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Abstract

WeevaluatetherePLaymicroarchitectureasa meansfor
reducingapplicationexecutiontimebyfacilitating dynamic
optimization.Theframeworkcontainsa programmableop-
timizationenginecoupledwith a hardware-basedrecovery
mechanism. Theoptimizationengineenablesthe dynamic
optimizerto run concurrentlywith programexecution.The
recovery mechanismenablesthe optimizerto make specu-
lativeoptimizationswithoutrequiringrecoverycode.

We demonstratethat a rePLayconfigurationperforming
a smallsuiteof simpleoptimizationson Alphacodeattains
an average of 13% reductionin executioncycleson the
SPEC2000integerbenchmarksovera rePLayconfiguration
notperformingoptimizations,anda 21%reductionoveran
aggressivestandard superscalarmicroarchitecture.

1 Intr oduction

Dynamicoptimizationis gaining the attentionof com-
putersystemsresearchersasan effective meansfor boost-
ing applicationperformance.Codeoptimizationsmadedy-
namicallycanexploit thestable,possiblyphased,behavior
exhibitedby arunningapplicationandtherebyutilize infor-
mationnotavailableto astaticoptimizer. Furthermore,new
codedeployment techniques,such as dynamically-linked
libraries,createbarriersfor traditionaloptimizers,but are
amenableto dynamicoptimization.

One of the key challengesfor effective dynamicopti-
mization is to performaggressive codetransformationsat
low overhead.The rePLayFramework [19] addressesthis
challengeby providing dynamic optimization supportat
the microarchitecturallevel. In this framework, a high-
performanceexecution engine is augmentedwith a pro-
grammableoptimizationengine,allowing optimizationto

occur concurrentlywith programexecution. The rePLay
microarchitecturefacilitatesoptimizationby providing the
optimizerwith long, atomiccoderegionsuponwhich opti-
mizations,possiblyspeculative, canbeperformed.A hard-
warerecoverymechanismrecoversarchitecturalstatein the
eventthatassumptionsmadeduringoptimization—suchas
speculationof likely control paths—areinvalid during ex-
ecution. Performingspeculative optimizationswithout the
needto generaterecoverycodepotentiallyincreasestheag-
gressivenessof optimizations.

In this paper, we presenta quantitative andqualitative
analysisof a rePLay-basedmicroarchitecturethatperforms
severalsimpleoptimizations.Weprovideananalysisof fac-
torsthataffectanimplementationof rePLay. Weinvestigate
someintrinsic characteristicsof codethatshedlight on the
optimizationpotentialof rePLayandotherpath-basedopti-
mizers. We demonstratethat a rePLayconfigurationper-
forming a small suite of optimizationscan attain a 13%
reductionin executioncycles(a 16% increasein effective
IPC) on the SPEC2000integer benchmarksover a rePLay
configurationnot performingoptimizations,anda 21%re-
ductionin cycles(27%increasein IPC) over anaggressive
standardsuperscalarmicroarchitecture.

2 The rePLay Micr oarchitecture

In order to lay a solid foundationfor the subsequent
sectionsof this paperand to illustrate rePLay’s potential
benefits,we describea prototypical rePLay implementa-
tion in this section. Furtherdetailson this designappear
in [20, 19, 5].

TherePLayframework consistsof fivekey components:
(1) a frameconstructorfor creatingcandidateoptimization
regions,(2) aprogrammableenginefor optimizingthesere-
gions,(3) a framecachefor storingtheseregionson-chip,
(4) a componentfor sequencingbetweenregions,and(5) a



mechanismto recoverarchitecturalstateif speculativeopti-
mizationsproveincorrect.Thesecomponentsareintegrated
into aprocessorasshown in Figure1.
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Figure 1. The rePLay mechanism is coupled
to a high-perf ormance micr oarchitecture .

2.1 Frames, assertions,and the recovery mecha-
nism

Centralto rePLayis theconceptof theatomicregion or
frame. A frameis similar to a trace in a trace-scheduling
compiler[7] orablock in theBlock-StructuredISA [11, 15].
All control dependencieswithin a frameareremoved,en-
suring that all instructionswithin the frame are mutually
control independent.In particular, eitherall instructionsin
a frame commit their results,or noneof them do. This
atomicity simplifies the optimizationalgorithmsusedand
supportshigh-bandwidthinstructionfetch.

To facilitatethecreationof frames,rePLayincludesthe
conceptof anassertion. Assertioninstructionsenablemul-
tiple basicblocksto be combinedinto an atomicentity, or
frame. A control flow assertioninstructionis similar to a
conditionalbranchin that both testa condition. They are
different,however, in the actionstaken after the condition
is tested.The outcomeof a conditionalbranchinstruction
determinestheaddressof the next instruction. In contrast,
anassertionhasno effect on the addressof subsequentin-
structions,andno effect whatsoever if the conditionbeing
assertedis true. If theconditionis false,theassertionfires,
triggeringa recovery actionthatdiscardsall instructionsin
theframeandredirectscontrolflow to theoriginal address
for the instructionat the beginning of the frame (i.e., the
addressof thefirst originalbasicblock).

When an assertionfires (or an exception such as a
TLB missoccurs)duringa frame’sexecution,thehardware
must roll architecturalstateback to the beginning of the
frame. Suchrestorationimplies that any stategenerated
during frameexecutionmustbe buffereduntil all instruc-
tionswithin theframehaveexecutedsuccessfully, at which
point statechangescanbecommitted.

Bufferingandrecoveryof architecturalstatein rePLayis
accomplishedusingrecovery mechanismssimilar to those
usedby dynamically-scheduledprocessorswith speculative
execution.RePLayusesareorderbuffer-typemechanismto
allow valuesgeneratedwithin a frameto beusedby subse-
quentinstructions.Valuesarekeptin thereorderbufferuntil
theassociatedframecommits,atwhichpointall valuesthat
are live at frame exit proceedto the architecturalregister
file. If a framedoesnot commit, all valuescorresponding
to the frame (and all valuesfrom subsequentframes)are
flushedfrom thereorderbuffer. Thisrecoveryactionis sim-
ilar to thatrequiredfor a branchmisprediction.Becauseof
thepotentiallyhighnumberof valuesin-flight while execut-
ing aframe,rePLay’sregisterrecoverymechanismrequires
adeeperbuffer. Similarly, valuesstoredto memoryarekept
in a pendingstorebuffer until the correspondingframeis
committed.

2.2 Frame Constructor

While the rePLayFramework allows bothcompiletime
anddynamicframeformation,we focushereon a dynamic
techniquebasedonahardwarestructurecalledaframecon-
structor. Theframeconstructorusesthecommittedinstruc-
tion streamfrom the executionengineto build framesfor
optimization.Its objectiveis to createlongframesthatspan
multiple basicblocks. Long framesincreasethe potential
for findingoptimizationopportunitiesnotexploitedatcom-
pile time. Branchesand other control instructionsat the
boundariesbetweenbasicblocks in a frameareconverted
to assertioninstructions.

Theconstructorworksasfollows: asinstructionsarere-
tired by the executionengine,they arepassedto the con-
structor. The constructoraddseach arriving instruction
into a frameconstructionbuffer, causingthependingframe
to grow. Whenever a control flow instructionis encoun-
tered,the constructordecideswhetheror not to convert it
to anassertionvia a techniquefor identifyinghighly biased
branchescalledbranch promotion[18]. An arriving con-
trol instructionnot promotedinto an assertioncausesthe
pendingframe to be finalized. A newly formed frame is
passedto the optimizationenginefor optimization. With
thistechnique,only highly biasedbranchesareincorporated
into frames;thosethatarenot stronglybiasedform theter-
minal branchesof frames.

As presentedin [20], our path-historybasedframecon-
structiontechniquegenerateslong frames(on average50
Alpha instructions)that have a very high probability of
completeexecution.On theaveragebenchmark,thesecon-
structedframesprovide76%of all dynamicinstructions.



2.3 Optimization Engine

Theoptimizationenginecanperformclassicalcompiler
optimizations,extendedbasicblockoptimizations,andvar-
iousotheroptimizationsperformedby otherdynamicopti-
mizationsystems[1]. TherePLayoptimizercanalsosched-
ule code,for instanceif the underlyingexecutionarchitec-
ture is statically-scheduled.Moreover, the couplingof dy-
namicoptimizations,executionrollback mechanisms,and
rePLay’sassertioninstructionarchitectureallowsfor imple-
mentationof speculative optimizations(i.e., optimizations
thatmaynot be valid in every executionscenario)without
theneedto generaterecoverycode.

Theoptimizationengineis aflexible datapaththatcanbe
software-programmedusingaspecializedinstructionsetar-
chitecture,coupledwith specializedoptimizationhardware
that assistsin performingcritical optimizationoperations
at low latency. The tight couplingbetweenthe execution
andoptimizationenginesprovidesthe optimizeraccessto
themicroarchitecturalexecutionstateof theprogram,such
asbranchbehavior, load-storedependenceinformation,and
intermediatedatavalues.

While the prototyperePLaysystemembodiesthe opti-
mizerasa separatehardwareentity, otherimplementations
arepossible.For example,theoptimizercanbe a separate
specialmicrothreadthatsharestheexecutionhardwarewith
theapplication[3]. This threadwouldusespecialhardware
to facilitateoptimization,suchas the ability to efficiently
write into thetheapplicationthread’s istream.

While our current rePLay microarchitecturedoesnot
save optimizedframesinto persistentstorage,it is possi-
ble to write usefulframesinto anunusedsectionof thethe
application’scodesegment,in a similar fashionto thatpro-
posedin [16].

Previous approachesto hardware-baseddynamic opti-
mization[8, 12, 4] have focusedon simplemicroarchitec-
tural optimizations.Suchoptimizationstuneda small trace
of instructions(typically around16 instructions)to thepar-
ticularsof the executionmicroarchitecture.Exampleopti-
mizationsincludedinstructionfusion(e.g., combiningshifts
with adds),clusterassignment,andtraceformation. Com-
piler styleoptimizations—optimizationsthatreducetheex-
tent of computation—provedof little valuebecauseof the
limited scopeof a trace.Becauseframesareatomicandbe-
causerePLayis ableto constructlong frames,thepotential
of compileroptimizationsincreaseswith rePLay.

TherePLayframework differsfrom software-basedopti-
mizerssuchastheTransmetaCodeMorphingSystem[13],
HP Dynamo[1], and DyC [9] primarily in the useof the
hardwaresupportfor optimizationfunctions.Thehardware
supporthelpsto reduceoverheadin two ways: (1) the op-
timizer doesnot usethe sameexecutionhardware as the
application,and(2) the hardwarerecovery mechanismal-

lows for speculative optimizationson atomiccoderegions
without recoverycode.

2.4 Frame Cache

Framesprocessedby theoptimizationenginearestored
in aframecache.Theframecacheis similarto atracecache
designedto deliver very long sequencesof instructions,
spanningmultiple traditional cachelines. For example,a
particularframemight consistof 100 instructions,span13
cachelines(at8 instructionspercacheline),andtake13cy-
clesto be fetchedandissuedon an8-widefetch/issuepro-
cessor. The frame cachemust supportframesof varying
sizes(previouswork reportedthat thedistribution of frame
sizesacrossapplicationsis very broad),andmustprevent
a fetch from startingfrom the middleof a frame. Further-
more,the framecachemusttreateachcachedframeasan
atomicentity: if any portionof a frameis to beevicted,all
of it mustbeevicted.

Basedon our evaluationof several framecache[5] de-
signs,theframecacheispartitionedinto two structures.The
first structure,theheadpartition, is a set-associative cache
structurereserved for cachingthe first line of eachframe.
The otherstructure,the bodypartition, is a direct-mapped
cachereserved for the remainderof the frames. Figure2
illustrateshow a frameis storedin thecache.

Instructions Next line
pointer(tag)

Start PC

Instructions Tail

Body Partition

headPath History

direct−mapped

L sets

M ways

tail

Frame Cache
Head Partition

Figure 2. The frame cache consists of two
structures: one for caching the fir st cache
line of frames, and one for caching the re-
mainder .

We’ve determinedthat, given this generalstructurefor
theframecache,a goodrule of thumbis to make thebody
parition roughly twice the capacityof the headpartition.
Theparticularpartitionsizesusedin thisstudyarepresented
in Section4.3.



2.5 Frame Sequencer

While the programexecutes,a correlation-basedframe
sequencerdecidesappropriatesituationsfor framedispatch.
Thesequencerdetermineswhether, for a givenpathhistory
and current fetch address,a frame startingat the current
fetchaddresswith matchingpathhistoryexistsin theframe
cache. If so, the frameis fetchedanddispatched.Other-
wise, the standardinstructioncacheprovides the instruc-
tions for thefetch. For example,if thecurrentpathhistory
is XYZ (meaningthe last threebranchtargetswereX, Y,
andZ) andthecurrentfetchaddressis A, thesequencerat-
temptsto look for a framestartingat A with context XYZ.

The sequenceris coupledto a conventionalbranchpre-
dictorthatdecideswhichtargetto fetchin any particularcy-
cle. Thecurrentpathhistoryis usedto index into theframe
cache.A comparisonis madeusingthe fetch addressand
thetagof theentriesfetchedfrom theframecache.A match
indicatesthata fetchof thecorrespondingframeshouldbe
initiated,with thefirst line having alreadybeenfetched.A
missindicatesthatno frameexistsin thecachefor thatpar-
ticularpathhistoryandstartingaddress.

3 Dynamic Optimizations

This sectiondescribesseveral simpleoptimizationstar-
getedfor rePLay’s optimizer. While the spaceof possible
optimizationsis quite large, we selecttheseoptimizations
becausethey aresimpleandpowerful, andhelp to demon-
strate the potential of optimization with rePLay. Some
of the optimizationsare commonoptimizationsfound in
a standardcompiler, while othersare unique to rePLay.
Specifically, weexamine:

Dead code removal. Instructionswhose results are
neverusedandoverwrittenwithin a framecanberemoved.
Becauseaframeis acollectionof basicblocksthatembody
a singlecontrolpath,a rePLayoptimizercanremove code
thatisdeadonaparticularcontrolpath.Thisoptimizationis
quiteeffective,removing between5%and19%of dynamic
instructions.In Section7, we examinethepotentialof this
optimization.

NOPsandunconditionalbranchesarealsoremovedby
this optimization.NOPinstructionsareaddedby thecom-
piler for cachealignmentand instructionslotting and ac-
count for nearly 10% of the dynamicistream. This opti-
mizationremovestheseinstructions,allowing for a net in-
creasein effective fetchbandwidth.

Constant propagation. Constant values are often
loaded into registers for subsequentcomputation. Such
computationcan sometimesbe pre-calculated,reducing
the amount of computationduring execution. Because
a path through multiple basic blocks is embodiedas an
atomic block, the rePLayoptimizer can propagatea con-

stantthrougha longerspanof thecode.
Reassociation. Often, multiple associative operations

(e.g., additions)areperformedduringthecourseof compu-
tation, for exampleto generatememoryaddressesor loop
indices. When a sequenceof theseoperationsinvolving
immediatevaluesis detectedwithin a frame,theoptimizer
canreassociatethesevaluesto reducethecomputationtree
height.Thepotentialof thisoptimizationincreasessubstan-
tially whenappliedacrossmultiple basicblocks.

Common sub-expressionremoval. Code sequences
sometimesproducethe samevaluethroughidenticalcom-
putation. In the caseof suchredundantexpressions,it is
sometimespossibleto remove oneof the setsby forward-
ing theoutputvaluefrom thefirst to thesecond.

Sub-routine inlining . This optimization removes the
stackand pointer operationsassociatedwith a call/return
sequencewhenthesequenceis containedwithin a frame.

Fetch Scheduling. Fetch schedulingattemptsto im-
provetheorderin which instructionsarefetched.Although
many currentprocessorsemploy dynamicscheduling,they
are still constrainedto fetching instructionsin the order
specifiedby the compiler. With rePLay, the optimizercan
take advantageof having exact knowledgeof the proces-
sor’s parameters,suchasfetchwidth, andcanthusreduce
inefficiencies,suchasfetchingtwo data-dependentinstruc-
tions in the samecycle. Additionally, instructionson the
critical pathin a framecanbefetchedearlier.

For example,wecanschedulethefetchof assertionsear-
lier to reducethepenaltyassociatedwith recovery. Of more
critical importance,thepositionof theframe-endingbranch
is not relevant to correctnessbecausethe endof the frame
is explicitly markedby the framecache.We canmove the
branchandassociatedcondition-generatinginstructionsto
the beginning of the frame. In doing so, we can reduce
thebranchresolutiontime,evenif theunderlyinghardware
usesdynamicscheduling.This particularoptimizationre-
sultsin a net3%decreasein branchresolutioncycles.

Miscellaneous.Theoptimizeralsoperformsa very lim-
ited amountof strengthreduction(convertingmultipliesof
powersof 2 into left shifts),andsomeremappingof com-
mon codeidioms into moreefficient sequences.The opti-
mizationenginealsoperformsthe previously-investigated
trace cacheoptimization performing zero cycle register
movesusingexisting registerrenaminglogic [8].

To facilitate all optimizations,the rePLayarchitecture
maintainsa save/restoreregister mask with each frame.
This mechanismenablesthe optimizerto usearchitectural
registersthatarenotusedin theframeasframetemporaries.
The original valueof a registerusedasa frametemporary
is saveduponentry into a frameandrestoreduponexit. It
shouldbe notedthat this processneednot physically in-
volve datamovementin the implementation:therenaming
mechanismcanbeaugmentedto providethissupportby as-



signingtemporaryphysicalregistersto frametemporaries.
We againnote that the simple compiler optimizations

performedherearedifferentin naturefrom themicroarchi-
tecturaloptimizationsperformedin previousstudies[8, 12].
Most of theoptimizationsinvestigatedpreviously arecom-
plementaryto thosepresentedhere,andif combinedwould
result in an additionalboostto performance.Also, aswe
demonstratein Section6.3, the longernatureof framesin-
creasestheability of compilerstyleoptimizationsto make
animpacton performance.

4 Experimental Setup

4.1 Benchmarks

We usedthe SPEC2000integer benchmarksfor perfor-
mancecharacterization.Table1 shows thenumberof sim-
ulatedinstructionsfor eachbenchmark.In mostcases,the
SPECinputsetsweremodifiedto enablethebenchmarksto
simulateall partsof the programin reasonablesimulation
time. All benchmarksexecutedto completionexceptvpr,
whichwe cappedatonebillion instructions.

Benchmark InstCount Benchmark InstCount
bzip2 289M mcf 413M
crafty 620M parser 508M
eon 132M perlbmk 154M
gap 490M twolf 595M
gcc 283M vortex 265M
gzip 870M vpr 1000M

Table 1. Benc hmarks used in sim ulations.

The benchmarkswerecompiledusingthe CompaqAl-
phaC compiler, CompaqC V5.9, with optimizationlevel 4
(the benchmarkeon was compiledusing g++ also at op-
timization level 4). At this level of optimization,theCom-
paqC compilerperformsin-lining, loopunrolling,andcode
replicationto eliminatebranches.We also report several
performancecharacterizationsbasedon unoptimizedbina-
ries in order to provide anotherpoint of referenceon the
potentialof therePLayoptimizer.

4.2 Simulation Envir onment

Our simulation framework is built upon the Alpha
instruction-level simulatorprovidedasthecoreof theSim-
pleScalar3.0 tool set. We developeda timing simulator
to modelper-instructionprocessingdelaysassociatedwith
a dynamically-scheduledpipeline, including wrong path
(branchmisprediction)effects. To measurethe effects of
frame constructionand optimizationon performance,we

coupledmodelsof therePLayframeconstructor, optimiza-
tion engine,andframecacheto thesimulator.

We augmentedthe Alpha ISA to include assertionin-
structionscorrespondingto conditionalbranches,indirect
branches,andreturninstructions.The rePLayinstructions
areinsertedinto framesby theframeconstructor.

In orderto establishthecorrectnessof ouroptimizations,
we comparethearchitecturalstategeneratedby therePLay
simulatorwith thatof a referencesimulatorat every frame
boundary. ThistechniqueensuresthatrePLayoptimizations
do notcauseincorrectprogrambehavior.

4.3 ProcessorConfiguration

We evaluaterePLayin thecontext of an8-widedynam-
ically scheduledprocessorandcompareit againstbaseline
modelsin which thesuperscalarcoreis coupledwith anin-
structioncacheandwith a tracecache.Thespecificsof the
commoncoreareprovidedin Table2.

Pipeline 8-widefetch/issue/retire,
7 cycles(min) for BR resolution

InstWindow 1024instructions
ExeUnits 6 IALUs, 2 IMULs, 2 FLTs

L1 DCache 64kB,1 cycle,3 read/writeports
L2 Cache 1MB, 8 cycle
Memory 50cycles

Table 2. Configuration of Super scalar Proces-
sor Core .

The baselinerePLayprocessorcontainsa 48kB Frame
Cacheanda 16kB instructioncache.As mentionedin Sec-
tion2.4,thecacheconsistsof twopartitions.Theheadparti-
tion is a4-waysetassociativestructurewith 128sets,mean-
ing that the cachecan storeup to 512 frames. The body
partition contains1024 cachelines, direct-mapped. The
line sizeof both the headandbody partitionsis 8 instruc-
tions(32B). Theframeconstructorcontainsa 32kB condi-
tional branchbiastableanda 4kB indirect branchbiasta-
ble,eachof which is accessedusinga pathhistorycontain-
ing four previous branchtargets. Branchesare promoted
after 32 consecutive outcomesto the sametarget. The de-
fault latency of the optimizationengineis 1000cycles(in
Section6.1weexaminetheimpactof varyingthis latency).
TherePLayfetchmechanismusesa8kB path-historybased
branchpredictorwith a standard4kB branchtargetbuffer.

ThebaselineInstructionCacheconfigurationextendsthe
superscalarcorewith a simple64kB InstructionCacheca-
pableof performingsplit-line fetches(i.e., fetchingconsec-
utive cachelines). The branchpredictoris an 8kB gshare
predictorwith a 4kB BTB. Thegsharepredictorwastuned



to optimizetheperformanceof thisconfiguration.
We comparerePLay with a simple Trace Cachecon-

figuration capableof fetching tracesof up to 16 instruc-
tions (deliveredeight per cycle). The TraceCachecon-
figurationconsistsof a 32kB TraceCacheanda 32kB In-
structionCache,with an 8kB gsharepredictor. The Trace
Cachemodel also performssomevery simple optimiza-
tions,specificallytheregistermove optimizationdescribed
in [8]. With thisoptimization,instructionsthatmoveavalue
from oneregisterto anotherareperformedby the register
renamingmechanismwith no extradecodingtime.

We have selectedthe executioncorebasedon our pro-
jectionsof feasibleorganizationsin oneor two processor
generations.TheInstructionCacheandTraceCacheconfig-
urationsrepresentstandardmicroarchitecturesutilizing this
core.We evaluatethebasicrePLay(i.e., without optimiza-
tion) configurationasan alternative to theseconventional
microarchitectures. Comparedto the ICacheand Trace
Cache,the basic rePLayconfigurationdoesrequireextra
storagefor branchbiastables,but thesetablesarenot on a
latency sensitive sectionof theprocessor. In Section5, we
demonstratethat, from a performancepoint of view, basic
rePLayis competitive with the standardICacheandTrace
Cacheorganizations.The rePLayconfigurationwith opti-
mizationsrepresentsanenhancementbeyondbasicrePLay.

5 PerformanceMeasurements

Ourevaluationof rePLayinvolvesacomparisonbetween
rePLaywith (RPO) andwithout(RP) optimizationsandthe
InstructionCache(IC ) andTraceCache(TC) processoror-
ganizationsdescribedin Section4. Figures3 and4 display
the measuredexecutioncyclesfor eachof the SPEC2000
integerbenchmarkson theseconfigurations.

5.1 Performanceon optimized binaries

Figure3 presentsperformancecomparisonsbetweenthe
four configurationson staticallyoptimizedbinaries.

In order to assessthe factorsthat contribute to execu-
tion time, we subdividedeachbar into categoriesbasedon
how the fetch mechanismspendseachcycle. For exam-
ple, if in a particularcycle, the fetch mechanismproduces
someinstructionson the correctexecutionpath, the cycle
is tallied aseithera Normal Cycle, if the ICacheor Trace
Cacheprovided the instructionsor a FrameCycle, if the
FrameCacheprovided the instructions.The classification
of cyclesis madeasfollows: If the resultingfetch will be
ultimatelydiscardedbecauseof a frameassertion,thefetch
is talliedasanAssertCycle.Otherwise,if all of thefetched
instructionsareon thewrongexecutionpath(dueto a mis-
predictedandyet unresolvedbranch),thefetch is tallied as
a Wrong Path Cycle. Otherwise,the cycle is tallied asa

FetchMissCycleif therewasacachemiss,or aStallCycle
if thepipelineis stalled(dueto a full schedulingwindow),
or aNormalor FrameCycle.

The datain Figure 3 hassomenotabletrends: rePLay
with optimizationsoutperformstheICacheconfigurationby
anaverageof 21%,theTraceCacheby 18%,andbasicre-
PLay by 13%. The percentagenumbersincludedon the
graphrepresenttheimprovementbetweenrePLaywith op-
timizationsandbasicrePLay.

For thebenchmarkseon,gap,mcf, parser, andperlbmk,
theoptimizationsdeliveresizeablewinswhencoupledwith
thegainsin fetchbandwidthdeliveredby thebasicrePLay
mechanism(on average34% betterthanthe ICache). For
thebenchmarkscrafty, gcc,perlbmk,andvortex, theframe
cache(andto somedegree,the TraceCache)suffers from
cachemissesdueto effectssuchasredundancy (examined
in Section6.2).

The net loss due to assertionsis remarkablylow. On
averagethis lossaccountsfor only 0.92%of all cycles.

Thenetlossdueto branchmispredictionsis amajorfac-
tor on performance,in somecasescontributing to overhalf
theexecutiontime. TherePLaymechanismisableto reduce
the cost of mispredictedbranches(e.g., gap and perl) by
reducinginterferencein the branchpredictor—assertions,
which accountfor over80%of all branches,requireno dy-
namic prediction. To a smallerextent, the optimizations
themselvesreduceresolutiontime. Optimizationssuchas
reassociationreducedependency heightof branchcomputa-
tions,while thefetchschedulingoptimizationallowsbranch
computationto bestartedearlier.

Basic rePLay itself performsonly slightly better than
the Trace Cache and ICache configurationswhen cou-
pled with the 8-wide superscalarexecutionengine. Even
the TC configurationbarely outperformsthe IC configu-
ration. Several factorscontribute to this: foremost, on
average,the underlyingmachineis executionbandwidth-
limited and increasingfetch bandwidthdoeslittle to im-
prove performance. Secondly, we implementeda simple
tracecache—enhancementssuchasthoseproposedin [18]
and redundancy reductiontechniquessuch as thosepro-
posedin [2, 21] can potentiallyboostthe performanceof
the TC configuration.Furthermore,the microarchitectural
optimizationsevaluatedin previous tracecacheoptimiza-
tion studiescan improve the performanceof TC, RP, and
RPOconfigurations.

Table3 providestheaveragesizeof eachfetchproduced
by thefetchmechanismfor eachof thefour configurations
(on Normal or FrameCycles)for the averagebenchmark.
Noticethattheaveragefetchsizedropsslightly betweenthe
RP andRPOconfigurations.This reflectsthe optimizer’s
ability to remove instructionsthusslightly reducingframe
size. On average,the optimizerremoves16% of dynamic
instructionsfrom theoptimizedbinaries.On average,76%



Figure 3. Performance of four super scalar processor systems: ICache, Trace Cache, rePLay, and
rePLay with Optimizations on optimiz ed binaries.

of dynamicinstructionsarein framesfor theRPOconfigu-
ration.

IC TC RP RPO
Inst/Fetch 5.28 5.94 6.69 6.55

Table 3. Average Fetch Size

5.2 Performanceon unoptimized binaries

Figure 4 provides a comparisonsimilar to Figure 3
for staticallyunoptimizedbinaries. The rePLayoptimizer
shows a remarkableperformanceimprovement for most
cases. Overall, RPO performs15% betterthan RP (18%
increasein effective IPC),23%betterthantheTC configu-
ration (30%increasein IPC), and27%betterthanIC con-
figuration(37% increasein IPC). On average,the rePLay
optimizerreducesthedynamicinstructioncountof unopti-
mizedbinariesby 18%.

In two cases,RPOonunoptimizedcodeis ableto outper-
form staticallyoptimizedbinariesrunningontheRPconfig-
uration(gapandperlbmk). With this comparison,the ma-
jority of the fetch bandwidthimprovementis factoredout
andthe result is mainly dueto the strengthof the rePLay
optimizations.Thoughit appearsthatvpr alsooutperforms
its statically optimizedcounterpart,it did not completely
execute,renderingthecomparisoninvalid.

Commercialsoftwareis oftendeliveredunoptimizedbe-
causeof productiondeadlines,supportissues,and issues
with fragile code, orbuggycodewhereflawsareexposedby
compileroptimization. Suchcodeis oftendueto accesses
to uninitializedmemory, out-of-boundsaccesses,andtim-
ing andsynchronizationissueswith threadedcode.

While issueswith fragile codeareimportantfor any op-
timizationsystem,rePLayoffersa safeguardagainstmany
typesof fragile code, in particular thoseinvolving unini-
tializedandout-of-boundsaccesses.Theoptimizationsper-
formedby rePLayarelow-levelandadhereto thesemantics
of the binary (as opposedto the semanticsof the source
code). Each atomic frame is a direct implementationof
theunderlyingbasicblocks;theresultingarchitecturalstate
transformationsperformedby the frame are the sameas
thoseperformedby theoriginalcode.Thereis atradeoff: by
exploiting semanticinformationin thesourcecode,a static
compiler is ableto make powerful optimizations(notethe
differencein performancebetweentheoptimizedandunop-
timized binariesin Figures3 and4). Theseoptimizations,
however, are doneat the expenseof potentially breaking
fragile code.Theperformanceboostfrom therePLayopti-
mizationsis moremodest,but theseoptimizationsareless
likely to breakfragile code.

5.3 Performanceof individual optimizations:

Figure5 is a plot of the relative impactof eachclassof
optimizationdescribedin Section3. In this plot, we enable



Figure 4. Performance of four super scalar processor systems on unoptimiz ed binaries.

eachoptimizationseparatelyandplot its performancerel-
ative to both the RPOconfiguration(all optimizationsare
enabled)andthe RP configuration(all disabled).Thedata
werecollectedon thestaticallyoptimizedbinaries.A 1 on
they-axis representstheperformanceof RPOand0 repre-
sentstheperformanceof RP.

Figure 5. Performance of individual optimiza-
tions relative to the unoptimiz ed rePLay con-
figuration.

Of the individual optimizations,the deadcoderemoval
optimizationhas the most significant impact. Removing
deadinstructions,NOPsandunconditionalbrancheselimi-
natestheneedto cacheandfetchthem.

Anothersingleoptimizationof noteis the branchfetch
schedulingoptimization. The individual performanceof
this optimizationis 1.3%over basicrePLay, but canbe as
high as6%. It is ableto fetchbrancheson average2.5 cy-

cles earlier than without fetch scheduling,resultingin an
average3%decreasein thenumberof cyclesfor branchres-
olution.

Someoptimizations,suchas constantpropagationand
reassociation,provide little benefitin isolation,but provide
substantialboostswhencoupledwith otheroptimizations.
In associatedexperiments(not shown in this paper)we ob-
served a synergistic effect of reassociationcoupledwith
deadcodeandfetchscheduling.Thiscombinationprovided
almost95%of theperformancebenefitof all optimizations.

6 Analysis

Theprevioussectiondemonstratedtheperformancepo-
tentialof therePLayoptimizer. In this section,we investi-
gatethe impactof implementationconstraintson this per-
formancepotential.

6.1 Optimization latencyand thr oughput

Figure6 presentsthe effect of increasingthe optimiza-
tion latency relative to an optimizer that operatesin 0 cy-
cles. The latency of the optimizer is measuredfrom the
cycle an unoptimizedframearrivesto the point the unop-
timized frameis transmittedto the framecache.This data
wascollectedon theoptimizedbinaries.

The latency startsto have an impactoverall whenit ex-
ceeds10,000 cycles. In somecases,an increasedopti-
mizerlatency improvesperformance.Theincreasedlatency
causesthe optimizer to delay the generationof a not-so-
usefulframethatevictsamoreusefulframe.At a latency of



Figure 6. Slowdo wn relative to 0 cycle opti-
mizer.

100,000cycles,thenetaverageslowdown over the0-cycle
optimizeris 7%, with a max slowdown of 17% for parser.
As mentionedin Section4.3, the typical optimizerlatency
is 1000cycles.

Anotherimportantfactorin thedesignof aneffectiveop-
timizer is the throughputthat the optimizer must sustain.
For instance,if theoptimizeroperatesatanapproximatela-
tency of 10 cycles per instructionin a frameandaverage
framesizeis 100instructions,thentheaverageframeoccu-
piesthe optimizerfor 1000cycles. If the optimizer is not
pipelined,then an incoming frame that arrivesbeforethe
previousframecompletesmustbebufferedor dropped.In
ourmodel,weassumedanidealoptimizerthatcouldhandle
anunlimitednumberof in-flight frames.

In orderto assessthethroughputthattheoptimizermust
support,we measuredthe averageframearrival rate: one
frameevery 110cycles. While this ratepresentsa signifi-
cantdesignchallengein theconstructionof theoptimization
engine,notethat (1) many of theframesthataregenerated
areneverused(wequantifythis in thenext subsection),and
(2) simplefilter functionscaneliminatethetransmissionof
redundantandrepeatedframesto theoptimizer. Our base-
line (from which the 110 cycle numberwas derived) im-
plementsa very simplefilter thatdropsa frameif thesame
frame was generatedpreviously—this function eliminates
approximately1 out of 3 frames.Our futurework involves
amoredetaileddescriptionof theoptimizationenginealong
with effective meansto manageboth its latency andits re-
quiredthroughput.

6.2 Frame Cacheeffects

Nearly a third of the framesthat are generatedby the
constructor, optimized, and subsequentlycachedin the
framecachearenever read.On average28%of framesare
deadin this sense.The benchmarksthat suffer from high
penaltydueto cachemisses(crafty, gcc,perl, vortex) also

have a relatively high numberof deadframes,on average
46%. An effective meansof not constructingframesthat
arelikely to bedeadwill boostframecacheefficiency and
reducethethroughputrequirementson theoptimizer.

Framecacheefficiency is alsoimpactedby theredundant
natureof cachingtracesof thedynamicinstructionstream.
We measureredundancy in the frame cacheby scanning
theframecacheevery100kcyclesduringtheexecutionand
countingthenumberof uniquebasicblockaddressesstored
in the cache. We find that on average71% of the basic
blocks cachedin the framecacheare uniquein any sam-
ple point. This rangesfrom 51% on gcc to 86% on bzip2.
Theresultsaresimilar for bothoptimizedandunoptimized
binaries.Nearly30%of theinstructionscachedin theframe
cacheareduplicates.While techniquessuchasthe block-
basedtracecache[2] canhelpcontrolredundancy, different
techniquesmustbe adoptedfor rePLaybecausemodifica-
tionsby theoptimizeraltertheoriginalbasicblocks.

6.3 Frame length effects

In orderto investigatewhetherlongerframesarebene-
ficial in boostingoptimizationpotential,we examinedper-
formancewhile as a function of averageframe size. We
cancontrolaverageframesizeindirectly by decreasingthe
maximumframesizethat the rePLayframeconstructoris
allowedto create.Figure7 plots the relative effect on per-
formanceversusa relative drop in averageframe size as
measuredby running eachbenchmarkon the RPO con-
figuration. The vertical axis representsthe percentageof
RPO performancewheremaximumframe size is 256 in-
structions. A benchmarkconfigurationattaining50% rel-
ative performance,for example,executestwice aslong as
thecorrespondingbenchmarkexecutingon a configuration
wheremaximumframelengthis 256instructions.

Figure 7. Performance versus frame length.

Obviously, fetch bandwidthis also a factor on perfor-
manceasframesizeis decreased.Also providedin Figure7



is theeffect on performanceof thebenchmarkgaprunning
on the RP configuration.Both trendlines for gapareem-
phasized.For thegap-RPtrendline, thedropin performace
isduepurelyto adropin fetchbandwidth.Whencomparing
gapversusgap-RP, onecandeducethat thenetdropframe
sizeaffectsoptimizationpotential.

7 Optimization Potential

To evaluaterePLay’s successin exploiting optimization
opportunities,we investigatedthe frequency of deadcode
in dynamicinstructionstreams.Processinga program’s in-
structiontraceoffline, we broadlyclassifyeachinstruction
aseitherlive or dead.Deadinstructionscontribute to nei-
thercontrolflow nor programoutput;their resultsareover-
writtenbeforethey areused,or areusedonly by otherdead
instructions.Our studyis similar to Rotenberg’s measure-
mentsof ineffectual instructions[22], but focuseson the
potentialfor instructionremoval andonthedifficulty of dy-
namicidentification,whereas[22] studiesparallelexecution
of ineffectual regionsof codeidentifiedthroughprofiling.
We calculateoptimizationpotentialoffline andexploredy-
namicidentificationof deadinstructions.

To recognizea deadinstruction, the rePLayoptimizer
mustverify thatall usesof theinstruction’s resultareeven-
tually discarded. As the optimizer seesonly instructions
within a frame,this requirementimpliesthattheframecon-
tainsthedataflow graphcomprisingall usesof the instruc-
tion as well as all overwritesof its results. We term the
numberof instructionsthatmustbevisible aftera deadin-
structionin orderto classifyit asdeadastheapparentlife-
timeof theinstruction.Evenif adeadinstruction’sapparent
lifetime lieswithin thescopeof a frame,theoptimizermay
not have adequatememoryaliasinginformation to recog-
nizetheinstructionasdead.

Offline processingprovidesan upperboundon the po-
tential of finding deadinstructionsdynamically. Program
tracesareprocessedin reverseorderto reducethecomplex-
ity of classification.Whenprocessinga particularinstruc-
tion, livenessandapparentlifetimesof all consumersof the
instruction’s resultarealreadyknown.

Thetotal live instructioncountsareslightly conservative
(high): as the simulatoronly emulatestraps/systemcalls,
we assumethatany trapreadsall registersandmemorylo-
cations.Also, at theendof a program,all registersarecon-
sideredliveandall memorydead.Assumingthattrapscon-
sumeneitherregistersnor memoryreducesthe numberof
live instructionsby anaverageof only 2.5%,thusthis con-
servativeboundis reasonable.

Resultsfor the twelve benchmarksappearin Figure 8.
In the figure, we separatedynamic instructionsinto nine
categories, three live and six dead. The live categories
aredataoperations,control instructions,andcontrol oper-
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Figure 8. Breakdo wn of live and dead instruc-
tions. Dead categories are solid, and live
ones are textured.

ations. Data operationsinclude all instructionsthat con-
tributedirectly to aprogram’soutput,i.e., thedataflow trees
thatproducememoryor registervaluesconsumedby traps.
Controlinstructionsandoperationscontaininstructionsthat
contributeonly to control flow (andthusindirectly to pro-
gram output); instructionsare the actual control instruc-
tions, and control operationsare non-controlinstructions
thatcontributeto conditions,indirectjump targets,etc.The
relatively small fraction of dataoperationsrelative to con-
trol mayreflectalgorithmictradeoffs in thebenchmarks;in
particular, programmersoften reducethe numberof data
operationsat theexpenseof morecomplex control.

The six categories of dead instructions are divided
roughly accordingto the difficulty of identifying themas
deadduring execution. Becauseof the relative storageca-
pacities,deadvaluesstoredin memorytendto live longer
than thosestoredin registers. Threeof the six deadcat-
egories have the potential for memory storage,and thus
presentroughly the samedifficulty for dynamic identifi-
cation. Storeoperationsusedonly by deadloadsare the
mostdifficult, asvaluesmustnot only be tracked through
their lifetime in memory, but any (dead)dataflow structures
basedon loadsof the valuesmustalsobe traced. Instruc-
tionswith resultsusedby deadinstructionspresenta simi-
lar difficulty if their consumersincludedeadstores.Stores
overwrittenbeforeusearetheeasiestof thethreecategories,
but maystill requirea fairly largewindow to identify.

Thenext category, resultsoverwritten,includesinstruc-
tionsthatwrite their resultsinto registersthatareoverwrit-
ten beforethey are used. Relative to previous categories,
suchinstructionshavesmallapparentlifetimes.Prefetches,
thenext category, make up only aninsignificantpartof the
dynamicinstructionstream(at most0.3%acrossall bench-
marks).As theseinstructionsmaybebeneficial,thereis no
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Figure 9. Cumulative distrib ution of apparent
lif etime for dead instructions in gcc. Dead
stores are long er-lived and harder to identify
than instructions that write to register s.

point in removing them. NOPsaccountfor roughlyonein
teninstructionsin optimizedcode.

Theproportionof deadinstructionsis striking,averaging
24% (from 7.1 to 37%) acrossthe benchmarks.With gcc,
for example,Figure8 indicatesthatapproximately15%of
dynamic,result-producinginstructionsin gccaredead.For
suchinstructions,rePLay’s deadcoderemoval eliminates
only about10.7%of dynamicinstructions,however. Simi-
larly, 4.9%of dynamicinstructionsaredeadstores,but re-
PLayeliminateslessthan0.038%.

Two factorsaccountfor the bulk of thesediscrepan-
cies: apparentlifetimes canbe long comparedwith frame
lengths,andaddressdisambiguationfurther hampersdead
storeidentification(rePLay’s deadcodeoptimizationdoes
not even attemptto remove deadstores). As an example
of thiseffect,considerFigure9, whichplotsthecumulative
distributionsof apparentlifetime in gccfor deadstoresand
for deadALU operationsandloads.Althoughonly a small
fractionof deadregisterscannotbeidentifiedwithin a large
frame,themedianframesizefor gccis only 21instructions.
By summingtheprobabilityof identifying eachinstruction
within a frameasdeadover all instructionsin a frameof
a particularsize, and then summingthe resultsweighted
by a program’s framesizedistribution, we canmoreaccu-
ratelyestimatethepotentialfor deadcodeeliminationwith
rePLay. Basedon thiscalculationfor gcc,rePLaycaniden-
tify at most4.0% of dynamicinstructionsasdead,result-
producinginstructions,and 0.19% as deadstores. Dead
codethusachieves53%of its potential,anddeadstorere-
moval roughly20%. Thedifferencein theseachievements
is rootedin theaddressdisambiguationproblem.

8 RelatedWork

The rePLayFramework bearsresemblanceto the gen-
eralizedTraceProcessormodel [23] in that both microar-
chitecturesareorientedtowardsthe executionof long se-
quencesof the dynamic instruction stream. In rePLay,
framesare necessarilyatomic to facilitate dynamic opti-
mization.This factallowsfarmoreaggressiveoptimization
overanarchitecturethatdoesnotguaranteeatomicity.

Also, rePLayrepresentsan effective implementationof
ageneralInstructionPathCo-Processor, or ICOP[8, 12, 4].
ICOPframeworksprovideprogrammablehardwaresupport
for traceformationanddynamicoptimization.A few, pre-
liminary investigationsinto hardwaresupportfor dynamic
optimizationhavebeenmade[6, 17, 8, 4].

The notion of a frame is similar to other typesof op-
timization regions,suchassuperblocks,hyperblocks[14],
andtraces(from tracescheduling)[7]. It is differentin the
notionthatrecovery is relegatedentirelyto hardware.

Almostall of thepreviouswork ondynamicoptimization
hascenteredaroundsoftwaresystemswherethe dynamic
optimizer is part of the run-time system[13, 1, 10]. For
many schemes,suchasDynamo[1], the original program
runsunderthe controlof a softwareinterpreter. The inter-
pretergathersinformationabouttheprogram’srun-timebe-
havior andbuildsoptimizedregions.WhenaPCis encoun-
teredfor which an optimizedregion exists, the optimized
codeis directly executed.

9 Conclusion

We have evaluated the rePLay microarchitectureas
meansfor reducingapplicationexecutiontime by facilitat-
ing effective dynamicoptimization. The framework con-
tains hardware support for dynamic optimization, in the
form of a programmableoptimizationengineanda recov-
erymechanism.Theoptimizerdecreasesoptimizationover-
headby allowing optimizationto occurconcurrentlywith
executionand with potentially lower latency. The recov-
ery mechanismenablesthe optimizer to make speculative
optimizationswithout thenecessityof generatingrecovery
code,potentiallyincreasingtheaggressivenessof the opti-
mizations.

We find that,whencomparedto a rePLayconfiguration
not performingoptimization,the rePLayoptimizercanre-
ducethenumberof executioncyclesfor theSPEC2000in-
tegerbenchmarksby anaverageof 13%on Alpha binaries
alreadyoptimizedby acompiler(resultingin aneteffective
increaseof 16%in IPC),andby 15%onbinariesthatarenot
staticallyoptimized(18%increasein IPC).Furthermore,re-
PLaywith optimizerreducesexecutioncyclesby 21%over
an ICacheand18% over a TraceCachewhenbinariesare
staticallyoptimized,and27%and23%whenthey arenot.



Wefind thattherePLayoptimizercanoperateeffectively
with optimizationlatenciesup to the 10k cycle range,but
mustsupporta fairly high throughput.Throughputreduc-
tion techniquesarepossible,asnearly30%of framesgen-
eratedareneverexecuted.

Onemajor benefitof the optimizercomesfrom remov-
ing deadcode,andon average,it is ableto reducedynamic
instructioncountby 11%. We investigatedthepotentialfor
deadcodeeliminationin optimizedbinariesandcompared
rePLay’sresultswith thatpotential,concludingthatrePLay
realizesasubstantialfractionof theoptimistically-bounded
potential: 50% of dead,result-producinginstructionsand
20%of deadstores.Thelimiting factorin realizingtheim-
mediatepotentialis disambiguationof memoryaddresses.
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