ndicae that
value prediction can have asubstantial contribution to the
exploited ILP.

The gain of ILP available with value prediction is
examined for two dfferent value predictors, the last-value
predictor and the stride predictor. Each of these predictors
can operate in two modes: the first mode, termed the
scalar generation mode, al ows generation of only asingle
value prediction for an individual copy of an instruction
that resides in the instruction window, while the second
mode, termed the eager generation mode allows the
predictor to generate multi ple value predictions assgned to
multiple apies of an individual instruction (if any) in the
instruction window (e.g. in case of aloop). The hardware
implementation and considerations of the eaer generation
mode is beyond the scope of this paper and they are
presented in [18].

Figure 4.4 illustrates the ILP adhieved using value
prediction when the instruction window size is 40. It also
compares the ILP achieved by different predictor schemes
(last-value predictor and stride predictor) and prediction
modes (scdar mode and eager mode) versus the ILP when
value prediction is not employed. Indeal this figure
indicaes that the potential of value prediction to exceal
the arrent ILP limitations is tremendous, e.g. in the
benchmark gcc the ILP isincreased from 14 to nealy 22,
in m88ksim from 7 to 34, in perl from 15 to nealy 25 and
in vortex from nealy 10 to 33. Figure 4.4 aso ill ustrates
that the stride predictor significantly acamplishes better
performance than the last-value predictor in those
benchmarks which exhibited stride value predictability
(like m88ksim and vortex) in our previous experiments.
For instance in the benchmark m88ksim the stride
predictor bocsts the ILP from approximately 7 to 34, while
the last-value predictor only achieves ILP of 13. In the rest
of the benchmarks (like go and li) both predictors gain
similar ILP with relatively smaller advantage to the stride
predictor.

Another interesting observation shown by these
experiments is that the eger mode barely improves the
ILP that the last-value predictor adiieves in al the
benchmarks. However, the e@er mode significantly
improves the ILP that the stride predictor gains in those
benchmarks exhibiting stride value predictability. For
instance, in the benchmark m88ksim the stride predictor
operating in eager mode gains ILP of 34, while the same
predictor in scdar mode gains only ILP of 20. This
phenomenon seems reasonable, since those instructions
with output values exhibiting a tendency to appea in
strides are likely to appea reaurrently in the instruction
window, like instructions in loops, and in order to better
exploit them, the predictor should be dlowed to operate in
eager mode. In the floating point benchmarks, swim and
mgrid, al the value predictors achieve similar ILP. Since
the computation phase of the floating point benchmarks is
less constrained by true-data dependencies, our
measurements exhibit more ILP in comparison to the

18

initialization phase that tends to behave like an integer
program. It can also be observed that athough the stride
predictor has significantly exhibited better prediction
accuracy than the last-value predictor in ALU instructions,
the overall ILP increase of both predictors is relatively
limited since;

1. Usually the size of basic blocks and loop bodies in
floating point programs is relatively big. As a result, the
instruction window becomes too small to hold multiple
iterations of aloop or even several basic blocks. Therefore,
many of the loop-carried dependencies barely affect the
ILP.

2. Both the last-value predictor and the stride predictor
gained relatively small prediction accuracy in
floating-point instructions which may also affect their
achievable performance.

instruction window are also likely to generate output
values that progressin strides.

160 ILP (instruction window = 200)

140 I
120
100 I
80 T I
60

40 1
20
o+

go m88ksi_accl compre i iine erll vortex swim# swim# mgrid
m | mno val-pred@ stride-E Ostride Olast-val-E Olast-val 2

35 _ LL P (instruction window = 40)

30
25
20

15+

10+
5%
0+

go m88ksi gccl compre i
m ss 1 2
‘ W no val-pred@stride-Eager O stride-scalar Olast-val-Eagerdlast-val-scalar ‘

ijpeg perll vortex swim# swim# mgrid

Figure4.4 - TheILP gained by value prediction when
instruction window size is 40.

Enlarging the instruction window size can enable
current processors to look further ahead to find
independent candidate instructions for parallel execution.
In order to examine how this enlargement affects a
machine that employs value prediction, we perform further
experiments that are illustrated in figure 4.5. This figure
exhibits the same measurements as figure 4.4, however this
time when the instruction window size is 200. These
measurements show that as the instruction window size is
increased the extracted ILP grows as well. However, the
most interesting observation that these experiments present
is that the enlargement of the instruction window
particularly affects the performance of the eager generation
mode and the stride predictor. A bigger instruction window
significantly increases the likeliness that it would maintain
repeated copies of a same basic block or a same instruction
simultaneoudly, such as multiple iterations of aloop. Such
patterns can be usefully exploited by the eager generation
mode. This mode allows the predictor to generate multiple
value predictions to multiple copies of the same instruction
and hence it can better utilize the deeper look-ahead
provided by the enlargement of the instruction window.
The stride predictor can also take advantage of these
patterns, since appearances of recurrent instructions in the

Figure4.5- ThelLP gained by value prediction when
instruction window sizeis 200.

In addition, it can be observed that even benchmarks which
did not exhibit significant stride value predictability in the
previous experiments, like gcc, li and perl, are
significantly affected when they employ both stride
predictor and eager generation mode. For instance, in
benchmark gcc a stride predictor that operates in eager
mode increases the ILP from 36 to 82, while the same
predictor in scalar mode gains ILP of only 60. In addition
the gap between the stride predictor and the last-value
predictor, which gains ILP of approximately 50, becomes
more noticeable. In the benchmark |i the effect of the eager
mode is even noticeable on the last-value predictor. The
last-value predictor increases the ILP of this benchmark
from 28 to 55 while the same predictor operating in scalar
mode gains only 42. However, the best ILP among all the
predictors in this benchmark is gained by the stride
predictor (operating in eager generation mode) which
boosts the ILP to 82. In the benchmarks that exhibited
stride predictability (m88ksim and vortex) the effect of the
instruction window enlargement is the most observable. In
m88ksim the stride predictor in eager mode increases the
ILP from 7.4 to 144 while the same predictor in scalar
mode gains only 31. In vortex similar patterns are
observed: the ILP is increased from 13.5 to 142 by the
stride predictor operating in eager mode, while the same
predictor in a scalar mode gains ILP of nearly 26. In
addition, the enlargement of the instruction window affects
the extractable ILP in the floating point benchmarks as
well. The gap between the stride predictor in eager mode
and the other schemes becomes much more significant
since the instruction-window size enlargement can better
expose the loop-carried dependencies. The stride predictor
increases the ILP of swim (in the computation phase) from
47 to 104, and in the benchmark mgrid it increases the ILP
from 53 to 73.

These results indicate that the potential of value
prediction to increasing the ILP beyond the dataflow graph
limitations is tremendous. In addition, till now several

19

studies such as [21] indicated that large instruction
windows may not be mst-effedive since they do not offer
sufficient increase in the ILP to justify their hardware-cost.
When value prediction is employed this claim may no
longer be true. In addition, we have seen that both stride
predictor and eager generation mode may significantly
gain better ILP particularly when the size of the instruction
window is increassed. One of the diredions that we
consider ([18]) is to maintain a hybrid approac that
consists of both predictor schemes (last-value predictor
and stride predictor) and bah value prediction generation
modes (scdar mode and eager mode). This approach,
motivated by our experiments, indicates that on one hand
the &solute number of instructions exhibiting stride value
predictability is relatively smaller than those echibiting
last-value predictability, however on the other hand, value
prediction based on strides can significantly increase the
ILP particularly in big instruction windows. Hence in
order to take advantage of these observations a machine
could partition the limited resources assgned to the value
prediction schemes more dficiently, e.g. by employing a
small prediction table for the stride-predictor and a bigger
table for the last-value predictor and only alowing value
predictions based on stridesto be generated in eager mode.
These isaues and many other implementation consideration
isales are left for passble future studies.

4.3. Comparison between the experimental
and analytical results

In our comparison between the experimental
measurements and the analyticd results we cnsider the
abstrad machine model that we described in previous
subsedions. The configuration used for the mmparison is
the stride predictor operating the eaer generation mode.
The experimental incresse in the ILP is obtained
straightforwardly from the experimental measurements that
were presented in the previous sibsedion. In order to
cdculate the analytical increase in the ILP predicted by
our analytica model we use ejuations 4.3 and 4.6. Notice,
that these eguations need to be asdgned with the prediction
acarracgy, p, that the predictor gains in eat benchmark.
The prediction acaracgy, p, can be obtained from the
measurements presented in Subsedion 3.1.

Figure 4.6 ill ustrates the boost in the ILP under three
different instruction window size 40, 200 and infinite. For
the finite instruction windows it ill ustrates both the
experimental ILP increase and the analyticd ILP increase.
For the infinite instruction window it only ill ustrates the
analyticd evaluation. It can be observed that for most of
the benchmarks the analyticd model provides a good
estimation for the ILP increase that is very close to the
experimental results. On the other hand, for some
benchmarks, the aalyticd model underestimated the
potential of using value prediction. The reason for this
observation is that in these programs, there ae different
“hot spots’ which have anon-uniform relative antribution
tothelLP.

20

18 +

16 +

14+

12 +

10 +

CExp. 40
mAna. 40
OExp. 200
W Ana. 200
W Ana. Infinite

imﬂﬂlﬂlﬂlﬁlﬂlﬂlﬂﬁ

|

compress mgrid ijpeg 0.35 swim#2 go 0.52 swim #1 gcc 0.55 1i 0.58 perl1 0.6 vortex
0.28 0.28 0.35 0.53 0.78

m88ksim

0.92

Figure 4.6 - Experimental versus analytical results of the expected boost in the ILP.

20

5. Conclusions, contributions and future

directions

In this paper we presented an analyticd and
experimental study of the daraderistics of value
prediction. This concept is based on the observation that
programs tend to re-use their recently generated values
during exeaution. By taking advantage of this
phenomenon, we can all ow the system to coll apse true-data
dependencies and perform speaulative exeaution based on
predicted values.

So far, al modern computer systems have been based
on the asaumption that the dataflow graph of a sequential
program forms an upper fundamental bound of the
instruction-level paralelism. In order to better utili ze the
paralel resources in the system, the design of modern
computers was focused on resolving rame and control
dependencies. Value prediction demonstrates that a similar
technique ca be used to improve parall elism by alowing
the exeaution of data dependent operations out-of-order.
We believe that this fundamental principle opens new
horizons for future computer architedures.

Throughout this gudy, we have examined the mncept
of value prediction from threediff erent perspedives: 1. we
studied the daraderistics of the phenomenon from the
viewpoint of the program code, 2. we explored how these
charaderistics can be taken advantage of in order to
improve the extradable ILP out of a sequential program,
and 3. we provided a probability model in order to attain
an analyticd evaluation of the potential of value prediction
to boasting ILP.

The main contributions of this dudy can be
summarized as foll ows:

1. We atended the oncept of value prediction and
provided a related terminology. We introduced the
notion of value predictability and dstingushed
between two dfferent types of value predictability:
last-value predictabilit y and stride value predictabilit y.

2. We presented substantial evidence ®nfirming that
programs tend to re-use their recently generated values
and to exhibit predictable patterns of data values. In
addition, we showed that programs can exhibit two
kinds of value predictability patterns, last-value and
stride. We dso examined the distribution of these
properties between different programs, instruction
types and data types.

3. Weintroduced various value predictors and examined
how efficiently they exploit different value
predictability patterns.

4. We showed that the prediction acaracy does not
distribute uniformly among the instructions in a
program. Most programs exhibit two sets of
instructions, highly value-predictable instructions and
highly unlikely-predictable ones. These observations

are the motivation to develop clasdficaion

medianisms, such as sturated counters, that were

found to be very useful in preventing the “unlikely
predictable” instructions from being candidates for
value prediction.

5. Our preliminary observation indicaes that different
input files do not gredly change the value
predictability of a program. This observation is
encouraging for our future intention to use
profili ng-based compil er techniques that could classfy
the value predictability of instructions based on
previous runs of the programs.

6. We showed that the use of value prediction techniques
makes sibstantial contributions in resped to the
extradable ILP. In addition, we have presented two
different value prediction modes: the scdar generation
mode and the eger generation mode, and examined
their impad on the etradable ILP. Our ILP
measurements indicae that the stride predictor
significantly acomplishes better ILP than the
last-value predictor in those benchmarks that exhibited
strides value predictability, while in the rest of the
benchmarks both predictors gain similar ILP with
relatively smaller advantage to the stride predictor.
We dso olserved that the eger mode particularly
improves the overal performance of the stride
predictor in those benchmarks which exhibited stride
value predictabilit y.

7. We showed that enlarging the instruction window,
significantly improves the ILP gained by the eaer
generation mode and the stride predictor. We dso
ohserved that programs which exhibit last-value
predictability can gain certain benefit from eager
generation mode s well in this case.

8. We provided an analyticd model which can be used to
better understand the daraderistics of value
prediction, and to oltain a rough estimation of the
potential of usingit.

The study presented in this paper shows the
importance of value prediction. We believe that using this
new technique will lead to new diredions in designing
future mputer architedures. Now that we have
established the basis and the evidence of the new
phenomenon, we intend to continue our research towards
adhieving a better understanding of the caabilities of
value prediction and how it can be enployed. We ae in
the process of examining different hardware mecdanisms
for efficient implementation of vaue prediction. In
addition, we ae looking a combining compiler suppart
that can exploit our knowledge @out value predictabilit y.

21

References

[1] T. L. Adam, K. M. Chandy and J R. Dickson. A
Comparison d List Scheduling for Paralel Processng
Systems. Communications of ACM, vol. 17, Dec, 1974 pp.
685-690.

[2] A. V. Aho, R. Sethi and J D. Ullman. Compilers:
Principles, Tedhniques and Toos Reaing, MA:
Addison-Wedly, 1986

[3] A. Aiken and A. Nicolau. Perfed Pipelining: A New Loop
Paraldlization Tednique. In H. Ganzinger (ed.)
Procealings of the 2™ European Symposium on
Programming. pp. 221-235 New-York, Mar., 1988

[4 R. J Blaney. Instruction Scheduling in the TOBEY
Compiler. IBM J. Res. Develop., Vol. 38, No. 5, Sep., 1994
pp. 577-593

[5] P.-Y. Chang, M. Evers and Y. N. Patt. Improving Branch
Prediction Acauracy by Reducing Pattern History Table
Interference. The Conference on Parallel Architedures and
Compil ation Techniques (PACT), 1996 pp.48- 57.

[6] A. E. Charlesworth. An Approach to Scientific Array
Procesdng: The Architedural Design of the AP-120B/FPS
Family. Computer, Vol. 14, Sep., 1981 pp.18-27.

[7] T.F. Chen and J. L. Bea. Effedive Hardware-based Data
Prefetching for High-performance Processors. |EEE
Transadions on Computers, 44(5): 609623 May, 1995

[8] S. Davidson, D. Landskov, B. D. Shriver and P. W. Mallet.
Some Experiments in Locd Microcode Compadion for
Horizontal Madines. |[EEE Transadions on Computers,
Vol. C-30, no. 7, July, 1981 pp. 460-477.

[9 T. A. Diep, C. Nelson and J. P. Shen. Performance
Evaluation d the PowerPC 620 micro-architedure. In
procealing of the 22 Internationa Symposium on
Computer Architedure. June, 1995 pp. 163174

[10] D. R. Ditzd and H. R. McLellan. Branch Folding in the
CRISP microprocesr: Reducing the Branch Delay to Zero.
Procealing of the 14" International Symposium on
Computer Architedure. June, 1987.

[1]J. H. Edmondson, P. Rubinfeld, R. Preston and V.
Rajagopalan. Superscdar Instruction Exeautionin the 21164
AlphaMicroprocessor. IEEEMicro, April, 1995 pp. 33-43.

[12] J. R. Ellis. Bulldog: A Compiler for VLIW Architedure.
MIT Press Cambridge, Mass, 1986

[13] J. A. Fisher. The Optimum of Horizontal Microcode Within
and Beyond Basic Blocks: An Application o Processor
Scheduling with Resources. Ph.D. dissertation, Tednicd
Repot COO-3077#161 Courant Mathematics and
Computing Laboratory, New York University, New York,
October, 1979

[14]J. A. Fisher and S. M. Freudenberger. Predicting
Condtional Branches from Previous Runs of a Program.
Procealing of the 5" Conference of Architectural Suppat
for Programming Languages and Operating Systems.
IEEE/ACM, Boston, Oct., 1992

[15] J. W. C. Fuand J. H. Patel. Stride Sireded Prefetching in
Scdar Processrs. In the 25" Annwa International
Symposium on Microarchitedure, pp. 102110, Portland,
Oregon, Dec, 1992

[16] F. Gabbay and A. Mendelson. Speaulative Exeaution based
on Vaue Prediction. EE Department TR #1080 Technion -
Israd Ingtitute of Techndogy, Nov., 1996

[17] F. Gabbay and A. Mendelson. Can Program Profiling
Suppat Vaue Prediction? Proceadings of the 30" Annual
ACM/IEEE International Symposium on Microarchitedure,
Deceamber, 1997.

[18] F. Gabbay and A. Mendedson. The Effed of
Instruction-Fetch Bandwidth on Value Prediction. In
procealing of the 25" International Symposium on
Computer Architedure, June 1998

[19] J. Gonzdes and A. Gorzdes. Speaulative Exeaution via
AddressPrediction and Data Prefetching. Porcealings of the
11" Internation Conference on Supercomputing , pp.
196-203 July 1997.

[20] L. Gwennap. Intel’s P6 Uses Demuped Superscdar Design.
Microprocessors Report vol. 9, num. 2, Feb. 16, 1995

[21] M. Johrson. Superscdar Microprocessor Design. Prentice
Hall, Englewood Cliffs, 1990 N.J.

[22] R. M. Kéller. Look-aheal Processors. Computing Surveys,
volume 7, no4, Dec, 1975 pp. 177-195

[23] M. S. Lam. Software pipelining: An effedive scheduling
technique for VLIW processors. SIGPLAN Conference on
Programming Languages Design and Implementation, ACM
(June), Atlanta, Ga., 318328

[24 M. Lam. A Systolic Array Optimizing Compiler. Boston:
Kluwer, 1989

[25] M. H. Lipasti, C. B. Wilkerson and J. P. Shen. Vaue
locdlity and load value prediction. In proceadings of the 7
International Conference on Architedural Suppat for
Programming Languages and Operating Systems (ASPLOS-
V1), Oct., 1996

[26] M. H. Lipasti, C. B. Wilkerson and J. P. Shen. Excealing
the dataflow limit viavalue prediction. In procealings of the
29" Annwel ACM/IEEE International Symposium on
Microarchitedure, Dec 1996

[27] S. McFarling and J. Hennesgy. Reducing the Cost of
Branches. Procealings of the 13" International Symposium
on Computer Architedure. June, 1986 pp. 396403

[28] S. S. Pinter and A. Yoaz Tango: a Hardware-based Data
Prefetching Tedhnique for Super-scdar Procesors. In
procealings of the 29" Annual ACM/IEEE International
Symposium on Microarchitedure, Dec, 1996

[29] B. R. Rau and C. D. Glaeser. Some Scheduling Techniques
and an Easily Schedulable Horizontal Architedure for High
Performance Scientific Computing. Procealing of the 14"
Annual Workshop on Microprogramming, Oct., 1981 pp.
183198

[30] M. Simone, A. Essen, A. lke, A. Krishnamoorthy, T.
Maruyama, N. Patkar, M. Ramaswami, M. Shebanow, V.
Thirumalaiswamy and D. Tovey. Implementation Trade-offs
in Using Restricted Data Flow Architedure in High
Performance RISC Microprocesor. In procealing of the
22" International Symposium on Computer Architedure,
June 1995 pp. 151-162

[31] Introdwction to Shade, Sun Microsystems Laboratories, Inc.
TR 4159601300 Revision A of 1/Apr/92.

[32] A. Smith and J. Lee Branch Prediction Strategies and
Branch-Target Buffer Design. Computer 17:1, Jan. 1984
pp. 6-22.

[33] J. E. Smith. A Study of Branch Prediction Tedhniques. In
proceading of the 8" International Sympaosium on Computer
Architecure, June 1981

22

[34] R. M. Tomasulo. An Efficient Algorithm for Exploiting
Multiple Arithmetic Units. IBM J. Research and
Development 11:1, pp. 25-33, Jan., 1967.

[35] D. W. Wall. Limits of Instruction-Level Paralelism.
Proceedings of the 4" Conference on Architectural Support
for Programming Languages and Operating Systems. Apr.,
1991. pp. 248-259.

[36] S. Weiss and J. E. Smith. A Study of Scalar Compilation
Techniques for Pipelined Supercomputers. Proceedings of
the 2™ International Conference on Architectural Support
for Programming Languages and Operating Systems. Oct.,
1987, pp. 105-109.

[37] T. Y. Yeh and Y. N. Patt. Two-Level Adaptive Training
Branch Prediction. In proceedings of the 24" Annual
ACM/IEEE International Symposium on Microarchitecture,
Dec. 1992.

[38] T. Y. Yeh and Y. N. Patt. Alternative Implementations of
Two-Level Adaptive Branch Prediction. Proceedings of the
19" International Symposium on Computer Architecture.
May, 1992. pp. 124-134.

[39] T. Y. Yeh and Y. N. Patt. A Comparison of Dynamic
Branch Predictors that Uses Two Levels of Branch History.
Proceedings of the 20" International Symposium on
Computer Architecture. May, 1993. pp. 257-266.

‘

Freddy Gabbay received the B.Sc. (summa cum laude)
and M.Sc. degrees in electrical engineering from the
Technion - Isradl Ingtitute of Technology, Haifa, Isragl in
1994 and 1995 respectively. Currently he is a Ph.D.
student (since 1995) in the Electricad Engineering
Department at the Technion. His main research interest is
computer architecture.

Abraham (Avi) Mendelson received the B.Sc. and the
M.Sc. degrees in computer science from the Technion,
Haifa, Isragl in 1979 and 1982, and the Ph.D. degree from
the ECE department, University of Massachusetts in 1990.
HeisaLecturer of Electrical Engineering and a member of
the Parallel systems laboratory at the Technion, Isragl. His
main research interests are in computer architectures,
operating systems and distributed algorithms. Dr.
Mendelson is a member of the Association for Computing
Machinery and the IEEE Computer Society.

23

