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Abstract more resources are available at multiple “quality” levels.

For example, clustering introduce bypasses of multiple
Many emerging processor microarchitectures seek to |atencies, multi-speed functional units offer several exe-
manage technological constraints (e.g., wire delay, cution latencies and effective issue bandwidths, and grid
power, and circuit complexity) by resorting taon- architectures come with a non-uniform L1-cache latency.
uniform designs that provide resources at multiple qual- A key observation thus is that constraint-aware de-
ity levels (e.g., fast/slow bypass paths, multi-speed func- signs often turn theconstraint problem into a control
tional units, and grid architectures). In such designs, problem. Using acontrol policy, these designs hide non-
the constraint problem becomes a control problem, and uniformity by steering each dynamic instruction to an ap-
the challenge becomes designingantrol policy that propriate resource. For example, clustering comes with
mitigates the performance penalty of the non-uniformity. a register-dependence instruction-steering policy [8],
Given the increasing importance of non-uniform control - multi-speed functional units come with a criticality-based
policies, we believe it is appropriate to examine them in  steering policy [13], and grid-architecture come with a
their own right. static hyperblock scheduler [11].

To this end, we develogack for use in creating con- Common to these control policies is the goal of at-
trol policies that match program execution behavior to tempting to eliminate the performance impact of non-
machine design. Intuitively, the slack of a dynamic in- uniformity. The common underlying goal motivates this
structioni is the number of cyclescan be delayed with  paper to treat theon-uniformcontrol as a problem in its
no effect on execution time. This property makes slacka  own right. Specifically, we ask: “Should control poli-
natural candidate for hiding non-uniform latencies. cies be guided by the same inputs?” and if so, “What

We make three contributions in our exploration might those unifying inputs be?” The answer to these
of slack. First, we formally define slack, distinguish questions may facilitate effective design of future control
three variants Ipcal, global and apportioned), and policies, especially in aggressively non-uniform designs
perform a limit study to show that slack is prevalent where multiple control policies must coexist.
in our SPEC2000 workload. Second, we show how A common practice is to guide the policies with (ad
to predict slack in hardware. Third, we illustrate how hoc) design-specific inputs (such as register-dependence
to create a control policy based on slack for steering information that guides cluster steering). A natural and
instructions among fast (high power) and slow (lower more general input is theiticality of a dynamic instruc-
power) pipelines. tion. Motivated by the observation that the performance

penalty is eliminated if low-quality resources never ap-
pear on an execution’s critical path, one may use a crit-

1 Introduction icality predictor [4,13, 16] in an attempt to steer critical
instructions to high-quality resources.
Recent years have witnessed a proliferation of technol-  Unfortunately, criticality has several limitations.

ogy constraint-aware design proposals. For example, First, criticality does not tell us how many cycles a
physical clustering of functional units has attacked wire non-critical instruction can be delayed without impact.
delays [7, 8], multi-frequency functional-units have ad- Second, criticality partitions instructions into only two
dressed power consumption [13], and grid architectures classes (critical and non-critical), making it less suit-
have sought to reduce cycle time [11]. More importantly, able for multi-way control policies, which are needed
it appears that wire, power, and circuit-complexity trends When resources are available at more than two quality
will make constraint-aware designs even more prevalent levels. Third, the relative sizes of the two classes may
in the future. not match the balance desired by the control policy (typ-

A challenging feature of many constraint-aware de- ically, 95% of instructions are non-critical, which makes
signs is that they introduagon-uniformity, where one or it difficult to obtain, for instance, a 1:1 ratio).
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To address these deficiencies, we advocate guiding2 Characterizing Microarchitectural Slack

control policies withslack. Slack is a concept taken from
network analysis [1] and recently applied to microarchi-
tecture [3, 6, 12].Intuitively, the slack of a dynamic in-
struction ¢ is the number of cycles i can be delayed with

no effect on the execution. Slack is inherently more pow-
erful than criticality: since it reveals the “degree of crit-
icality” of an instruction, it enables splitting instructions

This section presents a study of microarchitectural slack.
We explain its nature, measure its amount, and also dis-
cuss its implications on what non-uniform microarchitec-
tures it encourages us to build.

Theslack of an instructiori is the number of cycles
1 can be delayed without increasing the overall execution

into more than two classes and tuning their sizes to match time. (Note that in this section, whenever we refer to

the needs of the various non-uniform resources.
Despite its simple definition, slack is a complex phe-
nomenon. Even simplgxploring its potential warrants
closer examination of the definition. In particular, does
“no effect on the execution” mean no effect on any dy-
namic instruction or no effect on the last dynamic instruc-

aninstruction, we mean alynamic instruction.) Before
conducting our experiments, we must carefully refine this
seemingly simple definition and develop algorithms for
its efficient computation. In the following subsections,
we address four main issues:

tion? Furthermore, how does one compute slack without Modeling microarchitectural slack (Section 2.1): In a

having to delay the instruction and observing whether ex-
ecution time increased? The taskeaxploiting slack in
practice poses further challenges. In particular, how does
one build a dynamic slack predictor and how should slack
be used to guide a policy? This paper makes the follow-
ing contributions in understanding and exploiting slack:

Modeling and characterizing microarchitectural slack.
Section 2 makes three contributions. First, it defines

slack formally, using a dependence-graph model that cap-

complex processor, the impact of delaying an instruction
1 depends not only on program dependences but also on
the resource constraints of the machine. What are the im-
portant machine resources to consider when computing
slack, and how do we account for them?

Apportioning slack (Section 2.2): When an instruction
has slack, that slack can be exploited either by the instruc-
tion itself, or by its dependentinstructions. In general, the
slack can be apportioned among multiple instructions that

tures data dependences as well as microarchitectural re-will be delayed simultaneously. What is a good way to re-

source constraints [4].
slack variants—tecal, global, andapportioned—that are
appropriate to different control situations. Finally, a limit

Second, it distinguishes three port the amount and “apportioning flexibility” of slack?

Methodology (Section 2.3): To compute an optimal ap-

study reveals the existence of considerable slack. For ex- portioning of slack across multiple instructions, it is nec-

ample, 75% of dynamic instructions can be delayed by
five or more cycles with no impact on program execu-
tion time. This result provides encouragement that future
control policies may be able to use slack to hide the non-
uniformities of emerging constraint-aware designs.

Slack prediction. To apply slack in practice, Section 3
contributes two algorithms for dynamic slack prediction.
The first algorithm predictexplicit slack, i.e., the actual
value of an instruction’s slack. The second algorithm, for
which we evaluate a hardware design, predioglicit

essary to examine large segments of the execution. How
do we compute the apportioned slack efficiently?

Analysis (Section 2.4): The amount of slack affects mi-
croarchitectural decisions. What are the implications of
our empirical observations on non-uniform control poli-
cies, and on the non-uniform machines that make sense
to build in the future?

2.1 Modding Slack

slack, i.e., whether an instruction can tolerate the delay In order to experimentally determinenicroarchitec-

of a particular slow (non-uniform) resource. The predic-
tor effectively matches the slack available in thiro-
execution with the non-uniformity in thenachine design,
with the goal of hiding non-uniform delays. The predic-
tor is relatively easy to implement, since it consists of

turally accurate slack, we must understand what im-
pact delaying an instruction has on the complex mecha-
nisms of an out-of-order processor—where resource con-
straints, as opposed to data dependences, sometimes dic-
tate the amount of slack an instruction has. For exam-

only a simple state machine and the token-passing ana-ple, if no instructions data dependenticare fetched, we

lyzer of Fields, et al. [4].

Application of slack in non-uniform control. In Sec-
tion 4, we provide an example use of slack as a control

may be able to delay execution ofuntil just before it
must be committed to avoid stalling the reorder buffer.
We use the termmicroexecution to include all aspects
of a given program execution on a given microarchitec-

mechanism. We show that slack can successfully guide y,re ~ ynderstanding microexecutions is important both

a steering-and-scheduling policy on a non-uniform ma-
chine in which some pipelines (including the instruction
window, register file, and functional units) run at half the
frequency. Specifically, our slack-based policy improves

performance on such a machine by up to 20% (10% on

average) over the best existing policies, coming within
3% of a higher-power machine with all fast pipelines.

for measuring slack via offline analysis (which we ex-
plore in this section) as well as predicting slack in hard-
ware (discussed in Section 3).

A natural way to account for all microarchitectural
effects on slack is to do so indirectly (but accurately),
by employing adelay-and-observe approach: to deter-



Appears in 29th International Symposium on Computer Architecture

mine the slack of an instruction, delay its execution by Fundamentally, a dependence graph is microarchitec-
n cycles and observe if theverall execution time is in- turally accurate only when it models all dependences that
creased. If it is not, the instruction has at leastycles govern the corresponding processor (or, equivalently, its
of slack. There are two serious complications with the simulator model). To obtain a microarchitecturainsi-
practicality of this approach. First, to determine the pre- tive graph model, we use the model of Fields, et al. [4].
cise value of slack, one needs to iterate over various val- The model, summarized in Table 1 and Figure 1, accounts
ues ofn for a particular dynamic instruction, potentially ~ for in-order fetch (with edges fronD; to D, 1), in-
restarting the simulation. Second, short of executing the order commit (with edges fror@'; to C;; 1), and out-of-
whole program, it is not clear how to determine whether order execution (by constraining pairs Btnodes only
a given value of delay;, actually slowed down the exe-  with data-dependence edges). It also models fetch stalls
cution. These two problems make the delay-and-observe due to the reorder buffer (with edges betwegmodes
approach challenging for computing the slackeoéry andD-nodes) and branch mispredictions (with edges be-
dynamic instruction in the program. tween E-nodes andD-nodes, e.g..E; — Dsg). Fi-
Srinivasan, et al. [15] made the delay-and-observe ap- nally, the graph also models functional-unit contention,
proach feasible by sacrificing some accuracy. To avoid by adding observed contention cycles into the execution
restarting the whole simulation, they equipped their sim- latency (which is placed oBE andEC edges).
ulator with a capability to roll back to the delayed instruc- Once we have built the graph, we can identify the
tion (which was always a load). To avoid rolling back amount of slack an instruction has by determining how
from afar, they estimated early, using a set of heuristics, far it is from the critical path. In Figure 1, all instruc-
whether the delay actually slowed down the entire ex- tions not on the critical path (marked in bold) have some
ecution. The heuristics, such as whether the issue rateamount of slack.
drops below a threshold, resulted in a measurement error ~ While this model omits some dependences, (for ex-
of about 8%. While this methodology provided powerful ample, between loads that share a cache line), our valida-
(and reasonably efficient) analysis of load instructions, it tion described in Section 2.4 found that our slack calcu-
may be difficult to extend its delay-and-observe approach lation error is only about 1%.
to determining the slack when multiple non-load instruc-
tions are delayed (as opposed to a single load). 2.2 Apportioning Slack
To avoid the problems with the delay-and-observe ap-
proach, our study uses an off-line method based on con- While the dependence-graph model solves the problem
structing a dependence-graph model of the execution. of how to accuratelydentify microarchitectural slack, it
The graph is built by the simulator during the execution, leaves open the question of howrtport the slack avail-
with each edge corresponding to a dependence and an-able in the graph. The problem is that we want to dis-
notated with the dependence’s observed latency. After tribute available slack among potentially many instruc-
the execution, the slack is computed by determining how tions (to be delayed simultaneously) but that distribution
much latencies can be extended without growing the crit- will vary depending on the non-uniformity to be hidden.
ical path of the graph (see Section 2.3). For example, to quantify the amount of slack available
Clearly, the graph composed of ontiata depen- to aset of instructions that are to be delayed simultane-
dences will not provide much microarchitectural accu- ously, we define a notion adpportioned slack. Before
racy. The problem with a data dependence graph (DDG) we define apportioned slack, however, we will defioe
is that it omits microarchitectural resource constraints, cal slack andglobal slack, which characterize the slack
which can severely skew our slack measurements. Con-available to anndividual instruction.
sider the extreme case of an instruction that writes a  Local sack of a dynamic instructiori is the maxi-
memory location that no other instruction in the program mum number of cycles the executioniofan be delayed
reads. According to the DDG, this instruction may have Without delaying any subsequent instructions. From our
millions of cycles of slack. Its microarchitecturally ac- measurements, approximately 20% of instructions have
curate slack, however, is much shorter, as delaying the local slack greater than five cycles. Local slack is con-
instruction by millions of cycles would stall the reorder ~ servative because it prevents delaying any instruction in
buffer and cause a degradation in performance. the program. To avoid impairing the overall execution,
Casmira and Grunwald [3] avoid this problem by however, it suffices to ensure that the program completes
computing a “scheduling slack,” which is the slack ob- in the original number of cycles. This more aggressive
served on a DDG constructed from instructions present notion is captured by global slack.
in the instruction window each cycle. While this restric- Global slack of a dynamic instructiori is the max-
tion adds a degree of resource sensitivity, it is still conser- imum number of cycles the execution ofcan be de-
vative in its estimation of slack. For instance, if there is layed without delaying the last instruction in the pro-
only one instruction in the window, it will be determined ~ gram. From our measurements, approximately 40% of
to have a slack of zero (as it will be on the critical path), instructions have global slack greater than 50 cycles. In
whereas this instruction may in fact have a great deal of other words, there is a particular set of 40% of all instruc-
slack (if none of its data-dependent instructions are going tions of whichone instruction can be picked and delayed
to be fetched for many cycles). by 50 cycles without increasing execution time. Global
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Figure 1: An instance of thecritical-path model from Table 1. The dependence graph represents a sequence of dynamic instruc-
tions. Nodes are events in the lifetime of an instruction (the instruction being dispatched, executed, or committed); the edges are
dependences between the occurrences of two events. A weight on an edge is the latency to resolve the corresponding dependence.

The critical path isin bold.

name | constraint modeled edge

DD | In-order dispatch Di—1 — D;
CD | Finitere-order buffer Ci—w — D;®
ED | Control dependence Ei_1 — D®
DE Execution follows dispatch D; — FE;
EE | Datadependences E; — E°
EC | Commit follows execution E; — C;
CC | In-order commit Cii1 — C;

#w = size of the re-order buffer

Pinserted if i — 1 isamispredicted branch

Cinserted if instruction j produces an operand of i
Table1: Dependencescaptured by thecritical-path model,
grouped by the target of the dependence.

slack thus reflects a policy that would seek to delay one
instruction by many cycles. Global slack also serves as
an upper bound on the amount of tolerable delay, since
it is the maximum amount a particular instruction can be
delayed without increasing execution time.

Apportioned slack captures slack available when
we desire to delay multiple instructions simultaneously.
Namely, we want to determine how many instructionscan
be delayed together by a certain amount of slack without
impacting the execution. The desired amount of delay
for each instruction depends on the apportioning strategy,
which in turn depends on the particular non-uniformity
whose latency we seek to hide. Thus, while global slack
indicates how much one instruction can be delayed, ap-
portioned slack indicates how much a set of instructions
can be delayed simultaneously.

More formally, let S be an assignment of some
amount of slack (possibly zero) to each instruction in
such away that the last instruction is not delayed. Given
an assignment of slack S, the apportioned slack of in-
struction ¢ is S(i), i.e., the slack assigned to i. The as-
signment can be arbitrary (aslong as it does not delay the
last instruction) and is intentionally left up to the appor-

tioning strategy. Next, we define two such strategies we
use later in our experiments.

Five-cycle apportioning. One way to apportion slack
is to attempt to give each instruction, say, five cycles
of dlack. This strategy might be useful if we wanted to
know how many instructions could tolerate a long (non-
uniform) bypass. From our measurements (described in
Section 2.4), approximately 75% of instructions have ap-
portioned slack of five cycles. In other words, the ex-
ecution contains a particular set of 75% of instructions
that can be simultaneously delayed by five cycles. This
surprising observation suggest tremendous optimization
opportunities.

Latency-plus-one-cycle apportioning. Another appor-
tioning strategy that we consider reflects a control pol-
icy for a constraint-aware processor that has a (power-
efficient) ALU that runs at half the frequency of the other
ALU. The goal of the control policy would be to maxi-
mize the number of instructions steered to the slow ALU,
while maintaining the performance of a two-fast-ALUs
machine. The corresponding apportioning strategy would
be to maximize the number of instructions whose appor-
tioned slack equals their original execution latency plus
one cycle (so that they can tolerate the doubled latency of
the slow unit plus some bypass overhead).

2.3 Algorithmsfor Calculating Slack

Next, we outline the algorithms for efficiently comput-
ing the three variants of slack on the dependence graph
constructed during the simulation. For simplicity, weil-
lustrate our algorithms using simple dependence graphs
where each node is a dynamic instruction, but our exper-
imental results use the graph of Section 2.1.

Local slack. Theloca slack of a node is determined
by first computing the local slack of each edge in the
graph. The local slack of anedgee = u — v issimply
the number of cyclesthat the latency of e can beincreased
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Local Slack = L, Local Slack = Lg

1 =2-1=1cycle =5-3=2cycles
Arrival Time 3 Local Slack = L,
Local Slack =L,  =4-3=1cycle
=2-2=0cycles

(a) Computing local slack.

G,= L+ min(G,;,Gg)=2

Gy= L+ Gg=1

(b) Computing global slack.

Figure 2: Computing local and global slack. Local slack is computed as the difference in arrival times of incoming edges. Global
slack is computed via a reverse topological sort. Edges with nonzero local slack are dashed. In (b), the critical path isin bold.

without delaying the target node v. The local slack of e
is computed as the difference between the arrival time of
the latest (i.e., last-arriving) edge sinking on v and the
arrival time of e (see Figure 2(a) for an example). The
local dlack of a node v is then the smallest local slack
among the outgoing edges of v. Thus, the local slack of
the middle node in the figureismin(Ls, Ls) = 1 cycle.

Global slack. Aswithlocal slack, we start by comput-
ing global slack of edges. The global slack of anedgee is
the number of cyclesthat the latency of e can beincreased
without extending the graph’s critical path. Aswith local
slack, the global slack of a node v is the smallest global
slack available among v's outgoing edges.

While local slack was computed by merely exam-
ining nodes and their edges, the computation of global
slack involves backward propagation that accumul ates|o-
cal slack. Consider Figure 2(b) as an example. We start
by knowing the value of local slack L; of each edge e;
and end up computing, for each edge ¢;, the value of
global slack G; for each edge.

Intheexample, G5, theglobal slack of edgees, equals
the sum of the local edge dacks L3 and Lg. We can
compute G3 recursively, as the sum of L3 and Gg. In
general, the expression for computing the global slack of
anedge e is G, = L. + min(Gouty, Goutss -, Gout,, )
where G, 10 Gy, arethe global slacks of the outgo-
ing edges of e’s target node. This overall computation is
asimple, linear time, reverse topological sort.

Apportioned slack. Having computed global slack,
we are ready to compute apportioned slack. The goal
of the algorithm is to apportion a certain amount of slack
to as many nodes as possible, so that al nodes can be
delayed (together) by the amount of slack apportioned
to them without extending the critical path. The exact
amount of slack we attempt to apportion to each node de-
pends on the apportioning strategy.

The algorithm we use does not perform an optimal
apportioning, but instead greedily apportions slack to the
first nodes encountered during a forward pass. Due to
space constraints, we only sketch the algorithm here, us-
ing the five-cycle apportioning strategy for illustration.
Basically, the backward global-slack pass accumulates
local slacks and deposits them on the earliest possible
nodes, from where it is picked up by the forward ap-
portioning pass. As the forward pass encounters each

node v, it is decided whether enough global slack ex-
ists to apportion v five cycles of slack. If enough ex-
ists, v is apportioned five cycles, and it is ensured that
no other nodes further downstream are apportioned those
five cycles. This process continues until the forward pass
reaches the end of the program.

2.4 Experimental Characterization of Slack

This section presents experimental characterization of 1o-
cal, global and apportioned slack. Our results show that
slack has a tremendous potential for hiding non-uniform
latencies, in particular when large local slacks are appor-
tioned to multiple instructions across dependence chains.
This section also addresses the implications of slack: we
discusswhat types of design non-uniformities can betol-
erated with slack and what cannot. Finally, we vali-
date our methodology, demonstrating that our findings
are very accurate.

First, we explore the amount of available slack, focus-
ing on microexecutions of typical SPEC2000 programs
on an unclustered version of the 6-wide processor de-
scribed in Section 4.2. We compute slack using the graph
of Section 2.1, and when we refer to the slack of an in-
struction, we mean the slack of that instruction’s £/ node.
Figures 3(a)-3(c) plot the local, globa and apportioned
slack found in gcc, gzip, and perl, respectively. These
three benchmarks were chosen because they illustrate the
two extreme results (gcc and gzip) and a typical result
(perl) from the full set of measurements we performed.

Local and global slack. The slack measurements re-
ported in the charts should be interpreted as follows:. for
each data point (X, y), y% of (dynamic) instructions have
x or more cycles of slack. In gcc, for instance, approx-
imately 36% of instructions have local slack of five or
more cycles. In general, we observe that relatively few
instructions contain local slack that is large enough to be
exploitable: on average only about 20% of instructions
have local slack of five or more cycles. At the sametime,
we notice that a small number of instructions contain ex-
tremely large local slack (in gzip, about 2% of instruc-
tions have more than 80 cycles of local slack). Thislarge
local dlack ispromising because asingleinstructionisun-
likely to be able to exploit it all, allowing us to apportion
it to instructions without enough local slack.
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Figure 3: Across benchmarks, there is enormous potential for exploitation of slack. (&)-(c) Measurements of local, appor-
tioned, and global slack for SPEC2000 versions of gcc, gzip, and perl. gcc and gzip represent the two extremes in the amount
of dlack available in the full set of benchmarks we ran; perl is more typical. The measurements indicate that even in the least
sackful benchmark, gzip, there is enormous potentia for hiding delays introduced by nonuniform machines. (d) Measurements
of apportioned slack when all available slack is apportioned to load instructions. These results show it may be possible to tolerate
technologically-induced bottlenecks on load instructions if, for instance, wire delays cause some instructions to endure longer L1

data cache access times than others.

Note that, while the figures only show local slack
for the execution of instructions (E nodes in our model),
other micro-operations associated with an instruction
may also exhibit local slack. For instance, we may be
able to delay the commit of an instruction (represented
by C nodes in our model) without delaying any other in-
structions. Since our dependence-graph model accounts
for this commit micro-operation, we can also apportion
thislocal slack to other instructions.

To determine to what extent large local slacks can
be used by neighboring instructions, we examine global
slack. Since the global slack of an instruction is the ac-
cumulation of all local slacks that could be* stolen” from
other instructions, observing alot of global slack on many
instructions would speak well for the potential for ex-
ploitation, since thiswould mean that lotsof local dack is
“freely movable’ across the microexecution. Indeed, this
is the case: about 40% of instructions have more than
50 cycles of global slack. The key question now is what
fraction of this global slack remains if we spread it out

across neighboring instructions. We answer this question
using apportioned slack.

Apportioned slack. To calculate apportioned slack,
we must first decide on the apportioning strategy. Let
us first consider giving x cycles of slack to as many in-
structions as possible. The amount of such apportioned
slack is shown along with local and global slack in Fig-
ures 3(a)-3(c) for arange of values of x.

Again, the experiments present good news: not only
does the microexecution contain a lot of apportionable
local slack (which we knew from global slack measure-
ments), but this slack is also able to satisfy many instruc-
tions: on average, 75% of instructionscan be apportioned
slack of fivecycles. Evenintheleast slackful benchmark,
gzip, there are 64% of instructions that have 5 cycles of
slack. Thismeans, for instance, that most instructionscan
tolerate long-latency communication across a chip with-
out hurting performance—as long as the delayed instruc-
tions are chosen wisely (i.e, with a good slack predictor
and a good policy).
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Figure 4: Limit studies. Measurements for two apportioning
strategies are shown: latency-plus-one-cycle and five-cycle ap-
portioning. These measurements provide an indication as to
what types of non-uniform machine designs can be tolerated
by a slack-based policy. For instance, latency-plus-one-cycle
apportioning is relevant for the fast/slow pipeline microarchi-
tecture studied in Section 4.

Of course, the above apportioning strategy does not
reflect all non-uniformitiesthat acontrol policy may have
to tolerate. For instance, another interesting question is
how many loads can tolerate along latency to the L1 data
cache, a concern of wire-constrained designs such as the
Grid Architecture [11]. To maximize slack on loads, we
modify the above apportioning strategy such that no slack
is apportioned to non-load instructions. Figure 3(d) re-
ports the results of such an apportioning. We see that a
remarkable number of loads could tolerate along-latency
L1 data cache hit. Namely, there are more than 65% of
load instructionswith a slack of 12 cycles, enough to tol-
erate an L2 hit. Together, the data suggest an opportunity
to build selective L 1-cache bypasses.

Breakdown of slack per opcode. In Figure 4, we ex-
amine how much apportioned slack is available to in-
structions of various types. The figure computes the
breakdown for the two apportioning strategies described
in Section 2.2: five-cycles-per-instruction and latency-
plus-one-cycle. The figure classifies instructions into
four categories. loads, stores, integer operations, and
floating-point operations. (Note that our simulator dis-
cards al NOP instructions after fetch, and, thus, they are
not included in any of the slack measurements.)

Figure 4 leadsto severa conclusionsabout what types
of non-uniformities can be tolerated with slack.

e Most instructions (on average, greater than 75%)
have enough slack to tolerate doubling their latency.
This means we can run most functional units at
half-speed without losing performance, provided we
are successful at predicting which instructions have
slack. This result is good news for the fast/slow
pipelines microarchitecture we study in Section 4.

e A large percentage of instructions of each type
can have their latency doubled; this holds even for
longer latency floating-point operations.

e Thereisnoinstructiontypewhich nearly aways has
slack. Thus, amachine design that simply makes all
functional units of a particular type slower is likely
to degrade performance.

Validation. We need to validate our experiments since
(as previously mentioned) the dependence-graph model
we use to compute slack only includes the most signif-
icant microarchitectural dependences. Thus, the slack
measurements have some error.

We confirm correctness of the slack measurements by
the following two-step process: (1) we identify appor-
tioned slack on the graph, as usual; and, then, (2) we re-
run the simulation on which the graph was constructed,
but in this new run, each dynamic instruction is delayed
by its apportioned slack. Since we are delaying the in-
structionin the actual (simulated) execution, errorsin the
graph-computed slack will be manifested asincreasesin
the execution time of the simulation.

We performed this validation with severa different
apportioning strategies: latency-plus-one-cycle and five-
cycle apportioning from Figure 4 and 12-cycles to loads
from Figure 3(d). Space limitations prohibit detailed
presentation of results, but the maximum error observed
across all benchmarks and apportioning strategies was
less than 3%, with an average error of about 1%, which
isless than previous related efforts[15].

3 Predicting Slack

Our dlack predictors follow the history-based approach
used in most hardware predictors: the slack of adynamic
instruction, known after the instruction commits, trains a
PC-indexed predictor, which is then used to predict the
slack of future instances of the same static instruction.
An aternative would be a context-based approach that
would predict slack based on the current state of, say, the
scheduling window [5]. The advantage of the history-
based approach is that it allows predicting slack early in
the pipeline.

Two conditions must be met to enable history-based
slack prediction. First, there must be a locality of slack,
in that dynamic instances of a given static instruction ex-
hibit roughly the same slack. Second, we must design a
hardware mechanism for measuring slack of a dynamic
instruction. We meet the two conditionsin the following
two subsections. Then, equipped with a hardware slack
detector, we develop two slack predictors. The predic-
tors differ in what is stored in the predictor table: the
explicit-slack predictor learns the actual value of slack of
the static instruction; the implicit-slack predictor learns
whether the static instruction can tolerate the delay of a
particular non-uniform resource.

3.1 Locality of Slack

Since slack arises partly due to microarchitectural events,
like reorder-buffer stalls caused by cache misses, one
might expect that dynamic slack is distributed across the
instruction stream more or less randomly, complicating
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Figure 5. Mapping dynamic slack behavior to static in-
structions. Uses latency-plus-one-cycle apportioning. On the
y-axis, the number of slackful static instructions is weighted
by the number of each static instruction’s dynamic instances.

predictability. Our experiments present good news: 68%
of static instructions (dynamically weighted) almost al-
ways have enough slack to doubletheir latency (precisely,
they have enough slack on at |east 90% of their dynamic
instances, see Figure 5). More significantly, this dlack
represents about 80% of al apportioned slack (that is,
80% of dack exploitable by an oracle predictor that cor-
rectly predictsthe slack of every dynamic instruction).

In more detail, our experiments used the following
methodology. First, we computed the apportioned slack
using the latency-plus-one strategy introduced in Sec-
tion 2. Next, we identified slackful static instructions. A
staticinstructionisslackful if D% of itsdynamic instruc-
tions contained apportioned slack, where D was varied
from 90 to 100. Figure 5 plots the amount of slackful
static instructions. The chart aso plots the total amount
of apportioned slack (labeled ideal). This slack could
be exploited with an oracle predictor that is correct on
each dynamic instruction. Note that while relatively few
static instructions are slackful al the time (28%, on av-
erage), allowing just 5% “misprediction rate” (i.e., re-
quiring them to be slackful 95% of the time) brings this
amount to 62%, on average.

3.2 Measuring Slack in Hardware

In Section 2.1, we described the delay-and-observe ap-
proach, as a natural—but expensive approach—for accu-
rately measuring slack in a processor simulator. In that
approach, a dynamic instruction is delayed by n cycles,
after which the execution is observed. If the overall exe-
cution is not slowed down, the instruction has at least n
cyclesof (global) slack.

In this section, we use the delay-and-observe
paradigm to design hardware for measuring slack. We
accomplish this goal by elegantly solving the two imple-
mentation challenges of the delay-and-observe approach.
Specifically, the challenges are: (1) measuring slack of
a dynamic instruction requires repeatedly delaying the
instruction for various values of delay, which involves

rolling back the execution; and (2) determining (naively)
whether the overall execution was affected by the delay
requires comparing the origina and the perturbed exe-
cution. To solve the first challenge, we sample each dy-
namic instruction at most once. Such sampling avoidsthe
need for rollback yet is sufficient to determine the slack of
a static instruction, since we exploit the locality of dlack
presented in Section 3.1.

To solve the second problem (determining whether
the execution was affected by the delay), we exploit the
following observation: the overall execution is slowed
down by the delay if and only if the delayed instruc-
tion appears on the critical path of the micro-execution.
With this observation, we can reduce the problem of de-
tecting slack to that of determining criticality, which can
be easily performed using our token-passing criticality
detector [4].

For the sake of completeness, we sketch herethealgo-
rithm behind the token-passing detector of criticality [4].
For simplicity, we will explain its operation on data de-
pendences, but the detector actually operates on the graph
model illustrated in Figure 1. The detector is based on
the observation that adynamic instruction ¢ is not critical
if either of two conditions hold: (1) the value v com-
puted by 7 arrives at each consumer j before one of j's
remaining operands arrives (i.e., if v is not last-arriving
and, hence, has non-zero local slack at 5); or (2) if the
consuming instruction j is not critical. Thus, we need to
determine if the value v computed by 7 traverses a long
chain of data dependences where consumers are always
waiting for it (i.e., where it was aways last arriving). If
this situation occurs, 7 is predicted critical—otherwise it
is known to be non-critical.

This observation lends itself to an efficient hardware
implementation: to determine if dynamic instruction i is
critical, plant a token into 4 (the token can be thought of
as an extra hit appended to the data computed by the in-
struction). Thetoken isthen propagated together with the
data to al dependent instructions, except that it is killed
whenever the data is not last-arriving at a consumer in-
struction. After a few hundred instructions, the detector
examinesthe machine: if at least one copy of thetokenis
alive, the dynamic instruction was critical (because there
must have been at least one chain of data dependences
on which the data was aways last arriving.) With high
probability, ¢ is part of the critical path, since delaying i
would delay al instructions on thislong chain.

To put the pieces together, our slack detector works as
follows. Given adynamic instruction i and avalue n, the
slack detector answers the question “does ¢ have at least
n cycles of dlack? The slack detector isa simple delay-
and-observe extension of the criticality detector [4]: it
first delaystheinstruction by n— 1 cycles (seefootnote 1)
and then observes, by planting atoken into ¢, whether the
delayedinstructioni iscritical. If 7 iscritical, then it does
not have n cycles of dack; otherwise it does.

Lstrictly speaking, this observation makes a one-cycle mistake, because a
delay may make the dynamic instruction critical without making the critical path
any longer.
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3.3 Explicit-Slack Predictor

The explicit slack predictor learns and predicts the ac-
tual number of cycles of slack available in each static in-
struction. The predictor is trained by sampling dynamic
instructions—using the slack detector described above—
under various values of slack n. The goa of samplingis
to converge to the average value of slack for each static
instruction, which can be achieved with a binary search
(assuming the instruction has good slack locality).

It should be noted that training the predictor by de-
laying a dynamic instruction is not likely to noticeably
slow down the program because (i) sampling is sparse (in
our designs, the sampling rate isroughly 1 instruction per
100 instructions, and can be even sparser), and (ii) thein-
serted delay istypicaly just large enough to make the in-
struction critical, which means that the delay may extend
the critical path by at most afew cycles.

Predicting explicit slack, however, produces some
challenges. Most importantly, it is not clear how to avoid
measurement perturbation due to non-uniform resources.
For example, on a machine with both fast and slow func-
tional units, an instruction will appear to have different
slack, depending on which functional unitsit (and its de-
pendents) were executing when its slack was sampled.

3.4 Implicit-Slack Predictor

We address the measurement perturbation problems with
an implicit-slack predictor, which, instead of predict-
ing exactly how much slack an instruction has, predicts
whether it has enough slack to tolerate a particular non-
uniform resource—for instance, whether its execution la-
tency can be doubled without impact on performance.

The implicit-dack predictor works by dividing in-
structions into slack bins, according to the resources that
these instructions can tolerate. The number of bins is
determined by the number of decisions a control pol-
icy must make for each instruction. For an example,
let us consider the non-uniform machine used in Sec-
tion 4 for our experiments. The control policy for this
machine must make two decisions for each instruction i:
(1) should ¢ be steered to the fast or slow pipeline? and
(2) should i be scheduled with high priority or low pri-
ority within a pipeline? These two decisions lead to four
slack bins:

1. steer to fast pipeline & schedule with high priority,
2. steer to fast pipeline & schedulewith low priority,
3. steer to slow pipeline & schedule with high priority,
4. steer to slow pipeline & schedule with low priority.

These four bins can be viewed as corresponding to four
virtual non-uniform resources, where each dynamic in-
struction is assigned to one resource. In general, if acon-
trol policy must make k decisionsfor each instruction, we
have 2% virtual resources, each corresponding to a slack
bin.

el
File

Fetch and Fast Pipeline

etch an Data

Rename @ Cache
File

Slow Pipeline

Bypass Bus

Figure 6: The non-uniform microar chitecture used in our
experiments. The processor consists of one fast and one (or
two) slow pipelines.

Measuring implicit slack has four important advan-
tages. First, when sampling the slack, we don't need
dedicated logic to artificially delay the instruction. In-
stead, the predictor can delay theinstruction naturally, by
steering it to the sampled non-uniform resource. Second,
as desired, by measuring tolerance to non-uniform de-
lays, we effectively remove the impact of perturbation on
the measurement. Third, bin membership can be trained
faster than the actual slack. Dealing with bins, rather than
with the actual slack, can be much easier for the control
policy.

Finally, it should be noted that while the four slack
bins above are ordered in seemingly decreasing priority,
it does not mean that the slack of instructionsin bin 3 is
greater than thosein bin 2. In general, into which bin an
instruction falls depends purely on which resource it can
tolerate, which isthe fourth advantage of the the implicit-
slack approach.

4 Example Use of Slack in Non-Uniform Control

In this section, we evaluate the success of slack in guid-
ing a non-uniform control policy. We define an ag-
gressively non-uniform (power-aware) microarchitecture
and design a dack-based control policy for hiding its
non-uniformities. We compare the slack-based policy
with several policiesbased on existing control techniques
and discover that slack is remarkably more successful at
hiding the performance penalties that arise due to non-
uniform resources.

Specifically, we evaluate a slack-based control policy
on the machine pictured in Figure 6. In this design, the
microarchitectureis divided into two pipelines, with each
pipeline consisting of half of the instruction window, is-
sue logic, and functional units; and a copy of the regis-
ter file. The design saves power by running one pipeline
at half frequency, exploiting the (approximate) relation-
ship P o< F'V? between power P, voltage V and fre-
quency F'. By halving the frequency, we can reduce
voltage enough that the overall power consumptionisre-
duced roughly to afourth (P o< F'2). (Note that reducing
the frequency of such alarge portion of the pipelineisa
more aggressive power-aware design than one that only
reduces the functional -unit speed.)
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4.1 Control Policies

At a first glance, it may seem that reducing the fre-
guency on one pipeline introduces only one kind of non-
uniformity. The reality isthat in our design we need to
deal with three forms of non-uniformity:

1. The execution latencies of functional units in the
slow pipeline will be twice as large as those in the
fast pipeline.

2. The bypass latency between the two pipelines will
be longer than the intra-pipeline bypass latency, due
to physical distance and due to crossing voltage do-
mains.

3. The effective issue bandwidth of the slow pipeline
will be haf of the bandwidth of the fast pipeline,
because the slow pipeline issues instructions every
other fast cycle. This reduction in issue bandwidth
manifestsitself asincreased contention (which hap-
pens to be the hardest constraint to deal with).

The important consequence of the third point is that fre-
guency reduction reduces the effective bandwidth of the
entire machine. This observation is important because it
sets the correct expectation on the control policy: when
aworkload is bandwidth-limited (i.e., exhibits high IPC
rate), no control policy will be able to avoid the perfor-
mance penalty.

To attack the above three non-uniformities, we design
a slack-based policy that controls two machine aspects:

e Instruction steering, which determines into which
pipeline adynamic instruction is sent.

e Instruction scheduling, which determines which of
the datarready instructions in a pipeline are exe-
cuted.

We assume that the steering decision is performed before
any scheduling decisions are carried out.

Our slack-based policy employs four bins, as intro-
duced and motivated in Section 3.4. These four bins
control to which pipeline an instruction will be steered,
and also how the instruction will be scheduled within
the pipeline (see Table 3). Note that we also experi-
mented with two-bin policies (which performed steering
but no slack-based scheduling), but the four-bin scheme
performed up to 5% better.

To assign a dlack bin to each static instruction, our
slack policy uses a 4K-entry array of 6-bit saturating
counters, indexed by PC. The counter is decremented
by one if the dack sampling (see Section 3.4) detects
that the instruction can tolerate a given pipeline and
a given scheduling policy (i.e., is slackful enough for
the pipeline/scheduling combination). The instruction is
moved to alower-numbered bin when the counter reaches
zero and to a higher-bin if it is detected that it does not
have enough slack for the given level.

We compare our slack-based policy to several poli-
cies based on existing (non-slack-based) control tech-
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Name Policy

Reg-Dependence | Perform load balancing if one pipeline
isfour times as full as another.
Otherwise, steer instruction to pipeline
that will produce one or more of its
inputs. Steer to least-filled pipeline

if all operands are ready

Fast-first Window | Send instructionsto the fast pipeline
until its window becomes half full, then

apply register-dependence steering.

Fast-first Ready | Send instructionsto fast pipeline until
there were more ready instructions then
issue dots over thelast 5 cycles. Then,

apply register-dependence steering.

Table 2: Baseline policies for controlling fast/slow pipeline
microarchitecture.

niques. While we experimented with many such poli-
cies, we only present three that performed best (see Te-
ble 2). Thefirst is a simple register-dependence steering
policy, while the other two “favor” the fast pipeline over
the slow one in that instructions are steered to the fast
pipeline until some condition is met. We also evaluate
the use of the ALOLD criticality predictor from Tune, et
al. [16], as a replacement for the token-passing critical-
ity analyzer [4] in the slack detector (see Section 2.4).
(We also experimented with the QOLD criticality predic-
tor from the same work [13, 16], but the ALOLD predic-
tor performed considerably better in our context.)

4.2 Methodology

Our evaluation uses a typical dynamically-scheduled su-
perscalar processor as a baseline whose configuration is
detailed in Table 4. The simulator is built upon the Sim-
pleScalar tool set[2]. Our benchmarks consist of a subset
of the SPEC2000 benchmark suite; all are optimized Al-
pha binaries using reference inputs. Initialization phases
were skipped and detailed simulation ran until 100 mil-
lion instructions were committed.

4.3 Experimental Evaluation

We evaluate the set of control policies on a machine with
one 3-wide fast pipeline and one 3-wide slow pipeline
(3f+3s). The results, presented in Figure 7, yield two
overal conclusions. First, our slack-based policy per-
forms better than any non-slack policy, by 10% on aver-
age. Second, using slack reduces the performance degra-
dation (with respect to the high-power 3f+3f configura-
tion) from an average of 16% to only 3%.

It isinteresting to observe the effect of replacing the
token-passing detector with the ALOLD predictor: while
ALOLD performs better than the non-slack schemes, de-
grading performance by 10%, it appears that the token-
passing detector is needed to accurately measure slack.

In an attempt to recoup the small performance loss of
3f+3s, we experimented with other configurations where
issue bandwidth is made equal to 3f+3f through the ad-
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Slack bin # Policy decisions Hysteresis counter
4 Fast pipeline, high priority schedule Initialize to 0 upon entering level.
Increase by 8 if detected not slackful.

3 Fast pipeline, low priority schedule Initialize to 63 upon entering level.
Immediately go to level 4 if detected not slackful.

2 Slow pipeline, high priority schedule Initialize to 63 upon entering level.
Immediately go to level 3 if detected not slackful.

1 Slow pipeline, low priority schedule Initialize to 63 upon entering level.
Immediately go to level 2 if detected not slackful.

Table 3: Hysteresisimplementing the four slack bins. Note: if the slow instruction window contains four times as many instruc-
tions as the fast pipeline, the slack-based steering decision is overridden, and the incoming instruction is sent to the fast pipeline.
Such load balancing never sends instructions to the slow pipeline.

Dynamically
Scheduled Core

128-entry instruction window (64 entriesin each of 2 pipelines) with critical-first scheduling,
256-entry re-order buffer, 6-way issue, 12-cycle pipeline, perfect memory disambiguation,
fetch stops at second taken branch in acycle, 1 cycle normal bypass latency plus

one cycle extradelay if sending data from one clock domain to another.

Branch Prediction

Combined bimodal (8k entry)/gshare (8k entry) predictor with an 8k meta predictor,
4K entry 2-way associative BTB, 64-entry return address stack.

Memory System

64K B 2-way associative L1 instruction and data (2 cycle latency) caches,
shared 1 MB 4-way associative 12 cycle latency L2 cache, 100 cycle memory latency,
128-entry DTLB; 64-entry ITLB, 30 cycle TLB miss handling latency.

Functional Units
(latency)

In each of 2 pipelines: 3 Integer ALUs (1), 1 Integer MULT (3),
2 Foating ALU (2), 1 Floating MULT/DIV (4/12), 1 LD/ST ports (2).

Token-passing
Slack Predictor

4K -entry array for storing predictions (2 bit bin, 6 bit hysteresis per entry),
768-byte training array—(8 tokens x 3 nodes x 256-entry ROB) bits

Table 4: Configuration of simulated processor.

dition of another slow pipeline. In these equi-bandwidth
configurations, we found that our slack-based policy ac-
tually slightly improved performance over 3f+3f, while
the non-dack policies significantly degraded it, by 12—
15% on average.

Specifically, the two additional configurations were
3f+3st+3s and Half 3f+3s+3s, each with one 3-wide
fast pipeline and two 3-wide slow pipelines; but, in
Half_3f+3s+3s, the window size of each slow pipeline
is halved (so that the effective window size is equal
to that of 3f+3f). The decrease in window size of
Half_3f+3s+3s resulted in only a modest performance
loss of 1-2% compared to 3f+3s+ 3s,

To estimate the power savings obtained from the con-
figurations, we can directly apply the relationship P
F?. For the 3f+3s configuration, we save 37.5% of the
power of the core (including the instruction window, is-
sue logic, register file, and functional units), and for the
3f+3s+3s configuration, we save 25%. The latter result
is interesting, since it suggests we can obtain significant
power savings with some cost in area, but no lossin per-
formance, by exploiting a control policy based on slack.

5 Reated Work

As most related work has already been discussed in rel-
evant sections, we will only summarize here. Srinivasan
and Lebeck [15] and Rakvic, et al. [10] perform mea-
surements of load latency tolerance in out-of-order pro-
cessors. The concept of using dynamic scheduling slack
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Figure 7: Comparing control policies on fast/slow pipeline
microarchitecture. All measurements are normalized to the
baseline of two fast 3-wide pipelines (3f+3f). Also, results
are shown for a single fast 3-wide pipeline (3f) for reference.
The rest of the measurements are different control policies for

a 3f+3s machine.

for controlling microarchitectures through clustered volt-
age scaling was proposed by Casmira and Grunwald [3].
In these works, no slack predictor design was studied.
Much research has explored using critical-path pre-
dictionsin control policies for various optimizations, in-
cluding power optimizations [9, 13], cluster steering [4,
16], dynamic instruction scheduling [4], value predic-
tion [4,16], and cache optimizations[5, 14]. In our work,
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we characterize and exploit the more powerful property
of dack and show how to predict it. We show how to
exploit prior research into criticality predictors when de-
signing an efficient slack predictor, principally by “bin-
ning” instructions based on the latency they can tolerate.

Semeraro, et a. [12] use a dependence-graph model
similar to oursfor doing an offline slack analysisto deter-
mine when different parts of the machine can be executed
at a slower rate, for power efficiency. Our work charac-
terizes slack more fully and provides an online predictor.
Grunwald [6] describes a hardware predictor based on
measuring how much an instruction’s execution can be
delayed without delaying subsequent instructions. This
hardware appears to predict what we call local dack in
our work. As shown in Section 2, local dlack is only a
small part of all the slack that is available.

The model and token-passing criticality detector we
used came from our previous work on critical-path pre-
diction [4]. We have extended this research to measure
and predict slack, as opposed to simple criticality, and
showed how slack can be exploited to hide the latencies
of nonuniform machine designs.

6 Conclusion

We have developed slack as a useful input for guiding
control policiesin modern processors. We defined three
variants of slack (having in mind various applications of
slack) and presented a novel methodology for accurately
measuring the amount of slack availablein programs. We
have shown there is a surprisingly large amount of ex-
ploitable slack and that most of it can be predicted easily
with atoken-passing criticality analyzer.

Finally, we showed how to design a slack-based con-
trol policy for a power-efficient microarchitecture with
fast and slow pipelines. Our experiments showed that
the slack-based policy eliminates most of the penalty due
to the non-uniformities, such that the fast/slow pipeline
microarchitecture performs nearly as well as a uniform
machine with only fast pipelines. This experiment has
significant implications for future machine designs: we
may be able to mitigate technological constraints (e.g.,
wire delay, power, and circuit complexity) by building
non-uniform machines and then controlling them with a
slack-based policy.
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