
Putting the Fill Unit to Work:
Dynamic Optimizations for Trace Cache Microprocessors

Daniel Holmes Friendly Sanjay Jeram Patel Yale N. Patt
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122�
ites, sanjayp, patt � @eecs.umich.edu

Abstract

The fill unit is the structure which collects blocks of in-
structions and combines them into multi-block segments for
storage in a trace cache. In this paper, we expand the role
of the fill unit to include four dynamic optimizations: (1)
Register move instructions are explicitly marked, enabling
them to be executed within the decode logic. (2) Immedi-
ate values of dependent instructions are combined, if pos-
sible, which removes a step in the dependency chain. (3)
Dependent pairs of shift and add instructions are combined
into scaled add instructions. (4) Instructions are arranged
within the trace segment to minimize the impact of the la-
tency through the operand bypass network. Together, these
dynamic trace optimizations improve performance on the
SPECint95 benchmarks by more than 17% and over all the
benchmarks studied by slightly more than 18%.

1 Introduction

A microprocessor has three fundamental components: a
means to supply instructions, a means to supply the data
needed by these instructions, and a means to process these
instructions. For high performance, the instructions and
data must be effectively delivered at high bandwidth to a
processing core capable of effectively consuming them.

The trace cache has been developed for high bandwidth
instruction delivery. It has been demonstrated as an ef-
fective, low latency technique for delivering instructions to
very wide issue machines [14, 4]. By placing logically con-
tiguous instructions in physically contiguous storage, the
trace cache is able to deliver multiple blocks of instructions
in the same cycle without support from a compiler and with-
out modifying the instruction set. Unlike other hardware
techniques for delivering multiple blocks of instructions in a

single cycle, the trace cache allows complexity to be moved
out of the fetch-issue pipeline where additional latency im-
pacts performance. The logic needed to prepare instructions
for issue can be put in the trace cache fill pipeline. Our ear-
lier work has shown that the latency of the fill pipeline has
a negligible performance impact [4].

The techniques we present in this paper exploit the
latency-tolerant nature of the fill pipeline by performing
trace transformations within the major logic structure of the
pipeline — the fill unit. Generally speaking, the transforma-
tions can perform a wide variety of tasks: dynamic retarget-
ing of an ISA [9], pre-analysis of the dependencies within a
trace [19], and dynamic predication of hard-to-predict short
forward branches are some examples. Additionally the fill
unit provides a strong framework for the dynamic tuning of
code sequences. It is this class of transformations we will
examine in this paper.

The fill unit is uniquely qualified to perform these opti-
mizations for several reasons. Since it is not on the critical
path, the fill unit can perform multi-cycle operations with-
out adversely affecting performance. Because it combines
multiple blocks of instructions from a single path of execu-
tion, it can easily perform cross-block optimizations. And
since it is not architecturally visible, the fill unit can tailor
its optimizations to the characteristics of the microarchitec-
tural implementation without alterations to the ISA. The fill
unit and its relation to the trace cache is shown in the trace
cache data path in figure 1.

We present four types of dynamic code tuning tech-
niques. The first is a technique that marks instructions
which move a value from one register to another register
as explicit move instructions. These can be completely han-
dled by the register renaming logic. Many ISAs, such as the
MIPS [13] and Alpha [16] architectures, do not support an
explicit register-to-register move instruction so instructions
which pass an input operand unchanged to the destination,

Multiple
Trace Cache

Decoder

Selection Logic

Register Rename

HPS Execution Core

Fill
Unit

Path

Branch
Predictor

Instruction
Cache

L2

Unified

Cache

Fetch Address

Next Fetch Address

Figure 1. The trace cache datapath.

ADD Rx � Ry + 0 for example, are used by compilers to
perform the move. Instead of using execution resources to
accomplish the move, we propose the simple technique of
renaming the output register, Rx in this case, to have either
the same physical register or the same operand tag as the
input. This renaming completes the execution of the move
instruction.

The second technique we present is called reassociation.
Here, the fill unit combines the immediate values of instruc-
tions which are known to execute together, thereby remov-
ing a value dependency between the two. The transforma-
tion is illustrated in the following code sequence.

ADDI Rx � Ry + 4

ADDI Rz � Rx + 4

can become

ADDI Rx � Ry + 4

ADDI Rz � Ry + 8

This trace optimization is similar to one that a simple
compiler performs, but within the fill unit it is applied across
basic blocks. The dynamic nature of trace construction al-
lows this to be applied across branches which are prob-
lematic for multi-block compilers. Often compilers of this
sort only join blocks if the code can be predicated or if the
joining branches are determined to be very strongly biased
through code profiling. As the fill unit allows the creation
of segments across function calls, reassociation can also be
applied across procedure boundaries.

The third technique creates scaled add instructions. It is
an application of dependence collapsing [15] using the fill
unit as the dynamic mechanism to perform the collapsing.
Many add instructions are directly dependent on shift in-
structions where the shift is a short distance immediate shift

operation. Such shift-add combinations are commonly used
when accessing arrays of data items. Here, we convert such
an add into an operation where the shift and the add can be
performed in one cycle.

The fourth technique is a simple heuristic to deal with the
communication delays associated with bypassing operand
values from one functional unit to another. As the depen-
dencies between instructions within a trace cache line are
stored explicitly, the order of the instructions no longer con-
veys dependency information. The fill unit has the freedom
to place instructions in any order it wishes. It can base the
ordering of instructions upon specifics of the execution mi-
croarchitecture and thereby reduce the impact of communi-
cation delays.

There are a number of advantages to performing opti-
mizations in the fill unit as opposed to either in the decode
logic or by the compiler. Placing time consuming logic in
the issue path has a severe performance impact. Placing
the logic in the fill unit, where the latency has a negligi-
ble performance impact, avoids this penalty. Furthermore,
the fill unit has advantages over a compiler in certain re-
spects. Fill unit optimizations improve performance of ex-
isting executables. Also, the fill unit may perform optimiza-
tions without the difficulties of increased register pressure
or fix-up code that affect compiler transformations. The op-
timizations performed by the fill unit rely on the fact that
later instructions will only be executed if earlier instructions
are executed.

Our model for achieving high performance requires a
strong compiler to take advantage of information available
at compile time, coupled with aggressive hardware to ex-
ploit information only available during execution. Like dy-
namic branch prediction and out-of-order execution, dyan-
mic trace optimizations performed by the fill unit are a tool
the hardware can use to improve the performance of static
code.

2 Previous Work

The foundation of this work is the initial research per-
formed on the trace cache by several groups. Its initial in-
carnations were developed by Melvin and Patt [8], Peleg
and Weiser [12], and Johnson [7]. The concept was demon-
strated by Rotenberg et al. [14] to be a low latency fetch
device and developed by Patel et al. [11, 10] to be a very
high bandwidth device.

Franklin and Smotherman [3] as well as Nair and Hop-
kins [9] have explored the run-time manipulation of the
code stream by the fill unit. In both cases the fill unit is
used to dynamically retarget a scalar instruction stream into

pre-scheduled instruction groups for a statically-scheduled
execution engine.

The creation of the scaled add instructions is an instance
of a concept called instruction collapsing explored by Vas-
siliadis et al [20]. Sazeides et al [15] looked into the perfor-
mance potential of generalized instruction collapsing and
the frequency of occurrence of certain instruction groups.

3 Experimental model

A pipeline simulator that allows the modeling of wrong
path effects was used for this study. The simulator was im-
plemented using the SimpleScalar 2.0 tool suite [1]. The
SimpleScalar instruction set is a superset of the MIPS-IV
ISA [13], modified such that architected delay slots have
been removed and that indexed (register plus register) mem-
ory operations have been added. In the execution model, all
instructions undergo four stages of processing before retire-
ment: fetch, issue, schedule, execute. All stages take at least
one cycle.

The fetch engine, capable of supplying up to 16 instruc-
tions per cycle, includes a large 2K entry, 4-way set as-
sociative trace cache. The trace cache requires approxi-
mately 156KB storage: 128KB for the 4-byte instructions
and 28KB for 7 bits of pre-decode information associated
with each instruction. Each trace cache line contains up
to 16 instructions, with at most three conditional branches.
(Unconditional branches are not considered to terminate
blocks within trace segments.) Returns, indirect branches
and serializing instructions force the trace segment to ter-
minate. Subroutine calls do not. In addition there is a 4KB,
4-way set associative supporting instruction cache. A 1MB
unified second level cache provides instructions and data
with a latency of six cycles in the case of first level cache
misses. Misses in the second level cache take 50 cycles to
be fetched from memory if there is no bus contention.

The baseline configuration uses inactive issue [4]. With
inactive issue, all blocks within a trace cache line are issued
into the processor whether or not they match the predicted
path. The blocks that do not match the prediction are is-
sued inactively. When the branch that ended the last active
block resolves, if the prediction was correct, the inactive in-
structions are discarded. If the prediction was incorrect, the
processor has already fetched, issued and possibly executed
some instructions along the correct path.

Furthermore, the trace cache implements both branch
promotion and trace packing [10]. Branch promotion
dynamically identifies conditional branches which are
strongly biased. These branches are then promoted to re-
ceive a static prediction. The bias threshold was set to 64

consecutive occurrences. Trace packing allows the fill unit
to pack as many instructions as will fit into a segment, with-
out regard to naturally occurring block boundaries.

The branch predictor modeled, designed for use with
branch promotion, is composed of three separate pattern
history tables, each table consisting of an array of saturat-
ing 2-bit counters. The first table provides the prediction
for the first conditional branch in the segment, while the
second table provides the prediction for the second condi-
tional branch and the third table predicting the third branch.
As branch promotion reduces the number of times multiple
branch predictions are needed, the PHT tables are skewed in
terms of the number of entries each contain. The tables con-
tain 64K entries, 16K entries and 8K entries respectively.
With an 8KB bias table (needed for promotion), the storage
cost of the branch predictor is roughly 32KB.

The execution engine is composed of 16 functional units,
each unit capable of all operations. The functional units
are grouped into four symmetric clusters of four functional
units each. Instructions may forward their results for back-
to-back execution to other functional units within the clus-
ter, but an additional cycle of latency is required to for-
ward a result to another cluster. Instructions are dispatched
for execution from a 32-entry reservation station associated
with each functional unit. A 64KB, 4-way set associative,
L1 data cache is used for data supply. It has a load latency
of one cycle after the address generation is complete. The
model uses checkpoint repair [5] to recover from branch
mispredictions and exceptions. The execution engine is ca-
pable of creating up to three checkpoints each cycle, one
for each block supplied. The memory scheduler waits for
addresses to be generated before scheduling memory oper-
ations. No memory operation can bypass a store with an
unknown address.

All experiments were performed on the SPECint95
benchmarks and on several common UNIX applica-
tions [18]. The benchmark executables were compiled us-
ing gcc version 2.6.3 with -O3 optimizations. Table 1 lists
the number of instructions simulated and the input set, if
the input was derived from a standard input set

�

. All sim-
ulations were run until completion with the exceptions of li
and ijpeg.

4 Dynamic Trace Optimizations

In this section, we provide the details for the specific
trace optimizations we have proposed. We describe the

�

Vortex and go were simulated with abbreviated versions of the
SPECint95 test input set. Compress was simulated on a modified version
of the test input with an initial list of 30000 elements.

Benchmark Inst Count Input Set

compress 95M test.in
gcc 157M jump.i
go 151M 2stone9.in
ijpeg 500M penguin.ppm
li 500M train.lsp
m88ksim 493M dhry.test
perl 41M scrabbl.pl
vortex 214M vortex.in
gnuchess (ch) 119M
ghostscript (gs) 180M
pgp 322M
gnuplot (plot) 284M
python 220M
sim-outorder (ss) 100M
tex 164M

Table 1. Benchmarks

hardware modifications required and provide the perfor-
mance improvements from these optimizations.

4.1 Baseline Fill Unit

As instructions are retired by the machine, they are col-
lected by the fill unit and combined into traces. As men-
tioned in the previous section, each trace can contain up
to 16 instructions and include 3 conditional branches. The
baseline fill unit also performs branch promotion, as de-
scribed in [10]. Furthermore, the fill unit explicitly marks
dependency information within the traces it constructs. Do-
ing so simplifies the dependency checking required when
the trace is later fetched from the trace cache.

Schemes for explicitly recording dependency informa-
tion within a group of instructions have been proposed be-
fore [17, 19]. In our scheme, we record dependencies using
an extra 7 bits per instruction. 3 bits are added to an in-
struction’s destination to identify whether the destination is
live-out of its checkpoint. Because we create 3 checkpoints
per cycle, we require extra bits to identify situations where
the destination is overwritten within another checkpoint is-
sued that same cycle. We require 2 bits (1 bit per source
operand) to identify whether the sources are defined inter-
nally or are live-in to the trace. If the value is internal, the
register identifier is modified to indicate the instruction pro-
ducing the value, which simplifies tag generation. Finally,
2 bits are required to identify an instruction’s block number
within a trace. These bits simplify the backup process on
exceptions and mispredictions.

4.2 Register Moves

The proposed optimization is not one of altering the in-
structions of the executable, but rather one of how to handle
a particular sub-class of instructions — register-to-register
move instructions. These instructions are unique in that
they do not perform any calculation, but simply pass a pre-
viously calculated value from one architected register to an-
other. Such move operations are generated by compilers
when performing common subexpression elimination, for
register-based argument passing, and for initializing values
to zero.

In dynamically scheduled processors, register renaming
logic eliminates the artificial stalls due to false dependen-
cies between instructions. As instructions are decoded, the
renaming logic maps the architectural destination registers
onto the larger physical register space. Similarly, the re-
naming logic must determine the correct mapping for each
source register. When an instruction executes, its associated
physical register is updated with the computed result.

Even though they appear as compute instructions,
register-to-register move instructions do not need to be han-
dled through the normal means of instruction execution. In-
stead, the register renaming logic can be modified to create
a mapping for the destination of the move operation using
the information stored in the mapping of the source. The
instruction does not need to be sent to a reservation station
nor to a functional unit before completion. The instruction
is complete once the mapping for the destination has been
made.

The modifications required to the renaming logic de-
pend on the state maintenance mechanism being used. For
schemes similar to checkpoint repair, the register alias ta-
ble (RAT) entry for the source of the move operation is
copied into the allocated RAT entry for the destination. If
the source value is not yet ready, the source and destination
physical registers share the same tag and both will be up-
dated when the pending instruction executes. If the value
is ready, the source physical register is copied to form the
result of the move instruction.

If the state maintenance mechanism is a reorder buffer,
then the physical register file must be separated from the
reorder buffer queue. Each reorder buffer entry contains
a pointer indicating the physical register allocated for that
instruction. The reorder buffer entry for a move operation
points to the same physical register as its source. Associ-
ated with each physical register is a count of the number of
reorder buffer entries which refer to it. As instructions re-
tire, the associated count is decremented. When the count
reaches zero, the physical register is returned to the free
list. A similar mechanism, which allows the x86 instruc-

tion FXCH to execute in zero cycles, has been patented by
Intel [2].

Figure 2 presents an example of the execution of register
move instructions by the rename logic. A partial snapshot
of the speculative state after each instruction is renamed is
shown for both checkpoint repair and a reorder buffer. In
order to simplify the diagram, only the relevant fields of
each RAT and reorder buffer entry are shown.

For checkpoint repair, the process of renaming the first
instruction involves creating a RAT entry for its destination,
R3. The second instruction is a move and creating its entry
requires a lookup of the RAT entry for R3. Both the tag and
value for R3 are duplicated for R4. This way, all instruc-
tions which require R3 or R4 as a source will receive either
the same value (if it’s ready) or the same tag (to identify the
value when it’s distributed).

For the reorder buffer, renaming the first instruction in-
volves adding an entry for it at the tail of the buffer. Also
a physical register is allocated from the free list to hold the
value of R3. The reorder buffer entry is modified to point
to the newly allocated physical register. In renaming the
move instruction, an entry for the instruction is added to the
tail of the reorder buffer. However, no new physical regis-
ter is allocated. Instead the reorder buffer entry points to
the same physical register already assigned to R3. Subse-
quent instructions sourcing R3 or R4 will receive either the
same value (if it’s ready) or the same index into the physical
register file (to identify the value when it’s distributed).

Stream
Instruction

Register
Arch.

Value Tag

R3 @

Arch.
Register Value Tag

R4
R3 @

@ R4
R3

Arch.
RegisterIndex

1R3

Register
Arch.

Index

Value Count

Value Count

2

Checkpoint Repair Reorder Buffer

After instruction A

After instruction B

A) R3 <- R1 + R2

B) R4 <- R3

Figure 2. Executing move instructions in the
rename hardware.

It should be clear that adaptations to both of the renam-
ing mechanisms require a read of the move source mapping

before the move destination mapping can be made. While
this can be pipelined over two cycles without incurring la-
tency on processing the move, instructions within the trace
which source the result of the move must be modified to
avoid a cycle of delay before being added to the instruction
window. The fill unit handles this by modifying instruc-
tions within the trace cache line which are dependent upon
the move operation to be dependent upon the source of the
move instead.

The SimpleScalar architecture, like many of the preva-
lent commercial ISAs, does not have a specific instruction
that copies a value from one register to another. Rather there
are a number of ALU instructions which can be used to im-
plement a register move instruction. The simplest is the add
immediate instruction, ADDI Rx � Ry + 0. When the im-
mediate value is a zero, the value of register Ry is copied
into register Rx. As the SimpleScalar semantics require that
R0 always maintain the value zero, there are a large number
of instructions, both immediate and register based, which
effectively carry out a register move instruction.

We propose that the fill unit detect and mark with a single
bit such move instructions. By placing the detection logic
in the processing path of the fill unit, the decode and rename
logic can execute move instructions without having to pay
for the latency of detecting them.

Figure 3 shows the performance improvement in instruc-
tions retired per cycle (IPC) of handling register move in-
structions in this manner. The performance increases an av-
erage of 5% across all the benchmarks. These move instruc-
tions accounted for 6% of the dynamic instruction stream.
Results of an investigation of the SPECint95 compiled us-
ing the Digital C compiler (version 3.11 optimization level
“-02 -Olimit 3000”) also show this number to be 6%.

A secondary, but important, effect of early execution of
register moves is that these instructions require no execution
resources and thus incur no delays due to artifacts such as
functional unit arbitration or latency through the operand
bypass network.

4.3 Reassociation

Reassociation is an optimization which takes dependent
pairs of immediate instructions, recomputes the immediate
of the latter instruction, and modifies it to use the source
register — instead of the destination register — of the ear-
lier instruction. For example with the code sequence

ADDI Rx � Ry + 4

ADDI Rz � Rx + 4

the second instruction can be altered to ADDI Rz � Ry +

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

baseline
register moves

 4%

 5%

 2%

 2%

 6% 5% 8%

 5%

 4% 3%

 7%

 9% 6%

 5%

 5%

Figure 3. IPC improvement of register move
instructions.

8 . This optimization shortens the height of the dependency
chain and has the potential to reduce the path length through
critical portions of the code.

Implementing this optimization requires that the fill unit
be able to detect such code sequences and create the ap-
propriate immediate for the dependent instruction. As the
dependency information is already being calculated, logic
added to the fill unit examines the opcodes of dependent in-
structions and, if they are pairable immediate instructions,
computes the new immediate field using a 16-bit ALU. Re-
association does not change the basic format of an instruc-
tion stored in the trace cache as we do not reassociate in-
structions for which the resulting immediate would be larger
than the existing 16-bit immediate field.

Although the gcc compiler does reassociation as one of
its standard optimizations, there are still a significant num-
ber of additional code sequences detected by the fill unit
where reassociation can be applied. We have inhibited
the application of reassociation by the fill unit, allowing it
to only reassociate instructions which cross a control flow
boundary. We do this in order to limit the impact of the
compiler on our results. We have run simulations in which
this restriction is not enforced and have seen no significant
performance increase, indicating that the compiler is doing
a good job of reassociation within the basic blocks.

The results of adding reassociation logic to the fill unit
are plotted in figure 4. The results show a wide range of
improvements. For ten of the fifteen benchmarks reassoci-
ation provides little improvement, 1% to 2%. However for
both m88ksim and chess, reassociation produces significant
improvement, boosting IPC by 23%. The benchmarks ijpeg
and gs fall somewhere in between, improving by 6% and
8% respectively.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

baseline
reassociation

 1%

 2%

 1%

 6%

 1%

 23%

 1%

 1%

 23%
 8%

 2%

 1%
 1%

 1%

 1%

Figure 4. IPC improvement of fill unit reasso-
ciation.

4.4 Scaled Adds

Much like the reassociation optimization, the creation
of scaled add instructions reduces the length of the depen-
dency chain through the program. Modifying the functional
unit to perform a scaled add instruction allows a pair of de-
pendent instructions such as

SHIFTI Rw � Rx
���

1

ADD Ry � Rw + Rz

to be transformed into

SHIFTI Rw � Rx
���

1

SCALED ADD Ry � (Rx
���

1) + Rz.

These short immediate shifts and dependent adds (or the
additions associated with an address computation) occur
frequently in integer code as they are commonly used to
calculate the memory location of an element within an ar-
ray. For instance, to calculate the memory address of an
entry in an array of 32-bit integers on a byte addressable
machine, it suffices to shift the integer array index by 2 bits
and add it to the base address of the array. In their work,
Sazeides et al [15] presented results showing that approxi-
mately 5% of the instruction stream was composed of this
type of pairing for the SPARC v.8 architecture. Our results
with the SimpleScalar architecture are very similar.

Although reassociation requires no changes to the exe-
cution hardware, the scaled add instruction does. The ALU
must be able to shift an input operand by a variable amount
before the addition begins. As some current architectures
support scaled adds and scaled loads [16, 6] and current
implementations of them handle the operation in a single
cycle, we expect that this additional logic will not affect
the critical path of the processor. To ensure this, we have
limited the size of the shift to be no more than 3 bits. This

limits the additional path length through the ALU to approx-
imately 2 gate delays. Moreover, by limiting the size of the
shift in this manner, the trace cache needs to store only two
additional bits per instruction to maintain the scaled add in-
formation.

The logic required by the fill unit to create scaled add
instructions scans the set of dependent operations for shift
and add pairs and moves the 2-bit shift amount to the shift
field of the add instruction. As we only allow one operand
to be shifted, the fill unit may also have to interchange the
order of the source operands of the add instruction.

We have applied this technique to our fill unit model, al-
lowing small immediate shifts to combine with both depen-
dent add and dependent load/store instructions. Figure 5
shows the results of this experiment. The improvements
range from a low of 1% for li, vortex, pgp and plot to a high
of 8% for go and tex. The average improvement for all the
benchmarks is 3.7%.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

baseline
scaled adds

 7%

 4%

 8%

 2%

 1% 2% 5%

 1%

 4% 2%

 1%

 1%
 4%

 5%
 8%

Figure 5. IPC improvement of implementing
scaled add instructions.

4.5 Instruction Placement

Another way in which the fill unit has a unique opportu-
nity to improve the performance of the code is by reducing
the penalties associated with the latencies of the bypass net-
work. With a clustered backend, many instructions are often
unable to execute the cycle after their source operands are
produced as they must wait for the value to be forwarded
from the producing functional unit to the awaiting instruc-
tion’s functional unit.

The fill unit can help address this problem by steering
the instructions to specific functional units in order to re-
duce the amount of cross cluster communication. This can
be accomplished either by adding a field to each instruction
which indicates the functional unit the instruction should
use. Or, as the true register dependencies are explicitly

marked, the fill unit can physically reorder the instructions
within the trace cache line. However, as the memory de-
pendencies still need to be conveyed, the trace cache must
maintain information about the original order of the instruc-
tions. Either of these techniques requires a 4-bit field to be
added to each instruction.

Allowing the fill unit to physically reorder the instruc-
tions has the advantage of removing the routing crossbar
from the issue path of the trace cache to the node table. It
does not remove it from the processor altogether but rather
moves it into the fill unit logic where the latency of the op-
eration is less critical.

We have implemented a simple code placement hueristic
in the fill unit to mitigate the effects of bypass latency. For
each issue slot the fill unit looks for an instruction that is
dependent upon an instruction already placed in that clus-
ter. If no dependent instruction is found, the first unplaced
instruction is put in that issue slot.

Figure 6 compares the results of a configuration where
the fill unit implements this instruction placement with the
baseline. The average improvement in IPC is 5%. Ijpeg
posts the largest improvement of 11%, while tex benefits by
only 1%.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

baseline
placement

 6%

 5%

 3%

 11%

 5% 9%
 5%

 3%

 6% 4%

 7%

 3%
 4%

 3%

 1%

Figure 6. IPC improvement of fill unit instruc-
tion placement.

The percentage of on-path instructions which incurred
cross-cluster communication delays for both the baseline
and instruction placing configurations is shown in figure 7.
For this graph we only count instructions whose last arriv-
ing source value was delayed by the bypass network. The
graph shows that this simple placement algorithm does re-
duce the number of times the bypass latency is a factor. On
avarage the placement algorithm reduces the absolute num-
ber of occurances from 35% to 29%.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
 to

ta
l i

ns
tr

uc
ti

on
s

baseline
placement

Figure 7. Reduction of instructions whose
last arriving value was delayed by the bypass
network.

4.6 Combined Results

Figure 8 compares the IPC results of the baseline con-
figuration with the results of the model in which all of
the above dynamic optimizations are implemented: register
moves are flagged by the fill unit and handled in decode, the
fill unit reassociates source operands of immediate instruc-
tions, scaled add instructions are created by the fill unit, and
the fill unit performs code placement. Each instruction in
the trace cache is enlarged by 7 bits to enable these opti-
mizations — 1 bit for register moves, 2 bits for scaled adds,
and 4 bits for instruction placement. To account for the ad-
ditional logic placed within the fill unit, we have varied the
latency through the structure, setting it to 1 cycle, 5 cycles
and 10 cycles. The percent improvments for the 5 cycle fill
unit are shown and average slightly better than 18% across
the benchmarks. Compress, gcc, go and plot show the least
improvement, gaining only 13% or 14%, while m88ksim
improves by 44% and chess by 38%. As can be seen the fill
unit latency has a negligable impact on the performance.

Table 2 presents the percentage of correct path instruc-
tions that are optimized by the fill unit for each benchmark.
On average slightly more than 13% of the instructions had
some form of transformation applied to them. The bench-
marks m88ksim and chess had more than a fifth of their
instructions optimized.

5 Conclusion

We have demonstrated that the fill unit can be useful for
performing dynamic trace optimizations.

The fill unit is uniquely qualified to perform some opti-

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

baseline
1 cycle Fill Unit
5 cycle Fill Unit
10 cycle Fill Unit

 14%

 13%

 13%

 20%

 12%

 44%

 16%

 10%

 38%
 18%

 18%

 13%
 18%

 16%

 14%

Figure 8. IPC improvement of the combined
optimizations.

mizations for several reasons. Since it is not on the critical
path, the fill unit can perform multi-cycle operations with-
out affecting performance. By combining multiple blocks
of instructions from a single path of execution, it can eas-
ily perform cross-block optimizations. And the fill unit can
tailor its optimizations to the characteristics of the microar-
chitectural implementation without modifying to the ISA.

We have presented four dynamic trace optimizations.
Combined they improve performance on the SPECint95
benchmarks by more than 17% and over all the benchmarks
studied by slightly more than 18%. These optimizations re-
quire an additional 7 bits to be added to each instruction
within the trace cache line.

The full extent of the abilities of the fill unit have yet
to be determined. The implementation of more aggressive
optimizations, such as common subexpression elimination,
may yield further improvements. It may also be advan-
tageous to perform optimizations that require that the full
trace cache line be treated as an atomic block. Dead code
elimination, for example, could be used if the proper re-
covery mechanisms were in place to handle the cases in
which the correct path of execution only follows a portion
of the trace cache line. Furthermore, it may be possible to
allow the fill unit to perform dynamic trace optimizations
across multiple trace cache lines. Again the proper safe-
guards would need to be enforced, but enlarging the scope
of the optimization window could increase the opportunities
the fill unit encounters.

6 Acknowledgments

We would like to acknowledge the members of the HPS
research group, both past and present, Jared Stark in partic-
ular, for their help. Thanks also to Stamatis Vassiliadis for

Register Scaled
Benchmark Moves Reassociation Adds Total

compress 3.0% 1.5% 3.8% 8.3%
gcc 6.4% 2.2% 3.1% 11.7%
go 2.5% 0.7% 9.6% 12.8%
ijpeg 4.6% 2.1% 5.9% 12.6%
li 8.0% 2.1% 1.3% 11.4%
m88ksim 8.2% 12.9% 1.2% 22.3%
perl 6.3% 1.1% 3.3% 10.7%
vortex 9.4% 3.9% 1.9% 15.2%
gnuchess 3.4% 10.4% 5.7% 19.5%
ghostscript 4.6% 7.9% 1.9% 14.4%
pgp 7.9% 4.0% 1.0% 12.9%
gnuplot 11.3% 1.4% 2.3% 15.0%
python 6.3% 2.8% 2.8% 11.9%
sim-outorder 4.9% 1.1% 3.1% 9.1%
tex 3.1% 0.6% 5.2% 8.9%

Table 2. Percentage of instructions to which
tranformations were applied.

his insights and for hosting us in Delft while we worked on
the paper. We would also like to thank our corporate spon-
sors — Intel, HAL, IBM, and AMD — whose generous
support is greatly appreciated.

References

[1] D. Burger, T. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The SimpleScalar tool set. Technical Report
1308, University of Wisconsin - Madison Technical Report,
July 1996.

[2] D. W. Clift, J. M. Arnold, R. P. Colwell, and A. F. Glew.
Floating point register alias table FXCH and retirement
floating point register array. U.S. Patent Number 5,466,352,
1996.

[3] M. Franklin and M. Smotherman. A fill-unit approach to
multiple instruction issue. In Proceedings of the 27th An-
nual ACM/IEEE International Symposium on Microarchi-
tecture, pages 162–171, 1994.

[4] D. H. Friendly, S. J. Patel, and Y. N. Patt. Alternative fetch
and issue techniques from the trace cache fetch mechanism.
In Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, 1997.

[5] W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-
order execution machines. In Proceedings of the 14th An-
nual International Symposium on Computer Architecture,
pages 18–26, 1987.

[6] Intel Corporation. Pentium Processor User’s Manual Vol-
ume 1: Pentium Processor Data Book, 1993.

[7] J. D. Johnson. Expansion caches for superscalar micropro-
cessors. Technical Report CSL-TR-94-630, Stanford Uni-
versity, Palo Alto CA, June 1994.

[8] S. W. Melvin and Y. N. Patt. Performance benefits of
large execution atomic units in dynamically scheduled ma-
chines. In Proceedings of Supercomputing ’89, pages 427–
432, 1989.

[9] R. Nair and M. E. Hopkins. Exploiting instruction level
parallelism in processors by caching scheduled groups. In
Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 13–25, 1997.

[10] S. J. Patel, M. Evers, and Y. N. Patt. Improving trace cache
effectiveness with branch promotion and trace packing. In
Proceedings of the 25th Annual International Symposium on
Computer Architecture, 1998.

[11] S. J. Patel, D. H. Friendly, and Y. N. Patt. Critical issues re-
garding the trace cache fetch mechanism. Technical Report
CSE-TR-335-97, University of Michigan Technical Report,
May 1997.

[12] A. Peleg and U. Weiser. Dynamic flow instruction cache
memory organized around trace segments independant of
virtual address line. U.S. Patent Number 5,381,533, 1994.

[13] C. Price. MIPS IV Instruction Set, revision 3.1. MIPS Tech-
nologies, Inc., Mountain View, CA, 1995.

[14] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: a
low latency approach to high bandwidth instruction fetching.
In Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, 1996.

[15] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The perfor-
mance potential of data dependence speculation and collaps-
ing. In Proceedings of the 29th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, 1996.

[16] R. L. Sites. Alpha Architecture Reference Manual. Digital
Press, Burlington, MA, 1992.

[17] E. Sprangle and Y. Patt. Facilitating superscalar processing
via a combined static/dynamic register renaming scheme.
In Proceedings of the 27th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 143–147, 1994.

[18] J. Stark, P. Racunas, and Y. N. Patt. Reducing the perfor-
mance impact of instruction cache misses by writing instruc-
tions into the reservation stations out-of-order. In Proceed-
ings of the 30th Annual ACM/IEEE International Sympo-
sium on Microarchitecture, pages 34 – 43, 1997.

[19] S. Vajapeyam and T. Mitra. Improving superscalar in-
struction dispatch and issue by exploiting dynamic code se-
quences. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 1–12, 1997.

[20] S. Vassiliadis, B. Blaner, and R. J. Eickemeyer. Scism:a
scalable compound instruction set machine. IBM Journal of
Research and Development, 38:59–78, 1994.

