
Interaction Cost and Shotgun Profiling

BRIAN A. FIELDS and RASTISLAV BODIK
University of California, Berkeley
MARK D. HILL
University of Wisconsin, Madison
and
CHRIS J. NEWBURN
Intel Corporation

We observe that the challenges software optimizers and microarchitects face every day boil down
to a single problem: bottleneck analysis. A bottleneck is any event or resource that contributes to
execution time, such as a critical cache miss or window stall. Tasks such as tuning processors for
energy efficiency and finding the right loads to prefetch all require measuring the performance
costs of bottlenecks.

In the past, simple event counts were enough to find the important bottlenecks. Today, the
parallelism of modern processors makes such analysis much more difficult, rendering traditional
performance counters less useful. If two microarchitectural events (such as a fetch stall and a
cache miss) occur in the same cycle, which event should we blame for the cycle? What cost should
we assign to each event? In this paper, we introduce a new model for understanding event costs to
facilitate processor design and optimization.

First, we observe that all instructions, hardware structures, and events in a machine can interact
in only one of two ways (in parallel or serially). We quantify these interactions by defining interaction
cost, which can be zero (independent, no interaction), positive (parallel), or negative (serial).

Second, we illustrate the value of using interaction costs in processor design and optimization.
In a processor with a long pipeline, we show how to mitigate the negative performance effect of
long latency “critical” loops, such as the level-one cache access and issue-wakeup, by optimizing
seemingly unrelated resources that interact with them.

Finally, we propose shotgun profiling, a class of hardware profiling infrastructures that are
parallelism-aware, in contrast to traditional event counters. Our recommended design requires only
modest extensions to current hardware counters, while enabling the construction of full-featured
dependence graphs of the microexecution. With these dependence graphs, many types of analyses
can be performed, including identifying critical instructions, finding slack, as well as computing
costs and interaction costs.

Categories and Subject Descriptors: C.4 [Computer Systems]: Performance of Systems—Model-
ing; measurement; attributes; D.2.8 [Software]: Software Engineering—Metrics

Authors’ addresses: Brian A. Fields, Rastislav Bodik, Department of Computer Science, 517 Soda
Hall, University of California, Berkeley, CA 94720-1176; email: bfields@berkeley.edu; Mark D. Hill,
University of Wisconsin, Madison, WI; Chris J. Newburn, Intel Corporation.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1544-3566/04/0900-0272 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004, Pages 272–304.



Interaction Cost and Shotgun Profiling • 273

General Terms: Performance, Measurement, Design

Additional Key Words and Phrases: Performance analysis, critical path, profiling, modeling

1. INTRODUCTION

Modern microprocessors achieve much of their performance through rigorous
exploitation of fine-grain parallelism. The key dilemma caused by this paral-
lelism is, Which event are we to blame for a cycle that experienced two (or more)
simultaneous events (for example, when a window stall and a multiplication
occurred simultaneously)? Clearly, both of these events must be optimized to
remove the cycle, but how do we express this fact in a performance breakdown?

Another view of the overlap dilemma is to ask, What performance monitoring
hardware can I add to my processor to answer these questions? Counting events,
event latencies, or both also fails to capture overlap.

This paper argues that if we could answer the above questions without los-
ing track of the microarchitectural parallelism, we would help the designer to
resize just the right queue, predict the most critical dependence, or, conversely,
economically reduce the sizes of nonbottleneck resources, saving area and en-
ergy. In short, we could build more balanced machines, where no resource is
waiting on another.

We answer these questions with analysis that is simple, yet powerful enough
to make sense out of simultaneous bottlenecks in complex machines. A bottle-
neck is any set of events that contribute to execution time, while the cost of
a bottleneck is simply the speedup obtained from idealizing the bottleneck’s
events. How events are grouped into a set depends on the application of the
analysis. For example, a software-prefetching optimization might consider the
set of all cache misses from a single static load, while hardware designers might
focus on all events pertaining to a resource (e.g., all branch mispredictions).

Cost is a powerful metric because it reveals how much an optimization helps
before further improvement is stopped by a secondary bottleneck. Moreover,
events with cost zero may be good targets for “deoptimization” (e.g., making a
queue smaller without affecting performance).

This standard notion of cost, of course, tells us nothing about our simultane-
ous bottlenecks, as illustrated by the fact that the cost of each of two completely
parallel cache misses is zero. As the first contribution of our paper, we define
interaction cost (icost), which reveals how two (or more) events interact in a (par-
allel) microexecution. Specifically, interaction cost of two events a and b is the
difference in speedup between idealizing both together (cost(a, b)) and the sum
of idealizing them individually: icost(a, b) def= cost(a, b) − cost(a) − cost(b). That
is, interaction cost quantifies the cycles that can be removed only by optimizing
both events together. Analogously, we can define the interaction cost between
sets of events (e.g., all cache misses interacting with all ALU operations) by
replacing a and b with sets of events.

The second contribution of our paper is to explore the utility of interaction
cost for everyday design practice. We find that, somewhat surprisingly, interac-
tion costs can be zero (e.g., for two independent cache misses), positive (e.g., for

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



274 • B. A. Fields et al.

two parallel cache misses), and even negative (e.g., for two cache misses in
series with each other but in parallel with other events).

A zero interaction cost between two (sets of) events implies that we can design
and evaluate optimizations for the two in isolation, as the events are indepen-
dent: optimizing one will not change the cost of the other.

A parallel interaction (i.e., positive icost) reveals that events overlap, which
implies that there is speedup which can be gained only by optimizing both
events (e.g., two cache misses that completely overlap).

A serial interaction (i.e., negative icost) means that two events are in series
with each other, but also in parallel with some other event. It thus reveals that
completely optimizing both events is not worthwhile; rather, one should target
either only one or both partially. Serial interaction gives the designer flexibility
to attack what is easiest to improve and eschew optimizing structures that are
already too big, power-hungry, or complex.

Costs and interaction costs are most useful in practice if they can be ef-
ficiently measured in both simulation and hardware (e.g., with an extension
to performance counters). They can obviously be computed by running many
idealized and unidealized simulations. This approach, however, requires 2n sim-
ulations for n events or resources, which may be too expensive if n is large.

For greater efficiency, we manipulate a microexecution dependence graph as
an alternative to complete resimulation. This graph is similar to the one used in
previous work [Fields et al. 2001, 2002; Tune et al. 2002]. It captures both archi-
tectural dependencies (e.g., data dependencies) and microarchitectural events
(e.g., branch mispredictions).

Finally, to measure interaction costs on real hardware running “live” work-
loads, we show, as our third contribution, how hardware can sample an execu-
tion in sufficient detail to construct a statistically representative microarchitec-
ture graph. We call this hardware a shotgun profiler because of its similarity to
shotgun genome sequencing [Fleischmann et al. 1995]. The profiler has low com-
plexity (of the order of ProfileMe [Dean et al. 1997]) and is suitable not only for
measuring interaction costs, but also for accurately identifying critical instruc-
tions [Fields et al. 2001], measuring slack [Semeraro et al. 2002; Fields et al.
2002], or computing the simple individual costs [Tune et al. 2002]. Thus, it may
serve as an alternative to the current hard-to-interpret performance counters.

2. ICOST: A UNIFYING NOTION OF PERFORMANCE ANALYSIS

As motivated in Section 1, determining the costs and interaction costs of events
is essential to many forms of performance analysis. By defining interaction
costs, this section deals with the effects of microarchitectural parallelism on
the cost of events. To achieve uniform analysis, we use the term event to refer
to any stall cause, whether due to data dependences, resource constraints, or
microarchitectural events.

2.1 Cost

Intuitively, the cost of an event is not its execution latency, but its contribution to
the overall execution time of the program. Equivalently, the cost is the execution

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 275

Table I. Idealizing Events

Event Type How to Idealize in a Simulator
Icache, dcache misses Turn misses into hits
ALU operation Give ALU zero cycle latency
Fetch, Issue, Commit BW Use infinite BW
Branch mispredict Turn mispredicts into correct preds
Instruction window Use infinite window

Listed are techniques to idealize a few of the events studied in this paper. Due
to practical constraints (finite memory), we approximate an infinite window
by using one that is 20 times larger than the baseline.

time decrease obtained if the event is idealized. Table I lists how some events
can be idealized. Let e be an event, t be base execution time (nothing idealized),
and t(e) be execution time with e idealized. We formally define the cost of e,
cost(e) as

cost(e) def= t − t(e)

The cost of an event can be naturally generalized to an aggregate cost of a
set of dynamic events S. This allows us to compute, for example, the cost of a
cache as the total speedup when all cache misses are idealized.

Observing the idealizations of Table I clarifies why this definition of cost is
useful. A compiler seeking to prefetch load instructions would want to know how
much execution time would improve if all dynamic cache misses from a single
static load were idealized to hits. A hardware value predictor would want to
know the improvement from idealizing particular data dependences. Finally,
an architect considering enhancements to the instruction window would like to
know how much such enhancements could improve performance.

2.2 Interaction Cost

While knowing the costs of individual events is useful, they are not always
sufficient to drive optimization decisions. For instance, two completely parallel
cache misses (c1 and c2) both have cost of zero (cost(c1) = cost(c2) = 0), since
idealizing one would leave the overall critical-path length unchanged. Never-
theless, prefetching both loads may have substantial benefit.

Similar scenarios occur with analyses for making microarchitectural design
decisions. For instance, an architect may find, via idealization, that the cost
of cache load ports is low, suggesting it is not worthwhile to make the cache
dual ported. The reality may be, however, that if the instruction window is also
enlarged, increasing cache bandwidth could provide significant gain.

Essentially, the problem is that measuring the cost of individual events is
only useful for determining “how critical” a single event is. In other words,
standard cost gives no information about the content of “secondary” critical
paths. While quantifying all secondary paths may seem a daunting task, we
show below how to get a handle on the problem by measuring interactions
between individual event costs.

Consider, for instance, the above example of the two cache misses. While the
costs of the individual cache misses are zero, the aggregate cost of both cache

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



276 • B. A. Fields et al.

misses, obtained by measuring the execution time reduction from idealizing
both c1 and c2 simultaneously, would be large. By knowing this aggregate cost,
denoted cost({c1, c2}), the program optimizer would know that while prefetching
only one load would give little benefit, prefetching both would give significant
benefit. We term this phenomenon, where cost({c1, c2}) > cost(c1) + cost(c2), a
parallel interaction.

Perhaps less intuitively, it is also possible for the opposite parallelism-
induced effect to occur, where cost({c1, c2}) < cost(c1) + cost(c2). One example
is if two dependent cache misses, each with 100-cycle latency, both occurred in
parallel with 100 cycles of ALU operations. In this situation, prefetching both
provides no more benefit than prefetching either one alone, implying that a
program optimizer would save overhead by performing only one prefetch. In
general, this type of interaction can occur between two events A and B if they
are in series with each other, but in parallel with some other event (or events) C.
We call this phenomenon a serial interaction, since the two interacting events
occur in series.

In summary, for two events e1 and e2:

cost({e1, e2}) = cost(e1) + cost(e2) ⇔ Independent
cost({e1, e2}) > cost(e1) + cost(e2) ⇔ Parallel Interaction
cost({e1, e2}) < cost(e1) + cost(e2) ⇔ Serial Interaction

As we later empirically show, interactions are common phenomena (after all,
there is potential for interaction any time two events occur simultaneously). To
inform the optimizer (automatic or human) of the “degree” of interaction, we
define interaction cost. Let e1 and e2 be two events and cost({e1, e2}) be the
aggregate cost of both events. Then, the interaction cost of e1 and e2, denoted
icost({e1, e2}), is defined as the difference between the aggregate cost of the two
events and the sum of their individual costs:

icost({e1, e2}) def= cost({e1, e2}) − cost(e1) − cost(e2)

Thus, for a parallel interaction, icost({e1, e2}) is the number of extra cycles
an optimization that targets both events, instead of just one, could ever hope
to benefit. In contrast, for a serial interaction, icost({e1, e2}) would be negative,
reducing the expectation for performance improvement from targeting both
events.

The interaction cost of two sets of events, S1 and S2, is defined similarly,
by replacing e1 and e2 with S1 and S2 in the above equation. Moreover, the
interaction cost of more than two events (or sets) can be defined recursively.
Formally, let P(U ) \ U denote the proper powerset of a set of events U (i.e., all
subsets of U except for U itself). Then the interaction cost of U is defined as
the cost of U minus the interaction cost of each proper subset of U :

icost({}) def= 0

icost(U) def= cost(U ) −
∑

V ∈P(U )\U

icost(V )

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 277

Finally, if U is the set of all events in an execution it follows that total
execution time always equals the sum of the icosts for the powerset of U . This
implies that completely accounting for execution time requires all interaction
costs to be considered.

Interaction cost is a valuable tool for analyzing parallelism in out-of-
order processors (and, potentially, parallel systems in general). Guiding load-
prefetching decisions is only one example. The next section describes how to
use interaction costs to construct parallelism-aware performance breakdowns,
useful in making architectural design decisions.

2.3 Applying Icost: Parallelism-Aware Breakdowns

A performance breakdown of a microexecution answers the question, “how
much do particular processor resources contribute to overall execution time?”
Stated another way, a breakdown is a function that maps each cycle of execution
to the events that are responsible for it. By allocating cycles among base cate-
gories of events (e.g., cache misses, ALU latencies, and the rest), a breakdown
accounts for all cycles in the execution.

Traditional performance breakdowns (a.k.a., CPI breakdowns) map each cy-
cle of execution delay to exactly one cause. This is fundamentally not possible
in an out-of-order processor because sometimes multiple causes are to blame
for a cycle. As a result, a traditional breakdown cannot accurately account for
all cycles.

We improve traditional breakdowns by providing information about sec-
ondary critical paths. This approach enables an architect to determine when im-
proving multiple resources will yield more benefit than an individual resource.
Our solution is to have an explicit interaction category for each possible over-
lap among base categories. For example, if the base categories are data-cache
misses (dmiss), ALU operations (alu), and branch mispredicts (bmisp), then
there would be four interaction categories: dmiss + alu, dmiss + bmisp, alu +
bmisp, dmiss + alu + bmisp. Each category would correspond to an interaction
cost, similar to the example of Figure 1. With this representation, it is possible
for a breakdown to account for all execution time.

Sometimes a graphical visualization, such as a stacked-bar chart, helps con-
vey the messages contained in a breakdown. To account for interactions, how-
ever, the traditional stacked-bar chart must be modified—one possibility is il-
lustrated in Figure 1(b). For the case study in this paper, we use tables to present
results, since this representation is easier to comprehend when the number of
categories is large.

Frequently Asked Questions (FAQ). Is it reasonable to define cost in a way
that doesn’t involve complete idealization (i.e., where the resource is made better
but not perfect)? Yes, while the definition in terms of complete idealization given
in Section 2.1 does meaningfully indicate how much execution time should be
attributed to a particular resource, it may sometimes be more useful to define
cost in terms of the maximum extent that a resource can be optimized. For
instance, it may not be possible to get the effect of a zero latency ALU operation,
but it may be possible to reduce the ALU latency by one cycle. In this case, the

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



278 • B. A. Fields et al.

Fig. 1. Correctly reporting breakdowns. (a) The traditional method for reporting breakdowns does
not accurately account for all execution cycles, since it attempts to assign blame for each cycle to
a single event when sometimes multiple events are simultaneously responsible. We propose a new
method that uses interaction costs, discussed in Section 2.2. In this figure, the cost of an edge is
the execution time reduction (or, in other words, reduction in critical-path length) obtained when
the edge’s latency is set to zero. Thus, cost(A) is 11 because, after A is idealized (its latency set to
zero), the critical path goes through C. The new critical-path length is 9, while the original length
was 20, thus cost(A) = 20 − 9 = 11. (b) One possible compact visualization of this breakdown is
shown. Here the positive interaction costs cause the stacked-bar chart to extend above 100%, but
this is offset by negative interactions—which are plotted below the axis.

cost of the ALU could be defined as the execution time reduction obtained from
decreasing the latency by one cycle. Fortunately, even with the new definition,
our cost and icost equations can be applied unchanged.

3. MEASURING COST ON A DEPENDENCE GRAPH

Computing all costs and interaction costs for n sets (a.k.a., classes) of events
can be done via 2n simulations. Even if we restrict ourselves to only measuring
interaction pairs, a quadratic number of simulations is required. Thus, a more
efficient methodology than simulation is desired. Additionally, running multiple
idealized simulations may not be possible for performance analysis on real
hardware.

Our solution is to determine the effect of an idealization without actually
idealizing the execution. We do this with a dependence-graph model of the
microexecution where all the important events and resource constraints are
modeled as latency-labeled edges. Then, for each idealization, we only need to
alter a bottleneck’s edges: by changing their latencies or by removing them.
Since the graph does not contain all constraints in the machine, some precision
is lost, but at a significant boost in efficiency.

We used the graph described in this section in two ways. First, in the case
study of Section 4, it is used within a microprocessor simulator for improved
efficiency in helping the hardware designer make better tradeoffs. Second, the
graph is the enabling and necessary ingredient of our hardware profiling in-
frastructure, described in Section 5.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 279

Table II. Constraints Captured by the Out-of-Order Processor Performance Model

Name Constraint Modeled edge
DD In-order dispatch Di−1 → Di
FBW Finite fetch bandwidth Di− fbw → Di where fbw is the maximum no. of insts.

fetched in a cycle
CD Finite re-order buffer Ci−w → Di w = size of the re-order buffer
PD Control dependence Pi−1 → Di inserted if i − 1 is a mispredicted branch
DR Execution follows dispatch Di → Ri
PR Data dependences Pj → Ri inserted if instruction j produces an

operand of i
RE Execute after ready Ri → Ei

EP Complete after execute Ei → Pi
PP Cache-line sharing Pj → Pi inserted if inst. j produces cache miss to

block loaded by i
PC Commit follows completion Pi → Ci
CC In-order commit Ci−1 → Ci
CBW Finite commit bandwidth Ci−cbw → Ci where cbw is the maximum no. of insts.

committed in a cycle

The meaning of the nodes are as follows: D, instruction dispatch into window; R, all data operands ready but
waiting on functional unit; E, beginning execution; P , completed execution; C, committing. The constraints
correspond to dependence edges in the graph. Operations are represented by latencies on the edges. An example
instance of the dependence graph is shown in Figure 2.

The dependence-graph model. For our purposes, the graph model should
meet two requirements: (1) idealizing on the graph should give the same
speedup as in the simulator and (2) the analysis should be significantly more ef-
ficient than resimulation. Note that a dependence graph consisting of only data
dependences would not meet the first requirement, for two reasons: (i) microar-
chitectural constraints (such as fetch bandwidth limitations) greatly affect cost
calculations and (ii) we want to measure the costs of not just data dependences,
but also hardware structures and events. Instead, we need a graph model that
is microarchitecturally sensitive. Fortunately, previous work provides such a
model [Fields et al. 2001; Semeraro et al. 2002; Tune et al. 2002], which we
modestly enhance.

Our resulting graph provides a level of detail that reasonably meets both the
accuracy and efficiency requirements given above (see Section 6 for an empirical
assessment of its accuracy and the end of Section 4 for a discussion of efficiency).
Table II describes the nodes and edges; and Figure 2 shows an instance of the
model on a sample code snippet.

The graph model is essentially an annotated trace of the dynamic instruc-
tion stream. Each dynamic instruction i is represented by five nodes: the dis-
patch node Di, the ready-to-execute node Ri, the start-execution node Ei, the
completed-execution node Pi, and the commit node Ci. These five nodes repre-
sent events in the lifetime of the instruction’s processing. Directed edges enforce
ordering constraints (a.k.a., dependences) among these events. For instance, in
Figure 2, the P0 → R1 edge enforces the ordering that i0 must complete exe-
cution before i1 is ready to execute (a data dependence). Weights on the edges
represent the latencies of operations. For instance, the weight of 10 on the
E0 → P0 edge is the execution latency of i0; this edge provides the constraint
that i0 does not complete execution until 10 cycles after it starts execution.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



280 • B. A. Fields et al.

Fig. 2. An instance of the dependence-graph model from Table II. The dependence graph repre-
sents a sequence of dynamic instructions, assuming a machine with a four-instruction ROB and
two-wide fetch/commit bandwidth. The dashed arrow shows how some load access EP edges and
CD window edges are in series and, thus, have the potential to interact serially (see Section 4.1).
Note that some other EP and CD edges are in parallel, thus there is also potential for parallel
interaction between loads and the finite window constraint.

In this manner, all the important resource constraints in the machine are
represented as dependence edges with weights representing latencies. For
instance, the DD (and CC) edges (see Table II) constrain instructions so that
they must be dispatched (and committed) in program order. The FBW (and
CBW) edges limit the number of instructions that can be fetched (and commit-
ted) in a single cycle. In Figure 2, the fetch bandwidth is two instructions per
cycle, so, for example, i2 cannot be fetched until one cycle after i0 is fetched; this
constraint is represented by the one-cycle latency D0 → D2 edge.

Similarly, the graph also models fetch stalls due to the reorder buffer (with
CD edges) and branch mispredictions (with PD edges). Finally, cache-line shar-
ing is modeled by placing an edge from the P node of any cache-missing load
a to the P node of any subsequent load instruction b that accesses the same
cache line. This PP edge prevents instruction b from completing execution until
the cache miss is serviced by a. In this way, we model the effect of partial cache
misses: if a is sped up due to an idealization, b may effectively change from a
partial miss into a hit.

Measuring cost using the graph. As can be seen from the equations of
Section 2.2, the interaction cost of two events icost(a, b) is computed from sev-
eral simple cost measurements: cost(a, b), cost(a), and cost(b). In general, the
icost of n events can be computed with 2n − 1 simple cost measurements. For
measuring simple cost, we use the postmortem algorithm of Tune et al. [2002].
Essentially, their algorithm works by comparing the critical-path lengths of the
baseline and idealized graphs—with several optimizations for efficiency.

FAQ. What are the modeling limitations of the dependence-graph method of
computing cost? All of the complete idealizations listed in Table I can be eas-
ily implemented on the dependence graph by either removing the appropriate
edges or setting their latency to zero. Furthermore, most notions of cost that

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 281

do not involve complete idealization can also be easily handled. For instance,
if the cost of an ALU operation is defined as the speedup from decreasing its
latency by one cycle, the “idealization” would involve reducing the ALU edge
latencies as opposed to setting them to zero.

There are some limitations of what the graph is able to model, however. For
instance, if the cost of the data cache is defined as the speedup from doubling
its size, the graph could still be used, but a cache simulation would need to
be run to determine which data-cache misses should be turned into cache hits.
The graph is still useful in this case, since running a cache simulation is much
easier and more efficient than a detailed timing simulation.

Does the dependence-graph model all resource constraints in the machine?
No, modeling all resources would cause the graph to become very complicated,
slowing its processing and making it more difficult to build. Instead, we model
the resources that are most important for the task at hand, which, in this
case, is measuring costs and interaction costs. As discussed in more detail in
Section 6, the graph we use performs well at this task, with an average error
of 8%.

Designing a graph model is a process of trial and error guided by intuition,
as opposed to a systematic procedure, and there are often tradeoffs among
complexity, efficiency, and understandability. For example, a close study of the
five-node model will reveal that, for our machine configuration, the R node
could be removed without affecting the model’s accuracy (by adding the RE
edge weight to the EP edge). We kept the R node because we believe it eases
understanding.

Is the dependence graph required in order to compute interaction costs? No,
the graph makes the computation more efficient and is needed for our hardware
profiler (see Section 5), but it is not required for computing interaction costs
in a simulator. For that purpose, running multiple idealized simulations is
sufficient (see Section 6.1 for a description of this approach). The advantage
of this multiple-simulation approach is that, despite being less efficient, it can
be applied immediately, without going through the effort of implementing a
graph analysis infrastructure.

4. ICOST TUTORIAL: OPTIMIZING A LONG PIPELINE

Several recent studies have found significant performance improvements possi-
ble by increasing the length of the processor pipeline. The improvement comes
from increased clock frequency, but this improvement is unfortunately offset by
the increasing latency of performance-critical loops. A loop is a feedback path
in the pipeline, where the result of one stage is needed by an earlier stage.
Three of the most critical loops include: (i) the latency of a level-one data-cache
access, (ii) the latency to issue back-to-back operations (the issue-wakeup loop),
and (iii) branch mispredictions [Sprangle and Carmean 2002; Hrishikesh et al.
2002; Hartstein and Puzak 2002; Borch et al. 2002].

In this section, we present a tutorial on using interaction costs, by showing
how they can quickly provide insights into processors with long pipelines. Inter-
action costs show us how to mitigate the performance impact of critical loops.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



282 • B. A. Fields et al.

Finally, we compare our icost analysis conclusions to those of a conventional
sensitivity study.

4.1 The Level-One Data-Cache Access Loop

Let us assume that the circuit designers optimized the level-one data-cache ac-
cess as much as possible, but nonetheless the latency was higher than expected,
say four cycles instead of the typical one or two. The question now is: What is
the most effective way to change the microarchitecture to mitigate the effect
of the high latency? Would it help to: (a) enlarge the branch predictor; (b) in-
crease the number of load ports; (c) increase the data-cache size; or (d) increase
the fetch bandwidth? Certainly, these changes will reduce the cost of each of
these resources (if they were on the critical path), but will they also reduce the
cost of data-cache accesses?

What we are looking for is a choice of something other than data accesses
to optimize that will indirectly reduce the cost of those accesses. Optimiz-
ing some resource such as fetch bandwidth certainly will not affect the la-
tency of data accesses, but the optimization might cause some of the latency
to be removed from the critical path (or, in other words, “hidden” or “toler-
ated” by the machine). In essence, we are looking for serial interactions, since
any resource that serially interacts with data accesses provides us an alter-
native resource for optimization that will enable us to remove the same set of
cycles.

In our case study, before computing the interaction costs, we hypothesized
what the outcome of the analysis could be, which amounted to predictions of
where serial interactions would occur. We thought data dependences between
data-cache-missing loads or ALU operations and level-one data-cache accesses
might cause such a serial interaction. Another possibility would be an inter-
action between branch mispredicts and data-cache accesses, since loads often
feed branches.

The results of the analysis is shown in Table III(a) (simulator parameters
are in Table VII in Section 6). For brevity, the breakdown presents only those
interaction costs that involve data-cache accesses, labeled ‘dl1’ in the table. In
total, there would be 28 −1 = 255 costs and interaction costs if all of them were
shown.

Before examining the correctness of our hypotheses, let us attempt to gauge
the importance of interactions in general. If we sum up the singleton costs, say
for crafty, we get a very high value, 24.5 + 16.3 + 6.0 + 16.4 + 6.7 + 11.3 + 0.8 +
0.6 = 92.6%. Does this mean interactions are only important for a small portion
of the execution time, for example, 7.4% for crafty? The answer is “no,” since
these singleton costs could be counting the same cycles multiple times—in other
words, serial interactions (negative icosts) may exist. In fact, the sum of the
singleton costs for vortex is over 100, at 104%, which is only explainable by
serial interactions. As expected, vortex does have interactions (in fact, large
ones), both parallel and serial (and this is seen even when only considering
interactions including dl1). So, we cannot make conclusions on the importance
of interactions by looking at singleton costs alone.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 283

Table III. Breakdowns for Optimizing a Long Pipeline

Category bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
dl1 22.3 24.5 17.5 13.6 18.6 31.9 7.4 19.1 31.6 19.1 28.5 19.8
win 14.6 16.3 16.5 34.7 12.6 4.5 4.6 15.9 5.8 22.3 39.4 21.2
bw 4.0 6.0 6.1 2.2 5.6 5.3 0.5 2.7 7.2 3.4 4.8 4.2

bmisp 37.8 26.4 14.3 11.8 24.6 24.0 25.3 15.5 36.0 22.6 1.6 23.3
dmiss 21.8 6.7 0.7 21.8 25.1 8.1 78.8 30.4 1.4 32.5 19.7 31.1
shalu 9.8 11.3 4.9 12.5 5.3 20.6 1.4 17.3 7.3 7.5 5.4 7.8
lgalu 0.3 0.8 11.5 5.8 0.3 0.5 0.0 0.1 0.8 4.0 1.5 3.8
imiss 0.0 0.6 9.0 1.2 2.1 0.1 0.0 0.1 5.1 0.0 3.3 0.0

dl1 + win −5.2 −11.9 −7.9 −6.9 −3.9 −10.5 −0.1 −6.6 −5.6 −4.2 −25.9 −6.7
dl1 + bw 5.9 10.1 7.3 3.0 11.4 5.6 0.3 4.6 9.2 1.5 16.8 2.2

dl1 + bmisp −9.1 −4.6 −3.7 −2.8 −6.3 −3.4 −2.3 −2.4 −7.3 −5.7 −0.2 −4.5
dl1 + dmiss −0.8 −1.2 −0.4 −0.5 −1.4 −1.0 −0.7 −1.8 −0.2 −2.3 −1.8 −2.4

dl1 + shalu −4.3 −4.6 −0.8 −2.1 −1.8 −12.7 −0.1 −4.8 −1.8 −0.4 −4.7 −2.0
dl1 + lgalu −0.3 0.2 −1.1 −0.6 −0.3 −0.5 0.0 −0.1 −0.7 −0.0 −1.3 −0.7
dl1 + imiss 0.0 0.0 1.1 0.3 0.3 0.0 0.0 0.0 1.1 0.0 0.6 0.0

Other 3.2 19.4 25.0 6.0 7.8 17.5 −15.1 10.0 10.1 −0.3 12.3 2.9
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(a) CPI contribution breakdown (%) with four-cycle level-one cache

Category gap gcc gzip mcf parser
shalu 31.6 12.8 37.8 3.2 33.3

win 39.8 11.0 11.6 3.8 16.7
bw 1.6 7.1 4.4 0.4 2.3

bmisp 7.9 26.0 23.9 27.3 13.6
dmiss 15.9 25.5 8.3 81.3 26.7

dl1 4.7 10.7 16.8 4.5 9.1
imiss 0.8 2.2 0.1 0.0 0.0
lgalu 4.3 0.5 0.6 −0.0 0.1

shalu + win −23.5 −2.0 −8.3 0.1 −11.7
shalu + bw 9.9 9.9 8.7 0.7 6.1

shalu + bmisp 1.2 −5.7 −5.3 −2.3 −1.3
shalu + dmiss 1.4 0.1 −1.5 0.3 −0.4

shalu + dl1 −0.9 −2.4 −10.5 −0.2 −4.0
shalu + imiss 0.3 0.2 0.0 0.0 0.0
shalu + lgalu −2.3 −0.4 −0.4 0.0 −0.0

Other 7.3 4.5 13.8 −19.1 9.5
Total 100.0 100.0 100.0 100.0 100.0

(b) Breakdown with two-cycle issue-wakeup loop

Category gap gcc gzip mcf parser
bmisp 11.5 25.2 27.7 26.5 16.7

dl1 6.6 10.3 19.0 4.5 10.3
win 36.2 12.8 16.3 3.7 11.3
bw 3.8 12.7 8.0 0.5 4.0

dmiss 25.7 28.8 10.8 81.0 30.0
shalu 11.9 4.9 21.0 1.4 17.3
lgalu 5.0 0.3 0.5 0.0 0.1
imiss 1.3 2.6 0.1 0.0 0.1

bmisp + dl1 −1.8 −4.6 −2.4 −1.5 −1.8
bmisp + win 7.6 18.5 12.2 62.5 33.7

bmisp + bw −1.1 −1.1 −2.5 −0.2 −1.3
bmisp + dmiss 0.3 −1.3 −0.1 −16.2 −2.5

bmisp + shalu 0.7 −3.0 −3.7 −1.1 −0.8
bmisp + lgalu 0.3 0.0 0.2 −0.0 0.0
bmisp + imiss −0.2 −0.1 −0.0 −0.0 −0.0

Other 1.3 −4.2 −11.7 0.5 5.9
Total 100.0 100.0 100.0 100.0 100.0

(c) Breakdown with 15-cycle branch mispredict loop

Interaction costs are presented here as a percent of execution time and were calculated using the dependence
graph in a simulator. The categories are: ‘dl1’ → level-one data-cache latency; ‘win’ → instruction window stalls;
‘bw’ → processor bandwidth (fetch, issue, commit bandwidths); ‘bmisp’ → branch mis-predictions; ‘dmiss’ → data-
cache misses; ‘shalu’ → one-cycle integer operations; ‘lgalu’ → multi-cycle integer and floating-point operations;
and ‘imiss’ → instruction-cache misses. Due to space constraints, only a subset of the SPECint bechmarks are
shown for (b) and (c), but the benchmarks shown are representative of the suite. Note that ‘Other’, denoting the
sum of all interaction costs not displayed, can be negative since the interaction costs can be negative. The machine
moldeled is described in Section 6.1.

In analyzing the data, notice first that data-cache accesses have a large sin-
gleton cost, typically contributing 15–25% of the execution time. This means
that 15–25% of the execution time would be eliminated if the data-cache access
latency was reduced to zero. As for the interactions, we see that some of our
hypotheses were correct: for instance, there are significant serial interactions
between data-cache accesses and ALU operations (dl1 + shalu), suggesting
we could mitigate the long data-cache loop by reducing ALU latency (perhaps

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



284 • B. A. Fields et al.

through value prediction [Lipasti and Shen 1996; Calder et al. 1999] or instruc-
tion reuse [Sodani and Sohi 1997]).

However, other conclusions from the analysis were not predicted beforehand.
For example, it was hypothesized that large serial interaction might exist be-
tween data-cache misses and data-cache accesses. In reality, this interaction is
very small: reducing data-cache misses is unlikely to mitigate the effect of the
high-latency data-cache loop.

We also see that the largest serial interaction for most benchmarks is with
instruction window stalls. Thus, perhaps the most effective mitigation of the
data-cache loop would be to increase the size of the instruction window—a result
that may be difficult to predict before performing the analysis.

Also, note that the magnitude of the interactions vary significantly across
benchmarks. This variability suggests that interaction costs could be useful in
workload characterization: their magnitude gives a designer early insights into
what optimizations would be most suitable for the most important workloads.

Another way to view interaction-cost analysis is as an indication of where im-
balances exist in the machine. For instance, consider the cache-access/window
serial interaction mentioned above. The effect on costs and interaction costs
when the size of the window is increased from 64 to 256 is shown below (for
vortex).

vortex

64 128 256
dl1 28.5 9.8 4.3
win 39.4 21.3 13.6

dl1 + win −25.9 −8.14 −2.7
Exe Time 100.0 80.8 75.0

Notice how increasing the window size reduces the cost of the individual
resources but increases the interaction cost. (In this case, increasing the icost
causes it to become less negative.) These results indicate that the critical path is
less dominant when the window size is larger—that is, the parallel “secondary”
paths are closer in length to the critical path. Thus, the machine has become
more balanced (i.e., there is less slack in the execution). More work is needed to
fully explore whether (and if yes, how) interaction costs can be used to quantify
to what extent a machine is balanced.

4.2 The Issue-Wakeup and Branch Mispredict Loops

We also performed the same analysis for the issue-wakeup and branch mispre-
diction loops. In this section, we will highlight the results of the analysis.

The issue-wakeup loop. Suppose that a long pipeline demanded a two-cycle
issue-wakeup latency, instead of the typical one. This will, of course, reduce
performance, since ALU operations will not be able to issue back to back.
Can we use serial interactions to determine how to mitigate the performance
loss?

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 285

From the breakdown of Table III(b), we see significant serial interactions
between ALU operations and several event classes: window stalls, branch mis-
predicts, and level-one cache accesses. The most significant interaction is, again,
with window stalls; it is as large as −24% for gap. Because of this serial inter-
action, increasing the window size is more beneficial when the issue-wakeup
latency is higher. For instance, we found that the speedup for gap when the
window size is increased from 64 to 128 is 12% if the issue-wakeup latency is
one and 18% if the latency is two, a difference of 50%.

The negative interaction costs also reveal for which benchmarks it is not
going to be possible to mitigate the effect of longer pipeline loops by optimizing
other parts of the machine. This is the situation in gcc, which exhibits very
little serial interaction.

The branch misprediction loop. Finally, we consider the branch mispredic-
tion loop. Can we modify the microarchitecture to reduce branch misprediction
costs? How about increasing the window size? Will that work to reduce branch
misprediction loop cost in the same way it did for the other two loops?

The interaction costs in Table III(c) reveal that the answer is no. Instead of a
serial interaction, there is a parallel interaction between branch mispredictions
and window stalls. This parallel interaction tells us there are a significant
number of cycles that can be eliminated only by optimizing both classes of
events simultaneously. In other words, reducing window stalls is not likely to
significantly reduce branch misprediction costs.

For a couple of benchmarks, mcf and parser, we do see significant serial in-
teractions with data-cache misses (dmiss), however. In particular, for mcf, the
serial interaction of −16.2% tells us that as much as 60% of the cost of branch
mispredictions (16.2/26.5 × 100%) could be eliminated through optimization of
data-cache misses. Intuitively, this effect is likely due to cache-missing loads
providing data that is used to determine a branch direction. Again, interaction
costs help: we can quantify the importance of this effect for particular work-
loads, even determining the static instructions where it occurs, helping to guide
prefetch optimizations.

4.3 Comparing with Sensitivity Study

A sensitivity study is an evaluation of one or more processor parameters made
by varying the parameters over a range of values, usually through many simu-
lations. Interaction costs can be viewed as a way to interpret the data obtained
from a sensitivity study. Regardless of how they are computed, through multi-
ple simulations or graph analysis, interaction costs explain why performance
phenomena occur in a very concise way.

Let us explore this relationship by validating that the conclusions obtained
from interaction-cost analysis and conventional sensitivity studies are the
same. We perform the comparison by using a corollary of the serial inter-
action between the instruction window and load latency (the main result of
Section 4.1). As the load latency becomes larger, increasing the size of the in-
struction window has increasing benefit. Since load latencies and window stalls
occur in series with each other (because EP edges are in series with CD edges,

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



286 • B. A. Fields et al.

Fig. 3. Speedup from increasing window size for different level-one cache latencies. As predicted
from the negative interaction cost, increasing the window size has a larger benefit when level-one
cache latencies are larger.

as can be seen in Figure 2), increasing the latency of one will make both more
dominant on the critical path.

Using this corollary, we performed the comparison by running several simu-
lations to observe the speedup with increasing window size at different cache la-
tencies (see Figure 3). Indeed, the interaction costs correctly predicted what the
sensitivity study reveals: for instance, 50% greater speedup ((9 − 6)/6 × 100%)
is obtained from increasing the window size from 64 to 128 when the data-cache
latency is four instead of one.

From this example, we see the relationship between the two types of anal-
yses. A full sensitivity study provides more information, for example, whether
the curves in the plot are concave or convex; but interaction costs provide eas-
ier interpretation and concise communication of results. The interpretation is
easy, since the type and magnitude of the icosts have well defined meanings. The
ease in communication comes from the ability to summarize a large quantity of
data very succinctly. For example, the entire chart of Figure 3 can be summa-
rized by simply stating that the two resources interact serially. Furthermore,
due to the formulaic nature of interaction cost, the interpretation is available
automatically, without the effort of a human analyst.

Summary. In this section, we showed that interaction costs can help mi-
croarchitects during the design process. When the dependence graph is con-
structed by the simulator, architects can use interaction-cost-based breakdowns
as a standard output of each simulation run. The overhead of building the
graph during simulation in our research prototype is approximately twofold
slowdown, which we did not find overly burdensome, considering the substan-
tial benefit of the added insight. Furthermore, using the same principles of
sampling that facilitate the profiling solution of Section 5, we found that the
overhead could be reduced to approximately 10% without significantly impact-
ing accuracy (with only 1–2% error due to sampling).

Perhaps even more exciting, however, is that all of this analysis can also be
performed on real, deployed systems where resimulation and idealization is not
an option. Hardware support for such analysis is the subject of the next section.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 287

FAQ. If all icosts in a breakdown are zero, does that imply that there are no
interactions? No, whether the interactions that exist show up in a breakdown
depends on the choice of categories. Fundamentally, however, if any micro-
operations occur in parallel, some interactions do exist. For instance, a pipelined
processor that executes one instruction while another is being fetched does
have, at least, a parallel interaction between these two micro-operations.

There are two ways that the choice of categories can cause interactions to
be hidden. First, they may be too coarse grained, that is, contain too large
of a set of events. For instance, there may be small interactions between ALU
operations and memory stalls, but there may be large interactions between var-
ious types of memory stalls, for example, level-one and level-two cache misses.
Second, the interactions may be compensating, in which serial and parallel
interactions might “cancel” each other out. For instance, there may be both
serial and parallel interactions between different pairs of individual ALU oper-
ations and memory stalls. The serial interactions will cause the icost between
the two categories to decrease while the parallel interactions will cause it to
increase. The final value, then, could be close to zero despite the existence of
many interactions. This cancellation effect can be eliminated by either (a) mea-
suring over smaller intervals of dynamic instructions, where only one type of
interaction exists; or (b) using more fine-grained categories, so that only one
type of interaction occurs between any pair of categories (e.g., if, hypothetically,
ALU operations interact parallely with level-one cache misses and serially with
level-two cache misses, splitting the “memory stalls” category could eliminate
the compensatory effects.)

If there are no interactions, is the analysis useless? No, determining that
interactions do not exist between resources can be as useful as finding out they
do exist. The reason is that the analyst would then know that the resources are
independent, and thus could each be optimized in isolation. This information
can greatly simplify optimization tasks. For instance, if fetch bandwidth and
ALU operations were found to be independent, a power-efficient processor could
resize each resource in isolation, without worrying about any inefficiencies due
to not making the optimization decisions jointly.

Does a larger cost value necessarily imply a greater execution time reduction
when the resource is improved (e.g., enlarged, made faster, and so on)? No, if
the improvement made to the resource is less than complete idealization, it
is not necessarily true that a larger cost implies greater benefit from the im-
provement. A sensitivity study would be needed to provide this information
(see Section 4.3). In our empirical experience, however, a large cost has been a
good indication that improving the resource will produce a large reduction in
execution time.

5. MEASURING COST IN HARDWARE: SHOTGUN PROFILING

In this section, we show how to measure icosts on real machines running real
workloads. Our solution is to enhance existing performance counters so that
they are sufficiently informative to construct a dependence graph from the
data collected. This dependence graph is constructed offline in software, to keep

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



288 • B. A. Fields et al.

Table IV. Profiler Designs

Design Problem Solution
1. Hardware-intensive Hardware too expensive Sample instructions sparsely

measurement since it generates
information too rapidly

2. Sample each static Does not distinguish between Use microarchitectural context
instruction once different microarchitectural (in the form of a signature)

behavior (e.g., an iteration
of a loop with a branch
misprediction versus an
iteration without one).

3. Record short Accumulates error as Use long signature that
microarchitectural each instruction is stitched spans length of graph
signature around each together to form a graph
sampled instruction

4. Record long signature
as a baseline and patch
in sample profiles using
short signatures

Design #4, with both long and short signatures, is our final, recommended design.

hardware costs as low as possible. With the graph, icosts can be computed in
precisely the same manner as they are in a simulator, as presented in previous
sections. Furthermore, the graph can be used for other types of analyses as well,
including identifying the critical path [Fields et al. 2001], finding slack [Fields
et al. 2002], and computing single costs [Tune et al. 2002].

For purposes of understanding the design space involved, we explore a se-
ries of designs, summarized in Table IV. We start with an accurate but overly
expensive solution and work towards a better tradeoff. Our goal is to keep hard-
ware costs at a minimum while collecting sufficient information to construct the
graph offline. The final and recommended solution is design #4 of Table IV.

5.1 Design #1: The Hardware-Intensive Approach

The conceptually simplest design would be to collect detailed latency and de-
pendence information for every dynamic instruction as it flows through the
machine, as is done in a simulator. The detailed information would be enough
to construct all of the nodes and edges for each dynamic instruction, such that
software could easily construct the graph offline. The exact information re-
quired will depend heavily on the processor implementation. For the simulated
processor used in this paper, the information in Table V is sufficient.

Although this approach would be as accurate as constructing the graph in
the simulator, it is not reasonably implementable. The primary reason is that
the density of information collection is too great, in that too much data need to
be collected simultaneously. To measure just one latency for every instruction
would require a counter for each instruction in the machine at any one time—
and to collect all of the information in Table V, many such latencies would
need to be measured. Furthermore, moving all of this information through the
machine would require many wires, affecting the bit pitch.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 289

Table V. How Dependences and Latencies are Collected when Constructing the Graph

Dependence col Latencies col
In-order dispatch (DD) S icache misses, itlb misses D
Finite fetch bandwidth (FBW) S constant latency (1 cycle) S
Finite re-order buffer (CD) S constant latency (0 cycle) S
Control dependence (PD) D branch recovery latency S
Execution follows dispatch (DR) S constant pipeline latency S
Data dependences (PR) reg: S, mem: D constant latency (0 cycle) S
Execute after ready (RE) S functional unit contention D
Complete after execute (EP) S execution latency D
Cache-line sharing (PP) D constant latency (0 cycle) S
Commit follows completion (PC) S constant pipeline latency S
In-order commit (CC) S store BW contention D
Finite commit bandwidth (CBW) S constant latency (1 cycle) S

‘D’ stands for dynamically, ‘S’ for statically. Dependences and latencies that must be determined dynam-
ically are measured in hardware. Those that can be determined statically are inferred from the program
binary (e.g., register data dependences) or the machine description (e.g., fetch and issue bandwidths).
Besides the information above, a detailed sample also contains the PC of the instruction and the target
address of indirect branches.

From this observation, we derive the most important constraint on the hard-
ware: instructions should be profiled sparsely, in a sampling manner. For the
rest of the designs, we assume hardware support for profiling only a single in-
struction, so that only one instruction can be sampled at a time. We chose this
restriction because it is similar to current performance counter designs and
proposals, for example, ProfileMe [Dean et al. 1997].

5.2 Design #2: One Sample per Static Instruction

A straightforward way to reduce the density of data collection is to maintain
only one profile for each static instruction. With this restriction, randomly sam-
pling one instruction at a time can quickly collect all the profiles that are needed.
Then, instead of building the entire graph, graph fragments are constructed for
hot program paths. The fragments are built by looking up the PC of each in-
struction in the hot path to find the corresponding static instruction’s profile.
The profile contains enough information to construct the nodes and edges cor-
responding to that instruction (since the profile contains all the information in
Table V).

The primary advantage of this approach is that the requirements on the
hardware data collection are substantially reduced, since only very sparse sam-
pling is required. Unfortunately, however, the error is very high: empirically,
the icosts computed are typically off by a factor of two or more when compared
to those computed in the simulator.

The problem has to do with variations in microarchitectural behavior for
different dynamic instances of the same segment of static code. As an example,
consider Figure 4. In the first iteration of the loop, the instruction at PC 0 × 30
experiences an icache miss, while on the second iteration it does not. Thus, the
graph for the first iteration is different than the graph for the second iteration,
even though the same static code is executed (specifically, the DD edge latency
is different).

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



290 • B. A. Fields et al.

Fig. 4. Same static code, different microexecutions.

The obvious lesson here is that variations in the microexecution need to be
distinguished in order to construct accurate graph fragments. In other words,
multiple profiles for each static instruction need to be maintained. Specifically,
we should ideally maintain one profile for each microarchitectural context, for
example, in the example above, one sample for each instruction in both (a) an
iteration with the icache miss and (b) an iteration without.

5.3 Design #3: Shotgun Profiler, Only Short Signatures

We distinguish between microarchitectural contexts by adding a signature to
each sample collected from the hardware. The signature distinguishes between
contexts by encoding microarchitectural events and state that surrounds the
single dynamic “target” instruction. Thus, each sample consists of two things:
(i) detailed latency and dependence information about the target instruction
and (ii) a signature surrounding that instruction. If the signatures of two sam-
ples match, we assume the samples are from the same context.

The signature should uniquely identify the microexecution context while
keeping the hardware cost as low as possible. More specifically, whenever the
signatures for two samples are the same, the detailed latency and dependence
information for the target instruction should also be the same. For our design,
we chose to record two bits per dynamic instruction for 10 instructions before
and after the targeted instruction. The two bits are an experimentally deter-
mined hash of microarchitectural context, specified in Table VI.

The graph-construction algorithm uses the signatures to determine which
samples should be placed side-by-side within a graph fragment. As an exam-
ple, consider Figure 5(a). Two samples are taken; in this case, they are of two
different static instructions from two iterations of the same loop. By finding
overlap among the appropriate signature bits between the two samples, we
see that they “fit” together. Thus, they come from iterations of the loop with

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 291

Table VI. Description of Signature Bits

Bit When to set to ‘1’
1 Set to 1 if the instruction is a (1) taken branch or (2) load or store.

Reset to 0 if L2 dcache miss
2 Set to 1 if the instruction experiences a (1) L1 or L2 icache miss, (2) L1 or

L2 dcache miss, (3) tlb miss, or (4) branch mispredict

The signature bits are meant to distinguish between different microarchitectural contexts. Ex-
perimentally, we determined the above hash function produced good results. Intuitively, the
hash works well because it distinguishes between the most important events that occur in the
microprocessor. For a different processor implementation than the one assumed in our simulator,
a different signature might be required, perhaps one that uses more than two bits per dynamic
instruction.

the same context and should be placed together in the graph fragment. By re-
peatedly applying this matching process, we can construct a graph fragment of
arbitrary size.

This algorithm is very similar to a popular algorithm for DNA sequencing,
called shotgun sequencing [Fleischmann et al. 1995] (see Figure 5(b)). Due to
the similarity, we refer to the general class of profilers that use signatures as
shotgun profilers. There is a large space of possible algorithms and infrastruc-
tures that exploit shotgun profiling, only a couple of which are presented in this
paper.

Returning to the example of Figure 4, consider how a signature could help
distinguish between loop iterations with different behavior. For the first itera-
tion of the loop, an icache miss will appear in the signature; while in the second
iteration it will not. Thus, the samples with the icache miss will be attached
together in one portion of the graph fragment while the samples without the
miss will be in another portion.

Empirically, we have found this design reduces the error by two to four times
over one that does not distinguish between different microexecution behaviors.
Nonetheless, the performance is still far from acceptable. The reason is that
error accumulates for each sample placed into the graph, for a couple of reasons:

—Missed correlation of distant events. The context is only of nearby instruc-
tions, over a range of 20 instructions. If, for instance, the latency of an in-
struction is affected by an event that occurs 40 instructions away, this corre-
lation cannot be captured. Since modern machines exploit parallelism across
a rather large range of instructions, this effect can be significant.

—Missing samples. If an exact signature match cannot be found, the closest
approximate match is used. In our experience, the missing samples are the
ones with the rarest signatures, since they have the lowest probability to be
collected. This causes rare events (e.g., branch mispredictions) to be under-
represented in the constructed graphs. Collecting more samples would reduce
the error, but considering the exponential number of possible signatures, it
may be infeasible to collect sufficiently many to eliminate the error.

To improve over this design, we need to reduce the accumulation of error.
In the next section, we do this by adding a stable microarchitectural context
“skeleton” on top of which the graph is constructed.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



292 • B. A. Fields et al.

Fig. 5. Shotgun profiling and DNA sequencing. (a) The shotgun profiler works by collecting random
“shotgun” samples that include a signature and detailed information about a single instruction.
These samples are placed in a database and, offline, graph fragments are constructed by finding
overlaps among the signatures of different samples. Our design uses a signature with two bits for
each of the 10 dynamic instructions before and after the target instruction. For illustration, the
figure uses a smaller signature. (b) DNA researchers face a problem similar to ours. Instead of
constructing a graph, they seek to determine the sequence of nucleotides that comprise a strand of
DNA. Their measurement apparatus, however, cannot simply observe the entire sequence at one
time. Instead, they can only observe short, random, samples of the overall sequence. Their solution
to this problem is called “shotgun” sequencing. First, many random samples are collected using
their measurement apparatus. Then, offline, the full DNA sequence is constructed by looking for
overlaps among the small fragments.

5.4 Design #4: Shotgun Profiler, Long and Short Signatures

Our final and recommended design introduces a second type of sample to be
collected by the hardware, in addition to the one collected in design #3. The new
sample is called a signature sample and consists of a single “start” PC and the
two signature bits for each of the next 2000 dynamic instructions. Signature

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 293

samples are a natural way to identify correlation between distant events, and,
as we shall show below, can also mitigate the effect of missing samples.

The software graph-construction algorithm works by first selecting a sig-
nature sample at random, which serves as a “skeleton” for the graph to be
built. (The random selection ensures that each signature sample is chosen with
equal probability, which naturally gives priority to hot microexecution paths.)
The goal of the algorithm is to fill in this skeleton with detailed samples to
form a latency-labeled dependence graph. A detailed sample is identical to the
samples collected in design #3 above. To construct the graph, a detailed sample
is selected for each dynamic instruction in the signature sample, where the
selection is based both on a PC match and a signature match.

For example, consider building the graph nodes for the first instruction in
the signature sample of Figure 6. The first instruction has PC of 0x24, so we
look up detailed samples with this PC. Then, we select the one whose signature
bits match the corresponding bits in the signature sample. Finally, the nodes
for this instruction are constructed from the selected detailed sample.

If no detailed samples for the PC are found at all, which empirically happens
less than 2% of the time, we infer what we can from the signature sample and
the binary, using default values for unknown latencies. For example, if bit two
of the signature is set to one and we know from the binary the instruction is a
branch, we will infer that the branch was mispredicted. (In this instance, it is
possible that an icache miss occurred instead of the branch mispredict, but we
would guess a branch mispredict occurred for branch instructions.) Here, we
see one advantage of the signature sample design over design #3: the signature
sample gives us some information (e.g., whether a branch mispredict occurred)
even when no matching detailed sample has been collected.

If some detailed samples are found, but none have an exact signature match,
the detailed sample with the closest match is selected. An inexact match may
reduce accuracy for that selection, but (unlike design #3) the signature sample
provides a stable skeleton for future matches. Thus, a single mismatch does not
cause error to propagate through the rest of the graph. The complete algorithm
for constructing a graph fragment is in Figure 7.

5.4.1 Determining PCs. Remember that a signature sample consists solely
of a start PC and the signature bits, i.e., to reduce hardware costs the PCs of
other instructions are not recorded. Thus, we need to use some intelligence to
infer the PC of each dynamic instruction in the signature sample. For direct
conditional branches, we include the branch direction in the signature bits and
lookup the binary for the target address of taken branches.

For indirect branches, we include the branch target address in the detailed
samples. Assuming a signature match is a good indication of which target ad-
dress an indirect branch will resolve to, the normal matching procedure de-
scribed above will yield the correct next PC. We have found, empirically, that
this procedure yields the correct target address most of the time, for 60–99% of
the indirect branches, depending on the benchmark. (Note that this accuracy
is highly dependent on the choice of signature; other signatures, perhaps using
more bits, could achieve greater accuracy.)

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



294 • B. A. Fields et al.

Fig. 6. The profiler infrastructure consists of two parts. (a) Hardware performance monitors.
Our hardware performance monitors collect two types of samples: signature samples and detailed
samples. For illustration, the figure shows one signature bit per instruction and collection of the bits
for two instructions before and after each detailed sample. For greater accuracy, our design uses two
signature bits per instruction (see Table VI) and collects signature bits for 10 instructions before
and after each detailed sample (see Figure 7). (b) Postmortem software graph construction. The
dependence graph is constructed by concatenating detailed samples, so that the resulting graph is
representative of the microexecution denoted by the signature sample.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 295

1. Randomly select a signature sample for the skeleton.
Call the starting PC in this sample the StartPC.

2. For each instruction i from StartPC to end of fragment
2a. Get from database all detailed samples with i’s PC.
2b. Select the detailed sample whose signature bits most closely

matches the portion of the signature sample 10 instruction
before i to 10 instructions after. The closeness of a match is
judged by the number of identical bits.

2c. Append sample’s nodes and edges to the graph (see Fig. 6).
2d. Determine PC of next instruction, i + 1 (call PC of i CurPC

and PC of i + 1 NextPC):
2d1. If i is not a branch, NextPC ← CurPC + 4
2d2. If i is a direct branch and signature bit 1 of i is 1,

Compute branch target and set NextPC equal to it
Else NextPC ← CurPC + 4

2d3. If i is a call, push target PC onto stack
For returns, pop stack (if nonempty) and set NextPC to
that PC

2d4. If i is an indirect branch, set NextPC equal to target PC in
detailed sample for i

2e. Check for illegal signature bit/opcode combinations (see text).

Fig. 7. Algorithm for constructing a graph fragment in software.

In the cases where the matching sample’s target address is not correct, there
could be serious error in the graph fragment construction. To mitigate the error,
we take advantage of the fact that some combinations of opcodes and signature
bits could never occur down a correctly determined path. For instance, if an
instruction on the long signature sample has its first bit set to one, it should be
a load, store, or branch. If the computed PC (step 2d in the algorithm) does not
correspond to one of these instruction types in the program binary, we know
that there is an inconsistency and abort building the graph segment—building
such a graph would lead to error in the results. We have found that 95–100%
of errant graphs are indeed discarded using this technique.

Finally, note that for return instructions whose call counterpart occurs within
the graph fragment, a stack of call addresses can provide the correct target
address. If the call counterpart is outside the graph fragment, a return is treated
the same as an indirect branch.

6. MEASURING PROFILER ACCURACY

In this section, we measure the accuracy of the shotgun profiler. We evaluate
its accuracy by comparing the breakdowns it produces with the more accurate
breakdowns produced from running multiple idealized simulations. We also
break down the sources of error to understand better how the profiler could be
improved in the future.

We find that the profiler’s error in icost measurement is, on average, 9% off
of the baseline, as measured via multiple simulations (methodology explained
later). From the breakdown of error sources, we found that the modeling of the
microprocessor as a dependence graph contributed more error than either the
sparse sampling or the profiler algorithm.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



296 • B. A. Fields et al.

Table VII. Configuration of Simulated Processor

Dynamically
scheduled core

64-entry instruction window, 6-way issue, 15-cycle pipeline, perfect
memory disambiguation, fetch stops at second taken branch in a cycle

Branch prediction Combined bimodal (8k entry)/gshare (8k entry) predictor with an 8k
meta predictor, 4k entry 2-way associative BTB, 64-entry return
address stack

Memory system 32 KB 2-way associative L1 instruction and data (2-cycle latency) caches,
shared 1 MB 4-way associative 12-cycle latency L2 cache, 100-cycle
memory latency, 128-entry DTLB; 64-entry ITLB, 30-cycle TLB miss
handling latency

Functional units
(latency)

6 integer ALUs (1), 2 Integer MULT (3). 4 floating ALU (2), 2 Floating
MULT/DIV (4/12), 3 LD/ST ports (2)

6.1 Methodology

We simulate the out-of-order processor described in Figure 7, using the
SPEC2000int suite (as optimized Alpha binaries) with reference inputs. Our
simulator is built upon the SimpleScalar tool set [Burger and Austin 1997]. We
skipped eight billion dynamic instructions and then performed detailed timing
simulation for 100 million.

We use the multiple-simulation approach as our baseline (Table VII). There
is one simulation for each category in the breakdown where the simulation
idealizes the appropriate set of event classes (see Table I in Section 2 for exam-
ples of idealizations). For example, for the category labeled “bmisp + dmiss,” a
simulation is run where (simultaneously) all branch mispredictions are made
correct and all loads hit in the level-one cache.

6.2 Discussion of Category Errors

Table VIII shows breakdowns computed with the profiler relative to multiple
simulations for the categories in Table III(a). A couple of observations can be
made from the breakdowns. First, the type of interaction (parallel or serial) is
always the same with the profiler as the multisim baseline. Second, the profiler
comes very close to the multisim baseline most of the time, typically with error
less than a few percent of the overall execution time.

There are some examples, however, where the error in the icost calculation
is substantial. One category that tends to exhibit significant error for some
benchmarks is the instruction window (win). For example, for gap, the error
is −11.3% and for vortex, it is −8.4%. The cause of this error is the profiler’s
inability to completely accurately idealize the instruction window. Specifically,
since the graph fragments constructed by the profiler are of finite size, it is not
possible to accurately model a very large sized instruction window—needed
when performing the idealization. Thus, the effective window size modeled by
the profiler for idealization purposes will be smaller than that of the simulator,
and thus it will likely under-predict the window’s cost. This error could be
reduced by increasing the size of the graph fragments constructed.

6.3 Sources of Error

In Table IX, we attempt to understand the sources of error in the profiler. To
this end, the breakdowns of Table III(a) are computed in four different ways.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 297

Table VIII. Measuring Accuracy of Profiler

bzip crafty eon gap
multisim profiler error multisim profiler error multisim profiler error multisim profiler error

dl1 20.3 23.2 +2.9 23.4 24.2 +0.8 17.0 17.7 +0.7 12.6 12.6 +0.0
win 15.9 15.5 −0.4 17.3 15.4 −1.9 18.2 15.2 −3.0 41.2 29.9 −11.3
bw 6.5 3.9 −2.5 8.7 6.7 −2.0 10.5 6.6 −3.9 4.1 2.4 −1.7

bmisp 37.3 38.3 +1.1 26.0 24.1 −1.9 14.2 14.4 +0.2 11.3 11.4 +0.1
dmiss 23.3 23.5 +0.2 6.9 6.5 −0.4 0.8 0.6 −0.2 22.6 21.8 −0.8
shalu 8.9 10.0 +1.1 10.7 11.2 +0.5 4.5 5.2 +0.7 13.8 11.2 −2.6
lgalu 0.3 0.3 +0.0 0.7 0.8 +0.1 12.6 12.1 −0.5 5.3 5.7 +0.4
imiss 0.0 0.2 +0.2 0.7 0.2 −0.5 9.2 8.7 −0.5 1.3 0.9 −0.4

dl1 + win −4.8 −5.2 −0.5 −11.5 −11.7 −0.2 −7.7 −7.2 +0.5 −6.3 −6.1 +0.2
dl1 + bw 6.9 5.9 −1.2 10.0 10.5 +0.5 6.9 6.8 −0.1 3.0 3.3 +0.3

dl1 + bmisp −9.1 −9.6 −0.4 −4.9 −4.2 +0.7 −3.8 −3.9 −0.1 −2.9 −2.7 +0.2
dl1 + dmiss −0.8 −0.7 +0.1 −0.4 −1.3 −0.9 −0.2 −0.3 −0.1 0.4 0.3 −0.1
dl1 + shalu −3.5 −4.3 −0.8 −4.0 −4.5 −0.5 −0.6 −1.0 −0.4 −0.3 −2.1 −1.8
dl1 + lgalu −0.2 −0.3 −0.1 0.3 0.2 −0.1 −0.5 −0.8 −0.3 −0.2 −0.5 −0.3
dl1 + imiss 0.0 0.0 +0.0 0.0 0.0 −0.0 1.3 1.0 −0.3 0.3 0.4 +0.1

gcc gzip mcf parser
multisim profiler error multisim profiler error multisim profiler error multisim profiler error

dl1 17.4 17.0 −0.4 29.9 31.7 +1.8 7.1 7.4 +0.3 17.9 19.1 +1.2
win 14.4 13.0 −1.4 14.7 13.1 −1.6 4.8 4.3 −0.5 17.1 13.2 −3.9
bw 9.0 7.1 −1.9 6.6 5.5 −1.1 0.6 0.4 −0.2 4.0 3.0 −1.0

bmisp 23.9 21.5 −2.4 23.8 23.4 −0.4 25.3 25.1 −0.2 15.8 14.9 −0.9
dmiss 25.5 27.7 +2.2 8.1 7.8 −0.3 80.8 79.0 −1.8 32.1 28.1 −4.0
shalu 5.4 4.7 −0.7 18.9 20.7 +1.8 1.4 1.4 +0.0 17.9 17.1 −0.8
lgalu 0.6 0.2 −0.4 0.5 0.5 +0.0 0.0 0.0 +0.0 0.1 0.1 −0.0
imiss 2.1 1.4 −0.7 0.1 0.0 −0.1 −0.0 −0.0 +0.0 0.1 0.1 +0.0

dl1 + win −4.1 −3.5 +0.6 −9.3 −9.6 −0.3 −0.0 −0.1 −0.1 −6.3 −6.2 +0.1
dl1 + bw 10.9 12.4 +1.5 6.2 5.7 −0.5 0.4 0.3 −0.1 4.9 4.9 −0.0

dl1 + bmisp −6.3 −5.4 +0.9 −3.6 −3.1 +0.5 −2.3 −2.3 −0.0 −2.5 −2.4 +0.1
dl1 + dmiss −0.9 −1.4 −0.5 −0.2 −1.3 −1.1 −0.4 −0.5 −0.1 −0.9 −1.7 −0.8
dl1 + shalu −2.1 −1.4 +0.7 −7.6 −9.4 −1.8 −0.2 −0.1 +0.1 −4.1 −4.9 −0.8
dl1 + lgalu −0.5 −0.2 +0.3 −0.5 −0.5 −0.0 0.0 0.0 −0.0 −0.1 −0.0 +0.1
dl1 + imiss 0.3 0.2 −0.1 −0.0 −0.0 +0.0 0.0 0.0 +0.0 −0.0 −0.0 +0.0

perl twolf vortex vpr
multisim profiler error multisim profiler error multisim profiler error multisim profiler error

dl1 30.7 31.3 +0.6 17.1 19.2 +2.1 27.4 30.4 +3.0 18.5 20.3 +1.8
win 6.2 5.6 −0.6 24.2 22.3 −1.9 42.8 34.4 −8.4 22.9 21.9 −1.0
bw 10.3 8.1 −2.2 4.5 3.5 −1.0 8.0 5.3 −2.7 5.9 4.4 −1.5

bmisp 35.4 38.0 +2.6 22.2 22.6 +0.4 1.5 0.8 −0.7 23.4 23.1 −0.3
dmiss 1.3 0.8 −0.6 34.3 34.3 −0.0 19.8 18.7 −1.1 32.5 32.1 −0.4
shalu 7.4 8.2 +0.8 7.7 7.7 −0.0 3.9 5.4 +1.5 7.3 8.2 +0.9
lgalu 0.7 0.6 −0.1 4.2 4.2 +0.0 1.5 1.5 −0.0 4.1 4.0 −0.1
imiss 5.3 2.7 −2.6 0.1 0.0 −0.1 3.3 0.9 −2.4 0.0 0.0 −0.0

dl1 + win −5.9 −5.4 +0.5 −3.6 −4.5 −0.9 −25.7 −27.0 −1.3 −6.2 −6.9 −0.7
dl1 + bw 9.9 9.7 −0.2 1.7 1.5 −0.2 17.7 17.7 +0.0 1.9 2.1 +0.2

dl1 + bmisp −8.4 −8.2 +0.2 −5.8 −5.8 +0.0 −0.2 −0.1 +0.1 −4.6 −4.4 +0.2
dl1 + dmiss −0.1 −0.1 −0.0 −0.1 −1.9 −1.8 −1.6 −1.2 +0.4 −1.4 −2.2 −0.8
dl1 + shalu −2.2 −2.0 +0.2 −0.5 −0.3 +0.2 −3.3 −4.7 −1.4 −1.5 −1.9 −0.4
dl1 + lgalu −0.7 −0.5 +0.2 −0.0 −0.1 −0.1 −1.2 −1.3 −0.1 −0.3 −0.6 −0.3
dl1 + imiss 1.0 0.6 −0.4 −0.0 −0.0 +0.0 0.5 0.1 −0.4 0.0 0.0 +0.0

Validation was performed on the same CPI contribution breakdown (with results expressed in percent of total
CPI) as in Table III(a). The multisim column shows the value for each category computed through the multiple-
simulation approach. This serves as the baseline for measuring accuracy. The profiler column shows the values
the profiler computed, while the error column is the difference between the profiler and multisim. The single
largest percent error (considering categories greater than 5%) for each benchmark is in bold.

multisim is the baseline, as above. fullgraph is the breakdown computed with
the dependence graph of the entire program, just as was done for the results
of Section 4. graphfrag is the breakdown computed assuming the graph frag-
ments constructed by the profiler were perfect (i.e., exactly as they exist in
the full graph), and profiler is the breakdown as computed on the imperfect

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



298 • B. A. Fields et al.

Table IX. Sources of Errors for the Shotgun Profiler

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
multisim→fullgraph 11.1 7.0 9.1 8.4 8.6 14.3 2.2 4.9 7.9 5.1 9.7 9.0
fullgraph→graphfrag 3.6 2.8 3.5 3.2 3.1 2.1 0.2 3.3 2.9 2.4 4.0 2.4
graphfrag→profiler 4.9 3.4 2.3 3.7 10.6 3.9 0.1 2.1 5.4 3.4 4.6 5.0
multisim→fullgraph 11.1 7.0 9.1 8.4 8.6 14.3 2.2 4.9 7.9 5.1 9.7 9.0
multisim→graphfrag 12.9 7.8 11.0 8.9 9.5 13.9 2.4 6.9 9.8 6.0 13.0 9.4
multisim→profiler 11.1 7.8 9.5 8.9 11.7 9.3 2.5 9.0 12.6 3.7 12.4 9.2

The breakdowns of Table III(a) were computed four ways to better understand the sources of error in the profiler.
multisim is the breakdown computed via multiple simulations; it serves as the baseline for comparison. fullgraph
indicates the dependence graph of the entire program was used, as in Section 4; graphfrag is the breakdown
computed assuming the graph fragments constructed by the profiler were perfect; and profiler is the breakdown
as computed on the imperfect graph fragments actually constructed by the profiler (described in Section 5). The
numbers presented are the average percent difference in the categories (excluding categories under 5%) between
the two schemes in the first column of each row. For instance, the multisim→fullgraph row is determined by
computing abs(multisim−fullgraph)/(multisim) for each category over 5% and averaging the results. Note that
the multisim→profiler row is the total error for the profiler.

graph fragments actually constructed by the profiler (using the signature-based
algorithm).

The first series of measurements examines the accuracy of each step of the
full profiling scheme. multisim→fullgraph is the error introduced by modeling
the machine as a dependence graph, as opposed to using a detailed simulator.
Typically, this error is less than 10%; but, nonetheless, it does often contribute
the largest fraction of the overall error of the profiler. It can potentially be
reduced by increasing the detail of the model to include currently unmodeled
aspects of the microarchitecture, such as contention for memory busses.

The fullgraph→graphfrag row shows the error caused by measuring the
breakdowns using only a relatively small number of graph fragments as op-
posed to the entire graph. This sampling error is a significant component of the
overall error for some benchmarks, for example, vortex. The good news here is
that this error can be reduced by simply running the program longer to collect
more samples.

The graphfrag→profiler row shows the error introduced by the profiler’s
signature-based algorithm for constructing graph fragments. The error is due to
two factors: (1) the signature not being sufficient to identify the correct detailed
sample to paste into the graph and (2) a signature-matching detailed sample
not being in the database. The second error factor can be reduced by simply
collecting more samples, while the first requires some redesign of the signature
bits.

For most benchmarks, the signature-based algorithm contributes only a mod-
est amount to the error, typically less than 5%. An exception is gcc, with an error
of 10.6%. Upon closer inspection, we found that this large error is primarily due
to the target address of indirect branches not being determined correctly, lead-
ing to many graphs being discarded (see Section 5.4.1). One way to reduce the
error would be to construct smaller graph fragments, so that the probability
of encountering a difficult indirect branch in any one fragment is reduced. We
found that reducing the fragment size from 2000 to 1000 reduced the error to
5.1% (but, averaged over all benchmarks, the larger size improved accuracy).

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 299

Another method would be to enhance the signature to improve its ability to
distinguish indirect branch targets, for example, by adding an additional bit
that is set equal to one of the bits of the PC.

The second series of measurements shows the error of three of the break-
down computations—fullgraph, graphfrag, and profiler—relative to multisim.
The purpose of these measurements is to show how each individual source of
error contributes to the overall error of the profiler. Notice that the overall error
is not always monotonically increasing as each new source of error is included.
For example, the multisim→graphfrag error for eon is 11.0%, while the mul-
tisim→profiler error is less, 9.5%. The reason is that the error introduced at
each stage could be positive or negative, independent of the direction of errors
at previous stages. Thus, it is statistically likely that the errors will compensate
sometimes. In the case of the example, for eon, the graphfrag→ profiler error
was mostly in the opposite direction of the errors in the previous two stages.

The overall error for the profiler is shown in the last row of Table IX, labeled
multisim→ profiler. The range of errors for the benchmarks is from 3% (for
mcf) to 13% (for perl), with the average error being 9%. Since the ability to
compute costs and icosts from hardware profiles is qualitatively new, standards
for accuracy have not been set; but an error of 9% seems small enough to perform
meaningful analysis. If a smaller error is desired, increasing the precision of
the graph model appears to offer the greatest opportunity for improvement.

7. APPLICATIONS OF THE HARDWARE PROFILER

Section 4 illustrated through a case study how interaction costs can be used to
help microarchitects during the design process. For that use of our methodology,
a simulator implementation is sufficient. Although a complete study of appli-
cations for the hardware profiler is beyond the scope of this paper, we outline
in this section a few applications that seem to be naturally suited for the anal-
ysis the profiler enables. Recall that the dependence graphs constructed by the
profiling infrastructure can be used to compute a variety of metrics, including
criticality, slack, simple cost, as well as interaction cost.

Power-saving reconfiguration. One popular approach to reducing power and
energy consumption is to resize hardware resources so that they just meet the
needs of a particular application [e.g., Bahar and Manne 2001; Sasanka et al.
2002]. This resizing is beneficial, since smaller resources consume less power.
There are several ways the hardware profiler can help:

— Downsizing resources. Once the graph is constructed from data collected by
the profiler, a slack analysis can determine how much each resource can be
decreased in size.

— Upsizing resources. Increasing the size of a resource (after it has been previ-
ously decreased) when the demands of the application become greater, has
been identified as a difficult problem [Bahar and Manne 2001]. The profiler
makes it easy, however, since if the cost of the resource is high, it would be
logical to increase its size.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



300 • B. A. Fields et al.

— Interacting resources. If two resources serially interact to a significant degree,
it may be best to increase the size of only one of the two resources, since that
will provide the bulk of the benefit. On the other hand, if there is a parallel
interaction, both resources need to be increased. Finally, if the resources
are independent (no interaction), they can be resized in isolation without
loss of efficiency. Thus, determining that two resources are independent is
very valuable, since policy decisions can be made in a distributed manner,
without centralized control. (This distributed property is particularly useful
for processors with multiple domains of dynamic voltage scaling on a single
processor [Semeraro et al. 2002].)

Efficient preexecution. Preexecution is a proposal for a prefetching mecha-
nism that constructs a slice of a program leading up to a performance-degrading
event (e.g., a cache miss) and executes the slice earlier than it would through
normal processing [Roth and Sohi 2000; Zilles and Sohi 2001; Collins et al.
2001]. With interaction costs, preexecution mechanisms can be made more effi-
cient in two ways. First, if two loads have a large serial interactaction, preexe-
cuting one load has most of the benefit of pre-executing both. Since the overhead
of processing a pre-execution slice is relatively high, exploiting this character-
istic could provide substantial benefit. For maximum overhead reduction, only
the load associated with the shortest slice should be pre-executed.

Second, if two loads have a parallel interaction, both loads need to be pre-
executed to get any benefit. If only simple costs were measured (without con-
sidering interactions), it is possible that neither of the two loads would be
pre-executed, resulting in a lost opportunity.

Resource-aware code scheduling. Since the profiler produces a graph that
contains information not only about the execution of instructions but also the
machine’s hardware resources, a compiler can perform more intelligent code
scheduling than was previously possible. In particular, the compiler could ex-
ploit interactions to eliminate hardware resource bottlenecks. For instance, say
a data-cache access serially interacts with a window stall (something that was
found to occur empirically in Section 4). Since a serial interaction provides mul-
tiple options for eliminating the same set of cycles, scheduling the data-cache
access earlier may reduce the cost of the window stall.

8. RELATED WORK

Previous work into microarchitectural performance analysis takes on many
forms. Event counters and utilization metrics [Anderson et al. 1997; Zagha
et al. 1996] have become standard and, before out-of-order processors, was
all that was needed. When instructions execute in parallel, however, simply
counting events is not enough to know their effect on execution time (e.g., two
completely parallel cache misses cost the same as one, but a counter will re-
port two). In response to the problems with counters, ProfileMe [Dean et al.
1997] supports pairwise sampling, where the latencies and events of two si-
multaneously in-flight instructions are recorded. With pairwise samples, one
can determine the degree that two instructions’ latencies overlap in time. Also,

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 301

the Pentium 4 [Intel 2003; Sprunt 2002] has a limited ability to account for
overlapping cache misses. These performance-monitoring facilities do not ap-
pear amenable to computing a complete breakdown of execution time, however.
We introduce interaction cost to provide this level of interpretability.

There are several works that aim to interpret the parallelism of out-of-order
processors through fetch [Fahs et al. 2001; Patel et al. 1998] and commit at-
tribution [Pai et al. 1997; Ranganathan et al. 1998; Rosenblum et al. 1995;
Steffan et al. 2000; Rajwar and Goodman 2001; Hennessy and Patterson 2002],
and at least one that combines attribution with some dependence informa-
tion [Sasanka et al. 2002]. In these approaches, specific instructions and events
are assigned blame for wasted fetch bandwidth or commit bandwidth, respec-
tively. We have found that these analyses do, indeed, accurately compute the
cost of certain classes of events, which was their intended purpose. They have
not been used to compute interaction costs, however.

Several researchers have explored criticality and slack, two useful metrics
for exploiting the parallelism in out-of-order processors [Srinivasan and Lebeck
1998; Fisk and Bahar 1999; Casmira and Grunwald 2000; Tune et al. 2001,
2002; Fields et al. 2001, 2002; Seng et al. 2001; Srinivasan et al. 2001; Semeraro
et al. 2002; Rakvic et al. 2002]. Our notion of interaction cost extends these
works by answering questions about nearly-critical paths, such as (i) “Which
critical dependences are most important to optimize?” and (ii) “Which nearly-
critical dependences should I optimize along with the critical ones?”

One of the above papers, by Tune et al. [2002], was the first to use the depen-
dence graph to compute the cost of individual instructions in a simulator (we
employ their algorithm). The focus of our paper is on how the costs of not only
instructions but also machine resources interact in an out-of-order processor.
We also provide a design for a hardware profiler, so that the analysis can be
performed on real systems.

Karkhanis and Smith propose an analytical model for out-of-order super-
scalar processors [Karkhanis and Smith 2004]. The primary advantages of their
model are its simplicity and ability to provide quick insights by evaluating an-
alytical equations as opposed to resimulating (or performing a graph analysis).
Its disadvantages include a lack of accounting for interactions and its specificity
to out-of-order superscalar processors. In contrast, the interaction-cost analysis
introduced in our work is applicable to any parallel system. The same is true
of our shotgun profiler after suitable alterations are made to the graph model.

Note that Karkhanis and Smith confirm empirically that in the microarchi-
tecture they study the interactions (called “overlaps” in their paper) of branch
mispredicts and icache misses with dcache misses are relatively insignificant
(in other words, that the resources are nearly independent). This discovery of
near independence permits them to ignore interactions with a low, bounded er-
ror. For other resource classes or microarchitectures, interactions may be much
more significant, as illustrated by the case study in this paper.

The MACS model of Boyd and Davidson [1993] assigns blame for perfor-
mance problems to one of four factors: the machine, application, compiler-
generated code, or compiler scheduling. They accomplish this by idealizing one
factor at a time (to determine its cost). In comparison to this work, we focus

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



302 • B. A. Fields et al.

only on fine-grain microarchitectural events (as opposed to compiler decisions)
and introduce a methodology for measuring interactions.

Yi et al. [2003] use a Plackett and Burman design to reduce the number
of simulations required in a sensitivity study. However, their work does not
quantify and interpret specific interactions between events. Allocation and
analysis of variance (ANOVA) techniques do, in fact, quantify these interac-
tions [Jain 1991]. ANOVA is inadequate for our purposes, however, for two rea-
sons: (1) squaring of effects reduces their interpretability and (2) no distinction
is made between positive and negative (parallel and serial) interactions.

9. CONCLUSION

The primary contribution of our work is establishing interaction cost as a
methodology for bottleneck analysis in complex, modern microarchitectures.
Interaction cost permits one to account for all cycles of execution time, even in
an out-of-order processor, where instructions are processed in parallel.

We have also provided a relatively inexpensive hardware profiler design
(close to the complexity of ProfileMe [Dean et al. 1997]) that enables measuring
interaction cost in real systems. With this technology, not only microarchitects,
but also software engineers, compilers, and dynamic optimizers can make use
of the deeper understanding of bottlenecks.

For instance, feedback-directed compilers could favor prefetching cache
misses that serially interact with branch mispredicts. Performance-conscious
software engineers could identify the most important procedures and instruc-
tions for optimization and determine why the performance problems exist.
Dynamic optimizers could save power by intelligently reconfiguring hardware
structures. Finally, real workloads could be analyzed on real hardware, such as
large web servers running a database.

ACKNOWLEDGMENTS

We thank Mary Vernon, David Wood, and Amir Roth for contributions to
this work. We also thank Sarita Adve, Bradford Beckmann, Mark Buxton,
Jarrod Lewis, David Mandelin, Milo Martin, Anat Shemer, Dan Sorin, Manu
Sridharan, Renju Thomas, Min Xu, and the anonymous reviewers for com-
ments on drafts of this paper. Finally, we thank the Wisconsin Architecture
affiliates for feedback on early presentations of this work. This work was sup-
ported in part by National Science Foundation grants (CCR-0326577, CCR-
0324878, CCR/CNS-0225610, EIA/CNS-0205286, CCR-0105721, EIA-0103670,
EIA-9971256, CCF-0085949, CNS-0326577, CCF-0243657, and CDA-9623632),
an NSF CAREER award (CCR-0093275), the UC MICRO Program, DARPA
HPCS grant to IBM Corp., IBM Faculty Partnership Award, a Wisconsin
Romnes Fellowship, and donations from IBM, Intel, Microsoft, and Sun Mi-
crosystems. Hill’s sabbatical is partially supported by the Spanish Secretaría
de Estado de Educución y Universidades. Hill has a significant financial in-
terest in Sun Microsystems. Fields was partially supported by NSF Graduate
Research and Intel Foundation Fellowships.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



Interaction Cost and Shotgun Profiling • 303

REFERENCES

ANDERSON, J. M., BERC, L. M., DEAN, J., GHEMAWAT, S., HENZINGER, M. R., LEUNG, S. A., SITES, R. L.,
VANDEVOORDE, M. T., WALDSPURGER, C. A., AND WEIHL, W. E. 1997. Continuous profiling: Where
have all the cycles gone? ACM Trans. Comput. Syst..

BAHAR, R. I. AND MANNE, S. 2001. Power and energy reduction via pipeline balancing. In 28th
International Symposium on Computer Architecture.

BORCH, E., TUNE, E., MANNE, B., AND EMER, J. 2002. Loose loops sink chips. In 8th International
Symposium on High-Performance Computer Architecture.

BOYD, E. L. AND DAVIDSON, E. S. 1993. Hierarchical performance modeling with MACS:
A case study of the Convex C-240. In 20th International Symposium on Computer
Architecture.

BURGER, D. C. AND AUSTIN, T. M. 1997. The Simplescalar Tool Set, version 2.0. Tech. Rep., CS-TR-
1997–1342, University of Wisconsin, Madison.

CALDER, B., REINMAN, G., AND TULLSEN, D. 1999. Selective value prediction. In 26th International
Symposium on Computer Architecture.

CASMIRA, J. AND GRUNWALD, D. 2000. Dynamic instruction scheduling slack. In Kool Chips Work-
shop in Conjunction with MICRO 33.

COLLINS, J. D., WANG, H., TULLSEN, D. M., HUGHES, C., LEE, Y., LAVERY, D., AND SHEN, J. P. 2001.
Speculative precomputation: Long-range prefetching of delinquent loads. In 28th International
Symposium on Computer Architecture.

DEAN, J., HICKS, J. E., WALDSPURGER, C. A., WEIHL, W. E., AND CHRYSOS, G. 1997. ProfileMe: Hard-
ware support for instruction-level profiling on out-of-order processors. In 30th International Sym-
posium on Microarchitecture.

FAHS, B., BOSE, S., CRUM, M., SLECHTA, B., SPADINI, F., TUNG, T., PATEL, S. J., AND LUMETTA, S. S.
2001. Performance characterization of a hardware mechanism for dynamic optimization. In
34th International Symposium on Microarchitecture.

FIELDS, B., BODı́K, R., AND HILL, M. D. 2002. Slack: Maximizing performance under technological
constraints. In 29th International Symposium on Computer Architecture.

FIELDS, B., RUBIN, S., AND BODı́K, R. 2001. Focusing processor policies via critical-path prediction.
In 28th International Symposium on Computer Architecture.

FISK, B. R. AND BAHAR, R. I. 1999. The non-critical buffer: Using load latency tolerance to improve
data cache efficiency.

FLEISCHMANN, R. D. ET AL. 1995. Whole-genome random sequencing and assembly of haemophilus-
influenzae. Science 269, 496–512.

HARTSTEIN, A. AND PUZAK, T. R. 2002. The optimum pipeline depth for a microprocessor. In 29th
International Symposium on Computer Architecture.

HENNESSY, J. L. AND PATTERSON, D. A. 2002. Computer Architecture: A Quantitative Approach, 3rd
ed. Morgan Kaufmann Publishers, Los Altos, CA.

HRISHIKESH, M. S., JOUPPI, N. P., FARKAS, K. I., BURGER, D., KECKLER, S. W., AND SHIVAKUMAR, P. 2002.
The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. In 29th International
Symposium on Computer Architecture.

INTEL. 2003. Intel Pentium 4 Processor Manual. Available at http://developer.intel.com/design/
pentium4/manuals/.

JAIN, R. 1991. The Art of Computer Systems Performance Analysis. Wiley Professional Computing.
KARKHANIS, T. AND SMITH, J. E. 2004. A first-order superscalar processor model. In 31st Interna-

tional Symposium on Computer Architecture.
LIPASTI, M. H. AND SHEN, J. P. 1996. Exceeding the dataflow limit via value prediction. In 29th

International Symposium on Microarchitecture.
PAI, V. S., RANGANATHAN, P., AND ADVE, S. V. 1997. The impact of instruction-level parallelism on

multiprocessor performance and simulation methodology. In 3rd International Symposium on
High Performance Computer Architecture.

PATEL, S., EVERS, M., AND PATT, Y. 1998. Improving trace cache effectiveness with branch promotion
and trace packing. In 25th International Symposium on Computer Architecture.

RAJWAR, R. AND GOODMAN, J. R. 2001. Speculative lock elision: Enabling highly concurrent multi-
threaded execution. In 34th International Symposium on Microarchitecture.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.



304 • B. A. Fields et al.

RAKVIC, R., BLACK, B., LIMAYE, D., AND SHEN, J. P. 2002. Non-vital loads. In 8th International
Symposium on High-Performance Computer Architecture.

RANGANATHAN, P., GHARACHORLOO, K., ADVE, S. V., AND BARROSO, L. A. 1998. Performance of database
workloads on shared-memory systems with out-of-order processors.

ROSENBLUM, M., BUGNION, E., HERROD, S. A., WITCHEL, E., AND GUPTA, A. 1995. The impact of
architectural trends on operating system performance. In 15th Symposium on Operating Systems
Principles.

ROTH, A. AND SOHI, G. 2000. Speculative Data-Driven Sequencing for Imperative Programs. Tech.
Rep. CS-TR-2000-1411, University of Wisconsin, Madison.

SASANKA, R., HUGHES, C. J., AND ADVE, S. V. 2002. Joint local and global hardware adaptations for
energy. In 10th International Conference on Architectural Support for Programming Languages
and Operating Systems.

SEMERARO, G., MAGKLIS, G., BALASUBRAMONIAN, R., ALBONESI, D., DWARKADAS, S., AND SCOTT, M. 2002.
Energy-efficient processor design using multiple clock domains with dynamic voltage and fre-
quency scaling. In 8th International Symposium on High-Performance Computer Architecture.

SENG, J. S., TUNE, E. S., AND TULLSEN, D. M. 2001. Reducing power with dynamic critical path
information. In 34th International Symposium on Microarchitecture.

SODANI, A. AND SOHI, G. S. 1997. Dynamic instruction reuse. In 24th International Symposium
on Computer Architecture.

SPRANGLE, E. AND CARMEAN, D. 2002. Increasing processor performance by implementing deeper
pipelines. In 29th International Symposium on Computer Architecture.

SPRUNT, B. 2002. Pentium 4 performance-monitoring features. IEEE Micro, July.
SRINIVASAN, S. T., CHING JU, R. D., LEBECK, A. R., AND WILKERSON, C. 2001. Locality vs. criticality.

In 28th International Symposium on Computer Architecture.
SRINIVASAN, S. T. AND LEBECK, A. R. 1998. Load latency tolerance in dynamically scheduled pro-

cessors. In 31st International Symposium on Microarchitecture.
STEFFAN, J. G., COLOHAN, C. B., ZHAI, A., AND MOWRY, T. C. 2000. A scalable approach to thread-level

speculation. In 27th International Symposium on Computer Architecture.
TUNE, E., LIANG, D., TULLSEN, D. M., AND CALDER, B. 2001. Dynamic prediction of critical path

instructions. In 7th International Symposium on High-Performance Computer Architecture.
TUNE, E., TULLSEN, D., AND CALDER, B. 2002. Quantifying instruction criticality. In 11th Interna-

tional Conference on Parallel Architectures and Compilation Techniques.
YI, J. J., LILJA, D. J., AND HAWKINS, D. M. 2003. A statistically rigorous approach for improv-

ing simulation methodology. In 9th International Symposium on High Performance Computer
Architecture.

ZAGHA, M., LARSON, B., TURNER, S., AND ITZKOWITZ, M. 1996. Performance analysis using the MIPS
R10000 performance counters. In Supercomputing ’96.

ZILLES, C. AND SOHI, G. 2001. Execution-based prediction using speculative slices. In Proceedings
of the 28th International Symposium on Computer Architecture.

Received April 2004; revised June 2004; accepted June 2004

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 3, September 2004.


