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Abstract

We evaluatetherePLaymicroarchitecture asa meandor
reducingapplicationexecutiontime by facilitating dynamic
optimization.Theframeavork containsa programmableop-
timizationenginecoupledwith a hardware-basedecovery
medanism. The optimizationengineenablesthe dynamic
optimizerto run concurentlywith program execution.The
recovery medanismenablesthe optimizerto malke specu-
lative optimizationswithoutrequiringrecovery code

We demonstatethat a rePLayconfiguiation performing
a smallsuiteof simpleoptimizationson Alpha codeattains
an averge of 13% reductionin executioncycleson the
SPEC2000nteger bencimarksoverarePLayconfiguation
notperformingoptimizationsanda 21%reductionover an
aggressivestandad supescalar microarchitecture.

1 Intr oduction

Dynamic optimizationis gaining the attentionof com-
putersystemgesearcherasan effective meansfor boost-
ing applicationperformanceCodeoptimizationsmadedy-
namicallycanexploit the stable possiblyphasedbehaior
exhibitedby arunningapplicationandtherebyutilize infor-
mationnot availableto a staticoptimizer Furthermorenew
code deployment techniques,such as dynamically-linked
libraries, createbarriersfor traditional optimizers,but are
amenableo dynamicoptimization.

One of the key challengesfor effective dynamic opti-
mizationis to perform aggressie codetransformationsat
low overhead.The rePLayFrameavork [19] addressethis
challengeby providing dynamic optimization supportat
the microarchitecturalevel. In this framework, a high-
performanceexecution engineis augmentedwith a pro-
grammableoptimization engine,allowing optimizationto

occur concurrentlywith programexecution. The rePLay
microarchitecturdacilitatesoptimizationby providing the
optimizerwith long, atomiccoderegionsuponwhich opti-
mizations possiblyspeculativecanbe performed.A hard-
warerecovery mechanisnrecoversarchitecturabtatein the
eventthatassumptionsnadeduring optimization—suctas
speculatiorof likely control paths—arenvalid during ex-
ecution. Performingspeculatre optimizationswithout the
needto generateecovery codepotentiallyincreasesheag-
gressvenesf optimizations.

In this paper we presenta quantitatve and qualitative
analysisof arePLay-basedicroarchitectur¢hatperforms
severalsimpleoptimizations We provideananalysisof fac-
torsthataffectanimplementatiorof rePLay Weinvestigate
someintrinsic characteristicef codethatshedlight on the
optimizationpotentialof rePLayandotherpath-basedpti-
mizers. We demonstratehat a rePLay configurationper
forming a small suite of optimizationscan attain a 13%
reductionin executioncycles(a 16% increasen effective
IPC) on the SPEC2000nteger benchmarkover a rePLay
configurationnot performingoptimizationsanda 21%re-
ductionin cycles(27%increasén IPC) over anaggressie
standardsuperscalamicroarchitecture.

2 TherePLay Micr oarchitecture

In orderto lay a solid foundationfor the subsequent
sectionsof this paperandto illustrate rePLays potential
benefits,we describea prototypical rePLay implementa-
tion in this section. Furtherdetailson this designappear
in [20, 19, 5].

TherePLayframeawork consistf five key components:
(1) aframeconstructoifor creatingcandidateoptimization
regions,(2) aprogrammablenginefor optimizingthesere-
gions, (3) a frame cachefor storingtheseregionson-chip,
(4) acomponenfor sequencindpetweerregions,and(5) a



mechanisnto recover architecturabtateif speculatie opti-
mizationsproveincorrect. Thesecomponentsreintegrated
into aprocessoasshavn in Figurel.
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Figure 1. The rePLay mechanism is coupled
to a high-perf ormance micr oarchitecture .

2.1 Frames, assertions,and the recovery mecha-
nism

Centralto rePLayis the conceptof the atomicregion or
frame A frameis similar to a tracein a trace-scheduling
compiler[7] orablodckin theBlock-StructuredSA [11, 15].
All control dependenciewithin a frameareremoved, en-
suring that all instructionswithin the frame are mutually
controlindependentln particular eitherall instructionsin
a frame commit their results,or none of them do. This
atomicity simplifies the optimizationalgorithmsusedand
supportshigh-bandwidthinstructionfetch.

To facilitatethe creationof frames,rePLayincludesthe
concepbf anassertion Assertioninstructionsenablemul-
tiple basicblocksto be combinedinto an atomicentity, or
frame. A control flow assertiorninstructionis similar to a
conditionalbranchin that both testa condition. They are
different,however, in the actionstaken after the condition
is tested. The outcomeof a conditionalbranchinstruction
determineghe addresf the next instruction. In contrast,
anassertiorhasno effect on the addresf subsequenin-
structions,andno effect whatso®er if the conditionbeing
asserteds true. If the conditionis false,the assertiorfires,
triggeringarecovery actionthatdiscardsall instructionsin
the frameandredirectscontrol flow to the original address
for the instructionat the beginning of the frame (i.e., the
addres®f thefirst original basicblock).

When an assertionfires (or an exception such as a
TLB missoccurs)duringaframe’s execution,the hardware
mustroll architecturalstatebackto the beginning of the
frame. Suchrestorationimplies that ary stategenerated
during frame executionmust be buffered until all instruc-
tionswithin theframehave executedsuccessfullyat which
point statechangesanbe committed.

Bufferingandrecovery of architecturaktatein rePLayis
accomplishedising recovery mechanismsimilar to those
usedby dynamically-schedulegrocessorsvith speculatie
execution.RePLayusesareorderbuffer-typemechanisnto
allow valuesgeneratedvithin aframeto be usedby subse-
guentinstructions.Valuesarekeptin thereorderbuffer until
theassociateéramecommits,atwhich pointall valuesthat
arelive at frame exit proceedto the architecturalregister
file. If aframedoesnot commit, all valuescorresponding
to the frame (and all valuesfrom subsequentrames)are
flushedfrom thereorderbuffer. Thisrecoveryactionis sim-
ilar to thatrequiredfor a branchmisprediction.Becausef
thepotentiallyhigh numberof valuesin-flight while execut-
ing aframe,rePLays registerrecosery mechanisnrequires
adeepebuffer. Similarly, valuesstoredto memoryarekept
in a pendingstorebuffer until the correspondingrameis
committed.

2.2 Frame Constructor

While the rePLayFramevork allows both compiletime
anddynamicframeformation,we focushereon a dynamic
techniquébasednahardwarestructurecalledaframecon-
structor Theframeconstructoiusesthe committedinstruc-
tion streamfrom the executionengineto build framesfor
optimization.lts objectiveis to creatdong framesthatspan
multiple basicblocks. Long framesincreasethe potential
for finding optimizationopportunitiesnot exploitedat com-
pile time. Branchesand other control instructionsat the
boundariedbetweenbasicblocksin a frameare corverted
to assertiorinstructions.

The constructomworks asfollows: asinstructionsarere-
tired by the executionengine,they are passedo the con-
structor The constructoradds each arriving instruction
into aframeconstructiorbuffer, causingthe pendingframe
to grow. Whenever a control flow instructionis encoun-
tered,the constructordecideswhetheror not to corvert it
to anassertiorvia atechniquefor identifying highly biased
branchescalled branch promotion[18]. An arriving con-
trol instructionnot promotedinto an assertioncauseshe
pendingframeto be finalized. A newly formed frame s
passedo the optimizationenginefor optimization. With
thistechniguepnly highly biasedbranchesreincorporated
into frames;thosethatarenot stronglybiasedform the ter-
minal brancheof frames.

As presentedn [20], our path-historybasedramecon-
structiontechniquegeneratesong frames(on average50
Alpha instructions)that have a very high probability of
completeexecution.On the averagebenchmarkthesecon-
structedframesprovide 76% of all dynamicinstructions.



2.3 Optimization Engine

The optimizationenginecanperformclassicalcompiler
optimizations gxtendedbasicblock optimizations andvar-
ious otheroptimizationsperformedby otherdynamicopti-
mizationsystemgl]. TherePLayoptimizercanalsosched-
ule code,for instanceif the underlyingexecutionarchitec-
tureis statically-scheduledMoreover, the couplingof dy-
namic optimizations,executionrollback mechanismsand
rePLay5assertionnstructionarchitecturellows for imple-
mentationof speculatie optimizations(i.e., optimizations
that may not be valid in every executionscenario)without
theneedto generateecovery code.

Theoptimizationengines aflexible datapatthatcanbe
software-programmedsingaspecializednstructionsetar-
chitecture coupledwith specializedoptimizationhardware
that assistsin performingcritical optimization operations
at low lateng. The tight coupling betweenthe execution
and optimizationenginesprovidesthe optimizeraccesgo
the microarchitecturaéxecutionstateof the program,such
asbranchbehaior, load-storedependencmformation,and
intermediatalatavalues.

While the prototyperePLaysystemembodieshe opti-
mizerasa separatdardwareentity, otherimplementations
arepossible.For example,the optimizercanbe a separate
specialmicrothreadhatshareghe executionhardwarewith
theapplication[3]. This threadwould usespecialhardware
to facilitate optimization, suchasthe ability to efficiently
write into thethe applicationthreads istream.

While our current rePLay microarchitecturedoes not
save optimized framesinto persistentstorage,it is possi-
ble to write usefulframesinto an unusedsectionof the the
applications codesggment,in a similar fashionto thatpro-
posedn [16].

Previous approacheso hardware-basedlynamic opti-
mization[8, 12, 4] have focusedon simple microarchitec-
tural optimizations.Suchoptimizationstuneda smalltrace
of instructions(typically around16 instructions)o the par
ticularsof the executionmicroarchitecture Exampleopti-
mizationsincludedinstructionfusion(e.g., combiningshifts
with adds),clusterassignmentandtraceformation. Com-
piler style optimizations—optimizationthatreducethe ex-
tentof computation—pruoed of little value becauseof the
limited scopeof atrace.Becausdramesareatomicandbe-
causerePLayis ableto constructong frames the potential
of compileroptimizationsincreasesvith rePLay

TherePLayframawork differsfrom software-basedpti-
mizerssuchasthe TransmetaCodeMorphing System[13,
HP Dynamo[], and DyC [9] primarily in the useof the
hardwaresupportfor optimizationfunctions.The hardware
supporthelpsto reduceoverheadn two ways: (1) the op-
timizer doesnot usethe sameexecutionhardware as the
application,and (2) the hardwarerecovery mechanismal-

lows for speculatre optimizationson atomiccoderegions
withoutrecovery code.

2.4 Frame Cache

Framesprocessedby the optimizationengineare stored
in aframecache.Theframecacheis similarto atracecache
designedto deliver very long sequence®f instructions,
spanningmultiple traditional cachelines. For example,a
particularframemight consistof 100 instructions,spanl3
cachdines(at8instructiongpercachdine), andtake 13 cy-
clesto be fetchedandissuedon an 8-wide fetch/issuepro-
cessor The frame cachemust supportframesof varying
sizes(previouswork reportedthatthe distribution of frame
sizesacrossapplicationsis very broad),and must prevent
a fetch from startingfrom the middle of a frame. Further
more, the frame cachemusttreateachcachedirameasan
atomicentity: if any portionof aframeis to be evicted, all
of it mustbeevicted.

Basedon our evaluationof several frame cache[5] de-
signs theframecaches partitionedinto two structuresThe
first structure the headpartition, is a set-associate cache
structureresened for cachingthe first line of eachframe.
The other structure the body partition, is a direct-mapped
cacheresened for the remainderof the frames. Figure 2
illustrateshow aframeis storedin the cache.
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Figure 2. The frame cache consists of two
structures: one for caching the first cache
line of frames, and one for caching the re-
mainder .

We've determinedhat, given this generalstructurefor
the framecache,a goodrule of thumbis to make the body
parition roughly twice the capacityof the headpartition.
Theparticularpartitionsizesusedn thisstudyarepresented
in Sectiond.3.



2.5 Frame Sequencer

While the programexecutes,a correlation-baseframe
sequencedecidesappropriatesituationsfor framedispatch.
The sequencedeterminesvhether for a givenpathhistory
and currentfetch addressa frame starting at the current
fetchaddressvith matchingpathhistoryexistsin theframe
cache. If so, the frameis fetchedand dispatched.Other
wise, the standardinstruction cacheprovides the instruc-
tionsfor thefetch. For example,if the currentpathhistory
is XYZ (meaningthe last threebranchtargetswere X, Y,
andZz) andthe currentfetchaddresss A, the sequenceat-
temptsto look for aframestartingat A with context XYZ.

The sequenceis coupledto a corventionalbranchpre-
dictorthatdecidesvhichtargetto fetchin any particularcy-
cle. Thecurrentpathhistoryis usedto index into theframe
cache. A comparisoris madeusingthe fetch addressaand
thetagof theentriesfetchedfrom theframecache A match
indicatesthata fetch of the correspondindrameshouldbe
initiated, with thefirst line having alreadybeenfetched. A
missindicatesthatno frameexistsin the cachefor thatpar
ticular pathhistoryandstartingaddress.

3 Dynamic Optimizations

This sectiondescribeseveral simple optimizationstar
getedfor rePLays optimizet While the spaceof possible
optimizationsis quite large, we selecttheseoptimizations
becausehey aresimpleandpowerful, andhelpto demon-
strate the potential of optimization with rePLay Some
of the optimizationsare commonoptimizationsfound in
a standardcompiler, while othersare uniqueto rePLay
Specifically we examine:

Dead code removal. Instructionswhose results are
never usedandoverwrittenwithin aframecanberemoved.
Becausa frameis a collectionof basicblocksthatembody
a singlecontrol path,a rePLayoptimizercanremove code
thatis deadonaparticularcontrolpath. This optimizationis
quite effective, removing betweerb% and19% of dynamic
instructions.In Section7, we examinethe potentialof this
optimization.

NOPsandunconditionalbranchesare alsoremoved by
this optimization. NOP instructionsare addedby the com-
piler for cachealignmentand instruction slotting and ac-
countfor nearly 10% of the dynamicistream. This opti-
mizationremovestheseinstructions,allowing for a netin-
creasan effective fetchbandwidth.

Constant propagation. Constantvalues are often
loadedinto registersfor subsequentomputation. Such
computationcan sometimesbe pre-calculated,reducing
the amount of computationduring execution. Because
a path through multiple basic blocks is embodiedas an
atomic block, the rePLayoptimizer can propagatea con-

stantthroughalongerspanof thecode.

Reassociation. Often, multiple associatie operations
(e.g., additions)areperformedduringthe courseof compu-
tation, for exampleto generateanemoryaddressesr loop
indices. When a sequenceof theseoperationsinvolving
immediatevaluesis detectedwithin a frame,the optimizer
canreassociatéhesevaluesto reducethe computatiortree
height. Thepotentialof this optimizationincreasesubstan-
tially whenappliedacrosanultiple basicblocks.

Common sub-expressionremoval. Code sequences
sometimegproducethe samevaluethroughidenticalcom-
putation. In the caseof suchredundantexpressionsit is
sometimegossibleto remove one of the setsby forward-
ing the outputvaluefrom thefirst to thesecond.

Sub-routine inlining. This optimization removes the
stackand pointer operationsassociatedvith a call/return
sequenc&henthe sequencés containedwithin aframe.

Fetch Scheduling Fetch schedulingattemptsto im-
provetheorderin which instructionsarefetched.Although
mary currentprocessoremploy dynamicschedulingthey
are still constrainedto fetching instructionsin the order
specifiedby the compiler With rePLay the optimizercan
take advantageof having exact knowledgeof the proces-
sor’s parameterssuchasfetch width, and canthusreduce
inefficiencies suchasfetchingtwo data-dependenmtstruc-
tions in the samecycle. Additionally, instructionson the
critical pathin aframecanbefetchedearlier

For example,we canschedulghefetchof assertiongar
lier to reducethe penaltyassociateavith recovery. Of more
critical importancethepositionof theframe-endindranch
is not relevantto correctnesbecausehe endof the frame
is explicitly marked by the frame cache.We canmove the
branchand associateaondition-generatingnstructionsto
the beginning of the frame. In doing so, we canreduce
thebranchresolutiontime, evenif theunderlyinghardware
usesdynamicscheduling. This particularoptimizationre-
sultsin anet3% decreasén branchresolutioncycles.

Miscellaneous.The optimizeralsoperformsavery lim-
ited amountof strengthreduction(converting multiplies of
powersof 2 into left shifts),and someremappingof com-
mon codeidiomsinto more efficient sequencesThe opti-
mization enginealso performsthe previously-investigated
trace cache optimization performing zero cycle register
movesusingexisting registerrenaminglogic [8].

To facilitate all optimizations,the rePLay architecture
maintainsa save/restoreregister mask with eachframe.
This mechanisnmenableshe optimizerto usearchitectural
registersthatarenotusedn theframeasframetemporaries.
The original value of a registerusedasa frametemporary
is saveduponentryinto a frameandrestoreduponexit. It
should be notedthat this processneednot physically in-
volve datamovementin theimplementationithe renaming
mechanisntanbeaugmentedo provide this supporty as-



signingtemporaryphysicalregistersto frametemporaries.

We again note that the simple compiler optimizations
performedherearedifferentin naturefrom the microarchi-
tecturaloptimizationgperformedn previousstudieq8, 12].
Most of the optimizationsinvestigatedreviously arecom-
plementaryto thosepresentedhere,andif combinedwould
resultin an additionalboostto performance.Also, aswe
demonstratén Section6.3, the longernatureof framesin-
creaseshe ability of compilerstyle optimizationsto make
animpacton performance.

4 Experimental Setup

4.1 Benchmarks

We usedthe SPEC2000nteger benchmarkgor perfor-
mancecharacterizationTable 1 shovs the numberof sim-
ulatedinstructionsfor eachbenchmark.ln mostcasesthe
SPECinput setsweremodifiedto enablethe benchmarkso
simulateall partsof the programin reasonableimulation
time. All benchmarksxecutedto completionexceptvpr,
which we cappedat onebillion instructions.

Benchmark| InstCount| Benchmark| InstCount
bzip2 289M || mcf 413M
crafty 620M || parser 508M
eon 132M || perlbmk 154M
gap 490M || twolf 595M
gcc 283M || vortex 265M
gzip 870M || vpr 1000M

Table 1. Benchmarks used in simulations.

The benchmarksvere compiledusing the CompagAl-
phaC compiler CompaqgC V5.9, with optimizationlevel 4
(the benchmarkeon was compiled using g++ also at op-
timizationlevel 4). At this level of optimization,the Com-
pagC compilerperformsin-lining, loop unrolling,andcode
replicationto eliminate branches. We also report several
performancecharacterizationbasedon unoptimizedbina-
ries in orderto provide anotherpoint of referenceon the
potentialof therePLayoptimizer

4.2 Simulation Environment

Our simulation framework is built upon the Alpha
instruction-level simulatorprovided asthe coreof the Sim-
pleScalar3.0 tool set. We developeda timing simulator
to modelperinstructionprocessinglelaysassociatedvith
a dynamically-schedulegipeline, including wrong path
(branchmisprediction)effects. To measurethe effects of
frame constructionand optimization on performancewe

coupledmodelsof the rePLayframeconstructoyoptimiza-
tion engine andframecacheto the simulator

We augmentedhe Alpha ISA to include assertionin-
structionscorrespondingo conditionalbranchesjndirect
branchesandreturninstructions. The rePLayinstructions
areinsertednto framesby theframeconstructor

In orderto establistithecorrectnessf our optimizations,
we comparethe architecturaktategeneratedby therePLay
simulatorwith that of a referencesimulatorat every frame
boundary ThistechniquesnsureshatrePLayoptimizations
do notcausencorrectprogrambehavior.

4.3 ProcessorConfiguration

We evaluaterePLayin the context of an 8-wide dynam-
ically scheduledbrocessolandcompareit againstbaseline
modelsin whichthe superscalacoreis coupledwith anin-
structioncacheandwith atracecache.The specificsof the
commoncoreareprovidedin Table2.

8-widefetch/issue/retire,
7 cycles(min) for BR resolution
InstWindow | 1024instructions
ExeUnits | 6 IALUs, 2 IMULSs, 2 FLTs
L1 DCache| 64kB,1 cycle, 3 read/writeports
L2 Cache| 1MB, 8 cycle
Memory | 50cycles

Pipeline

Table 2. Configuration of Superscalar Proces-
sor Core.

The baselinerePLayprocessoicontainsa 48kB Frame
Cacheanda 16kB instructioncache.As mentionedn Sec-
tion 2.4, thecacheconsistof two partitions. Theheadparti-
tionis a4-way setassociatie structurewith 128setsmean-
ing that the cachecan storeup to 512 frames. The body
partition contains1024 cachelines, direct-mapped. The
line size of both the headandbody partitionsis 8 instruc-
tions (32B). The frameconstructorcontainsa 32kB condi-
tional branchbiastableanda 4kB indirect branchbiasta-
ble, eachof whichis accessedsinga pathhistory contain-
ing four previous branchtargets. Branchesare promoted
after 32 consecutie outcomego the sametarget. The de-
fault lateny of the optimizationengineis 1000 cycles (in
Section6.1 we examinetheimpactof varyingthis lateng).
TherePLayfetchmechanisnusesa8kB path-historybased
branchpredictorwith a standardtkB branchtargetbuffer.

ThebaselindnstructionCacheconfiguratiorextendsthe
superscalacorewith a simple64kB InstructionCacheca-
pableof performingsplit-line fetcheg(i.e., fetchingconsec-
utive cachelines). The branchpredictoris an 8kB gshare
predictorwith a4kB BTB. The gsharepredictorwastuned



to optimizethe performanceof this configuration.

We comparerePLay with a simple Trace Cachecon-
figuration capableof fetching tracesof up to 16 instruc-
tions (delivered eight per cycle). The Trace Cachecon-
figuration consistsof a 32kB TraceCacheanda 32kB In-
structionCache,with an 8kB gsharepredictor The Trace
Cachemodel also performssomevery simple optimiza-
tions, specificallythe registermove optimizationdescribed
in [8]. With thisoptimization,instructionghatmoveavalue
from oneregisterto anotherare performedby the register
renamingmechanisnwith no extradecodingtime.

We have selectedthe executioncore basedon our pro-
jectionsof feasibleorganizationsin one or two processor
generationsThelnstructionCacheandTraceCacheconfig-
urationsrepresenstandardnicroarchitecturestilizing this
core. We evaluatethe basicrePLay(i.e., without optimiza-
tion) configurationas an alternatve to thesecorventional
microarchitectures. Comparedto the ICacheand Trace
Cache,the basicrePLay configurationdoesrequire extra
storagefor branchbiastables,but thesetablesarenotona
lateny sensitve sectionof the processarin Section5, we
demonstratéhat, from a performancepoint of view, basic
rePLayis competitve with the standardCacheand Trace
Cacheorganizations.The rePLayconfigurationwith opti-
mizationsrepresentanenhancemeriteyondbasicrePLay

5 Performance Measurements

Ourevaluationof rePLayinvolvesacomparisorbetween
rePLaywith (RPO) andwithout (RP) optimizationsandthe
InstructionCacheg(IC) andTraceCacheg(TC) processopr-
ganizationsglescribedn Section4. Figures3 and4 display
the measuredxecutioncyclesfor eachof the SPEC2000
integerbenchmark®en theseconfigurations.

5.1 Performanceon optimized binaries

Figure3 presentperformance&eomparisonbetweerthe
four configurationon staticallyoptimizedbinaries.

In orderto assesgshe factorsthat contribute to execu-
tion time, we subdvided eachbarinto cateyorieshasedon
how the fetch mechanisnspendseachcycle. For exam-
ple, if in a particularcycle, the fetch mechanisnproduces
someinstructionson the correctexecutionpath, the cycle
is tallied aseithera Normal Cycle, if the ICacheor Trace
Cacheprovided the instructionsor a FrameCycle, if the
FrameCacheprovided the instructions. The classification
of cyclesis madeasfollows: If theresultingfetchwill be
ultimately discardeecaus®f aframeassertionthefetch
is tallied asan AssertCycle. Otherwisejf all of thefetched
instructionsareon the wrong executionpath(dueto a mis-
predictedandyet unresohedbranch)thefetchis tallied as
a Wrong Path Cycle. Otherwise,the cycle is tallied asa

FetchMiss Cycleif therewasacachemiss,or a Stall Cycle
if the pipelineis stalled(dueto afull schedulingwindow),
or aNormalor FrameCycle.

The datain Figure 3 hassomenotabletrends: rePLay
with optimizationsoutperformghelCacheconfiguratiorby
anaverageof 21%,the TraceCacheby 18%, andbasicre-
PLay by 13%. The percentagemumbersincludedon the
graphrepresentheimprovementbetweerrePLaywith op-
timizationsandbasicrePLay

For the benchmarkgon,gap, mcf, parserandperlbmk,
the optimizationsdeliveresizeablevins whencoupledwith
the gainsin fetchbandwidthdeliveredby the basicrePLay
mechanism(on average34% betterthanthe ICache). For
thebenchmarkesrafty, gcc, perlbmk,andvortex, the frame
cache(andto somedegree,the Trace Cache)suffers from
cachemissesdueto effectssuchasredundang (examined
in Section6.2).

The net loss due to assertionds remarkablylow. On
averagethislossaccountgor only 0.92%of all cycles.

Thenetlossdueto branchmispredictionss amajorfac-
tor on performancein somecasesontributingto over half
theexecutiontime. TherePLaymechanisnis ableto reduce
the cost of mispredictedbranchegqe.g., gap and perl) by
reducinginterferencein the branchpredictor—assertions,
which accountfor over 80% of all branchestequireno dy-
namic prediction. To a smallerextent, the optimizations
themselesreduceresolutiontime. Optimizationssuchas
reassociationeducedependengheightof branchcomputa-
tions,while thefetchschedulingpptimizationallowsbranch
computatiorto be startedearliet

Basic rePLay itself performsonly slightly betterthan
the Trace Cacheand ICache configurationswhen cou-
pled with the 8-wide superscalaexecutionengine. Even
the TC configurationbarely outperformsthe IC configu-
ration. Several factorscontritute to this: foremost, on
average,the underlyingmachineis executionbandwidth-
limited and increasingfetch bandwidthdoeslittle to im-
prove performance. Secondly we implementeda simple
tracecache—enhancemergsachasthoseproposedn [18]
and redundang reductiontechniquessuch as those pro-
posedin [2, 21] can potentially boostthe performanceof
the TC configuration. Furthermorethe microarchitectural
optimizationsevaluatedin previous trace cacheoptimiza-
tion studiescanimprove the performanceof TC, RR, and
RPOconfigurations.

Table3 providestheaveragesizeof eachfetchproduced
by thefetch mechanisnfor eachof the four configurations
(on Normal or FrameCycles)for the averagebenchmark.
Noticethattheaveragdetchsizedropsslightly betweerthe
RP and RPO configurations. This reflectsthe optimizer's
ability to remove instructionsthusslightly reducingframe
size. On average,the optimizerremoves 16% of dynamic
instructionsfrom the optimizedbinaries.On average,76%
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Figure 3. Performance of four superscalar processor systems:

rePLay with Optimizations on optimiz ed binaries.

of dynamicinstructionsarein framesfor the RPOconfigu-
ration.

| IC | TC | RP | RPO
Inst/Fetch| 5.28 | 5.94 | 6.69 | 6.55

Table 3. Average Fetch Size

5.2 Performanceon unoptimized binaries

Figure 4 provides a comparisonsimilar to Figure 3
for statically unoptimizedbinaries. The rePLayoptimizer
shavs a remarkableperformanceimprovementfor most
cases. Overall, RPO performs15% betterthan RP (18%
increasean effective IPC), 23% betterthanthe TC configu-
ration (30%increasen IPC), and27% betterthanIC con-
figuration (37% increasein IPC). On average,the rePLay
optimizerreduceghe dynamicinstructioncountof unopti-
mizedbinariesby 18%.

In two casesRPOonunoptimizedcodeis ableto outper
form staticallyoptimizedbinariesrunningontheRPconfig-
uration(gapandperlbmk). With this comparisonthe ma-
jority of the fetch bandwidthimprovementis factoredout
andthe resultis mainly dueto the strengthof the rePLay
optimizations.Thoughit appearghatvpr alsooutperforms
its statically optimized counterpart,t did not completely
execute renderingthe comparisonnvalid.

ICache, Trace Cache, rePLay, and

Commerciakoftwareis oftendeliveredunoptimizedbe-
causeof productiondeadlines,supportissues,and issues
with fragile code or buggycodewhereflaws areexposeddy
compileroptimization. Suchcodeis often dueto accesses
to uninitialized memory out-of-boundsaccessesandtim-
ing andsynchronizationssueswith threadedctode.

While issueswith fragile codeareimportantfor ary op-
timization system rePLayoffers a safgguardagainstmary
typesof fragile code,in particularthoseinvolving unini-
tializedandout-of-boundsccessesTheoptimizationsper
formedby rePLayarelow-level andadhereo thesemantics
of the binary (as opposedto the semanticsof the source
code). Eachatomic frameis a direct implementationof
theunderlyingbasicblocks;theresultingarchitecturaktate
transformationgperformedby the frame are the sameas
thoseperformedoy theoriginalcode. Thereis atradeof: by
exploiting semantidnformationin the sourcecode,a static
compileris ableto make powerful optimizations(notethe
differencen performancéetweerthe optimizedandunop-
timized binariesin Figures3 and4). Theseoptimizations,
however, are doneat the expenseof potentially breaking
fragile code. The performancéoostfrom the rePLayopti-
mizationsis more modest but theseoptimizationsareless
likely to breakfragile code.

5.3 Performanceof individual optimizations:

Figure5 is a plot of the relative impactof eachclassof
optimizationdescribedn Section3. In this plot, we enable
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Figure 4. Performance of four superscalar processor systems on unoptimiz ed binaries.

eachoptimizationseparatelyandplot its performancerel-
ative to both the RPO configuration(all optimizationsare
enabled)yandthe RP configuration(all disabled). The data
werecollectedon the staticallyoptimizedbinaries.A 1 on
they-axisrepresentshe performanceof RPOandO repre-
sentsthe performancef RP
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Figure 5. Performance of individual optimiza-
tions relative to the unoptimiz ed rePLay con-
figuration.

Of theindividual optimizations the deadcoderemoval
optimization hasthe most significantimpact. Remaving
deadinstructions NOPsandunconditionabrancheslimi-
natesheneedto cacheandfetchthem.

Another single optimizationof noteis the branchfetch
schedulingoptimization. The individual performanceof
this optimizationis 1.3% over basicrePLay but canbe as
high as6%. It is ableto fetch branchesn average2.5 cy-

cles earlier than without fetch schedulingresultingin an
average3% decreas@ thenumberof cyclesfor branchres-
olution.

Someoptimizations,suchas constantpropagationand
reassociationprovide little benefitin isolation,but provide
substantiaboostswhen coupledwith other optimizations.
In associate@xperimentgnot shavn in this paper)we ob-
sened a synenistic effect of reassociatiorcoupled with
deadcodeandfetchscheduling This combinatiorprovided
almost95%of the performancdoenefitof all optimizations.

6 Analysis

The previous sectiondemonstratethe performanceo-
tential of therePLayoptimizer In this section,we investi-
gatethe impactof implementatiorconstraintson this per
formancepotential.

6.1 Optimization latency and thr oughput

Figure 6 presentghe effect of increasingthe optimiza-
tion lateny relative to an optimizerthat operatesn O cy-
cles. The lateny of the optimizeris measuredrom the
cycle an unoptimizedframe arrivesto the point the unop-
timized frameis transmittedto the framecache. This data
wascollectedon the optimizedbinaries.

The lateny startsto have animpactoverall whenit ex-
ceeds10,000cycles. In somecases,an increasedopti-
mizerlateng improvesperformanceTheincreasedateny
causeshe optimizerto delay the generationof a not-so-
usefulframethatevictsamoreusefulframe.At alateng of
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Figure 6. Slowdown relative to O cycle opti-
mizer.

100,000cycles, the netaverageslovdown over the 0-cycle
optimizeris 7%, with a max slowdown of 17% for parser
As mentionedn Section4.3, the typical optimizerlateny
is 1000cycles.

Anotherimportantfactorin thedesignof aneffective op-
timizer is the throughputthat the optimizer must sustain.
For instanceif theoptimizeroperatestanapproximatda-
teng/ of 10 cycles perinstructionin a frame and average
framesizeis 100instructionsthentheaverageframeoccu-
piesthe optimizerfor 1000cycles. If the optimizeris not
pipelined, then an incoming frame that arrives beforethe
previous framecompletesmustbe bufferedor dropped.In
ourmodel,we assumednidealoptimizerthatcouldhandle
anunlimitednumberof in-flight frames.

In orderto assesshethroughputhatthe optimizermust
support,we measuredhe averageframe arrival rate: one
frameevery 110 cycles. While this rate presents signifi-
cantdesignchallengen theconstructiorof theoptimization
engine,notethat (1) mary of the framesthataregenerated
areneverused(we quantifythisin thenext subsection)and
(2) simplefilter functionscaneliminatethe transmissiorof
redundantindrepeatedramesto the optimizetr Our base-
line (from which the 110 cycle numberwas derived) im-
plementsavery simplefilter thatdropsa frameif the same
frame was generatedpreviously—this function eliminates
approximatelyl out of 3 frames.Our future work involves
amoredetaileddescriptiorof theoptimizationenginealong
with effective meansto managebothits lateng andits re-
quiredthroughput.

6.2 Frame Cacheeffects

Nearly a third of the framesthat are generatecby the
constructoy optimized, and subsequentlycachedin the
framecacheareneverread. On average28% of framesare
deadin this sense.The benchmarkghat suffer from high
penaltydueto cachemisseg(crafty, gcc, perl, vortex) also

have a relatively high numberof deadframes,on average
46%. An effective meansof not constructingframesthat
arelikely to be deadwill boostframecacheefficiency and
reducethe throughputequirement®n the optimizer
Framecacheefficiency is alsoimpactedy theredundant
natureof cachingtracesof the dynamicinstructionstream.
We measureredundang in the frame cacheby scanning
theframecacheevery 100kcyclesduringtheexecutionand
countingthenumberof uniquebasicblock addressestored
in the cache. We find that on average71% of the basic
blocks cachedin the frame cacheare uniquein ary sam-
ple point. This rangesrom 51% on gccto 86% on bzip2.
Theresultsaresimilar for both optimizedandunoptimized
binaries.Nearly30%of theinstructionscachedn theframe
cacheare duplicates. While techniquessuchasthe block-
basedracecachg2] canhelpcontrolredundany, different
techniquesnustbe adoptedfor rePLaybecausemodifica-
tionsby the optimizeralterthe original basicblocks.

6.3 Frame length effects

In orderto investigatewhetherlongerframesare bene-
ficial in boostingoptimizationpotential,we examinedper
formancewhile as a function of averageframe size. We
cancontrolaverageframesizeindirectly by decreasinghe
maximumframe size that the rePLayframe constructoris
allowedto create.Figure7 plotstherelative effect on per
formanceversusa relative drop in averageframe size as
measuredby running each benchmarkon the RPO con-
figuration. The vertical axis representshe percentagef
RPO performancenvhere maximumframe size is 256 in-
structions. A benchmarkconfigurationattaining50% rel-
ative performancefor example,executestwice aslong as
the correspondindpenchmarkexecutingon a configuration
wheremaximumframelengthis 256instructions.

120%
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Figure 7. Performance versus frame length.

Obviously, fetch bandwidthis also a factor on perfor
manceasframesizeis decreasedAlso providedin Figure7



is the effect on performanceof the benchmarlgaprunning

on the RP configuration. Both trendlines for gapareem-

phasizedFor thegap-RPtrendline, thedropin performace
isduepurelyto adropin fetchbandwidth.Whencomparing
gapversusgap-RRPonecandeducehatthe netdrop frame

sizeaffectsoptimizationpotential.

7 Optimization Potential

To evaluaterePLay5 successn exploiting optimization
opportunitieswe investigatedhe frequeng of deadcode
in dynamicinstructionstreamsProcessing programsin-
structiontraceoffline, we broadly classifyeachinstruction
aseitherlive or dead. Deadinstructionscontribute to nei-
thercontrolflow nor programoutput;their resultsareover-
written beforethey areused,or areusedonly by otherdead
instructions. Our studyis similar to Rotenbeg’s measure-
mentsof ineffectual instructions[22], but focuseson the
potentialfor instructionremoval andon thedifficulty of dy-
namicidentification wherea$22] studiegarallelexecution
of ineffectual regions of codeidentified throughprofiling.
We calculateoptimizationpotentialoffline andexplore dy-
namicidentificationof deadinstructions.

To recognizea deadinstruction, the rePLay optimizer
mustverify thatall usesof theinstructionsresultareeven-
tually discarded. As the optimizer seesonly instructions
within aframe,this requiremenimpliesthattheframecon-
tainsthe dataflav graphcomprisingall usesof theinstruc-
tion aswell asall overwritesof its results. We term the
numberof instructionsthatmustbe visible after a deadin-
structionin orderto classifyit asdeadasthe appaentlife-
timeof theinstruction.Evenif adeadinstructionsapparent
lifetime lies within the scopeof a frame,the optimizermay
not have adequatenemoryaliasinginformationto recog-
nizetheinstructionasdead.

Offline processingprovidesan upperboundon the po-
tential of finding deadinstructionsdynamically Program
tracesareprocesseth reverseorderto reducethecomplex-
ity of classification.When processing particularinstruc-
tion, livenessandapparentifetimesof all consumersf the
instructionsresultarealreadyknown.

Thetotallive instructioncountsareslightly conserative
(high): asthe simulatoronly emulatestraps/systentalls,
we assumehatary trap readsall registersandmemorylo-
cations.Also, attheendof aprogram all registersarecon-
sideredive andall memorydead.Assumingthattrapscon-
sumeneitherregistersnor memoryreduceshe numberof
live instructionsby anaverageof only 2.5%,thusthis con-
senative boundis reasonable.

Resultsfor the twelve benchmarksappearin Figure 8.
In the figure, we separatedynamicinstructionsinto nine
catgyories, threelive and six dead. The live cateyories
are dataoperationscontrol instructions,and control oper
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Figure 8. Breakdo wn of live and dead instruc-
tions. Dead categories are solid, and live
ones are textured.

ations. Data operationsinclude all instructionsthat con-
tributedirectlyto aprogramsoutput,i.e., thedataflav trees
thatproducememoryor registervaluesconsumedy traps.
Controlinstructionsandoperationsontaininstructionghat
contribute only to control flow (andthusindirectly to pro-

gram output); instructionsare the actual control instruc-
tions, and control operationsare non-controlinstructions
thatcontributeto conditions,ndirectjumptargets,etc. The
relatively small fraction of dataoperationgelative to con-
trol mayreflectalgorithmictradeofs in the benchmarksin

particular programmersoften reducethe numberof data
operationsat the expenseof morecomplex control.

The six catgories of dead instructions are divided
roughly accordingto the difficulty of identifying them as
deadduring execution. Becauseof the relative storageca-
pacities,deadvaluesstoredin memorytendto live longer
thanthosestoredin registers. Threeof the six deadcat-
egories have the potential for memory storage,and thus
presentroughly the samedifficulty for dynamicidentifi-
cation. Storeoperationsusedonly by deadloadsare the
mostdifficult, asvaluesmustnot only be tracked through
theirlifetime in memory but ary (dead)dataflav structures
basedon loadsof the valuesmustalso be traced. Instruc-
tionswith resultsusedby deadinstructionspresenta simi-
lar difficulty if their consumersncludedeadstores.Stores
overwrittenbeforeusearetheeasiesof thethreecatayories,
but may still requireafairly largewindow to identify.

The next category, resultsoverwritten,includesinstruc-
tionsthatwrite their resultsinto registersthatareoverwrit-
ten beforethey are used. Relative to previous categories,
suchinstructionshave smallapparentifetimes. Prefetches,
the next catgyory, make up only aninsignificantpartof the
dynamicinstructionstream(at most0.3%acrossall bench-
marks).As thesenstructionsmaybe beneficial thereis no
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pointin removing them. NOPsaccountfor roughly onein
teninstructionsin optimizedcode.

Theproportionof deadinstructionds striking, averaging
24% (from 7.1 to 37%) acrossthe benchmarks With gcc,
for example,Figure8 indicatesthat approximatelyl5% of
dynamic,result-producingnstructionsin gccaredead.For
suchinstructions,rePLays deadcoderemoval eliminates
only about10.7%of dynamicinstructions however. Simi-
larly, 4.9% of dynamicinstructionsaredeadstores but re-
PLayeliminatedessthan0.038%.

Two factorsaccountfor the bulk of thesediscrepan-
cies: apparentifetimes canbe long comparedwith frame
lengths,and addresglisambiguatiorfurther hampersdead
storeidentification(rePLays deadcodeoptimizationdoes
not even attemptto remove deadstores). As an example
of this effect, considerFigure9, which plotsthe cumulatve
distributionsof apparentifetime in gccfor deadstoresand
for deadALU operationsandloads.Althoughonly asmall
fractionof deadregisterscannotbeidentifiedwithin alarge
frame,themedianframesizefor gccis only 21instructions.
By summingthe probability of identifying eachinstruction
within a frame asdeadover all instructionsin a frame of
a particularsize, and then summingthe resultsweighted
by a programs framessizedistribution, we canmoreaccu-
rately estimatethe potentialfor deadcodeeliminationwith
rePLay Basedon this calculationfor gcc,rePLaycaniden-
tify at most4.0% of dynamicinstructionsasdead,result-
producinginstructions,and 0.19% as deadstores. Dead
codethusachieves53% of its potential,anddeadstorere-
moval roughly 20%. The differencein theseachievements
is rootedin theaddresslisambiguatiorproblem.

8 RelatedWork

The rePLayFramavork bearsresemblancéo the gen-
eralizedTraceProcessomodel[23] in that both microar
chitecturesare orientedtowardsthe executionof long se-
guencesof the dynamic instruction stream. In rePLay
framesare necessarilyatomic to facilitate dynamic opti-
mization. Thisfactallows far moreaggressie optimization
over anarchitecturg¢hatdoesnot guaranteatomicity.

Also, rePLayrepresentsn effective implementatiorof
ageneralnstructionPath Co-Processoor ICOP[8, 12, 4].
ICOPframewnorksprovide programmabléardwaresupport
for traceformationanddynamicoptimization. A few, pre-
liminary investigationgnto hardware supportfor dynamic
optimizationhave beenmadel6, 17, 8, 4].

The notion of a frameis similar to othertypesof op-
timization regions, suchas superblockshyperblockg14],
andtraces(from tracescheduling)7]. It is differentin the
notionthatrecoveryis relegatedentirelyto hardware.

Almostall of thepreviouswork ondynamicoptimization
hascenteredaroundsoftware systemswherethe dynamic
optimizeris part of the run-time system[13, 1, 10]. For
mary schemessuchasDynamo[1], the original program
runsunderthe control of a softwareinterpreter Theinter
pretergathersnformationaboutthe programsrun-timebe-
havior andbuilds optimizedregions.Whena PCis encoun-
teredfor which an optimizedregion exists, the optimized
codeis directly executed.

9 Conclusion

We have evaluatedthe rePLay microarchitectureas
meandor reducingapplicationexecutiontime by facilitat-
ing effective dynamic optimization. The framework con-
tains hardware supportfor dynamic optimization, in the
form of a programmableptimizationengineanda recov-
erymechanismTheoptimizerdecreasesptimizationover-
headby allowing optimizationto occurconcurrentlywith
executionand with potentially lower lateng. The recov-
ery mechanisnenableghe optimizerto make speculatie
optimizationswithout the necessityof generatingecovery
code,potentiallyincreasingthe aggressienesf the opti-
mizations.

We find that, whencomparedo a rePLayconfiguration
not performingoptimization,the rePLayoptimizercanre-
ducethe numberof executioncyclesfor the SPEC2000n-
tegerbenchmark$y anaverageof 13% on Alpha binaries
alreadyoptimizedby a compiler(resultingin aneteffective
increasef 16%in IPC),andby 15%onbinariesthatarenot
staticallyoptimized(18%increasen IPC).Furthermorere-
PLaywith optimizerreducesxecutioncyclesby 21%over
an|Cacheand 18% over a TraceCachewhenbinariesare
staticallyoptimized,and27%and23%whenthey arenot.



Wefind thattherePLayoptimizercanoperateeffectively
with optimizationlatenciesup to the 10k cycle range,but
mustsupporta fairly high throughput. Throughputreduc-
tion techniquesre possible asnearly 30% of framesgen-
eratedarenever executed.

Onemajor benefitof the optimizercomesfrom remov-
ing deadcode,andon averageijt is ableto reducedynamic
instructioncountby 11%. We investigatedhe potentialfor
deadcodeeliminationin optimizedbinariesandcompared
rePLays resultswith thatpotential,concludingthatrePLay
realizesa substantiafraction of the optimistically-bounded
potential: 50% of dead,result-producingnstructionsand
20%of deadstores.Thelimiting factorin realizingtheim-
mediatepotentialis disambiguatiorof memoryaddresses.
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