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Abstract

This paper explores Speculative Precomputation, a tech-
nique that uses idle thread contexts in a multithreaded ar-
chitecture to improve performance of single-threaded appli-
cations. It attacks program stalls from data cache misses by
pre-computing future memory accesses in available thread
contexts, and prefetching these data. This technique is eval-
uated by simulating the performance of a research proces-
sor based on the ItaniumTM ISA supporting Simultaneous
Multithreading. Two primary forms of Speculative Precom-
putation are evaluated. If only the non-speculative thread
spawns speculative threads, performance gains of up to 30%
are achieved when assuming ideal hardware. However, this
speedup drops considerably with more realistic hardware as-
sumptions. Permitting speculative threads to directly spawn
additional speculative threads reduces the overhead associ-
ated with spawning threads and enables significantly more
aggressive speculation, overcoming this limitation. Even
with realistic costs for spawning threads, speedups as high
as 169% are achieved, with an average speedup of 76%.

1. Introduction

Memory latency still dominates the performance of many
applications on modern processors, despite continued ad-
vances in caches and prefetching techniques. This prob-
lem will only worsen as CPU clock speeds continue to ad-
vance more rapidly than memory access times, and as the
data working sets and complexity of typical applications in-
crease. One approach to overcome this has been to attempt
to overlap stalls in one program with the execution of use-

ful instructions from other programs, using techniques such
as Simultaneous Multithreading (SMT) [19, 20] as imple-
mented in the Alpha 21464 [5]. The SMT techniques can im-
prove overall instruction throughput under a multiprogram-
ming workload; however, it does not directly improve per-
formance when only a single thread is executing.

We propose Speculative Precomputation (SP) as a tech-
nique to improve single-thread performance on a multi-
threaded architecture. It utilizes otherwise idle hardware
thread contexts to execute speculative threads on behalf of
the non-speculative thread. These speculative threads at-
tempt to trigger future cache miss events far enough in ad-
vance of access by the non-speculative thread that the mem-
ory miss latency is avoided entirely. Speculative precom-
putation could be thought of as a special prefetch mech-
anism that effectively targets load instructions that tradi-
tionally have been difficult to handle via prefetching, such
as loads that do not exhibit predictable access patterns and
chains of dependent loads.

To limit the increase in contention for fetch, execute, and
memory system bandwidth from these speculative threads,
SP is targeted only at the static loads that cause the most
stalls in the non-speculative thread, which we call delinquent
loads. We find that in most programs the set of delinquent
loads is quite small; commonly 10 or fewer static loads cause
more than 80% of L1 data cache misses. Similar observation
has been made in [1].

Speculative threads execute precomputation slices (p-
slices), which are sequences of dependent instructions which
have been extracted from the non-speculative thread and
compute the address accessed by delinquent loads. When
a speculative thread is spawned, it precomputes the address
expected to be accessed by a future delinquent load, and
prefetches the data. Speculative threads can be spawned
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Figure 1. Pipeline organization of a research Itanium processor with SMT support.

when a designated instruction from the non-speculative
thread reaches a particular stage in the pipeline (e.g, the com-
mit stage) or by one speculative thread explicitly spawning
another. These conditions are referred to as a basic trigger
and a chaining trigger, respectively. Though not explored
here, further advanced trigger types could be used, such as
those described in [23].

This work evaluates the performance gains provided by
both forms of speculative precomputation on a research SMT
processor implementing the ItaniumTM instruction set [4].
Our results show that under ideal conditions, SP with basic
triggers provides gains as high as 30%, but under realistic
hardware assumptions these gains are reduced significantly.
However, using chaining triggers in addition to basic trig-
gers on a processor with 8 total thread contexts achieves a
speedup of up to 169% (average 76%), even with realistic
hardware assumptions.

The remainder of the paper is organized as follows.
Section 2 discusses related research. Section 3 presents
our baseline processor model and outlines the evaluation
methodology. Section 4 provides motivation for SP. Section
5 explains algorithms for extracting and optimizing p-slices
and mechanisms employed by SP at runtime. Section 6 pro-
vides experimental results for SP when only basic triggers
are used. Section 7 shows results when both basic triggers
and chaining triggers are used. Section 8 concludes.

2. Related Work

Various research projects have considered leveraging idle
multithreading hardware to improve single-thread perfor-
mance. Roth and Sohi proposed speculative data driven mul-
tithreading (DDMT) [13], in which speculative threads exe-
cute on idle hardware thread contexts to prefetch for future
memory accesses and predict future branches. Their work
focused on application to an out-of-order processor. In this
paper, we first evaluate an idea motivated by Roth’s research
in the basic trigger scheme to gauge its potential for the Ita-
nium architecture and to identify areas for further improve-
ment. This work focuses on a research Itanium family SMT
processor in which the core pipeline is in-order.

Zilles and Sohi studied the backward slices of perfor-
mance degrading instructions [25]. Their work focused

on characterizing the instructions preceding hard-to-predict
branches or cache misses and on exploring techniques to
minimize the size of the backward slices. The precomputa-
tion slices used by our work are constructed within an in-
struction window of size 128-256, in a similar manner to
Zilles and Sohi’s work, which assumed a window size of
512.

Chappel et al. proposed Simultaneous Subordinate Mi-
crothreading (SSMT) [3], in which sequences of microcode
are injected into the main thread when certain events occur,
providing a software mechanism to override default hard-
ware behavior, such as branch predictor algorithms. Dubois
and Song proposed Assisted Execution [15] in which tightly-
coupled subordinate threads, known as nanothreads, share
fetch and execution resources on a dynamically scheduled
processor to accelerate or gather performance statistics on
the main thread.

Sundaramoorthy et al. proposed Slipstream Proces-
sors [17], in which a non-speculative version of a program
runs alongside a shortened, speculative version. Outcomes
of certain instructions in the speculative version are passed
to the non-speculative version, providing a speedup if the
speculative outcome is correct. Their work focused on im-
plementation on a chip-multiprocessor (CMP).

Wallace et al. proposed Threaded Multipath Execution
(TME) [22]. TME attempts to reduce performance loss due
to branch mispredictions by forking speculative threads that
execute both directions of a branch, when a hard to predict
branch is encountered. Once the branch direction is known,
the incorrect thread is killed.

This work is unique in its targeting of the Itanium fam-
ily processor, the low hardware cost of our thread spawning
mechanisms, and the use of chaining triggers to greatly in-
crease the effectiveness of these techniques.

3. Experimental Methodology

This paper studies the effects of Speculative Precompu-
tation on a research SMT processor implementing the Ita-
nium [9] instruction set architecture. The pipeline organiza-
tion is depicted in Figure 1. Processors in the Itanium family
fetch instructions in units of bundles, rather than individual



Pipeline Structure 2GHz: 8 stage pipeline, 1 cycle misfetch penalty, 6 cycle mispredict penalty
4GHz: 10 stage pipeline, 1 cycle misfetch penalty, 8 cycle mispredict penalty
8GHz: 12 stage pipeline, 2 cycle misfetch penalty, 10 cycle mispredict penalty

Fetch 2 bundles from 1 thread, or 1 bundle from 2 threads
Branch Predictor 2K entry GSHARE, 256 entry 4-way associative BTB
Expansion Queue Private, per-thread, in-order 8 bundle queue
Register Files Private, per-thread register files. 128 Int Reg, 128 FP Reg, 64 Predicate Reg
Execute Bandwidth Up to 6 instructions from one thread or up to 3 instructions from 2 threads
Memory Hierarchy L1 (separate I and D): 16K 4-way, 8 way banked, 1 cycle latency

L2 (shared): 256K 4-way, 8 way banked, 7 cycle latency
L3 (shared): 3072K 12-way, 1 way banked, 15 cycle latency
All caches have 64 byte lines

Memory latency 2GHz: 115 cycles, 4GHz: 200 cycles, 8GHz: 357 cycles
TLB Miss Penalty 2GHz: 30 cycles, 4GHz: 60 cycles, 8GHz: 120 cycles

Table 1. Details of the modeled research Itanium processor

instructions [4]. Each bundle is comprised of three indepen-
dent instructions that the compiler has grouped together. The
modeled processor has a maximum fetch bandwidth of two
bundles per cycle.

Instructions are issued in-order, from an 8-bundle ex-
pansion queue, which operates like an in-order instruction
queue. The maximum execution bandwidth is 6 instructions
per cycle, which can be from up to two bundles. Suffi-
cient functional units exist to guarantee that any two issued
bundles are executed in parallel without functional unit con-
tention, and up to four loads or stores can be performed per
cycle.

The aggressive memory hierarchy consists of separate
16K 4-way set associative L1 Instruction and Data caches,
a 256K 4-way set associative L2 shared cache and a 3072K
12-way set associative shared L3 cache. All caches are on
chip. Data caches are multi-way banked, but the instruction
cache is dual ported to avoid fetch conflicts between threads.
Note: even on a processor with more than 2 thread contexts,
dual- ported I-Cache is assumed. More details are described
in the next subsection. Caches are non-blocking with up to
16 misses in flight at once, where multiple misses to the same
cache line each count separately. A miss upon reaching this
limit stalls the execute stage. Speculative threads are permit-
ted to issue loads that will stall the execute stage.

We model a pipelined hardware TLB miss handler [14].
It resolves TLB misses by fetching the TLB entry from an
on-chip buffer (separate from data and instruction caches).
In the default configuration, TLB misses are handled in 30
clock cycles, and we allow memory accesses from specula-
tive threads to initiate TLB update.

The baseline processor has a 2GHz clock rate. Higher
clock frequencies are modeled by increased latency to main
memory, extra overhead for TLB miss handler and longer
penalties for both branch misprediction and instruction mis-
fetch. On-chip cache latencies remain constant in terms of
CPU cycles. Unless otherwise noted, simulations assume a
2GHz processor configuration. Full details of the modeled

Suite Benchmark Input Fast-forward
SPECFP art Training 1 billion
SPECFP equake Training 1 billion
SPECINT gzip Training 1 billion
SPECINT mcf Training 1 billion
Olden health 5 Levels 100 million
Olden mst 1031 nodes 230 million

Table 2. Workload Setup

processor are shown in Table 1.

3.1. Multithreading

All simulations in this work assume a single non-
speculative thread persistently occupies one hardware thread
context throughout its execution while the remaining hard-
ware thread contexts are either idle or occupied by spec-
ulative threads. The term “non-speculative thread” will be
used interchangeably with “main thread” throughout this pa-
per. Each hardware thread context has a private, per-thread
expansion queue and register files. All architecturally visi-
ble registers, including 128 general purpose integer registers
(GR), 128 fp registers (FR), 64 predicate registers (PR) and
128 control registers [14] are replicated for each thread.

If more than one thread is ready to fetch or execute, two
threads are selected from those that are ready, and each is
given half of the resource bandwidth. Thus, if two threads
are ready to fetch, each is allowed to fetch one bundle. A
round-robin policy is used to prioritize the sharing between
threads. If only one thread is ready, it is allocated the entire
bandwidth.

If instructions stall before they reach the expansion queue,
the stall will cause pipeline backpressure. To prevent a
stalling thread from affecting all other threads, a fetch-replay
is performed when a thread attempts to insert a bundle into its
already full queue. When this occurs, the bundle is dropped
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Figure 2. Cumulative L1 data cache misses con-
tributed by the worst behaving static loads.

by the expansion queue, and the thread of concern is pre-
vented from fetching again until it has issued an instruction.

3.2. Simulation Environment and Workloads

We model processor performance using a version of the
SMTSIM simulator [18] that has been enhanced to work with
Itanium binaries. SMTSIM is a cycle-accurate, execution-
driven simulator of SMT processors. Benchmarks for this
study include both integer and floating point benchmarks se-
lected from the CPU2000 suite [16] and pointer-intensive
benchmarks from the Olden suite [2]. Benchmarks are se-
lected because their performance is limited by poor cache
performance or because they experience high data cache
miss rates. The benchmarks and simulation setup are sum-
marized in Table 2. Unless otherwise noted, all benchmarks
are simulated for 100 million retired instructions after fast-
forwarding past initialization code (with cache warmup). In
our initial simulation experiments, much longer runs of the
benchmarks were performed, however it was observed that
the longer-running simulation results yielded only negligible
performance differences.

All binaries used in this work are compiled with the In-
tel Electron compiler for the Itanium architecture [6, 7].
This advanced compiler incorporates the state-of-the-art op-
timization techniques known in the compiler community as
well as novel techniques designed specifically for the fea-
tures of the Itanium architecture. Benchmarks for this re-
search are compiled with maximum compiler optimizations
enabled, including those based on profile driven feedback,
such as aggressive software prefetching, software pipelining,
control speculation and data speculation.

4. Delinquent Loads

For most programs, only a small number of static loads
are responsible for the vast majority of cache misses [1]. Fig-
ure 2 shows the cumulative contributions to L1 data cache

art equake gzip mcf health mst
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Figure 3. Speedup when 10 worst behaving static
loads are assumed to always hit in cache.

misses by the top 50 static loads for the processor modeled
in this research, running benchmarks to completion. It is ev-
ident that cache misses in these programs are dominated by
a few static loads. We call these poorly behaved loads delin-
quent loads.

In order to gauge the impact of these loads on perfor-
mance, Figure 3 compares results when the worst 10 delin-
quent loads are assumed to always hit in the L1 cache, ver-
sus a perfect memory subsystem where all loads hit in the
L1. In most cases, eliminating performance losses from only
the delinquent loads yields much of the speedup achievable
by zero-miss-penalty memory. This data motivates special
focus on a technique that targets these delinquent loads.

5. Speculative Precomputation

In speculative precomputation, an event triggers the invo-
cation and execution of a p-slice. A p-slice is a speculative
thread that computes and prefetches an address expected to
be accessed by a delinquent load in the near future. Specula-
tive threads are spawned under one of two conditions: when
encountering a basic trigger, which occurs when a designated
instruction in the main thread reaches a particular pipeline
stage (such as the commit stage), or a chaining trigger, when
one speculative thread explicitly spawns another.

A speculative thread is spawned by allocating a hardware
thread context, copying necessary live-in values into its reg-
ister file, and providing the thread context with the address of
the first instruction of the thread. If a free hardware context
is not available the spawn request is ignored.

Necessary live-in values are always copied into the thread
context when a speculative thread is spawned. This elimi-
nates the possibility of inter-thread hazards, where some reg-
ister is overwritten in one thread before a child thread has
read it. Fortunately, as shown in Table 3, the number of live-
in values that must be copied is very small.

When spawned, a speculative thread occupies a hardware
thread context until the speculative thread completes execu-



Benchmark # Slices(Opt) Average Average
Length(Opt) # Live-in

art 26 (2) 14.7 (4) 3.5
equake 35 (8) 13.1 (12.5) 4.5
gzip 307 (9) 14.0 (9.5) 6.0
mcf 49 (6) 5.2 (5.8) 2.5
health 33 (8) 15.9 (9.1) 5.3
mst 138 (8) 34.8 (26) 4.7

Table 3. Statistics on p-slices for delinquent loads.
Numbers shown in parenthesis are values after op-
timization.

tion of all instructions in the p-slice. Speculative threads
must not update the architectural state, for example, by exe-
cuting a store instruction.

5.1. Speculative Precomputation Tasks

Several steps are necessary to employ speculative pre-
computation: identification of the set of delinquent loads,
construction of p-slices for these loads, and the establish-
ment of triggers. This work assumes that these steps are
performed with some compiler assistance as well as some
hardware support. Our future work will explore the actual
implementation details of both compiler assistance and hard-
ware support needed. The following section gives details on
each phase of the procedure, followed by a demonstration
of the procedure when applied to a delinquent load from the
CPU2000 benchmark mcf, in Section 5.2.

Optimize Basic Triggers and P-Slices Many of the iden-
tified p-slices can be removed. These include redundant
triggers (multiple triggers targeting the same load), rarely-
executed triggers, and triggers that are too close to the target
load. Table 3 shows that most potential p-slices are actu-
ally removed in this phase. Additionally, generated slices
are modified to make use of induction unrolling [13].

Identify Delinquent Loads The set of delinquent loads
that contribute the majority of cache misses is determined
through memory access profiling, performed either by the
compiler or a memory access simulator, such as dinero [11].
From this profile analysis, the loads that have the largest im-
pact on performance are selected as delinquent loads. This
work uses the total number of L1 cache misses as the crite-
rion to select delinquent loads, but other filters (e.g., one that
also accounted for L2 or L3 misses or total memory latency)
could also be used.

Construct P-Slices In this phase, each benchmark is sim-
ulated on a functional Itanium simulator [21] to create the
p- slices for each delinquent load. Whenever a delinquent
load is executed, the instruction that had been executed 128

arc=arcs+group_pos;
for(;arc<stop_arcs;arc+=nr_group){
   if(arc->ident>BASIC){
      red_cost=arc->cost-arc->tail->potential+
                         arc->head->potential;
      if((red_cost<0&&arc->ident==AT_LOWER)||
         (red_cost>0&&arc->ident==AT_UPPER)){
         basket_size++;
         perm[basket_size]->a=arc;
         perm[basket_size]->cost=red_cost;
         perm[basket_size]->abs_cost=ABS(red_cost);
      }
   }
}

Delinquent Load#1
Delinquent Load#2
Delinquent Load#3

99.95% / 99.98%

L1 Miss Rate /
% Capacity Miss

Delinquent Load# 1

L2 Miss Rate /
% Capacity Miss

L3 Miss Rate /
% Capacity Miss

67.64% / 9 7.38%48.06% / 82.78%

93.10% / 99.1%Delinquent Load# 3 20.70% / 44.74%45.33% / 74.65%

80.92% / 97.60%Delinquent Load# 2 20.04% / 47.88%63.55% / 86.51%

Figure 4. Sample procedure from MCF, pbeampp.c
lines 180-195, containing 3 delinquent loads.

instructions prior in the dynamic execution stream is marked
as a potential basic trigger. The next few times that this po-
tential trigger is executed, the instruction stream is observed
to verify the same delinquent load will be executed some-
where within the next 256 instructions. If the potential trig-
ger consistently fails to lead to the delinquent load, it is dis-
carded. Otherwise, if the trigger does consistently lead to
the delinquent load, the trigger is confirmed and the back-
ward slice of instructions between the delinquent load and
the trigger is captured. This work considers a smaller win-
dow of instructions from which to generate the p-slice than
previous work [25, 13] in anticipation of efficient hardware
implementation. Instructions (limited to maximum of 256)
between the trigger and the delinquent load constitute poten-
tial instructions for constructing the p-slice. Those unneces-
sary to compute the address accessed by the delinquent load
are eliminated, resulting in small p-slices generally between
5 to 15 instructions in length.

Link Slices into Binary For each benchmark, the instruc-
tions from each p-slice are appended to the program binary
in a special program text segment. Steps can be taken to min-
imize potential instruction cache interference between the
speculative thread and the main thread [24]. However, for
this study we found instruction fetch for the p-slices did not
introduce any noticeable increase in I-cache misses for the
non-speculative thread.

5.2. An Example – MCF

Figure 4 illustrates the source code for a key loop from the
mcf benchmark. The loop contains three delinquent loads,
which are annotated, and their cache miss statistics shown.
It is important to note the high number of cache misses at
both L1 and L2 are due to capacity misses [8]. Conventional
wisdom dictates that we increase the size of the cache, how-
ever, this risks impacting the cache access latency.

Figure 5 shows a partial assembly listing and a p-slice
captured from this procedure when applied to delinquent
load #3 in Figure 4. The p-slice targets an instance of



.

404900: add r14=r14,r11
404901: add r9=r9,r11
404902: add r8=r8,r11

404910: add r40=r40,r11;;
404911: ld4 r17=[r14]
404912: add r3=r3,r11

404920: ld8.s r2=[r40]
404921: add r26=8,r20;;
404922: cmp.ltu.unc p15,p14=r3,r30

404930: ld8.s r16=[r9]
404931: ld4.s r25=[r8]
404932: add r28=1,r50;;

404940: add r24=80,r2
404941: cmp4.le.unc p13,p12=r17,r0
404942: cmp4.ne.unc p14,p6=1,r17

404950: ld8.s r19=[r26]
404951: nop.f 0
404952: (p13) br.cond.dpnt.b6_87;;

404960: add r15=80,r16
404961: chk.s r16,.b6_164
404962: nop.i 0

404990: ld4.s r23=[r24];;
404991: ld4 r21=[r15]
404992: chk.s r2,.b6_166

Loop Carried Dependence

Basic
Trigger

Delinquent
Load!

add r9=r9,11
ld8.s r16=[r9]
add r15=80,r16
ldv r21=[r15]

Basic P-Slice

Figure 5. The p-slice for an example delinquent load.

the delinquent load one loop iteration ahead of the non-
speculative thread when the p-slice is spawned.

It is important to note that simply embedding the instruc-
tions from the p-slice directly in the main program as a form
of software prefetch will not be as effective as SP, and in
some circumstances could actually lower performance. If the
first load misses in cache and the add which follows attempts
to access this data before it has arrived, the main thread will
stall. In contrast, when executed as a speculative thread, the
main thread is unaffected by any stalls that occur when exe-
cuting a p-slice.

5.3. Comparison to Traditional Prefetching

We briefly highlight the key differences between specu-
lative precomputation and traditional forms of prefetching.
Software prefetching places explicit prefetch instructions in
the main program code in advance of loads. These tech-
niques are less effective in the presence of irregular con-
trol flow or load misses that depend on other load misses
(particularly in an in-order processor, where a load miss can
stall the processor, even if it is only computing an address
to be used in a later prefetch). Hardware prefetching tech-
niques work best on regular data accesses; hardware tech-
niques that do well with pointer-chasing codes have been
proposed [12, 10], but employ complex prefetch hardware
and large tables to capture these patterns (assuming they
remain stable). Those cases that conventional prefetching
techniques do not cover well are handled in a straightfor-
ward manner with speculative precomputation because the
prefetching threads are allowed to run decoupled from the
main thread, and because addresses are calculated using code

extracted from the original thread.

6. Speculative Precomputation using Basic
Triggers

This section examines the performance gains of SP with
basic triggers under two scenarios: in the first, ideal scenario,
aggressive hardware support is assumed to gauge the upper
bound for potential performance gains. In the second sce-
nario, realistic implementation constraints for the Itanium
family processors are taken into account, in which we lever-
age existing Itanium architectural features to facilitate im-
plementation of SP without assuming aggressive hardware
support.

6.1. Bounding Basic Trigger Performance

This subsection models two ideal SP configurations. Both
only spawn speculative threads on the correct control path,
but one does so when a trigger instruction reaches the rename
stage (even though instructions which reach this stage are not
guaranteed to be on the correct control path, we do not model
wrong path spawning in this work), while the other waits un-
til the commit stage (where the instruction is guaranteed to
be on the correct path). In both cases, we assume aggres-
sive and ideal hardware support for directly copying live-in
values from the main thread’s context to its child thread’s
context, i.e., one-cycle flash-copy. This allows the specula-
tive thread to begin precomputation of a p-slice just one cycle
after it is spawned.

Figure 6 shows the performance gains achieved through
SP as the total number of hardware thread contexts is varied.
For each benchmark, results are grouped into three pairs,
corresponding to 2, 4 or 8 total hardware thread contexts.
Within each pair, the configuration on the left models spawn-
ing speculative threads in the rename stage, and the one on
the right models thread spawning in the commit stage.

Most benchmarks show gains from SP. For the most ag-
gressive configuration (8 threads contexts, spawn in rename)
the average speedup is 13.5%, and mst enjoys speedup of
32%. Gzip and health are the noticeable exceptions. As
shown in Figure 3, having perfect delinquent loads only
yields a 4% speedup for gzip (due to its high L2 hit rate).
Thus, overhead from executing speculative threads hinders
any performance gain. Health has potential for high speedup,
but fails to achieve this speedup because it is not possible to
sufficiently distance basic triggers from the targeted delin-
quent loads in its tight, pointer chasing loops. In Section 7,
a new technique is introduced that overcomes this problem.

Increasing the number of hardware thread contexts results
in opportunities for more speculation to be performed at run-
time, reducing cancellation of thread spawning due to un-
available thread contexts. It is interesting to note that for all
benchmarks which show benefits from SP, increasing thread
contexts brings about more speedup. However, the contrary



is also true for benchmarks that suffer from SP; as the num-
ber of thread contexts is increased, gzip shows larger perfor-
mance degradation.

6.2. Software-Based Speculative Precomputation

The previous subsection assumes a machine that em-
ploys ideal, one-cycle flash-copy between register files of the
two thread contexts, permitting the non-speculative thread
to spawn speculative threads instantly and without incurring
any overhead cycles. Such an ideal machine may be diffi-
cult to implement for the Itanium family processors due to
the cost of implementing a flash copy mechanism for such
large register files. This reality motivates us to explore a less
aggressive but more practical software-based SP (SSP) ap-
proach, which circumvents such hardware costs by directly
taking advantage of the existing Itanium architectural fea-
tures.

Before introducing the details of SSP, it is important
to note that SP requires two basic mechanisms to support
thread spawning regardless of implementation–a mechanism
to bind a spawned thread to a free hardware context, and a
mechanism to transfer necessary live-in values to the child
thread. Both of these can be implemented using existing
features of the Itanium processor family: on-chip memory
buffers, which are used as spill area for the backing store of
the Register Stack Engine (RSE) [4]; and the lightweight ex-
ception recovery mechanism, which is used to recover from
incorrect control- and data speculations [14]. The result of
using these existing Itanium features is a software-based ap-
proach for SP that does not require additional dedicated hard-
ware. The details are described below.

Using LIB for Lightweight Live-in Transfer Without
flash-copy hardware, one thread cannot directly access the
registers of another thread, necessitating an intermediate
buffer for transfer of live-in values from a parent thread to
its child. Processors in the Itanium family contain special
on-chip memory buffers for use as backing store for the RSE
to host temporarily spilled registers. These buffers are ar-
chitecturally visible, and can be accessed from every thread
context. We allocate a portion of this buffer space and ded-
icate it as an intermediate buffer for passing live-in values
from a parent thread to a child thread. We call this buffer
space the Live-in Buffer (LIB).

The LIB is accessed through normal loads and stores,
which are conceptually similar to spilling and refilling in-
structions except across register files of different thread con-
texts. The parent thread stores a sequence of values into the
LIB before spawning the child thread, and the child thread,
right after binding to a hardware context, loads the live-in
values from the LIB into its context prior to executing the p-
slice instructions. As shown in Table 3, there are fewer than
8 live-in values for most slices. Our processor features 4
loads/store units, permitting these live-in values to be passed
from parent to child in only 4 cycles total.
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Figure 6. Speedup provided by basic triggers with
ideal hardware assumptions.

Spawning Threads Via Lightweight Exception Recovery
We can spawn a speculative thread and bind it to a free hard-
ware context via the lightweight exception-recovery mecha-
nism in the Itanium architecture. This mechanism uses the
speculation check instructions to examine the results of user-
level control- or data- speculative calculations to determine
success or failure. Should failure occur, an exception sur-
faces and a branch is taken to a user defined recovery han-
dler code within the thread, without requiring OS interven-
tion. For example, when a chk.a (advanced load check) in-
struction detects that some store conflicts with an earlier ad-
vanced load, it will trigger branching into a recovery code [4]
within the current program binary, and execute a sequence of
instructions to repair the exception. Afterwards, the control
branches back to the instruction following the one that raised
the exception. We take advantage of this feature by intro-
ducing a new speculation check instruction, chk.c (available
context check). The chk.c instruction raises an exception if a
free hardware context is available for spawning a speculative
thread. Otherwise, chk.c behaves like a nop.

A chk.c instruction is placed in the code wherever a basic
trigger is needed. The recovery code simply stores the live-
in state to the LIB, executes a spawn instruction to initiate
the child thread and then returns. The child thread begins
execution by loading the values from the LIB into its thread
context.

There are two strengths to this approach over simply em-
bedding the spawn code directly in the main program. First,
the spawn code is only executed when a free thread context
is actually available. Second, existing binaries can be easily
modified to take advantage of this mechanism by changing
a single instruction (for example, a nop) to a chk.c instruc-
tion and adding the recovery code at the end of the existing
binary.

The SSP approach differs from the idealized hardware ap-
proach in two ways. First, spawning a thread is no longer
instantaneous and will slow down the non-speculative thread
by the time necessary to invoke and execute the exception
handler. At the very minimum, invoking this exception han-
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Figure 7. Speedup achieved by the software-based
SP approach. Each bar corresponds to a different
cost associated with spawning threads in the com-
mit stage.

dler requires a pipeline flush. The second difference is that p-
slices must be modified to first load their live-in values from
the LIB, delaying the beginning of precomputation.

Performance of SSP Figure 7 shows the performance
speedups achieved when using SSP for a processor with
8 hardware thread contexts. Four processor configurations
are shown, each corresponding to differing thread spawn-
ing costs. The leftmost configuration is given for reference–
speculative threads are spawned with no penalty for the non-
speculative thread, but must still perform a sequence of load
instructions to read their live-in values from the LIB. This
configuration yields the highest possible performance under
SSP because the main thread is still instantaneous in spawn-
ing a speculative thread. In the 3 remaining configurations,
spawning a speculative thread causes the non-speculative
thread’s instructions following the chk.c to be flushed from
the pipeline. In the configuration second from the left, this
pipeline flush is the only penalty, while in the third and fourth
configurations, an additional penalty of 8 and 16 cycles, re-
spectively, is assumed for the cost of executing the recovery
handler code.

These results fall far short of the ideal hardware results
(see Figure 6), due primarily to the spawning overhead. The
penalty of pipeline flush and the cost of performing the store
instructions, both negatively affect the performance of the
non-speculative thread. Two approaches to this problem are
either choosing delinquent loads more judiciously by taking
into account the overhead associated with spawning threads,
or through incorporating additional hardware to accelerate
thread spawning.

A third option is presented in the next section, which in-
troduces a more aggressive form of SP that minimizes the
overhead imposed on the non-speculative thread while still
using the SSP approach. For the remainder of this paper, we

Potentially long
atency instructions!

PROLOGUE

EPILOGUE

ld8  r9=[LIB]
ld8  r11=[LIB]+8
add r9=r9,r11
st8[LIB]=r9
st8[LIB+8]=r11
Spawn

ld8.s r16=[r9]
add  r15=80,r16
ld4  r21=[r15]

Low late ncy
instructions

Executing on Different
Hardware Thread Contexts

ld8   r9=[LIB]
ld8   r11=[LIB]+8
add  r9=r9,r11
st8[LIB]=r9
st8[LIB+8]=r11
Spawn

ld8.s r16=[r9]
add  r15=80,r16
ld4  r21=[r15]

Figure 8. Runtime behavior of p-slice from Figure 5
after being enhanced to incorporate chaining trig-
gers.

assume SSP is still used to invoke basic triggers, and include
its overhead in all our simulations (using the most conserva-
tive estimate of thread spawning overhead, a pipeline flush
plus 16 cycles).

7. Speculative Precomputation with Chaining
Triggers

Two problems limit performance gains from SP when
only basic triggers are used. First, speculative threads are
only spawned in response to progress made by the non-
speculative thread. This means we are unable to spawn ad-
ditional threads when the main thread stalls, when there is
reduced fetch and execution contention. Second, to effec-
tively prefetch data for delinquent loads, it is often neces-
sary to precompute p-slices many loop iterations ahead of
the non-speculative thread. Induction unrolling [13] was in-
troduced for this purpose, but it increases the total number of
speculative instructions executed without actually increasing
the number of delinquent loads targeted. Executing more
instructions also puts extra pressure on available hardware
thread contexts because each speculative thread will occupy
a thread context for a longer period.

7.1. Chaining Triggers

To overcome both problems described above we intro-
duce a novel technique called chaining triggers, which al-
lows one speculative thread to explicitly spawn another spec-
ulative thread. To illustrate the use of chaining triggers, we
return to the sample loop from mcf shown in Figure 4. A key
feature for applying chaining triggers to this loop (which was
not effectively exploited with only basic triggers) is that the
stride in the addresses consumed by load #1 is a dynamic
invariant whose value is fixed for the duration of the loop.



Figure 8 shows how the basic p-slice from Figure 5 be-
haves at runtime after being enhanced to incorporate chain-
ing triggers (notice the spawn instruction in the p-slice). Be-
cause the only loop-carried dependence affecting the delin-
quent loads is computed by the loop induction variable
(which requires only a single add instruction), available
parallelism can be aggressively exploited–immediately af-
ter computing the next address to be accessed by load #1,
speculative threads are spawned to precompute for the next
loop iteration. Thus, this use of chaining triggers makes
it possible to precompute arbitrarily far ahead of the non-
speculative thread, constrained only by the time necessary
to compute necessary loop carried dependencies. In loops
such as this one, where the loop-carried dependencies are
computed early, chaining triggers can advance to future loop
iterations much faster than the non-speculative thread. This
feature makes it possible to achieve dramatically higher per-
formance than with basic triggers alone.

Spawning a thread via a chaining trigger imposes signif-
icantly less overhead than a basic trigger because a chain-
ing trigger requires no action from the main thread; instead
the speculative thread directly stores values to the LIB and
spawns child threads. For all benchmarks studied in this
work except gzip, the vast majority of speculative threads
are spawned from chaining triggers; for example, mcf con-
tains a loop in which several hundred chaining triggers occur
for each basic trigger.

7.2. Generation of Chaining Triggers

P-slices containing chaining triggers typically have three
parts–a prologue, a spawn instruction for spawning another
copy of this p-slice, and an epilogue. The prologue con-
sists of instructions that compute values associated with a
loop carried dependence, such as updates to a loop induction
variable. The epilog consists of the instructions that actu-
ally produce the address accessed by the targeted delinquent
load. The goal behind chaining trigger construction is for
the prologue to be executed as quickly as possible, enabling
additional speculative threads to be spawned as soon as pos-
sible.

A simple process can be used to add chaining triggers to
basic p-slices that target delinquent loads within loops. The
algorithm presented in Section 5.1 is augmented to track the
distance between different instances of a delinquent load.
If two instances of the same load consistently occur within
some fixed sized window of instructions, a new p-slice is cre-
ated which targets the load via chaining triggers. The prolog
of the p-slice consists of instructions which modify values
that are used in some future loop iteration to compute the ad-
dress accessed by the delinquent load. The epilogue consists
of the actual instructions within the loop used to compute the
delinquent load address. Between the prologue and epilogue,
a spawn instruction is inserted to spawn another copy of this
p-slice.

7.3. Pending Slice Queue

It can be advantageous, especially in processors with few
hardware thread contexts, to support a larger number of spec-
ulative threads than the number of total hardware thread con-
texts. This permits aggressive thread spawning, where ’over-
flow’ speculative threads wait until a free thread context be-
comes available. We introduce a new hardware structure,
called the Pending Slice Queue (PSQ). When a p-slice is
spawned but all thread contexts are occupied, the p-slice is
instead allocated an entry in the PSQ, if one is available.
Thus, the sum of the total entries in the PSQ and the num-
ber of hardware contexts is the upper bound on the number
of speculative threads that can exist at one time. Once allo-
cated, a PSQ entry remains occupied until the thread is as-
signed to a hardware context. Waiting threads are allocated
to hardware contexts using a FIFO policy.

The addition of the PSQ does not significantly increase
processor complexity. The only necessary changes are to
increase the size of the LIB and to add logic that chooses the
next pending slice to assign to a thread context.

Because values stored in the LIB are no longer consumed
immediately, it is necessary to increase its size to prevent
useful values from being overwritten. However, the size of
this buffer need not be excessively large–the number of reg-
ister live-in values for all slices encountered in this research
is never greater than 16. Assuming all of these values are 64
bits, a LIB statically partitioned for 16 threads would only
require 2KBytes of storage.

It is in the use of the PSQ that the true benefit of the LIB
becomes evident. Copying the live-in values from the parent
thread to the LIB at spawn time ensures that the child thread
will have valid live-in values to operate on when it eventually
binds to a thread context, regardless of how long it is forced
to wait in the PSQ.

7.4. Controlling Precomputation

Because the use of chaining triggers decouples thread
spawning from progress made by the main thread, a con-
trol mechanism is necessary to prevent overly aggressive pre-
computation from getting too far ahead and evicting useful
data from the cache before it has been accessed by the main
thread. In addition, once the main thread leaves the scope of
a p-slice, e.g. after exiting a pointer chasing loop or proce-
dure, all speculative threads should be terminated to prevent
useless prefetches.

We found that two simple mechanisms are sufficient to
eliminate ineffective speculative threads. First, a thread that
performs a memory access for which the hardware page table
walker fails to find a valid translation, such as NULL pointer
reference, is terminated; any chaining trigger executed after-
wards in this p-slice is treated as a nop. This allows specula-
tive threads to naturally ”drain” out of the processor without
spawning additional useless threads.

The second mechanism eliminates speculative threads



0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

art equake gzip mcf health mst Average

S
p

e
e
d

u
p

 o
v
e
r 

B
a
s
e
li
n

e

2 Thread Contexts 4 Thread Contexts 8 Thread Contexts

Figure 9. Speedup from Speculative Precomputa-
tion using both Basic and Chaining Triggers.

when the non-speculative thread leaves a section of the pro-
gram. This can be achieved by adding an additional ba-
sic trigger that is equivalent to a speculative thread flush,
which terminates all currently executing speculative threads
and clears all entries in the PSQ. The thread flushing trigger
can be inserted at the exit of scopes which spawn speculative
threads.

Speculative precomputation provides maximal benefit
when speculative threads are aggressive enough to fully
cover memory latencies, but not so aggressive as to evict
data out of the cache before they are accessed by the non-
speculative thread. This delicate balance can be realized
if speculative threads are permitted to advance far enough
ahead of the non-speculative thread until their prefetches
cover up the latency to main memory, but no further. Future
work will address how to achieve this in a dynamic man-
ner. In this research, we introduce a hardware structure to
limit speculative threads to running only a fixed number (p-
slice specific) of loop iterations ahead of the non-speculative
thread.

The hardware structure is called the Outstanding Slice
Counter (OSC). This structure tracks, for a subset of delin-
quent loads, the number of instances of delinquent loads
for which a speculative thread has been spawned but for
which the main thread has not yet committed the corre-
sponding load. Each entry in the OSC contains a counter,
the IP (instruction pointer) of a delinquent load and the ad-
dress of the first instruction in a p-slice, which uniquely
identifies the p-slice. This counter is incremented when the
non-speculative thread retires the corresponding delinquent
load, and is decremented when the corresponding p-slice is
spawned. When a speculative thread is spawned for which
the entry in the OSC is negative, the resulting speculative
thread is instead allocated an entry in the PSQ, where it waits
without being considered for assignment to a thread context
until its counter becomes positive. Entries in the OSC are
manually allocated in the exception recovery code associated
with some basic trigger, and this research assumes a four en-
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Figure 10. Where delinquent loads satisfied when
missing in L1. Partial indicates access to a cache
line already in transit to L1 from the indicated
memory structure.

try, fully associative OSC.

7.5. Performance of SP with Chaining Triggers

Figure 9 shows the speedup achieved from SP using
chaining triggers as the number of thread contexts is varied.
Chaining triggers are highly effective at making use of avail-
able thread contexts when sufficient memory parallelism ex-
ists, resulting in average performance gains of 59% with 4
threads and 76% with 8 threads. In these results, the size of
the PSQ is varied to ensure the number of entries in the PSQ
plus the number of hardware thread contexts equals 16.

Though health did not benefit significantly from basic
triggers (as shown in Figure 7), when using chaining trig-
gers, the speedup is boosted to 169%, though opportunity
for significant further improvement still exists (as shown in
Figure 3). As noted in Section 6.1, health is dominated by
tight pointer chasing loops, which are completely memory
latency bound and exhibit no parallelism between loop iter-
ations. By making use of chaining triggers, it is possible to
precompute for multiple loop instances in parallel.

Figure 10 shows the breakdown of which level of the
memory hierarchy is accessed by delinquent loads under
three processor configurations — the baseline processor
which does not use SP, a processor with 8 thread contexts
which uses basic triggers and spawns them in the rename
stage, and a processor with 8 thread contexts which uses both
basic and chaining triggers. Also shown is the percentage of
accesses to cache lines which were already in transit to L1
cache due to access by a prior load from the main thread or
from a prefetch.

Table 4 shows prefetch statistics assuming the two SP
configurations from above. The following information is
shown: 1) Accuracy–percentage of prefetched lines accessed
by a delinquent load before being evicted from L1 cache,
2) Partial–percentage of prefetched lines which are accessed
before arriving at the L1 cache (partial loads are considered



Benchmark Accuracy Partial Coverage Spec Instr
art (B) 85.7% 14.2% 50.0% 61.7M
art (B+C) 35.0% 60.3% 94.8% 33.1M
equake (B) 94.0% 58.8% 59.4% 12.5M
equake (B+C) 91.4% 0% 62.0% 11.9M
gzip (B) 67.4% 9.3% 58.6% 20.2M
gzip (B+C) 79.8% 11.6% 96.7% 9.9M
health (B) 10.9% 86.7% 95.6% 20.7M
health (B+C) 24.0% 17.1% 22.6% 46.4M
mcf (B) 98.0% 37.8% 76.2% 22.5M
mcf (B+C) 92.4% 13.6% 88.2% 18.2M
mst (B) 90.7% 46.1% 66.6% 107.3M
mst (B+C) 74.5% 0% 56.8% 50.4M

Table 4. Statistics on prefetch accuracy and cover-
age of delinquent loads when assuming only basic
triggers (B) and both basic and chaining triggers
(B+C). Accuracy and Partial are given as percent-
ages of total prefetches, Coverage is given as the
percentage of total delinquent loads.

accurate), 3) Coverage–percentage of delinquent loads cov-
ered by SP, 4) Spec Instr–total number of speculative instruc-
tions executed.

In general, basic triggers provide high accuracy (for mcf,
prefetch accuracy is 98%), but cover fewer loads than chain-
ing triggers, and fail to significantly impact the number of
loads which require access to main memory. For exam-
ple, mcf only saw a 3% reduction in the number of loads
that were satisfied from memory, although a large number of
loads had their latency partially covered. Thus, basic triggers
can be effective in targeting delinquent loads with relatively
low latency, such as L2 hits, but are not likely to significantly
help accesses to main memory.

Chaining triggers, on the other hand, achieve higher cov-
erage and prefetch data in a much more timely manner,
even data that requires access to main memory; when tar-
geting mcf, the number of accesses to main memory by the
non-speculative thread was reduced by more than 13% over
the baseline. One somewhat anomalous case to this rule is
health. Using chaining triggers, health appears to have ex-
tremely low prefetch accuracy. However, this is due primar-
ily to the prefetching aggressiveness necessary to cover up
the memory latency of its delinquent loads, causing useful
prefetches to be evicted from L1 cache before being used.
The high L2 cache hit rate attests to this. Thus, we see that
one major advantage of chaining triggers over basic triggers
is their ability to effectively target delinquent loads that are
significantly far ahead of the non-speculative thread.

Chaining triggers also allow the processor to better uti-
lize available thread contexts. Because they spawn additional
speculative threads as soon as the p-slice prologue has been
executed, chaining triggers are able to quickly populate all
available hardware thread contexts. The simulation data at-
test to this–the average speedup from increasing the number
of thread contexts from 4 to 8, when using chaining triggers,

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

art equake gzip mcf health mst Average

S
p

e
e
d

u
p

 o
v
e
r 

B
a
s
e
li
n

e

2 GHz, 8 Contexts 4 Ghz, 8 Contexts 8 GHz, 8 Contexts

Figure 11. Speedup Provided by Basic and Chain-
ing Triggers at 2, 4 and 8 GHz.

is 17%; when using basic triggers alone and spawning in the
rename stage, this speedup is only 2%. In addition, this cre-
ates the opportunity for more outstanding prefetches to be in
flight, effectively utilizing the bandwidth provided by non-
blocking caches.

Mcf and mst both achieve large speedups over the base-
line when the processor has four or eight total thread con-
texts. Reducing the total number of contexts to only two
results in the smaller, but still significant, speedups of 13%
for mcf and 12% for mst. Because p-slices from these two
benchmarks contain multiple dependent loads, threads ex-
ecuting these p-slices are forced to stall when one of the
loads misses in cache. With a larger number of thread con-
texts, other speculative threads can be scheduled ’around’
the stalled thread onto the other available contexts. How-
ever, when only one thread context is available for specula-
tive threads, a stall in a speculative thread prevents any fur-
ther speculative threads from executing. We do not currently
assume any preemption scheme for speculative threads, so
the stalled thread will not relinquish its thread context to an-
other speculative thread.

7.6. Effects of Pipeline Depth and Memory Latency

Figure 11 shows the performance gains provided by
chaining triggers as clock frequency is increased, which im-
plies higher memory latencies and longer pipelines (see Ta-
ble 1). Results are shown for each benchmark for 3 clock fre-
quencies (2GHz, 4GHz and 8GHz), with 8 total thread con-
texts. All speedups are shown relative to a respective base-
line processor with the same clock frequency. Performance
results for 2 and 4 thread contexts show similar trends.

Most benchmarks show continued speedups as clock fre-
quency is increased. Equake is the primary exception to
this. As shown in Figure 2, equake has a large number of
delinquent loads and the 10 worst delinquent loads account
for only about 60% of cache misses. As latency to mem-
ory increases, the performance impact of the 40% of misses
not targeted by SP scales disproportionally, indicating that



at higher clock frequencies the criteria to select delinquent
loads should be liberalized. However, the general trend
is of increased effectiveness as the processor-memory gap
widens.

8. Conclusion

This paper presents Speculative Precomputation (SP), a
technique that allows a multithreaded processor to use spare
hardware contexts to spawn speculative threads to prefetch
data well in advance of the main thread. When the burden
of spawning threads falls on the main non-speculative thread
(via basic triggers), the potential speedup is as high as 30%
assuming fast register copies between thread contexts. How-
ever, under more realistic assumptions, the potential speedup
is significantly reduced. On the other hand, when the spec-
ulative threads can also spawn other speculative threads (via
chaining triggers), dramatic speedups are possible on appli-
cations that have historically been resistant to prefetching
techniques. These speedups are as high as 169% and av-
erage 76% over all benchmarks. This is achieved via a novel
software based mechanism that can utilize existing Itanium
processor features with very little additional hardware sup-
port.
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