
Using Value Prediction to Increase the Power of Speculative Execution Hardware

Freddy Gabbay
Department of Electrical Engineering

Technion - Israel Institute of Technology,
Haifa 32000, Israel.
fredg@psl.technion.ac.il

Avi Mendelson
National Semiconductor Israel

Avi.Mendelson@nsc.com

Abstract
This paper presents an experimental and analytical

study of value prediction and its impact on speculative
execution in superscalar microprocessors. Value
prediction is a new paradigm that suggests predicting
outcome values of operations (at run-time) and using these
predicted values to trigger the execution of true-data
dependent operations speculatively. As a result, stalls to
memory locations can be reduced and the amount of
instruction-level parallelism can be extended beyond the
limits of the program’s dataflow graph. This paper
examines the characteristics of the value prediction
concept from two perspectives: 1. the related phenomena
that are reflected in the nature of computer programs, and
2. the significance of these phenomena to boosting
instruction-level parallelism of super-scalar
microprocessors that support speculative execution. In
order to better understand these characteristics, our work
combines both analytical and experimental studies.

 1 . Introduction
The growing density of gates on a sili con die allows

modern microprocessors to employ increasing number of
execution units. Current microprocessor architectures
assume sequential programs as an input and a parallel
execution model. Thus, the hardware is expected to extract
the parallelism at run time out of the instruction stream
without violating the sequential correctness of the
execution. The eff iciency of such architectures is highly
dependent on both the hardware mechanisms and the
application characteristic; i.e., the instruction-level
parallelism (ILP) the program exhibits.

Instructions within the sequential program cannot
always be ready for parallel execution due to several
constraints. These are traditionally classified as: true-data
dependencies, name dependencies (false dependencies)
and control dependencies ([21], [35]). Neither control
dependencies nor name dependencies are considered an
upper bound on the extractable ILP since they can be

handled (or even eliminated in several cases) by various
hardware and software techniques ([1], [2], [3], [4], [5],
[6], [8], [9], [10], [12], [13], [14], [21], [22], [23], [24],
[27], [29], [32], [33], [36], [37], [38], [39]). As opposed to
name dependencies and control dependencies, only
true-data dependencies are considered to be a fundamental
limit on the extractable ILP, since they reflect the serial
nature of a program by dictating in which sequence data
should be passed between instructions. This kind of
extractable parallelism is represented by the dataflow
graph of the program ([21]).

In this paper we deal with a superscalar processor
execution model ([9], [11], [20], [21], [34]). This machine
model is divided into two major subsystems:
instruction-fetch and instruction-execution, which are
separated by a buffer, termed the instruction window. The
instruction fetch subsystem acts as a producer of
instructions. It fetches multiple instructions from a
sequential instruction stream, decodes them simultaneously
and places them in the program appearance order in the
instruction window. The instruction execution subsystem
acts as a consumer, since it attempts to execute instructions
placed in the instruction window. If this subsystem
executed instructions according to their appearance order
in the program (in-order execution), it would have to stall
each time an instruction proves unready to be executed. In
order to overcome this limitation and better utili ze the
machine’s available resources, most existing modern
superscalar architectures are capable of searching and
sending the ready instructions for execution beyond the
stalli ng instruction (out-of-order execution). Since the
original instruction sequence is not preserved, superscalar
processors employ a special mechanism, termed the
reorder buffer ([21]). The reorder buffer forces the
completion of the execution of instructions to become
visible (retire) in-order. Therefore, although instructions
may complete their execution, they cannot completely
retire since they are forced to wait in the reorder buffer
until all previous instructions complete correctly. This

2

capabilit y is essential in order to keep the correct order of
exceptions and interrupts and to deal with control
dependencies as well . In order to tolerate the effect of
control dependencies, many superscalar processors also
support speculative execution. This technique involves the
introduction of a branch prediction mechanism ([33], [37],
[38], [39]) and a means for allowing the processor to
continue executing control dependent instructions before
resolving the branch outcome. Execution of such control
dependent instructions is termed “speculative execution” .
In order to maintain the correctness of the execution, a
speculatively-executed instruction can only retire if the
prediction it relies upon was proven to be correct;
otherwise, it is discarded.

In this paper we study the concept of value prediction
introduced in [25], [26], [16], [17] and [18]. The new
approach attempts to eliminate true-data dependencies by
predicting at run-time the outcome values of instructions,
and executing the true-data dependent instructions based
on that prediction. Moreover, it has been shown that the
bound of true-data dependencies can be exceeded without
violating sequential program correctness. This claim
overcomes two commonly recognized fundamental
principles: 1. the ILP of a sequential program is limited by
its dataflow graph representation, and 2. in order to
guarantee the correctness of the program, true-data
dependent instructions cannot be executed in parallel.

The integration of value prediction in superscalar
processors introduces a new kind of speculative execution.
In this case the execution of instructions becomes
speculative when it is not assured that these instructions
were fed with the correct input values. Note that since
present superscalar processors already employ a certain
form of speculative execution, from the hardware
perspective value prediction is a feasible and natural
extension of the current technology. Moreover, even
though both value prediction and branch prediction use a
similar technology, there are fundamental differences
between the goals of these mechanisms. While branch
prediction aims at increasing the number of candidate
instructions for execution by executing control-dependent
instructions (since the amount of available parallelism
within a basic block is relatively small [21]), value
prediction aims at allowing the processor to execute
operations beyond the limit of true-data dependencies
(given by the dataflow graph).

Related work:
The pioneer studies that introduced the concept of

value prediction were made by Lipasti et al. and Gabbay et
al. ([25], [26], [16], [17] and [18]). Lipasti et al. first
introduced the notion of “value locality” - the likelihood of
a previously-seen value to repeat itself within a storage
location. They found that load instructions tend to exhibit

value locality and they suggested exploiting this property
in order to reduce memory latency and increase memory
bandwidth. They proposed a special mechanism, termed
“Load Value Prediction Unit” (LVP), which attempts to
predict the values that were about to be loaded from
memory. The LVP was suggested for current processors
models (PowerPC 620 and ALPHA AXP 21164) where its
relative performance gain was also examined. In their
further work ([26]), they extended the notion of value
locality and showed that this property may appear not only
in load instructions but also in other types of instructions
such as arithmetic instructions. As a result of this
observation, they suggested value prediction also in order
to collapse true-data dependencies.

Gabbay et al. ([16], [17]) have simultaneously and
independently studied the value prediction paradigm. Their
approach was different in the sense that they focused on
exploring phenomena related to value prediction and their
significance for future processor architecture. In addition
they examined the different effects of value prediction on
an abstract machine model. This was useful since it
allowed examination of the pure potential of this
phenomenon independent of the limitations of individual
machines. In this paper and our previous studies we
initially review substantial evidence confirming that
computed values during the execution of a program are
likely to be correctly predicted at run-time. In addition, we
extend the notion of value locality and show that programs
may exhibit different patterns of predictable values which
can be exploited by various value predictors. Our focus on
the statistical patterns of value prediction also provides us
with better understanding of the possible exploitation of
value prediction and its mechanisms.

This paper extends our previous studies, broadly
examines the potential of these new concepts and presents
an analytical model that predicts the expected increase in
the ILP as a result of using value prediction. In addition,
the pioneer study presented in this paper aims at opening
new opportunities for future studies which would examine
the related microarchitectural considerations and solutions
such as [18]. The rest of this paper is organized as follows:
Section 2 introduces the concept of value prediction and
various value predictors and shows how value prediction
can exceed current ultimate limits. Section 3 broadly
studies and analyzes the characteristics of value prediction.
Section 4 presents an analytical model and experimental
measurements of the extractable ILP. We conclude this
work in Section 5.

 2 . Value prediction and its potential to
overcome dataflow graph limits

 In this section we provide formal definitions related to
the paradigm of value prediction, describe different

3

techniques to take advantage of this capabilit y and
demonstrate the concept through a simple, but detailed
example.

 2 . 1 . Principles and formal definitions
Almost any computer operation can be regarded as a

transformation between the input it consumes and the
destination value it computes. We will refer to the process
of computing a destination value as the generation of a
value and to the computed destination value as a generated
value. For instance, the generation of a value can be
explicitly computed in operations such as arithmetic
operations, load or store operations, or can be implicitly
computed as a result of changing status bits or other side
effects. The flow of these data values between instructions
in a program is represented by the dataflow graph.

The dataflow graph representation of a program is a
directed graph in which the nodes represent the
computations and the arcs represent true-data
dependencies:

Definition 1: True-data dependency ([21]) - If an
instruction uses a value generated by a previous
instruction, the second instruction has a true-data
dependency on the first instruction and the first instruction
is also termed a true-data dependent instruction. True-data
dependencies represents the flow of information from the
instructions that generate it to the instructions that
consume it.

Usually, the dataflow graph assumes an infinite number of
resources in terms of execution units, registers etc. (in
order to avoid the need to refer to structural conflicts and
name dependencies) and the control dependencies are
either represented by a special type of a node, or are
assumed to be known in advance (and so they do not have
to be considered in the graph). As a result, this
representation of true-data dependencies was recognized
and considered as the fundamental limit on the ILP that
can ever be gained by current processors ([21]).

Value prediction aims at predicting generated values
(before their corresponding operations are executed) and
allowing their data dependent instructions to be executed
on the basis of that prediction. As a result true-data
dependent operations can be executed (speculatively) in
parallel. In this paper we assume that the prediction of
generated values is made in hardware at run-time, by a
special mechanism termed value predictor. A description
of the various value predictors is introduced in Subsection
2.3.

Like branch prediction, value prediction also causes
the execution of instructions to become speculative.
However, this time the execution of an instruction becomes
speculative because it consumes values (generated by other

instructions in the program) that have been predicted in
advance and it is not guaranteed that these are the correct
values. Thus, we term this way of execution speculative
execution based on value prediction:

Definition 2: Speculative execution based on value
prediction - is an execution of a true-data dependent
instruction where: 1. not all it s input values have been
computed yet and 2. all the unavailable input values are
supplied by the value predictor.

Note that unlike speculative execution based on branch
prediction, which seeks to tolerate the effect of control
dependencies and schedule instructions in the manner they
are presented by the program’s dataflow graph, speculative
execution based on value prediction attempts to exceed the
dataflow graph limits. From the hardware perspective the
two kinds of speculative execution resemble each
one-another, since they use similar mechanisms: prediction
schemes to generate the predicted values, scheduling
mechanisms capable of taking advantage of the prediction
and tagging instructions that were executed speculatively, a
validation mechanism to verify the correctness of the
prediction and a recovery mechanism to allow the machine
recover from incorrect predictions. Because of the
availabilit y of similar mechanisms in current superscalar
processors, value prediction is considered a feasible
concept.

The potential of using value prediction significantly
depends on the value prediction accuracy that it can
accomplish.

Definition 3: Value prediction accuracy - is the number of
successful value predictions out of the overall number of
prediction attempts gained by the value predictor.

Two different factors determine the value prediction
accuracy: (1) the value predictor and its capabiliti es (in
terms of resources etc.), and (2) the nature of value
predictability that resides within the data in the program
code.

Definition 4: Value predictability - is the potential that
resides in a program to successfully predict the outcome
values generated during its execution (out of the entire
range of values that the program generates). This
parameter depends on the inherent properties of the
program itself, its data, its computation algorithm and the
capabiliti es of the value predictor to reveal and exploit
these properties.

In this paper, we suggest distinguishing between two
different behavioral patterns of value predictabilit y:
last-value predictability and stride value predictability:

4

Definition 5: Last-value predictability - is a measure of the
likelihood that an instruction generates an outcome value
equal to its most recently generated value.

Definition 6: Stride value predictability - is a measure of
the likelihood that an instruction generates an outcome
value equal to its most recently generated value plus a
fixed delta (stride), where the delta value is determined by
the difference between the two most recently generated
values.

In Section 3 we provide substantial evidence of the
existence of these distinctive patterns and show that
categorizing value predictabilit y into these two patterns
has a major significance.

 2 . 2 . Simple example
Since the concept of value prediction is quite new, we

now introduce a simple and detailed example in order to
ill ustrate its potential. Figure 2.1 exhibits a simple C
program segment that sums the values of two vectors (B
and C) into vector A.

f o r (x = 0;x < 1 0 0 0 0 0;x + +) A [x] = B [x] + C [x] ;

Figure 2.1 - A sample C program segment.

Compili ng this program with a C compiler which employs
simple compiler optimizations*, yields the following
assembly code (for a Sun-Sparc machine):

 (1) 22f0:ld [%i4+%g0],%l7 //Load B[i]
 (2) 22f4:ld [%i5+%g0],%i0 //Load C[j]
 (3) 22f8:add %i5,0x4,%i5 //Incr. index j
 (4) 22fc:add %l7,%i0,%l7 //A[k]=B[i]+C[j]
 (5) 2300: st %l7,[%i3+%g0] //Store A[k]
 (6) 2304: cmp %i5,%i2 //Compare index j
 (7) 2308: add %i4,0x4,%i4 //Incr. index i
 (8) 230c: bcs 0xfffffff 9 <22f0> //Branch
 (9) 2310: add %i3,0x4,%i3 //Incr. index k

(in branch delay slot)

Figure 2.2 ill ustrates the data flow representation of this
program (each node is tagged with the corresponding
instruction number), assuming that all the control and
name dependencies were resolved.

* The compilation was made with the ‘ -O2’ optimization flag.

1 2 3

4

5

6

7 8 9

1 2 3

4

5

6

7

8

9

Iteration #1

Iteration #2

...

Figure 2.2 - The dataflow graph of the sample
program.

In order to reach the degree of parallelism ill ustrated
by figure 2.2, the machine should satisfy the following
conditions:
 1 . It should know the control flow paths of the program in

advance in order to eliminate control dependencies.
The machine can seek to satisfy this condition by
employing branch prediction.

 2 . Its resources in term of execution units, register file
ports, memory ports etc., should satisfy the needs of the
program in order to eliminate structural conflicts.

 3 . The number of registers should be suff icient to satisfy
all name dependencies.

 4 . Its instruction window size should be big enough to
evaluate all the instructions that appear in the dataflow
graph.

 5 . The machine’s fetch, decode, issue and execution
bandwidth should be suff icient ([18]). This capabilit y is
particularly crucial for the fetch bandwidth, since the
sequence in which instructions are stored in memory
may not necessarily correspond to the execution
sequence that is ill ustrated by the dataflow graph.

A machine that satisfies all these requirements is
considered an ideal machine, since the only limitation that
prevents it from extracting an unlimited amount of
parallelism is the flow of data among instructions in the
program (true-data dependencies). Note that current
realistic processor architectures can only seek to approach
these dataflow graph boundaries, and therefore, they are
more properly termed restricted dataflow machines ([30]).

When examining our sample program, it can be
observed that even if both control and name dependencies
were eliminated, the index manipulation still prevents
different iterations of the loop from being executed in
parallel. Such a phenomenon is termed loop-carried
dependencies. Various compilation techniques such as
loop-unrolling ([21], [36]) have been proposed to alleviate
this problem. However, these techniques cannot remove
the true-data dependencies inside the basic block of the
loop.

5 in s t .
2 in s t .
1 in s t .

Ite r a t io n # 1

1 0 0 0 0 0 b r a n c h e s f r o m a l l i t e r a t i o n s

5 in s t .
2 in s t .
1 in s t .

Ite r a t io n # 2

5 in s t .
2 in s t .
1 in s t .

Ite r a t io n # 3

5 in s t .
2 in s t .
1 in s t .

Ite r a t io n # 4

1 0 0 ,0 0 5

. . . .

Ite r a t io n # 9 9 9 9 8

. . . .

Ite r a t io n # 9 9 9 9 9
Ite r a t io n # 1 0 0 0 0 0

I n s t r u c t io n s
e x e c u te d in
p a r a l l e l

7
8

8

8

8
3

1

5 in s t .
2 in s t .
1 in s t .

5 in s t .
2 in s t .
1 in s t .

5 in s t .
2 in s t .
1 in s t .

 Figure 2.3 - The dataflow execution of the sample loop.

In addition loop-unrolling has several disadvantages such
as: 1. significantly enlarging the code size, 2. it is
sometimes incapable of evaluating the number of loop
iteration at compile time, 3. increasing the usage of
registers. Therefore, we decide to examine the existing
code, as is generated by a standard gcc compiler (with the
simple optimization) and to leave the analysis of the
impact of other compilation techniques to future studies.

Figure 2.3 exhibits the overlap between different
iterations of the loop during the execution of the program.
From this figure we can calculate the ILP when the
program runs on an ideal machine. It can be seen that the
program is executed in 100,002 clock cycles if we assume
that the execution of each instruction takes a single clock
cycle. Hence, since the instruction count of the entire
program is 900000, the ILP presented by the dataflow
graph is 900000/100002 ≅ 9 instructions/clock cycle.

Value prediction, in this example can help predict the
values of the index, and if the initial values of the arrays
are predictable (for example if both arrays are 0) then it
can predict the outcome of the load instructions and the
computations (add instruction) as well. In order to
illustrate the potential of value prediction and how it
works, we perform various experiments and present the
ILP in the following cases:
1. No value prediction is allowed.
2. Value prediction is allowed only for loads.
3. Value prediction is allowed only for ALU (arithmetic
logic) instructions.
4. Value prediction is allowed for both ALU and load
instructions.
In each experiment the ILP is measured for two different
sizes of instruction windows (the term instruction window
also represents the fetch, decode and execution bandwidth
of our machine): 40 and 200. The summary of these
simulation results is presented in tables 2.1 and 2.2. The
first set of results refers to the case where all the data in the
different arrays was initialized to the same value, say
arrays of zeroes, before the execution, so that all the

loaded values from memory can be predicted correctly at
run-time (yet it does not matter how). The second table
refers to the situation where the data in arrays was
initialized (before the execution of the code segment) with
random values, so that no predictable pattern can be
observed for its loaded values (the way this effect was
simulated in our experiments is also presented during this
subsection).

The first set of experimental results indicates that
when value prediction is not used, both instruction
windows gain the expected ILP of approximately 9. This
result is also equal to the ILP that was previously
calculated using the dataflow graph in figures 2.2 and 2.3.
The enlargement of the instruction window size does not
improve the ILP, since loop-level parallelism cannot be
exploited due to the loop-carried dependencies. Allowing
value prediction for both ALU and load instructions,
resolves all true-data dependencies since the index
calculations as well as the add operations (that add
different components from the arrays) and the load
instructions can always be correctly predicted. Therefore
the ILP in this set of experiments (table 2.1) is only limited
by the instruction window size, nearly 40 and 200
respectively. Value prediction thus yields a 4 to 20-fold
speedup! Additional results included in the first set of
experiments indicate that value prediction of ALU
instructions is more significant for the sample program,
than value prediction of load instructions. When value
prediction is allowed only for loads, no boost in the ILP is
observed. This observation is indeed accurate since the
elimination of true-data dependencies that are associated
with the load instructions does not allow us to exploit
loop-level parallelism across multiple iterations. The pair
of load instructions in every basic block (iteration) limit
the available parallelism within the basic block itself,
however as long as the loop-level parallelism cannot be
exploited, no further ILP can be gained. When value
prediction is allowed only for ALU instructions it can still
gain a significant boost in the ILP relative to the case when
value prediction is allowed for both load and ALU

6

instructions. The explanation of this observation is that
loop-level parallelism can be exploited due to the value
prediction of the indexes that are computed by the ALU
instructions. Only when loop-level parallelism is exploited
does value prediction of loads provide an additional
contribution to boost ILP as illustrated in table 2.1.

 Instruction
window = 40

Instruction
window = 200

No value prediction ILP=9 ILP=9
Load value prediction ILP=9 ILP=9
ALU value prediction ILP=36 ILP=180
Load and ALU value
prediction

 ILP=40 ILP=200

 Table 2.1 - The ILP when the arr ays were
initialized with 0’s.

In order to further investigate the impact of the
predictability of the data in the arrays on the overall
performance of this sample code, we repeat the
experiments, but this time prevent our value predictor
predicting the outcome values of the data being read from
the arrays. This means that neither the outcome values of
the load instructions nor the outcome values of the add
instruction (which adds the array components) are
predictable. By such an experiment we can quantify the
effectiveness of value prediction (in our sample program)
when the data in the arrays is initialized to random values
in such a way that they cannot be predicted by our value
predictor. Note that in the previous case where the arrays
were initialized with zero values, even if value prediction
of load instructions was not allowed, the add instruction
always generated zero values and so it could be predicted
correctly. However, in this case the results of the add
instruction can no longer be predicted correctly, since it
adds two random values. Therefore this case eliminates the
capability to predict the load as well as the add
instructions. The results of this set of experiments are
summarized in table 2.2.

 Instruction
window=40

Instruction
window=200

No value prediction ILP=9 ILP=9
Load value prediction ILP=9 ILP=9
ALU value prediction ILP=30 ILP=150
Load and ALU value
prediction

 ILP=30 ILP=150

 Table 2.2 - The ILP when the arr ays were
initialized with random values.

This table indicates that attempting to predict only the
values of load instructions is useless, since the value
predictor cannot predict them correctly. When value
prediction is allowed only for ALU instructions the ILP
becomes nearly 30 when the instruction window size is 40,
and 150 when the size is 200. The significant increase in
ILP is again obtained due to the loop-level parallelism that
can be exploited. Employing both load and ALU value
prediction does not gain ILP beyond the ILP gained by
ALU value prediction since in both cases neither the loads,
nor the add instructions of the array components, can be
predicted correctly.

 2 . 3 . Var ious value predictors
We propose three different hardware-based value

predictors: the last-value predictor, the stride predictor and
the register-file predictor. All these predictors perform a
dynamic and adaptive prediction, since they collect and
study history information at run-time, and with this
information they determine their value prediction. Each of
the three predictors has a different prediction formula. The
prediction formula determines the predicted value (i.e., the
manner in which a predicted destination value is
determined). The hardware implementation and
considerations of the value predictor are beyond the scope
of this paper and are left for future studies in this area
([18]). In this study our purpose is focused on exploring
value prediction phenomena from a general viewpoint,
hence we discuss the predictor schemes at a high-level
without referring to detailed hardware implementation. In
addition, for the sake of generality, the size of the
prediction table employed by these schemes is assumed to
be unlimited in our experiments. For simplicity, we also
assume that the predictors only predict destination values
of register operands (even though all these schemes can be
generalized and can be applied to memory storage
operands and condition codes as well) and that they are
updated immediately after the prediction is made.

Last-value predictor : predicts the destination value
of an individual instruction, based on the last
previously-seen value it has generated. The predictor is
organized as a table (e.g., cache table - see figure 2.4), and
every entry is uniquely associated with an individual
instruction. Each entry contains two fields: tag and
last-value. The tag field holds the address of the
instruction or part of it (high-order bits in case of an
associative cache table), and the last-value field holds the
previously-seen destination value of the corresponding
instruction. In order to obtain the predicted destination
value of a given instruction, the table is searched by the
absolute address of the instruction.

7

.

.

.

Tag Last value

Tag Index

?
=

Predicted
value

hit/miss

Instruction
 address

Last-value predictor

.

.

.

Tag Last value Stride

Tag Index

?
=

hit/miss

Instruction
address

+

Predicted
value

Stride predictor

.

.

.

Register
number Last value Stride

Instruction’s
destination register
number

+

Predicted
value

0
1
2

Figure 2.4 - The “ last value” , the “ str ide” and the “ register-file” predictors.

Performing the table look-up in such a manner can be very
eff icient, since it can be done in the early stages of the
pipeline (the instruction address is usually known at fetch
stage). A version of the last-value predictor (using an
indexed but untagged table) was proposed by Lipasti et al.
([26]).

Str ide predictor : predicts the destination value of an
individual instruction based on its last previously-seen
value and a calculated stride. The predicted value is the
sum of the last value and the stride. Each entry in this
predictor holds an additional field, termed stride field, that
stores the previously-seen stride of the individual
instruction (figure 2.4). The stride field value is the delta
between two recent consecutive destination values.

Register-file predictor : predicts the destination
value of a given instruction according to the last
previously-seen value and the stride of its destination
register (the recent value and the stride could possibly have
been determined by different instructions). The
register-file predictor is organized as a table as well (figure
2.4), where each entry is associated with a different
(architectural) register. The past information of each
register is collected in two fields: a last-value field and a
stride field. The last-value field is determined according to
the last-value written to the corresponding register, and the
stride value is the delta between two recent consecutive
values that were written to the specific register (possibly
by different instructions).

The last-value predictor can only take advantage of
last-value predictabilit y since the prediction is made upon
the last value, while the stride predictor can exploit both
the last-value predictabilit y and the stride value
predictabilit y that may reside in a program. The register
file predictor may seem very attractive since its prediction
table is relatively small . However since the predicted
values are determined according to the history information

of the register, there can be aliasing between different
instructions that write to the same register. As a result, it
may have a serious influence on the prediction accuracy
that it can accomplish.

 3 . Experimental characterization of value
predictabili ty

This section presents results of various experiments
that have been made in this research. Substantial evidence
is provided to show that programs exhibit remarkable
potential for value predictabilit y. In addition a broad study
of various aspects and characteristics of this phenomenon
are presented.

 3 . 1 . Simulation environment
A special trace driven simulator was developed in

order to provide measurements for the experiments that are
presented in the following subsections. The simulation
environment was fed with the Spec95 benchmarks suite
(table 3.1). The benchmarks were traced by the SHADE
simulator ([31]) on Sun-Sparc microprocessor. All
benchmarks were compiled with the gcc 2.7.2 compiler
with all available optimizations. The set of benchmarks
that was used consisted of 8 integer benchmarks and 5
floating-point benchmarks. Each integer benchmark was
traced for 100 milli on instructions (our experiments show
that using longer traces barely affects our measurements).
In addition, two of the integer benchmarks, gcc and perl,
were examined using two different input files in order to
evaluate of the effect of the input file on the characteristic
of values predictabilit y. The floating point benchmarks
(except mgrid) consist of two major execution phases: an
initialization phase and a computation phase.

SPEC95 Benchmarks
Benchmarks Type Description
go Integer Game playing.
m88ksim Integer A simulator for the 88100 processor.
gcc1, gcc2 Integer A C compiler based on GNU C compiler version 2.5.3 compiling 2 different input files.
Compress95 Integer Data compression program using adaptive Lempel-Ziv coding.
li Integer Lisp interpreter.
ijpeg Integer JPEG encoder.
perl1, perl2 Integer Anagram search program with two different input files.
vortex Integer A single-user object-oriented database transaction benchmark.
tomcatv FP A vectorized mesh generation program.
swim FP Shallow water model with 1024 x 1024 grid.
su2cor FP Quantum physics computation of elementary particles masses.
hydro2d FP Hydrodynamical Navier Stokes equations solver to compute galactical jets.
mgrid FP Multi-grid solver in computing a three dimensional potential field.

Table 3.1 - The Spec95 benchmarks.
In the initialization phase the data is read from large input
files, while the computation phase performs the actual
computation. In the further experimental results we refer to
both these phases respectively. The initialization phase was
traced till it was completed (the instruction count is in the
order of hundreds of millions of instructions) and the
computation phase was traced for 100 million instructions.

 3 . 2 . Value prediction accuracy
The potential of value prediction may depend to a

significant degree upon the prediction accuracy of the
value predictor. There are two different fundamental
factors which determine the value prediction accuracy: (1)
the value predictor scheme itself and (2) the potential for
value predictability that resides within the program code.
The first component is related to the structure of the
predictor and its capabilities which eventually determine
the prediction formula. The second component reflects
inherent properties of the program and its data, and also
depends on the capabilities of the value predictor to reveal
and exploit these properties. Initially, our experiments
provide substantial evidence confirming that programs
exhibit value predictability. In addition, they focus on the
relations between these two factors by examining how
efficiently various predictors exploit different value
predictability patterns of computer programs (such as
last-value predictability and stride value predictability).
Note that throughout these experiments our approach is to
focus on the related phenomena from as general a
perspective as possibly rather than arguing about the
hardware implementation and considerations of the
predictors. We are convinced that such an approach allows
us to better integrate the concept of value prediction into
superscalar processors since we first accumulate
substantial knowledge about the related phenomenon
before making decisions about the hardware consideration.

Our experiments evaluate three value predictors: the
last-value predictor, the stride predictor and the
register-file predictor that were all described in previous
section. Due to our abstract perspective, the prediction
table size of both the last-value predictor and the stride
predictor is considered to be unlimited in the experiments.
The programs that our simulations examine include both
integer and floating-point Spec95 benchmarks. In the
integer benchmarks the prediction accuracy is measured
separately for two sets of instructions; load instructions
and ALU (arithmetic-logic) instructions. In the
floating-point benchmarks, the prediction accuracy is
measured for two additional sets: Floating-point load
instructions and floating-point computation instructions.

The first set of measurements consists of the value
prediction accuracy of each of the value predictors for
integer load instructions in the integer benchmark, as
illustrated by table 3.2. This table illustrates remarkable
results - nearly 50% (on average) of the values that are
generated by load instructions can be correctly predicted
by two of the proposed predictors, the last-value predictor
and the stride predictor. It can be observed that the value
prediction accuracy of the stride predictor and the
last-value predictor is quite similar in all the benchmarks,
indicating that these integer load instructions barely exhibit
stride value predictability. This implies that for this type of
instruction in integer programs the cost of an extra stride
field in the prediction table of the stride-predictor is not
attractive. Moreover, the prediction accuracy of the integer
loads does not spread uniformly among the integer
benchmarks.

9

Prediction accuracy of integer loads [%] Prediction accuracy of ALU instructions [%]
benchmark Stride Last-value Register file Stride Last-value Register file

go 29.00 36.23 3.08 62.13 61.28 6.84
m88ksim 75.95 75.93 11.60 95.86 75.88 32.04
gcc1 47.24 52.06 7.48 60.10 55.99 13.80
gcc2 46.36 51.30 6.55 61.06 54.19 16.90
compress 9.84 11.87 0.66 35.94 39.49 4.21
li 48.92 48.58 5.95 63.11 55.19 14.96
ijpeg 31.82 36.37 12.54 35.25 25.70 19.90
perl1 58.54 62.67 10.38 57.23 57.34 8.60
perl2 57.52 53.29 5.26 57.39 50.18 13.29
vortex 71.41 73.94 8.02 83.17 52.47 38.96
average 47.66 50.22 7.15 61.12 52.77 16.95

Table 3.2 - Value prediction accuracy of integer load and ALU instructions in Spec-Int95.

It is apparent that in some benchmarks the loaded values
are relatively highly predictable, like the benchmarks
m88ksim and vortex, where the prediction accuracy of both
last-value and stride predictors is relatively high (more
than 70%), while the prediction accuracy of other
benchmarks, like the compress benchmark, is relatively
low (about 10%). In all the benchmarks, the register-file
predictor yields a relatively poor prediction accuracy (less
than 10% on average) since it can hardly exploit in this
case any kind of value predictability.

Table 3.2 presents additional impressive results about
the prediction accuracy which the value predictors gain for
ALU instructions in the integer benchmarks. These
experiments provide additional encouraging evidence
about our capability to predict outcome values. They
indicate that a very significant portion of the values
generated by ALU instructions are likely to be predicted
correctly by our value predictors. In the average case, the
stride predictor gains a prediction accuracy of 61%
compared to the last-value predictor which gains only
52%. In several benchmarks, like go and perl, the
last-value predictor and the stride predictor gain similar
value prediction accuracy. Beyond the last-value
predictability that these programs exhibit, they do not
exhibit stride value predictability, and therefore both
predictors gain similar value prediction accuracy. In these
cases, it is expected that most of the correct value
predictions of the stride predictor are accomplished by
stride values that are actually zero (this expectation would
be verified in later subsections). In some benchmarks, like
m88ksim and vortex, although the load instructions exhibit
only last-value predictability, their ALU instructions
exhibit a significant amount of both last-value
predictability and stride value predictability. This
observation is expressed in the significant gap between the
value prediction accuracy of the stride predictor and the
last-value predictor. Hence, in those benchmarks which

also exhibit stride value predictability it is expected that
the contribution of non-zero strides to the correct value
predictions in the stride predictor will be more significant
compared to the previous benchmarks (this expectation
would be verified as well). As in the previous case, the
register-file predictor yields relatively poor prediction
accuracy compared to the other predictors. The range of its
prediction accuracy varies from 4.2% in the benchmark
compress to 38.96% in vortex, yielding an average value
prediction accuracy of nearly 17%.

An additional preliminary observation is that
different input files do not dramatically affect the
prediction accuracy of programs as illustrated for the
benchmarks gcc (gcc1 and gcc2) and perl (perl1 and
perl2). This property has tremendous significance when
considering the involvement of the compiler in order to
support value prediction. The compiler can be assisted by
program profiling in order to detect instructions in the
program which tend to be value predictable. This
observation may indicate that the information collected by
the profiler can be significantly correlated to the true
situation where the application runs its real input files. An
extensive study of the use of program profiling to support
value prediction is presented in [17].

The next set of experiments presents the value
prediction accuracy in floating point benchmarks. The
prediction accuracy is measured in each benchmark for
two execution phases

�

: initialization (denoted by #1) and
computation (denoted by #2). The prediction accuracy
measured for integer instructions (load an ALU) is
summarized in table 3.3 and for the floating point
instructions in table 3.4. It can be observed (table 3.3) that
the behavior of integer load instructions in floating point
benchmarks is different from their behavior in integer
benchmark (table 3.2). Table 3.3 reveals that, unlike the

 �

 except mgrid where the initialization phase is negligible.

10

corresponding case in the integer benchmarks where loads
exhibited last-value predictability, in this case these
instruction also exhibit stride value predictability. These
stride patterns are exploited by the stride predictor which
achieves average accuracy of nearly 70% in the
initialization phase and 63% in the computation phase, in
comparison to the last-value predictor which achieves
average accuracy of nearly 66% in the first phase and only
37% in the second. The causes for the significant
prediction accuracy gap between these predictors in the
computation phase are presented later in this paper. In
addition, we also notice that as in the previous cases, the
register-file predictor achieves a relatively poor value
prediction accuracy of only 2-4%.

When the prediction accuracy is measured for ALU
instructions in the floating point benchmarks, it reveals
several more interesting results as illustrated by table 3.3.
In the initialization phase, the three predictors do not
exhibit exceptional behavior in comparison to the integer
benchmarks. However, in the computation phase of all the
floating point benchmarks, the gap between the prediction
accuracy of the last-value predictor and prediction
accuracy of the stride predictor becomes very significant.
In the computation phase most of ALU instructions exhibit
stride patterns rather than repeating their recently
generated values, and therefore the stride predictor can
take advantage of this pattern of value predictability. The
stride predictor gains in the computation phase average
prediction accuracy of 95%, while the last-value predictor
gains only 23%. We discuss in detail the reasons for this
observation in a later subsection. In addition, unlike
previous cases where the register-file predictor gained
relatively poor value prediction accuracy, in this case it
gains prediction accuracy of nearly 65% which even
outperforms the last-value predictor.

Table 3.4 exhibits the prediction accuracy for two
additional sets of floating point instructions: floating point
loads and floating point computation instructions. It
illustrates that our three value predictors can hardly gain
significant prediction accuracy in these instructions, since
floating point values show relatively poor tendency of
last-value predictability as well as stride value
predictability. In floating-point loads the average value
prediction accuracy of the last-value predictor and the
stride predictor is more than 40%, and in the floating point
computation instructions they achieve less than 30% of
average prediction accuracy. One of the reasons that may
explain why it is harder to predict floating values with
these predictors is the representation of these values.
Floating point values are represented by three value fields:
sign, exponent and fraction (mantissa). It is hard to expect
these value predictors, which by their nature tend to fit
prediction of integer values, to successfully perform
prediction of floating point values. In addition, floating

point computations are considerably more complex than
integer computations, making them hard to predict. This
can also explain why floating point loads exhibit more
value predictability in comparison to the floating point
computation, since one can expect to find more patterns of
regularity and re-use of values in floating point loads
rather than in floating point computations.

 3 . 3 . Distribution of value prediction accuracy
The value prediction accuracy that was measured in

the previous subsection is an average number that is
important in order to evaluate the performance of the
predictors. However this average number does not provide
information about distribution of the prediction accuracy
among the instructions in the program. The following
measurements attempt to provide a deeper study of the
statistical characteristics of value prediction by examining
the distribution of value prediction accuracy, and also
discuss how this knowledge can be exploited.

Figure 3.1 illustrates the distribution of value
prediction accuracy of the stride predictor among the
instructions in the program (referring only to the
value-generating instructions). It indicates that the
prediction accuracy does not spread uniformly among the
instructions in the program. More than 40% of the
instructions are very likely to be correctly predicted with
prediction accuracy greater than 70%. In addition,
approximately the same number of instructions are very
unlikely to be correctly predicted. These instructions
exhibit less than 40% a prediction accuracy.

These results motivate us to develop mechanisms that
would allow us to distinguish between the predictable and
unpredictable instructions and avoid the unpredictable
ones. Such classification contributes to each of the
following aspects:
 1 . The classification can significantly increase the

effective value prediction accuracy of the predictor by
eliminating the value prediction of the unlikely
predictable instructions. A preliminary study of the
effect of such classification on overall performance is
discussed in a later section of this paper.

 2 . The replacement mechanism of the prediction table can
exploit this classification and prioritize entry
replacement for greater efficiency. Eventually, this has
the potential to significantly increase effective
utilization of the prediction table.

 3 . In certain microprocessor architectures mispredicted
values may cause some an misprediction penalty due to
their pipeline organization. By classifying the
instructions, the processor may refrain from predicting
values from the class of unpredictable instructions and
avoid the misprediction penalty.

Prediction accuracy of integer loads [%] Prediction accuracy of ALU instructions [%]
benchmark Stride Last-value Register file Stride Last-value Register file

tomcatv#1 59.82 53.61 4.95 50.87 46.97 13.88
tomcatv#2 99.22 61.91 7.57 99.54 41.83 19.58
swim#1 80.98 81.56 0.02 88.95 79.43 11.09
swim#2 14.69 19.48 0.00 99.57 0.07 99.83
su2cor#1 71.31 65.78 5.76 60.09 57.68 14.49
su2cor#2 47.50 34.65 0.02 91.41 44.72 41.22
hydro2d#1 69.51 61.18 7.03 58.42 49.93 15.94
hydro2d#2 - - - 99.23 15.51 87.67
mgrid 91.88 30.47 1.10 88.20 14.21 69.71
average #1 70.40 65.53 4.44 51.66 46.80 11.08
average #2 63.32 36.62 2.17 95.59 23.26 63.60

Table 3.3 - Value prediction accuracy of integer load and ALU instructions in Spec-FP95.

Prediction accuracy of FP loads [%] Prediction accuracy of FP computation inst. [%]
benchmark Stride Last-value Register file Stride Last-value Register file

tomcatv#2 22.95 6.32 0.16 21.88 15.08 2.13
swim#1 86.21 82.78 0.00 23.15 19.88 1.79
swim#2 18.03 26.09 1.57 15.54 21.38 0.16
su2cor#2 38.87 39.44 21.22 16.36 16.63 9.99
hydro2d#2 88.72 89.63 46.56 89.68 89.89 42.79
mgrid 18.81 18.33 4.71 7.11 6.87 4.04
average 45.59 43.76 12.37 28.95 28.28 10.15

Table 3.4 - Value prediction accuracy of FP load and computation instructions in Spec-FP95.

���
�����
�����
	�
��
��
��
�������

��� ������� ���
�

������� �����! "�#�$&%�' (
)�)

* + , - .�/�0 .!/�1 2 3 .�/�1 2 4 5�6�7 8 9!:
; <�; =�; >�? @�? A�B C�B D�E F�E G�H

IKJMLON
P QSRUTWV

X&Y[Z]\�^ _�` a�^ b�cd` ^ e�fge�hWi�a�Z�\�^ j�` ^ e�flk�j�j�cWa�k�j!m�noqp�r[s tWu�v w�x[y�v s p�tOu

zUw�{�|�s y!v s p�t~}!y�y�xWw�}�y����

���
�����
�����
�����
�����
�!�����

� ���M���!�
���O�

� ���M�����
�����

����� �K�� ����� �K�� �d
¡d¢�£d¤
¥K¦ �d

¡d¢�£�¤
¥d¡

§�¨d©dª «�¬
©�­O®

§!¨�©dª «�¬
©�­�¬ ¯&°

ª ± © ²�³
°
­[® ²�³

°
­�¬
²

´ ®!´ ¬d´ µ�´ ¶d´ ·�´ ¸d´ ¹�´ º�´ »�´

¼U½K¾S¿�À Á!Â Ã�À Ä�Å[Â À Æ�Ç~ÆdÈOÉ�Ã�¾�¿�À Ê!Â À Æ�ÇÌË�Ê�Ê�ÅOÃ�Ë�Ê�ÍWÎ

Ï&ÐMÑ�Ò
ÓKÔMÕ[Ö
ÔM×�Ø�Ù�Ú Û�Ü Ú Ý�Þàß�Û�Û�áK×�ß�Û�âdã

äæå�çOè é[ê�ë ì�íKî�ë è å�éOê

Figure 3.1 - The distribution of instructions according to their value prediction accuracy.
Two methods suggest themselves for classification:
The first method assigns an individual saturated counter
(figure 3.2) to each entry in the prediction table. At each
occurrence of a successful prediction the counter is
incremented, or conversely decremented. By inspection of
the saturated counter, the processor can decide whether to
consider the suggested prediction or to avoid it. Such a
method for value prediction classification was introduced
by Lipasti et al. in [25].

0 1 2 3

0 - Strongly not predicted.
1 - Weakly not predicted.
2 - Weakly predicted.
3 - Strongly predicted.

P.C. P.C. P.C.

P.C.

N.P.C.N.P.C.N.P.C.

N.P.C.

P.C. - Predicted correctly.
N.P.C. - Not predicted correctly.

 Figure 3.2 - A 2-bit saturated counter for value
prediction classification.

 Our measurements confirm the results of Lipasti et al.

where it is shown that such a classification mechanism

12

can work efficiently to eliminate value misprediction.
We observed that in the integer benchmarks almost
94% of the value misprediction can be eliminated and
92% of the correct prediction are correctly classified by
this mechanism. In the floating point benchmarks, the
numbers are very similar: nearly 95% of the
mispredictions are eliminated and almost 95% of the
correct prediction are correctly classified. Beyond the
efficiency of the saturated counters to classify the value
predictability of instructions, we have revealed another
interesting phenomenon related to this mechanism in
our study. We have measured the ratio of the number
state transitions that each of the automates made to the
number of accesses to each of the corresponding entries
in the value prediction table. These measurements
provide significant information concerning the speed
with which this classification method converges to the
correct classification. These measurements are
summarized in figure 3.3, which indicates that most of
the saturated counters are locked on the correct
classification after a relatively very small number of
transitions. This observation also strengthens our
previous experiments about the distribution of the
prediction accuracy that was illustrated in figure 3.1.
For the two sets of instructions, highly predictable and
the unlikely predictable, the classification mechanism
can be very confident about the outcome of the
prediction (whether it succeeds or fails).

 •

0
%

20
%

40
%

60
%

80
%

100
%

go m88ksim gcc1 compress li ijpeg perl
1

vortex

90
80
70
60
50
40
30
20
10
0

The distribution of the number of tranisiotns in the saturated counters

SPEC-INT

% transitions
out of
accesses

0%

20%

40%

60%

80%

100%

swim#1 swim#2 su2cor#1 su2cor#2 hydro2d#1 hydro2d#2 mgrid

90

80

70

60

50

40

30

20

10

0

The distribution of the number of tranisiotns in the saturated counters

SPEC-FP
95

% transitions
out of
accesses

Figure 3.3 - The distribution of the number of
transitions in the saturated counters among

instructions in programs.

Another method that we consider for classification is the
use of compiler profiling. The compiler can collect
information about the value predictability of instructions
according to previous runs of the program. Then it can
place directives in the opcode of the instructions,
providing hints to the processor for classifying the
instructions. From a previous subsection we recall that the
measurements of the expected correlation of value
prediction accuracy between different runs of the program
with different input files are encouraging. The use of
program profiling for value prediction classification is
presented in [17].

 3 . 4 . Non-zero strides and immediate
operations

The stride predictor extends the capabilities of the
last-value predictor since it can exploit both last-value
predictability and stride value predictability. In this
subsection we examine how efficiently the stride predictor
takes advantage of its additional stride fields beyond the
last-value predictor to exploit stride value predictability.
We consider the additional stride fields to work efficiently
only when the predictor accomplishes correct value
predictions that are based on non-zero strides. In table 3.5
we present the ratio of successful predictions that were
based on non-zero strides to the overall number of correct
predictions. In the integer benchmarks this ratio is more
than 16%, and in the floating point benchmarks it varies
from 12% in the initialization phase to 43% in the
computation phase. The relatively high ratio of non-zero
strides in the floating point computation phase is explained
by the significant contribution of immediate integer add
and subtract instructions to the successful predictions.

Ratio of successful non-zero stride-based
predictions out of overall successful predictions.

Spec95 integer Spec95 floating point
Benchmark [%] Benchmark [%]
go 8.83 tomcatv#1 13.93
m88ksim 16.42 tomcatv#2 55.14
gcc1 12.79 swim#1 8.98
gcc2 15.44 swim#2 65.9
compress95 6.52 su2cor#1 9.35
li 15.22 su2cor#2 27.74
ijpeg 36.37 hydro2d#1 16.28
perl1 7.57 hydro2d#2 15.09
perl2 15.27 mgrid 51.4
vortex 30.34 average#1 12.14
average 16.48 average#2 43.06
Table 3.5 - The distribution of non-zero strides.

13

This table, however, may lead the reader to an
incorrect conclusion about the effectiveness of the stride
predictor in exploiting non-zero strides and its significance
to the expected ILP improvement. For instance, it shows
that 16.4% out of successful predictions in the benchmark
m88ksim are because of non-zero strides and 15.2% in the
benchmark li. Does this mean that the contribution of the
stride predictor and non-zero strides to these two
benchmarks is the same? Obviously not; one should be
aware of the fact that these results should be given the
appropriate weight, i.e. their relative number of
appearances in the program’s execution. Moreover, the
connection between the prediction accuracy and the
expected boost in ILP is not straightforward ([18]) since
the distribution of its contribution may not be uniform. If
the importance of non-zero strides is crucial to the ILP of
the application, even an improvement of approximately
10% in the prediction accuracy can be very valuable. A
broader study of the contribution of strides to the ILP is
presented in Section 4. In addition, knowledge about the
characteristics of non-zero strides may motivate future
explorations of the potential for hybrid predictors, which
combine both the last-value predictor and the stride
predictor. Here, the last-value predictor would be
dedicated for zero strides and the stride predictor would be
dedicated for non-zero strides.

We find that non-zero strides appear for various
reasons, e.g. immediate add and subtract instructions, and
computations of addresses of memory references that step
with a fixed stride on arrays in memory. Figure 3.4
ill ustrates the contribution of immediate add and subtract
instructions to the overall number of successful predictions
in the stride predictor. In the integer benchmarks it is
nearly 20% (on average) and in the floating point
benchmarks it varies from nearly 15% in the initialization
phase to more than 30% in the computation phase (on
average). The significant gap between the contributions in
the initialization phase and in the computation phase of the
floating point benchmarks can be explained by the fact that
most memory accesses of floating point benchmarks
consist of stride patterns ([28]). When the fraction of the
successful value predictions which are used for address
calculations of memory pointers (for data items only) is
examined, it reveals that this number is considerably more
significant in the computation phase than the initialization
phase as ill ustrated by figure 3.5. The next subsection
confirms this observation as well .

0
10
20
30
40
50
60
70
80
90

100

go m88ksim gcc1 gcc2 compress li ijpeg perl1 perl2 vortex avg

Correct predictions of Add/Sub immediate instructions out of
correct predictions.

SPEC-INT95

[%]

0
10
20
30
40
50
60
70
80
90

100

tomca
tv#1

tomca
tv#2

swim#
1

swim#
2

su2co
r#1

su2co
r#2

hydro
2d#1

hydro
2d#2

mgrid avg#1avg#2

[%]

SPEC-FP95

Correct predictions of Add/Sub immediate instructions out
of correct predictions.

Figure 3.4 - The contribution of Add/Sub immediate
instructions to the successful predictions.

0
10
20
30
40
50
60
70
80
90

100

go m88ksim gcc1 gcc2 compressli ijpeg perl1 perl2 vortex avg

Correct predictions of addresses calculations out of
the overall correct predictions

SPEC-INT95

[%]

0

10

20

30

40

50

60

70

80

90

100

tomcatv
#1

tomcatv
#2

 swim#1 swim#2 su2cor
#1

su2cor
#2

hydro2d
#1

hydro2d
#2

mgrid avg#1 avg#2

[%]

SPEC-FP95

Correct predictions of addresses calculations out of
the overall correct predictions

Figure 3.5 - Correct predictions of addresses
calculations out of successful predictions.

14

 3 . 5 . Characteristics of value predictability in
load instructions

In this subsection we focus on the characteristics of
value prediction with respect to load instructions. Load
instructions may have a significant impact on the program
performance in two major aspects: 1. they may cause the
processor to stall due to memory latencies and 2. they may
cause true-data dependencies (since they generate values
that can be consumed by other instructions). Our main
purpose is to examine how the concept of value prediction
can affect and support these two aspects. Up to the present
researchers have addressed the first aspect by improving
the performance of cache memories or by using
prefetching mechanisms.

In order to explore the contribution of value
prediction to the first aspect, we examine all the load
memory references that are cache misses and their loaded
memory values. We only refer to the cache misses since
these are the cases when memory system delays occur.
First, we are interested in studying what portion of these
loaded memory values are value-predictable and what the
relations are between them and the potential to predict
their memory address. The potential to predict memory
address (address predictability) is determined by the
memory locality patterns of the program. This property
was widely exploited by different data prefetching
mechanisms ([7], [15], [19], [28]). Examining the value
predictability patterns in the load cache misses and
comparing them to the address predictability patterns can
provide valuable information to the following questions:
 1 . What is the effectiveness of value prediction in

reducing the penalty of load cache misses by
attempting to predict their values (as proposed by
Lipasti et al. in [25])?

 2 . How successfully can value prediction compete with
other techniques such as data prefetching?

The structure of the competitive address predictor
scheme that was used in our experiments is similar to our
value predictor schemes. It is organized as a table (for
instance a cache table) with an unlimited number of
entries, where each entry is uniquely assigned to a
previously-seen load instruction. Each entry contains three
fields: Tag - identifies the individual load instruction
according to its instruction address, Last address - the
address of the last cache block that was fetched by the load
instruction and an Address stride - which is determined
according to the difference between two consecutive
memory accesses of each of the individual loads. The
predicted address which the prefetching scheme fetches is
determined according to the last address field plus the
stride field. The value predictor chosen to compete the
address predictor is the last-value predictor, since it has
gained the best prediction accuracy for load instructions.
The data cache parameters that were chosen for the

experiments are quite typical to common modern
microprocessors (PowerPCTM, PentiumTM, PentiumProTM):
16 KB size, 4-way set associative and 32 bytes line size.

Figure 3.6 illustrates the correlation between the
address prediction accuracy and value prediction accuracy
out of the load misses. This figure exhibits four possible
sets of load references: 1. load references where both the
data values and addresses values can be predicted
correctly, 2. load references where only the addresses
values can be predicted correctly , 3. load references where
only the data values can be predicted correctly and 4. load
references where neither the data values nor the addresses
values can be predicted correctly. It can be observed that
out of the load misses in the integer benchmarks, the
misses attributable to the third set (predictable data values
only) is comparable to the misses falling into the second
set (predictable addresses values only). Therefore, in these
benchmarks, value prediction can contribute significantly
by handling a substantial set of load references which
cannot be handled by data prefetching. However, it can be
seen that in the floating point benchmarks, most of the load
cache misses which exhibit correctly predicted data values
also exhibit correctly predicted addresses values, i.e., the
portion of the third set is negligible. Figure 3.7 is similar to
figure 3.6 - it illustrates the correlation between the
address prediction accuracy and value prediction accuracy
when the bars of each benchmark are given the appropriate
weight according to the load miss rate.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

go m88ksim gcc1 gcc2 compress li ijpeg perl1 perl2 vortex

Prd. Add and Prd. Data Prd. Add only Prd. Data only None Prd.SPEC-INT95

Address regularity versus Value regularity with last value predictor

0%

20%

40%

60%

80%

100%

tomcatv#1tomcatv#2 swim#1 swim#2 su2cor#1 su2cor#2 hydro2d#1 hydro2d#2 mgrid

SPEC-FP95

Address regularity versus Value regularity with last value predictor

Prd. Add and Prd. Data Prd. Add only Prd. Data only None Prd.

Figure 3.6 - Address regularity versus value regularity
out of the overall load misses.

15

0

2

4

6

8

10

12

14

go m88ksim gcc1 gcc2 compress li ijpeg perl1 perl2 vortex

[%]

SPEC-INT95

Address regularity versus Value regularity with last value predictor

Prd. Add and Prd. Data Prd. Add only Prd. Data only None Prd.

0

5

10

15

20

25

30

tomcatv#1 tomcatv#2 swim#1 swim#2 su2cor#1 su2cor#2 hydro2d#1 hydro2d#2 mgrid

SPEC-FP95

Address regularity versus Value regularity with last value predictor[%]

Prd. Add and Prd. Data Prd. Add only Prd. Data only None Prd.

Figure 3.7 - Address regularity versus value regularity
weighted with loads miss rate.

In order to address the second aspect, we measure the
ILP that can be exploited when using value prediction only
for load instructions. Our experiments assume a perfect
memory system, i.e., memory references never stall the
processor. We choose to eliminate the contribution of
memory system latency in this set of experiments since the
system can seek satisfying this assumption by using
various data prefetching techniques such as [7], [15], [19]
and [28]. Note that this assumption even degrades the
potential benefits of value prediction since long latency
instructions can even better take advantage of value
prediction ([25], [26]). Moreover, we prefer focusing on
the pure potential of value prediction to collapse true-data
dependencies associated with load instructions rather then
dealing with impact of memory system latency since such
issue is system dependent. In addition, in order to avoid
discussing individual implementation issues, an abstract
machine is considered with an unlimited number of
execution units and physical registers, but with a restricted
instruction window size. Each instruction is assumed to
take only a single cycle. In addition, it is assumed that all
branches are correctly predicted in advance. The ILP that
such a machine can exploit is limited by the dataflow graph
of the program and by the size of the instruction window.
Figure 3.8 shows the ILP that can be gained by employing
the last-value predictor in comparison to a machine that
does not employ value prediction. It indicates that in some
benchmarks like m88ksim, li and perl the contribution of
load value prediction is significant while in some other
benchmarks like compress, vortex and mgrid it is barely
noticeable. These variations are highly dependent on the
value predictability patterns that these programs exhibit

and their contribution, in particular to the value
predictability patterns of the load instructions.

0

5

10

15

20

25

go m88ksim gcc1 compress li ijpeg perl1 vortex swim#1 swim#2 mgrid

no val-pred. last-val

ILP (instruction window = 40, loads only)

Figure 3.8 - The ILP gained by loads value prediction.

 4 . Analytical and experimental analysis
of the ILP increase

The ILP that a processor can exploit in the case of a
serial program is an indicator of the amount of resources
that it can efficiently utilize simultaneously. In this section
we quantitatively study the ability of value prediction to
boost the ILP from two viewpoints: analytical and
experimental.

 4 . 1 . An analytical model
So far we have discussed the characteristics and

potential of using value prediction. Before presenting
actual measurements, which depend on the benchmarks we
use, we present a simple analytical model that can be
employed for both estimating the potential of value
prediction to increasing the ILP and for further
understanding the related phenomena.

The dataflow graph (DFG) presentation of a
program, is given by a directed graph G(V,S). Each node,
v∈V, represents a single operation, or a set of operations
which are executed as a single atom. Each arc, s∈S,
represents a true-data dependency between two nodes.
Given a DFG representation, we define the critical path to
be the longest (in term of execution time) path, C, that
connects the entry point to the termination point. The
critical path, C, forms a linear graph. For simplicity, we
assume that each node (operation) of the critical path C
takes T cycles for execution. Since the execution of the
operations in C cannot overlap, the total execution time of
C is n×T cycles (where n is the number of nodes in C). If
we assume that our machine has an unlimited amount of
resources, the execution time of the critical path
determines the execution time of the entire program, since
the execution of the other paths in the DFG can be
overlapped with the execution of the critical path C with
no resources conflict.

16

2

1

2

3

4

n

...

3

4

...

n

1

Figure 4.1 - The DFG, G(V,S), and the critical path C.

When value prediction is employed, we attempt to
correctly predict the outcome of each operation before it is
executed. Thus, if we could predict all outcome values
correctly, and we had an unlimited number of resources,
we could execute any program in two steps, one that
executes the instructions and the other that verifies the
correctness of the prediction. In reality, we cannot predict
all the values correctly, and so for each arc s∈S in the
DFG, we attach a number ps (0≤ps≤1) that represents the
probabilit y to correctly predict the result of node s (note
that all the arcs that come from the same node have the
same probabilit y). We term this weighted graph the
speculative dataflow graph (SDFG). An example of an
SDFG that corresponds to the DFG in figure 4.1 is
ill ustrated in figure 4.2.

2

1

2

3

4

n

...

3

4

...

n

1

p1

p2

p3

p4

p1

p2

p3

p4

pn-1 pn-1

Figure 4.2 - The SDFG, GS(v, s), and the critical path
graph C.

From the SDFG we can also extract the critical path C
(that forms a linear graph) and evaluate the execution time
when instruction are executed speculatively based on their
predicted values. In our analysis we only focus on the
execution time of the critical path, since we assume that it
dictates the execution time of the entire program and all
the execution of the other paths can overlap. We evaluate
the critical path execution time in two cases: when the

instruction window size is unlimited and when the window
size is finite. In both cases our model assumptions are:
 1 . We consider an abstract machine with an unlimited

number of execution units and physical registers.
 2 . For simplicity we consider the probabiliti es pi for

1≤i<n to be statistically independent. We have found
this approximation to be valid since instructions in the
critical are also data dependent on instructions from
other paths in the DFG. Moreover, if the value
predictor fails to predict an input value of instruction it
does not necessarily imply that it fails to predict its
output as well .

 3 . We assume that pi=p for 1≤i<n, where p is the
measured prediction accuracy of the value predictor.

 4 . True-data dependent instructions are allowed to be
executed and committed in parallel as long as their
input (possibly predicted) values are found to be
correct. This means that instructions in the linear graph
are allowed to complete (commit) in parallel until the
first failure (value misprediction).

 5 . An instruction that was fed with an incorrect input
value needs to be re-executed when its correct input
value is ready.

 4 . 1 . 1 . Infinite instruction window size model
When the instruction window size is infinite, the

processor can simultaneously examine the potential
ready-to-execute instructions of the entire program. In
order to ill ustrate the parallel execution of the critical path,
C, we use the execution graph, GE(VE, SE), which is
ill ustrated by figure 4.3. The execution graph ill ustrates all
the possible execution sequences of the critical path C.
Each node v∈VE denotes an execution of an operation.
Nodes which are executed based on speculative input value
are denoted with the subscript letter ‘s’ . Each arc, s∈SE,
denotes a possible execution sequence. For each arc, we
assign two numbers: 1. Pri - the probabilit y to correctly or
incorrectly predict the outcome value of the operation in
node i, and 2. ti - the cost in terms of clock cycles of the
transition in case of a correct or an incorrect value
prediction. Notice that the probabiliti es Pri for arcs that
comes for speculatively executed instructions can be
extracted from the SDFG (figure 4.2). When instructions
are re-executed, due to value misprediction, Pri is
considered to equal 1. In addition if ti=0, it implies that the
two operations linked by the arc can be executed in
parallel. For instance, one of the possible execution
sequences is when all the instructions are predicted
correctly. The probabilit y of such an event is pn-1 and the
entire execution time is T since all the instructions are
executed simultaneously.

17

p, 0

...2s1 3s 4s n-1s

1-p, T

ns

1, 0

2

1, 0

3 4 n-1...
1, 0

END
1, 0

1, 0

n

1, 0

Start

1, T p, 0p, 0 p, 0 p, 0 p, 0

1-p, T 1-p, T1-p, T1-p, T

1, 0

1-p, T

 Figure 4.3 - The execution graph of critical path C.

In general, the probabilit y to execute a certain path,

σ =(s1, s2, ...,sn)∈GE(S, V), is given by P s
i

n

iσ =
=

−

∏ Pr
1

1

 and

the entire execution time of σ, can be obtained by

T T TPσ = + , where T tP s
i

n

i
=

=

−

∑
1

1

. It can be noticed that

the element TP has a binomial distribution, as ill ustrated by
equation 4.1:

Prob(T k T) (1 p) p
n 1

k
, k nP

k n k= ⋅ = − ⋅ ⋅
−






 ≤ ≤ −− −1 0 1

Equation 4.1 - The binomial distribution of TP.

One can also observe that “placing” the value
misprediction in the linear graph C is equivalent to
“choosing” k out of n-1 where probabilit y to “choose” is
1-p (value misprediction). As ill ustrated by equation 4.2
we can calculate the average of Tσ, i.e., the average
execution time of the critical path C.

E T T T i (1 p) p
n 1

i

T T(n 1) (1 p)
i

n
i n i()σ = + ⋅ − ⋅ ⋅

−





 =

+ − ⋅ −
=

−
− −∑

0

1
1

 Equation 4.2 - The average execution time of the
critical path C.

The average boost in the ILP (or in the execution time) of
C is given by equation 4.3:

ILP boost
n T

E T

n

n 1) (1 p) pavg =
⋅

=
+ − ⋅ −

≅
−() (σ 1

1

1
Equation 4.3 - The average boost in the ILP of the

critical path C.

 4 . 1 . 2 . Finite instruction window size model
We can improve our previous model and consider the

effect of a finite instruction window size when we use
value prediction. For simplicity, we only consider the
execution of the critical path C and we ignore the effect of
the execution of the other paths. In addition, we also

assume that instructions which are executed correctly
evacuate the instruction window and allow other
instructions to enter the instruction window as potential
candidates for parallel execution. When value prediction is
not used the critical path will be executed in n⋅T cycles
since the execution time of the critical path is bounded
because of true-data dependencies and not because of the
window size. In steady state, the number of instructions
that evacuate the instruction window is equal to the
number of new instructions that enter the window. When
value prediction is used, the number of instructions that
evacuate the instruction window is also equal to the
number of instructions that were predicted correctly until
the first instruction in the window fails (incorrectly
predicted). Let w be the size of the instruction window
(w>1) and let L be the random variable that denotes the
number of instructions which evacuate the instruction
window at each step. The distribution of L is given by
equation 4.4:

Prob(L k)
p p k w

p k w

k

w= =
− ≤ ≤ −

=

−

−{
()1 1 11

1

 Equation 4.4

The average of L is denoted by equation 4.5:

E L
p

p
w p w p p

p
w p p p

w
w w

w

()
()

() ()

[()]

=
−

−
− − ⋅ + ⋅ − ⋅ ≅

−
− ⋅ − − ⋅

−
− −

−

1

1
1 1

1

1
1 1

2
2 1

2

Equation 4.5

Therefore in this model the average ILP boost of value
prediction is.

average boost in ILP
E L

p
w p p pw

= ≅

−
− ⋅ − − ⋅−

()

[()]

1
1

1
1 12

Equation 4.6

18

Note that this result consists of two elements: the first

element
1

1− p
 represents the boost in the case of an

infinite instruction window and the second element takes
into account the effect of the window size.

 4 . 2 . Experimental framework
Our experiments consider an abstract machine with a

finite instruction window. We have chosen this
experimental model since the concept of value prediction
is entirely new and the discussion of particular
implementation issues inherent to different processor
architectures is beyond of the scope of this paper. The ILP
which such a machine can gain (when it does not employ
value prediction) is dictated by the dataflow graph of the
program and its instruction window size. We have
previously indicated that in order to reach the dataflow
graph boundaries, a machine should employ: 1. unlimited
number of resources (execution units etc.), 2. unlimited
number of registers, 3. perfect (either static or dynamic)
branch prediction mechanisms and 4. its instruction fetch
bandwidth should be suff icient. In addition, we also
assume, for simplicity, that each instruction can be
executed in a single cycle. This abstract machine model is
very useful for the preliminary studies of value prediction,
since it provides us with a means to examine the pure
potential of this phenomenon without being affected by the
limitations of individual machines. As a part of our
abstract perspective, we also assume that there is no extra
penalty when values are not predicted correctly, since both
Lipasti et al. ([26]) and our previous works ([16], [17])
have shown that most of the value mispredictions can be
eliminated by employing a classification mechanism. In the
following experiments we measure the effect of various
value prediction policies and prediction schemes on the
ILP under two different instruction window sizes. In the
next subsection these measurements are compared versus
the analytical model.

In the previous section we broadly studied the
characteristics of the value prediction accuracy that various
value predictors schemes can gain. It is important to
indicate that the connection between the value prediction
accuracy gained by these predictors and the expected boost
in the ILP may not be straightforward. It is not suff icient
that these schemes can correctly predict outcome values,
these predictable values should also be in the “right
places” , where their contribution to the ILP would be
significant (such as critical paths). In this subsection we
will present a set of measurements that will i ndicate that
value prediction can have a substantial contribution to the
exploited ILP.

The gain of ILP available with value prediction is
examined for two different value predictors, the last-value
predictor and the stride predictor. Each of these predictors
can operate in two modes: the first mode, termed the
scalar generation mode, allows generation of only a single
value prediction for an individual copy of an instruction
that resides in the instruction window, while the second
mode, termed the eager generation mode allows the
predictor to generate multiple value predictions assigned to
multiple copies of an individual instruction (if any) in the
instruction window (e.g. in case of a loop). The hardware
implementation and considerations of the eager generation
mode is beyond the scope of this paper and they are
presented in [18].

Figure 4.4 ill ustrates the ILP achieved using value
prediction when the instruction window size is 40. It also
compares the ILP achieved by different predictor schemes
(last-value predictor and stride predictor) and prediction
modes (scalar mode and eager mode) versus the ILP when
value prediction is not employed. Indeed this figure
indicates that the potential of value prediction to exceed
the current ILP limitations is tremendous, e.g. in the
benchmark gcc the ILP is increased from 14 to nearly 22,
in m88ksim from 7 to 34, in perl from 15 to nearly 25 and
in vortex from nearly 10 to 33. Figure 4.4 also ill ustrates
that the stride predictor significantly accomplishes better
performance than the last-value predictor in those
benchmarks which exhibited stride value predictabilit y
(like m88ksim and vortex) in our previous experiments.
For instance, in the benchmark m88ksim the stride
predictor boosts the ILP from approximately 7 to 34, while
the last-value predictor only achieves ILP of 13. In the rest
of the benchmarks (like go and li) both predictors gain
similar ILP with relatively smaller advantage to the stride
predictor.

Another interesting observation shown by these
experiments is that the eager mode barely improves the
ILP that the last-value predictor achieves in all the
benchmarks. However, the eager mode significantly
improves the ILP that the stride predictor gains in those
benchmarks exhibiting stride value predictabilit y. For
instance, in the benchmark m88ksim the stride predictor
operating in eager mode gains ILP of 34, while the same
predictor in scalar mode gains only ILP of 20. This
phenomenon seems reasonable, since those instructions
with output values exhibiting a tendency to appear in
strides are likely to appear recurrently in the instruction
window, like instructions in loops, and in order to better
exploit them, the predictor should be allowed to operate in
eager mode. In the floating point benchmarks, swim and
mgrid, all the value predictors achieve similar ILP. Since
the computation phase of the floating point benchmarks is
less constrained by true-data dependencies, our
measurements exhibit more ILP in comparison to the

19

initialization phase that tends to behave like an integer
program. It can also be observed that although the stride
predictor has significantly exhibited better prediction
accuracy than the last-value predictor in ALU instructions,
the overall ILP increase of both predictors is relatively
limited since:
1. Usually the size of basic blocks and loop bodies in
floating point programs is relatively big. As a result, the
instruction window becomes too small to hold multiple
iterations of a loop or even several basic blocks. Therefore,
many of the loop-carried dependencies barely affect the
ILP.
2. Both the last-value predictor and the stride predictor
gained relatively small prediction accuracy in
floating-point instructions which may also affect their
achievable performance.

0

5

10

15

20

25

30

35

go m88ksi
m

gcc1 compre
ss

li ijpeg perl1 vortex swim#
1

swim#
2

mgrid

no val-pred stride-Eager stride-scalar last-val-Eager last-val-scalar

ILP (instruction window = 40)

Figure 4.4 - The ILP gained by value prediction when
instruction window size is 40.

Enlarging the instruction window size can enable
current processors to look further ahead to find
independent candidate instructions for parallel execution.
In order to examine how this enlargement affects a
machine that employs value prediction, we perform further
experiments that are illustrated in figure 4.5. This figure
exhibits the same measurements as figure 4.4, however this
time when the instruction window size is 200. These
measurements show that as the instruction window size is
increased the extracted ILP grows as well. However, the
most interesting observation that these experiments present
is that the enlargement of the instruction window
particularly affects the performance of the eager generation
mode and the stride predictor. A bigger instruction window
significantly increases the likeliness that it would maintain
repeated copies of a same basic block or a same instruction
simultaneously, such as multiple iterations of a loop. Such
patterns can be usefully exploited by the eager generation
mode. This mode allows the predictor to generate multiple
value predictions to multiple copies of the same instruction
and hence it can better utilize the deeper look-ahead
provided by the enlargement of the instruction window.
The stride predictor can also take advantage of these
patterns, since appearances of recurrent instructions in the

instruction window are also likely to generate output
values that progress in strides.

0

20

40

60

80

100

120

140

160

go m88ksi
m

gcc1 compre
ss

li ijpeg perl1 vortex swim#
1

swim#
2

mgrid
no val-pred stride-E stride last-val-E last-val

ILP (instruction window = 200)

Figure 4.5 - The ILP gained by value prediction when
instruction window size is 200.

In addition, it can be observed that even benchmarks which
did not exhibit significant stride value predictability in the
previous experiments, like gcc, li and perl, are
significantly affected when they employ both stride
predictor and eager generation mode. For instance, in
benchmark gcc a stride predictor that operates in eager
mode increases the ILP from 36 to 82, while the same
predictor in scalar mode gains ILP of only 60. In addition
the gap between the stride predictor and the last-value
predictor, which gains ILP of approximately 50, becomes
more noticeable. In the benchmark li the effect of the eager
mode is even noticeable on the last-value predictor. The
last-value predictor increases the ILP of this benchmark
from 28 to 55 while the same predictor operating in scalar
mode gains only 42. However, the best ILP among all the
predictors in this benchmark is gained by the stride
predictor (operating in eager generation mode) which
boosts the ILP to 82. In the benchmarks that exhibited
stride predictability (m88ksim and vortex) the effect of the
instruction window enlargement is the most observable. In
m88ksim the stride predictor in eager mode increases the
ILP from 7.4 to 144 while the same predictor in scalar
mode gains only 31. In vortex similar patterns are
observed: the ILP is increased from 13.5 to 142 by the
stride predictor operating in eager mode, while the same
predictor in a scalar mode gains ILP of nearly 26. In
addition, the enlargement of the instruction window affects
the extractable ILP in the floating point benchmarks as
well. The gap between the stride predictor in eager mode
and the other schemes becomes much more significant
since the instruction-window size enlargement can better
expose the loop-carried dependencies. The stride predictor
increases the ILP of swim (in the computation phase) from
47 to 104, and in the benchmark mgrid it increases the ILP
from 53 to 73.

These results indicate that the potential of value
prediction to increasing the ILP beyond the dataflow graph
limitations is tremendous. In addition, till now several

20

studies such as [21] indicated that large instruction
windows may not be cost-effective since they do not offer
suff icient increase in the ILP to justify their hardware-cost.
When value prediction is employed this claim may no
longer be true. In addition, we have seen that both stride
predictor and eager generation mode may significantly
gain better ILP particularly when the size of the instruction
window is increased. One of the directions that we
consider ([18]) is to maintain a hybrid approach that
consists of both predictor schemes (last-value predictor
and stride predictor) and both value prediction generation
modes (scalar mode and eager mode). This approach,
motivated by our experiments, indicates that on one hand
the absolute number of instructions exhibiting stride value
predictabilit y is relatively smaller than those exhibiting
last-value predictabilit y, however on the other hand, value
prediction based on strides can significantly increase the
ILP particularly in big instruction windows. Hence, in
order to take advantage of these observations a machine
could partition the limited resources assigned to the value
prediction schemes more eff iciently, e.g. by employing a
small prediction table for the stride-predictor and a bigger
table for the last-value predictor and only allowing value
predictions based on strides to be generated in eager mode.
These issues and many other implementation consideration
issues are left for possible future studies.

 4 . 3 . Comparison between the experimental
and analytical results

In our comparison between the experimental
measurements and the analytical results we consider the
abstract machine model that we described in previous
subsections. The configuration used for the comparison is
the stride predictor operating the eager generation mode.
The experimental increase in the ILP is obtained
straightforwardly from the experimental measurements that
were presented in the previous subsection. In order to
calculate the analytical increase in the ILP predicted by
our analytical model we use equations 4.3 and 4.6. Notice,
that these equations need to be assigned with the prediction
accuracy, p, that the predictor gains in each benchmark.
The prediction accuracy, p, can be obtained from the
measurements presented in Subsection 3.1.

Figure 4.6 ill ustrates the boost in the ILP under three
different instruction window size: 40, 200 and infinite. For
the finite instruction windows it ill ustrates both the
experimental ILP increase and the analytical ILP increase.
For the infinite instruction window it only ill ustrates the
analytical evaluation. It can be observed that for most of
the benchmarks the analytical model provides a good
estimation for the ILP increase that is very close to the
experimental results. On the other hand, for some
benchmarks, the analytical model underestimated the
potential of using value prediction. The reason for this
observation is that in these programs, there are different
“hot spots” which have a non-uniform relative contribution
to the ILP.

0

2

4

6

8

10

12

14

16

18

20

compress
0.28

mgrid
0.28

ijpeg 0.35 swim#2
0.35

go 0.52 swim #1
0.53

gcc 0.55 li 0.58 perl1 0.6 vortex
0.78

m88ksim
0.92

Exp. 40

Ana. 40

Exp. 200

Ana. 200

Ana. Infinite

Figure 4.6 - Experimental versus analytical results of the expected boost in the ILP.

21

 5 . Conclusions, contributions and future
directions

In this paper we presented an analytical and
experimental study of the characteristics of value
prediction. This concept is based on the observation that
programs tend to re-use their recently generated values
during execution. By taking advantage of this
phenomenon, we can allow the system to collapse true-data
dependencies and perform speculative execution based on
predicted values.

So far, all modern computer systems have been based
on the assumption that the dataflow graph of a sequential
program forms an upper fundamental bound of the
instruction-level parallelism. In order to better utili ze the
parallel resources in the system, the design of modern
computers was focused on resolving name and control
dependencies. Value prediction demonstrates that a similar
technique can be used to improve parallelism by allowing
the execution of data dependent operations out-of-order.
We believe that this fundamental principle opens new
horizons for future computer architectures.

Throughout this study, we have examined the concept
of value prediction from three different perspectives: 1. we
studied the characteristics of the phenomenon from the
viewpoint of the program code, 2. we explored how these
characteristics can be taken advantage of in order to
improve the extractable ILP out of a sequential program,
and 3. we provided a probabilit y model in order to attain
an analytical evaluation of the potential of value prediction
to boosting ILP.

The main contributions of this study can be
summarized as follows:
 1 . We extended the concept of value prediction and

provided a related terminology. We introduced the
notion of value predictabilit y and distinguished
between two different types of value predictabilit y:
last-value predictabilit y and stride value predictabilit y.

 2 . We presented substantial evidence confirming that
programs tend to re-use their recently generated values
and to exhibit predictable patterns of data values. In
addition, we showed that programs can exhibit two
kinds of value predictabilit y patterns, last-value and
stride. We also examined the distribution of these
properties between different programs, instruction
types and data types.

 3 . We introduced various value predictors and examined
how eff iciently they exploit different value
predictabilit y patterns.

 4 . We showed that the prediction accuracy does not
distribute uniformly among the instructions in a
program. Most programs exhibit two sets of
instructions, highly value-predictable instructions and
highly unlikely-predictable ones. These observations

are the motivation to develop classification
mechanisms, such as saturated counters, that were
found to be very useful in preventing the “unlikely
predictable” instructions from being candidates for
value prediction.

 5 . Our preliminary observation indicates that different
input files do not greatly change the value
predictabilit y of a program. This observation is
encouraging for our future intention to use
profili ng-based compiler techniques that could classify
the value predictabilit y of instructions based on
previous runs of the programs.

 6 . We showed that the use of value prediction techniques
makes substantial contributions in respect to the
extractable ILP. In addition, we have presented two
different value prediction modes: the scalar generation
mode and the eager generation mode, and examined
their impact on the extractable ILP. Our ILP
measurements indicate that the stride predictor
significantly accomplishes better ILP than the
last-value predictor in those benchmarks that exhibited
strides value predictabilit y, while in the rest of the
benchmarks both predictors gain similar ILP with
relatively smaller advantage to the stride predictor.
We also observed that the eager mode particularly
improves the overall performance of the stride
predictor in those benchmarks which exhibited stride
value predictabilit y.

 7 . We showed that enlarging the instruction window,
significantly improves the ILP gained by the eager
generation mode and the stride predictor. We also
observed that programs which exhibit last-value
predictabilit y can gain certain benefit from eager
generation mode as well i n this case.

 8 . We provided an analytical model which can be used to
better understand the characteristics of value
prediction, and to obtain a rough estimation of the
potential of using it.
The study presented in this paper shows the

importance of value prediction. We believe that using this
new technique will l ead to new directions in designing
future computer architectures. Now that we have
established the basis and the evidence of the new
phenomenon, we intend to continue our research towards
achieving a better understanding of the capabiliti es of
value prediction and how it can be employed. We are in
the process of examining different hardware mechanisms
for eff icient implementation of value prediction. In
addition, we are looking at combining compiler support
that can exploit our knowledge about value predictabilit y.

22

References
[1] T. L. Adam, K. M. Chandy and J. R. Dickson. A

Comparison of List Scheduling for Parallel Processing
Systems. Communications of ACM, vol. 17, Dec., 1974, pp.
685-690.

[2] A. V. Aho, R. Sethi and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Reading, MA:
Addison-Wesly, 1986.

[3] A. Aiken and A. Nicolau. Perfect Pipelining: A New Loop
Parallelization Technique. In H. Ganzinger (ed.)
Proceedings of the 2nd European Symposium on
Programming. pp. 221-235. New-York, Mar., 1988.

[4] R. J. Blainey. Instruction Scheduling in the TOBEY
Compiler. IBM J. Res. Develop., Vol. 38, No. 5, Sep., 1994,
pp. 577-593.

[5] P. -Y. Chang, M. Evers and Y. N. Patt. Improving Branch
Prediction Accuracy by Reducing Pattern History Table
Interference. The Conference on Parallel Architectures and
Compilation Techniques (PACT), 1996, pp.48 - 57.

[6] A. E. Charlesworth. An Approach to Scientific Array
Processing: The Architectural Design of the AP-120B/FPS
Family. Computer, Vol. 14, Sep., 1981, pp.18-27.

[7] T. F. Chen and J. L. Bear. Effective Hardware-based Data
Prefetching for High-performance Processors. IEEE
Transactions on Computers, 44(5): 609-623, May, 1995.

[8] S. Davidson, D. Landskov, B. D. Shriver and P. W. Mallet.
Some Experiments in Local Microcode Compaction for
Horizontal Machines. IEEE Transactions on Computers,
Vol. C-30, no. 7, July, 1981, pp. 460-477.

[9] T. A. Diep, C. Nelson and J. P. Shen. Performance
Evaluation of the PowerPC 620 micro-architecture. In
proceeding of the 22nd International Symposium on
Computer Architecture. June, 1995, pp. 163-174.

[10] D. R. Ditzel and H. R. McLellan. Branch Folding in the
CRISP microprocessor: Reducing the Branch Delay to Zero.
Proceeding of the 14th International Symposium on
Computer Architecture. June, 1987.

[11] J. H. Edmondson, P. Rubinfeld, R. Preston and V.
Rajagopalan. Superscalar Instruction Execution in the 21164
Alpha Microprocessor. IEEE Micro, April , 1995, pp. 33-43.

[12] J. R. Elli s. Bulldog: A Compiler for VLIW Architecture.
MIT Press, Cambridge, Mass., 1986.

[13] J. A. Fisher. The Optimum of Horizontal Microcode Within
and Beyond Basic Blocks: An Application of Processor
Scheduling with Resources. Ph.D. dissertation, Technical
Report COO-3077-161. Courant Mathematics and
Computing Laboratory, New York University, New York,
October, 1979.

[14] J. A. Fisher and S. M. Freudenberger. Predicting
Conditional Branches from Previous Runs of a Program.
Proceeding of the 5th Conference of Architectural Support
for Programming Languages and Operating Systems.
IEEE/ACM, Boston, Oct., 1992.

[15] J. W. C. Fuand J. H. Patel. Stride Sirected Prefetching in
Scalar Processors. In the 25th Annual International
Symposium on Microarchitecture, pp. 102-110, Portland,
Oregon, Dec., 1992.

[16] F. Gabbay and A. Mendelson. Speculative Execution based
on Value Prediction. EE Department TR #1080, Technion -
Israel Institute of Technology, Nov., 1996.

[17] F. Gabbay and A. Mendelson. Can Program Profili ng
Support Value Prediction? Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture,
December, 1997.

[18] F. Gabbay and A. Mendelson. The Effect of
Instruction-Fetch Bandwidth on Value Prediction. In
proceeding of the 25th International Symposium on
Computer Architecture, June 1998.

[19] J. Gonzales and A. Gonzales. Speculative Execution via
Address Prediction and Data Prefetching. Porceedings of the
11th Internation Conference on Supercomputing , pp.
196-203, July 1997.

[20] L. Gwennap. Intel’s P6 Uses Decoupled Superscalar Design.
Microprocessors Report vol. 9, num. 2, Feb. 16, 1995.

[21] M. Johnson. Superscalar Microprocessor Design. Prentice
Hall , Englewood Cli ffs, 1990, N.J.

[22] R. M. Keller. Look-ahead Processors. Computing Surveys,
volume 7, no.4, Dec., 1975, pp. 177-195.

[23] M. S. Lam. Software pipelining: An effective scheduling
technique for VLIW processors. SIGPLAN Conference on
Programming Languages Design and Implementation, ACM
(June), Atlanta, Ga., 318-328.

[24] M. Lam. A Systolic Array Optimizing Compiler. Boston:
Kluwer, 1989.

[25] M. H. Lipasti, C. B. Wilkerson and J. P. Shen. Value
locality and load value prediction. In proceedings of the 7th

International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VII) , Oct., 1996.

[26] M. H. Lipasti, C. B. Wilkerson and J. P. Shen. Exceeding
the dataflow limit via value prediction. In proceedings of the
29th Annual ACM/IEEE International Symposium on
Microarchitecture, Dec. 1996.

[27] S. McFarling and J. Hennessy. Reducing the Cost of
Branches. Proceedings of the 13th International Symposium
on Computer Architecture. June, 1986. pp. 396-403.

[28] S. S. Pinter and A. Yoaz. Tango: a Hardware-based Data
Prefetching Technique for Super-scalar Processors. In
proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, Dec., 1996.

[29] B. R. Rau and C. D. Glaeser. Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for High
Performance Scientific Computing. Proceeding of the 14th

Annual Workshop on Microprogramming, Oct., 1981, pp.
183-198.

[30] M. Simone, A. Essen, A. Ike, A. Krishnamoorthy, T.
Maruyama, N. Patkar, M. Ramaswami, M. Shebanow, V.
Thirumalaiswamy and D. Tovey. Implementation Trade-offs
in Using Restricted Data Flow Architecture in High
Performance RISC Microprocessor. In proceeding of the
22nd International Symposium on Computer Architecture,
June 1995, pp. 151-162.

[31] Introduction to Shade, Sun Microsystems Laboratories, Inc.
TR 415-960-1300, Revision A of 1/Apr/92.

[32] A. Smith and J. Lee. Branch Prediction Strategies and
Branch-Target Buffer Design. Computer 17:1, Jan. 1984.
pp. 6-22.

[33] J. E. Smith. A Study of Branch Prediction Techniques. In
proceeding of the 8th International Symposium on Computer
Architecture, June 1981.

23

[34] R. M. Tomasulo. An Efficient Algorithm for Exploiting
Multiple Arithmetic Units. IBM J. Research and
Development 11:1, pp. 25-33, Jan., 1967.

[35] D. W. Wall. Limits of Instruction-Level Parallelism.
Proceedings of the 4th Conference on Architectural Support
for Programming Languages and Operating Systems. Apr.,
1991. pp. 248-259.

[36] S. Weiss and J. E. Smith. A Study of Scalar Compilation
Techniques for Pipelined Supercomputers. Proceedings of
the 2nd International Conference on Architectural Support
for Programming Languages and Operating Systems. Oct.,
1987, pp. 105-109.

[37] T. Y. Yeh and Y. N. Patt. Two-Level Adaptive Training
Branch Prediction. In proceedings of the 24th Annual
ACM/IEEE International Symposium on Microarchitecture,
Dec. 1992.

[38] T. Y. Yeh and Y. N. Patt. Alternative Implementations of
Two-Level Adaptive Branch Prediction. Proceedings of the
19th International Symposium on Computer Architecture.
May, 1992. pp. 124-134.

[39] T. Y. Yeh and Y. N. Patt. A Comparison of Dynamic
Branch Predictors that Uses Two Levels of Branch History.
Proceedings of the 20th International Symposium on
Computer Architecture. May, 1993. pp. 257-266.

Freddy Gabbay received the B.Sc. (summa cum laude)
and M.Sc. degrees in electrical engineering from the
Technion - Israel Institute of Technology, Haifa, Israel in
1994 and 1995 respectively. Currently he is a Ph.D.
student (since 1995) in the Electrical Engineering
Department at the Technion. His main research interest is
computer architecture.

Abraham (Avi) Mendelson received the B.Sc. and the
M.Sc. degrees in computer science from the Technion,
Haifa, Israel in 1979 and 1982, and the Ph.D. degree from
the ECE department, University of Massachusetts in 1990.
He is a Lecturer of Electrical Engineering and a member of
the Parallel systems laboratory at the Technion, Israel. His
main research interests are in computer architectures,
operating systems and distributed algorithms. Dr.
Mendelson is a member of the Association for Computing
Machinery and the IEEE Computer Society.

