In Proceedings of the 34th | nternational Symposium on Microarchitecture, December, 2001

Dynamic Speculative Precomputation

Jamison D. Collins', Dean M. Tullsenf, Hong Wang*, John P. Shent

fDepartment of Computer Science and Engineering

University of California, San Diego
LaJolla, CA 92093-0114

Abstract

A large number of memory accesses in memory-bound
applications are irregular, such as pointer dereferences,
and can be effectively targeted by thread-based prefetch-
ing techniques like Specul ative Precomputation. These tech-
nigques execute instructions, for example on an available
SMIT thread context, that have been extracted directly from
the program they are trying to accelerate. Proposed tech-
niques typically require manual user intervention to extract
and optimize instruction sequences. This paper proposes
Dynamic Speculative Precomputation, which performs all
necessary instruction analysis, extraction, and optimization
through the use of back-end instruction analysis hardware,
located off the processor’s critical path. For a set of memory
limited benchmarks an average speedup of 14% is achieved
when constructing simple p-slices, and this gain grows to
33% when making use of aggressive optimizations.

1. Introduction

The CPU-memory gap, the difference between the speed
of computation and the speed of memory access, continues
to grow. Meanwhile, the working set of the typical applica
tion is also growing rapidly. Thus, despite the growing size
of on-chip caches, performance of many applications is in-
creasingly dependent on the observed latency of the memory
subsystem.

Cache prefetching is one technique that reduces the ob-
served latency of memory accesses by bringing data into
cache before it is accessed by the CPU. Cache prefetch-
ing comes in three varieties. Hardware cache prefetch-
ers [4, 10, 9] observe the data stream and use past access
patterns and/or miss patterns to predict future misses. Soft-
ware prefetchers[13] insert prefetch directives into the code
with enough lead time to allow the cache to acquire the data
before the actual access is executed. Recently, the expected
emergence of multithreading processors [21, 20] has led to
thread-based prefetchers [6, 23, 11, 2, 16], which execute
code in another thread context, attempting to bring data into
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the shared cache before the primary thread accessesiit.

All three techniques have advantages and disadvantages.
Hardware prefetchers only work when the data stream ex-
hibits predictable patterns. Software prefetching is con-
strained to the control flow being executed by the main
thread prior to the access. Software and thread-based
prefetchers are generated by the compiler (or programmer)
and must operate strictly based on information known stati-
cally at compiletime. Software and thread-based prefetchers
do not work on code compiled for machinesthat do not have
the same prefetch support, or in some cases do not work on
code compiled for a different cache organization.

This paper presents a new form of cache prefetching —
hardware-constructed thread-based prefetching. Like thread-
based prefetching, it can use the actual code of the pro-
gram to prefetch irregular, data-dependent access patterns
that cannot be predicted. Like thread-based prefetching, the
prefetch code is decoupled from the main code, alowing
much more flexibility than software prefetching. Like hard-
ware prefetching, this technique works on legacy code and
does not sacrifice software compatibility with future archi-
tectures, and can operate on dynamic information rather than
static to initiate prefetching and to evaluate the effectiveness
of aprefetch stream.

We call our hardware-constructed thread-based prefetch
mechanism Dynamic Speculative Precomputation. It is
based on the (software and manually-constructed) thread-
based technique Speculative Precomputation [6], which has
similarities to [11, 23]. Like those techniques, it exe-
cutes threads decoupled from the main thread to generate
prefetches, but unlike those techniques, the threads are con-
structed, spawned, improved upon, evaluated by, and possi-
bly removed by hardware.

This paper is organized as follows. Section 2 describes
related prior research. Section 3 describes the simulation
methodology and benchmarks studied. Section 4 presents
details on the hardware used to capture p-slices at runtime.
Section 5 explores advanced p-slice optimizations. Section 6
explores Dynamic SP when relaxing ideal hardware assump-
tions. Section 7 concludes.
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Figure 1. Pipeline organization of modeled simultaneous multithreading processor.

2. Related Work

Several thread-based prefetching paradigms have been
proposed previously, including Collins et al.'s Specula
tive Precomputation (SP) [6], Zilles and Sohi's Specula-
tive Slices [23], Roth and Sohi’s Data Driven Multithread-
ing [16], Luk's Software Controlled Pre-Execution [11],
Annavaram et a.s Data Graph Precomputation [2], and
Moshovos et a.'s Slice-Processors[12].

SP works by identifying the small number of static loads,
known as delinquent loads, that are responsible for the vast
majority of memory stall cycles. Precomputation Slices (p-
dlices), minimal sequences of instructions which producethe
address of a future delinquent load, are extracted from the
program being accelerated. When an instruction in the non-
speculative thread that has been identified as a trigger in-
struction reaches some point in the pipeline, the correspond-
ing p-slice is spawned into an available thread context on a
simultaneous multithreading (SMT) processor [21, 20]. Also
introduced is the concept of a chaining trigger, which per-
mits a speculative thread to directly spawn further specu-
lative threads. SP focuses on the benefits from precompu-
tation on an SMT-capable in-order processor implementing
the Itanium™™ | SA [8]. Significant focusis on the use of ex-
isting Itanium features to simplify implementation. P-slices
using chaining triggers are constructed manually.

Speculative Slices [23] focuses largely on the use of pre-
computation to predict future branch outcomes and to cor-
relate predictions to future branch instances in the non-
speculative thread. A thread repeating technique similar to
the chaining p-slices of this paper is explored, but control of
such threadsis limited to placing a maximum number of re-
peats on thread execution. P-dices are constructed manually.

Software Controlled Pre-Execution [11] focuses on the
use of speciaized, compiler inserted code that is executed
in available hardware thread contexts to provide prefetches
for anon- speculative thread.

Data Graph Precomputation [2] exploresthe runtime con-
struction of instruction dependence graphs (similar to the
p-sices of SP) through analysis of instructions currently
within the instruction queue. The constructed graphs are
speculatively executed on a specialized secondary execution
pipeline.

Slice-Procssors [12] dynamically construct instruction

dlices to prefetch delinquent loads. Slices corresponding to
the basic p-slices of thiswork are constructed using back-end
hardware and executed on a specialized pipeline.

Dependence Based Prefetching [ 15] targets pointer-based
data structures by identifying relationships between loads
that produce data and loads which dereference these data.
A prefetch engine traverses data structures ahead of the exe-
cuting program by loading and dereferencing data structure
fields.

Other research has aso explored the use of back-end in-
struction processing on behalf of the main thread. The trace
cache fill unit [14] groups committed instructions together
into program traces, possibly applying transformations on
those instructions [7]. Instruction Path Coprocessors [5]
have been proposed as a software controlled back-end pro-
Cessor.

Previously proposed hardware prefetchers [4, 10, 9],
including those targeted at irregular memory access pat-
terns[9, 15], al rely on pattern-based and history-based pre-
dictability to enable accurate prefetching.

Sundaramoorthy et al. proposed Slipstream Proces-
sors [17] in which a non-speculative version of a program
runs alongside a shortened, speculative version. Outcomes
of certain instructions in the speculative version are passed
to the non-speculative version, providing a speedup if the
speculative outcome is correct. Their work focuses on im-
plementation on a chip-multiprocessor (CMP).

In contrast to most previous research, this work focuses
exclusively on automatic, hardware-based p-dlice construc-
tion, management, and optimization, performed entirely at
program runtime through the use of a back-end instruction
analyzer. Techniques proposed for automatic extraction of
p-dlices are significantly more aggressive than previously
proposed automatic techniques, and are comparable to the
most aggressive manually applied optimizations. Addition-
ally, SP in the context of multiple non-speculativethreadsis
explored.

3. Simulation Methodology

Benchmarks are simulated using SMTSIM, a cycle ac-
curate, execution driven simulator [18] that simulates an
out-of-order, simultaneous multithreading processor. SMT-
SIM executes unmodified a pha binaries. Benchmarks from



Pipeline Structure

8 stage pipeline, 1 cycle misfetch penalty, 6 cycle mispredict penalty

Fetch 8 instructionstotal from up to two threads

Branch Predictor

16k entry GSHARE, 256 entry 4-way associative BTB

Execution Resources

8tota int units, 4 can perform mem ops, 3 fp. All units pipelined, 200 int and 200 fp renaming regs
128 entry int and fp instruction queues. Each thread has a 256 entry ROB

Memory Hierarchy

32KB, 2-way |Cache, 64K B, 4-way data cache, 1024KB, 4-way shared L2 cache (10 cycle latency)
Memory has 110 cycle latency, 128 entry instruction and data TLB
TLB misses handled by pipelined, on chip TLB miss handler, 60 cycle latency

Multithreading 8 total hardware thread contexts

Dynamic SP

64 entry DLIT, 32 entry SIT, 8 entry SAT, 512 entry RIB

Table 1. Details of the modeled processor

the SPEC suite are compiled for a base SPEC build, and
Olden [3] benchmarks are compiled with gcc -O4. All simu-
lations with a single non-speculative thread are executed for
300 million total committed instructions.

Becauseit is essential that they execute as quickly as pos-
sible, fetch preference is given to speculative threads over
non-speculative ones, and preference is given to older spec-
ulative threads over younger ones.

Table 1 shows the configuration of the processor mod-
eled inthisresearch. Unless noted, simulation results assume
specul ative threads are spawned instantaneously when atrig-
ger instruction reachesthe rename stage, and that p-dlicesare
fetched from an on-chip slice cache [16]. More redlistic as-
sumptionsin both areas are evaluated in Section 6.3.

This paper evaluates SP with 10 memory-limited bench-
marks (between 48% and 315% speedup when assuming a
perfect L2 cache) and five ILP limited benchmarks (between
1% and 18% speedup from a perfect L2 cache). Details are
shownin Table 2.

The memory limited benchmarksfall into four categories
— pointer based applications with complex control flow
(mcf and vpr from SPECINT), array based applications with
simple control flow (art, equake, mgrid and swim from
SPECFP), loop based pointer traversal applications (mst and
em3d from Olden) and recursive applicationswith asmall re-
cursive function body (perimeter and treeadd from Olden).
Both swim and mgrid contain significant software prefetch-
ing. ILP limited benchmarks are drawn from the SPEC suite
and consist of three integer and two floating point applica
tions.

4. Hardware Support for Dynamic Speculative
Precomputation

A processor implementing dynamic speculative precom-
putation must support three basic operations (1) identify aset
of delinquent loads to target, (2) construct p-slices that tar-
get those loads, and (3) spawn and manage the execution of
speculativethreads. Figure 1 showsthe processor modeledin
this research; structures shown in gray are specialized struc-
tures necessary to fulfill these precomputation requirements.
The hardware dlice cache (shown dashed) is not necessary
but may improve performance. The following sections de-

scribe these structures.

4.1. Identifying and Tracking Delinquent L oads

Delinquent loads are identified at runtime by a hardware
structure known as the Delinquent Load Identification Ta-
ble (DLIT). DLIT entries are allocated first-come first-serve
to static loads which missed in L2 cache on their most re-
cent execution. After aload occupiesan entry for 128K total
committed instructions, it is evaluated for delinquency. A
load is considered delinquent if, over the previous 128k in-
structions, it had been executed at least 100 times, and, on
average, each instance, spent four or more cycles as the old-
est instruction in its thread, waiting for its memory request
to be satisfied. This is a form of critical path prediction,
based on the ALOId metric described by Tune et al. [22], and
henceforth referred to as the number of cycles spent blocking
commit. Other metrics could also be used (such as counting
cache missrate at different levels of the memory hierarchy),
but wefound thisoneto be effective. When aload isfoundto
be delinquent, it is passed on to the next phase and its entry
locked into the DLIT.

In programs which contain software prefetch instructions
that do not entirly eliminate memory latency, the prefetches
themselves should be treated as delinquent. They will not
be identified as such by the above metric, however, because
prefetch instructions commit even if their memory request
is outstanding. A prefetch is considered delinquent if, on
average, the prefetched line is accessed by a non-prefetch
load at least four cyclesbeforeit arrivesin cache. Only swim
and mgrid were impacted by targeting delinquent prefetch
instructions.

Each load in the DLIT is specified by a tuple — the PC
of the load itself and the PC of the call instruction which in-
voked the function that contains the load. Thus, the same
load PC may be present in multiple DLIT entries if it is
within afunction which has multiple callers.

4.2. Hardwareto Construct P-Slices

Once aload is identified as delinquent, a p-slice is con-
structed to prefetch the load, using a hardware structure
called the Retired Instruction Buffer (RIB). The RIB storesa
trace of committed instructions, similar to alargetrace cache



Bench Instr Input Speedup
Skipped Perf L2%
Mem Limited Benchmarks
mcf 5B Ref 132%
vpr 5B Ref 48%
art 5B Ref 60%
equake 5B Ref 103%
mgrid 5B Ref 54%
swim 5B Ref 236%
em3d 120M 25000 nodes | 315%
mst 2B 3407 nodes | 113%
perimeter | 380M 12 levels 55%
treeadd 940M 22 levels 170%
ILP Limited Benchmarks
ammp 5B Ref 9%
crafty 5B Ref 2%
galgel 5B Ref 18%
gzp 5B Ref 1%
vortex 5B Ref 4%

Table 2. Details of studied benchmarks.

fill unit [14]. For each instruction, it holds the PC, logical
source and destination register numbers, and a“marked” bit,
which is used during analysis to mark instructions for in-
clusionin the p-dice. Because it analyzesinstructionswhich
have already committed, the RIB is entirely off the processor
critical path. Instructions are stored as a FIFO, overwriting
the oldest instruction when anew oneisinserted. We assume
a512 entry RIB.

The RIB operates in three states — idle, instruction-
gathering mode and slice-building mode. For most applica
tions, the RIB spendsthe vast magjority of itstime (morethan
99%) in idle mode, and thus could be easily designed for
low power. The RIB remainsin idle mode until a delinquent
load lacking a p-dlice is committed, causing atransition into
instruction-gathering mode. In this mode the RIB accepts
instructions (but performs no analysis on them) as they are
committed by that thread.

When a second instance of the delinquent load is inserted
into the RIB, it transitions into slice-building mode, where a
p-slice will be constructed by identifying those instructions
which produce register values the delinquent |oad is data de-
pendent on. Following slice construction, the RIB transitions
back into idle mode.

If too many instructions are committed between the two
instances of the load, the first instance will be evicted from
the RIB. Even if this happens we can still create a p-dice,
but, because delinquent load instances are typicaly clus-
tered, such a control flow likely represents ararely executed
control path. Thuswe will re-capture traces up to five times,
attempting to capture both instances of the load. After that,
we will use atrace with just the second instance, construct-
ing ap-dlice starting with whatever instruction happensto be
the oldest in the RIB.

struct DATATYPE { loop:

int val[10]; I1 load rl=[r2]

H I2 add r3=r3+1
I3 add r6=r3-100

DATATYPE * data [100]; I4 add r2=r2+8
I5 add rl=r4+rl

for(j = 0; j < 10; j++) { I6 1load r5=[rl]

for(i = 0; 1 < 100; i++) { I7 add r5=r5+1

datal[i]l ->vall[jl++; I8 store [r1]=x5

I9 Dblt r6, loop

Figure 2. Example C and assembly loop targeted
with SP.

4.3. Basic P-dlice Construction

During RIB analysis, instructions are analyzed serialy,
from the most recent to the oldest. Analysis builds up the
p-slice (initially consisting only of the delinquent load) by
identifying instructions which produce registers consumed
by the current partial p-dlice. This set of registersis known
asthep-slicelive-in set. When such an instructionis encoun-
tered, it is added to the p-slice (by setting its marked bit) and
the live-in set is updated by clearing the dependence on that
instruction’s destination register and adding dependencesfor
its source registers.

The live-in set is efficiently implemented as a bit vector
with length equal to the total number of logical registers.
Slice construction is similar to compiler live range analy-
sis[1], but is not iterative, for basic p-slice construction, be-
cause we walk over asingle linear path— since all branches
in the RIB are executed branches, there is no control-flow
uncertainty.

When RIB analysis completes, marked instructions indi-
cate the p-dlice, and the live-in set specifiesthe registersthat
must be copied from the parent thread when the p-dice is
spawned.

Secondarily, the RIB is used to identify a trigger instruc-
tion, which will cause a speculative thread to be spawned
and execute the p-slice when the instruction is renamed. For
initial analysis, the last analyzed instruction (typically the
delinquent load itself) is conservatively chosen as the trigger
instruction.

4.4. Example

This section provides an example of p-slice construction
viathe RIB. Figure 2 shows the code from a sample loop in
both C and assembly, with the delinquent load highlighted.
Figure 3 shows the state of the RIB when the instructions
between two instances of the delinquent load have been an-
alyzed. To theright of the RIB four columns of information
are shown — if the instruction is included in the p-dlice, its
source registers, its destination registers and the new live-in
set after analyzing the instruction.

Initially the p-slice consists of only the delinquent load,
with the live-in set as the source register for this instruction,
rl. Analysisproceedsfrom the delinquent load through ol der
instructions until the second instance of the delinquent load
is encountered. On thefar right isthefinal p-dice, aswell as
its set of live-in values.
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Figure 3. State of RIB as example code loop from Figure 2 is analyzed.

4.5. Basic P-dlice Optimizations

This section describes some optimizations which are ap-
plied to the basic construction algorithm. More aggressive
optimizations will be examined in Section 5, but those de-
scribed here require only minor changes to the basic p-dlice
construction algorithm.

Store-Load Dependence Detection Because RIB analy-
sis occurs over instructions within a small instruction win-
dow, heap-based store-load dependencies involving p-slice
instructions (which create undetected data dependencies) are
unlikely. However, store-load dependencies in the form of
stack-based saving and restoring of values can occur. Such
dependencies are identified by adding a small stack address
table (SAT) to the RIB.

When a load with the stack pointer as its address base
isincluded in a p-dice, the address accessed by thisload is
also stored in the SAT. When a store instruction (again with
the stack register asits base) is analyzed, the SAT is queried
with the target address. If an address match is found, then
a store-load dependence has been identified. When the load
and store instructionsinvolve the same non-stack register (ie
the register was saved to the stack then later restored), the
store-load dependence only has an effect if this register is
overwritten by an instruction included in the p-slice between
the load and the store. Otherwise, the load will simply over-
write the register with the same value, and neither the load
nor store needs to be included in the p-dice. To make use
of the SAT, the stack memory addresses accessed by load
and store instructions must be available during RIB analysis.
The full width of the accessed address need not be saved,
however, as only the stack pointer offset is needed.

This table does not significantly complicate the p-dlice
construction algorithm because the read of the memory loca-
tionwill be encountered beforethe write, just aswith register
dependencies. Theload and storeinstructionsinvolvedin the
dependence are converted into move instructions, and pass
their value through an unused logical register. Thiswork as-
sumes an eight-entry fully-associative SAT, though typically

fewer entries are needed.

Targeting Recursive Programs  During RIB analysisit is
possible to encounter multiple instances of the same delin-
guent load PC (but with distinct tuples because the function
containing it was called from different locations). This sit-
uation is taken as a hint that the delinquent load is within a
recursivefunction, and such loads are automatically added to
the p-dlice (even though it does not produce a p-dlice live-in
value). Thisallows asingle p-dlice to target multiple loads.

Prefetch Conversion Because the final instruction in a p-
dlice loads a value which is never consumed, its destination
register can be changed to the zero register (r31 on the mod-
eled ISA), converting it into a software prefetch. Because
these instructions commit without waiting for their memory
access to complete, thread contexts executing such p-slices
can be freed much earlier. We call this optimization prefetch
conversion.

For most p-dlices, only the final load in the p-slice can
be converted. However, loads which are only included in
the p-slice because of the recursive optimization previously
described can also be converted, as they also produce avalue
which is not consumed. If prefetch conversion is applied
to the example above, the fina p-dice instruction becomes
load r31=[rl].

Instruction Removal The size of a p-dice can be reduced
by removing unecessary updates to the stack and global
pointers. For example, the corresponding stack pointer up-
dates at the beginning and end of a function call are uneces-
sary to include in a p-dlice when no intervening read to the
register isincluded.

Detecting such instruction pairsis achieved by recording
(in a stack based structure) each p-slice instruction that up-
dates the global or stack pointer. If no instruction which
reads the updated register is included before one which un-
does the previous update (considering only adds followed by



subtracts or vice versa), neither instruction isincluded in the
p-dlice.

4.6. Hardwareto Spawn and M anage P-dlices

The Slice Information Table (SIT) initiates speculative
threads and manages p-dlices. Every cycleit is queried with
the addresses of the instructions decoded on that cycle on
behalf of a non-speculative thread. If a trigger instruction
has been decoded, hardware in the register rename stage is
informed, and a speculative thread is spawned the follow-
ing cycle (when the trigger instruction reaches the rename
stage). If no thread context is available, the spawn request is
ignored. For initial analysis, the child thread’s live-in values
are assumed to be instantaneoudly copied from the parent;
Section 6.3 evaluates more realistic assumptions. SIT entries
are allocated by the RIB after ap-diceis constructed.

The SIT aso evaluates p-dice effectiveness. A p-diceis
considered effective when its prefetches cause a greater re-
duction in the memory stall cycles incurred by loads in the
non-specul ative thread than instructions were fetched on be-
half of the p-slice when it had been spawned from the cor-
rect path. The precise impact on memory stall cycles is
impractical to directly measure in a real processor, so we
approximate this value by assuming every prefetched cache
line is both useful and timely, saving the full latency to the
accessed memory structure. Thus, a prefetch that hits in
L2 cache saves 10 cycles, and one that accesses memory
saves 110, even if the prefetched datais never eventually ac-
cessed. Ten cycles are subtracted for each prefetch evicted
from L1 cache before being accessed. This computes num-
ber of saved memory cyclesoptimistically, but classifications
are till accurate because most p-slices are highly biased to-
ward being useful or useless.

For every 128K total committed instructions, each p-slice
which had been spawned at least once is evaluated to de-
termine its effectiveness. When a basic p-slice is found to
be ineffective (meaning more instructions were fetched on
its behalf than cycles were saved), it is eliminated and its
DLIT entry cleared; a new p-slice will be captured for the
load if the DLIT again classifies the load as delinquent at
afuture time. P-dlices employing optimizations are treated
differently, as described in Section 5.4.

The RIB employs two simple filters to reduce the likeli-
hood of generating ineffective p-dlices. If fewer than 32 in-
structions occur between the two instances of the delinquent
load or the p-slice consists of more instructions than the av-
erage number of cyclesthe load had spent blocking commit
over the previous 128K instructions, the p-slice construction
isaborted. Thefirst filter insuresthat the p-slice will actually
be ableto trigger cache misses before the datais accessed by
the non-speculative thread, and the second filter implements
a dightly modified version of the test for effectiveness de-
scribed above. If p-dlice construction is aborted more than
fivetimes, the DLIT entry is cleared.

If aline is prefetched by multiple p-slices, only the first
p-dlice to prefetch the line gets the “credit” for the prefetch.
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Figure 4. Memory limited benchmark speedup
provided by basic Dynamic SP over baseline pro-
cessor without SP.

Thus, p-slices must compete with each other to save memory
cycles, enabling a more recently constructed p-slice which
initiates prefetches earlier to cause an existing p-sice to be
eliminated.

4.7. Speculative Thread I nstruction Fetch

Speculative threads fetch their instructions from a logi-
cal structure called the dlice cache (SC). This structure can
be implemented in hardware [16, 12], eliminating fetch con-
flicts between speculative and non-specul ative threads, or in
software as a specialy allocated memory buffer. In the soft-
ware implementation, the OS allocates a special region of
memory into which p-slice instructions are stored. Specu-
lative threads fetch from this buffer, automatically bringing
their instructions into the ICache. The performance of these
approachesis compared in Section 6.3.

Once a p-dlice is constructed, its instructions must be
stored in the SC. For each instruction in the p-slice, the
|Cacheisaccessed and the instruction read out, possibly ma-
nipulated (by applying, for example, prefetch conversion),
then written into the (hardware or software) dlice cache. In-
structions are read out either by stealing |Cache read ports
(if the cache is multiported) or by stalling fetch entirely. Be-
cause p-slice construction is rare, the performance impact is
negligiblein either case.

4.8. Basic P-dlice Perfor mance

This section shows the performance of applying the base-
line form of Dynamic Specul ative Precomputati on described
above, applying the basic optimizations of Subsection 4.5.
Figure 4 shows the speedup achieved over a processor with
no SP. All programs show speedups, ranging from 3.4%
(mgrid) to 40.1% (treeadd), with an average of 14.3%. This
includes significant speedup for mcf and vpr, both of which
have complex control flow, making them a difficult target for
traditional prefetching approaches.
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Figure 5. Breakdown of delinquent load memory
accesses without Dynamic SP (left) and with basic
Dynamic SP (right).

Figure 5 showswherein the memory hierarchy delinquent
loads are satisfied for the baseline configuration (without
SP, left) and the basic SP implementation for each bench-
mark (right). Delinquent load instances are divided into five
categories, according to whether they were satisfied in L1
cache, L2 cache or main memory, and whether the latency
was partially eliminated by a previous access (not necessar-
ily a prefetch). Loads that hit in L1 cache are not shown;
thus, a lower total bar height represents a higher L1 cache
hit rate. Even in the baseline configuration, vpr hitsin cache
frequently, yet still achieves a significant speedup from SP.
A large number of delinquent loads are covered by SP, but
many prefetches are not timely. For example, in both em3d
and mst most of the useful prefetched cache lines had not
arrived before non-specul ative access.

5. Aggressive P-dice Optimizations

The basic p-slice construction scheme outlined in Sec-
tion 4 covers a good number of delinquent loads, but many
prefetches have not arrived in cache before non-speculative
access. This section presents advanced p-slice optimizations
which achieve improved timeliness: (1) more aggressive
trigger instruction placement, (2) targeting delinquent loads
multiple loop iterations ahead via induction unrolling [16]
and (3) chaining p-dlices (which are similar in goal to chain-
ing triggers [6]). These optimizations are only applied to p-
slices when two instances of the delinquent load are present
in the RIB. However, p-slices for which this is not true al-
ready provide good timeliness because their trigger comes at
least 512 instructions (the size of the RIB) beforethetargeted
delinquent load.

5.1. Improved Trigger Instruction Selection

The baseline construction scheme chooses the targeted
delinquent load asthe p-dlicetrigger instruction. Thisinsures
that al live-in producing instructions have been renamed (a
requirement for correct p-slice execution), but spawnsthe p-

dlice significantly later than necessary. Alternatively, choos-
ing thefinal live-in producing instruction resultsin an earlier
trigger, and still retains correct execution.

This optimization improves delinquent load timeliness by
spawning p-slices earlier, but also improves delinquent load
coverage. With the baseline trigger choice, adelinquent load
instance is only covered if the delinquent load was also ex-
ecuted on the previous loop iteration. Thisis becauseit is
the delinquent load instance from the prior loop iteration
which spawns the p-dlice targeting the load instance in the
following iteration. If the delinquent load is not executed in
aparticular loop iteration, no p-dliceis spawned and the next
instance of the delinquent load will not be covered. When
employing this optimization, we find that the instruction se-
lected as the trigger is typically executed much more often;
onereason for thisisthat this algorithm often ends up choos-
ing aloop induction variable update as a trigger.

The improved trigger instruction isidentified by adding a
second RIB analysis pass to the basic scheme. The live-in
set from the first pass is retained, and instructions are ana-
lyzed in the same order until a live-in producing instruction
is found, which is then selected as the trigger instruction.

Figure 6a showsthe p-slice generated when this optimiza-
tion is applied to the loop of Figure 2. Instruction 14 is cho-
sen as the trigger instruction because neither 15 nor 16 pro-
duceap-dicelive-in value.

5.2. Induction Unrolling

For delinquent loads which have high average access
latencies, the memory latency may not be entirely elimi-
nated, even when spawning p-slices as early as possible.
A technique known as Induction Unrolling (1U) [16] en-
ables prefetching for delinquent loads multiple loop itera-
tions ahead of the non-speculativethread by performing mul-
tiple loop induction variable updates in the p-slice.

Induction unrolling is applied by performing multiple
RIB passes, where the nth pass identifies the instructions
which must be executed n loop iterations before the targeted
delinquent load. The first pass is the same as basic p-slice
construction. Each further pass uses the live-in set generated
on the previous pass as itsinitial live-in set. Following each
pass, marked instructions are prepended at the head of the
partial p-slice, and all marked bits are cleared.

Figure 6b shows a p-dlice for the loop in Figure 2, tar-
geting the delinquent loop four iterations ahead. For each
additional loop iteration, a copy of the instruction I4 :add
r2=r2+8 is included because it both consumes and pro-
ducesr2 —r2 isalive-in value after the first pass.

5.3. Chaining P-dlices

Chaining p-dices are able to spawn future instances
of themselves, decoupling thread spawning from non-
speculative thread execution. This alows delinquent 1oads
far ahead of the non-speculativce thread to be targeted,
but without significantly increasing executed speculative in-
structions, unlike induction unrolling. A chaining p-sliceis



1 (a) Alternate Trigger (b) Induction Unrolling (c) Chaining
oop:

I1 load ri=[r2] load rl=[r2] add  r2=r2+8 chain:

I2 add r3=r3+1 add rl=rd4+rl add r2=r2+8 load ril=[r2]

I3 add r6=1r3-100 load r31=[rl] add r2=r2+8 add rl=r4+rl
I4 add r2=r2+8 load ril=[r2] load r31l=[ril]
I5 add rl=rd+rl Live-in Set add rl=r4+rl add r2=r2+8

I6 1load r5=[rl] rl, r4 load r3l=[rl] br chain

I7 add r5=r5+1

I8 store [r1]=15 I4 is trigger Live-in Set Live-in Set

I9 Dblt r6, loop r2, r4 r2, r4

I4 is trigger I4 is trigger

Figure 6. P-slices constructed when applying aggr essive p-dlice optimizationsto code from loop in Figure 2.

implemented by repeating the p-slicein the same thread con-
text (unlike the chaining triggersin [6], which spawn each it-
eration in a separate thread, an unnecessary featurein an out-
of-order processor). Thus, contention for hardware thread
contextsis significantly lower than with the baseline p-slices
or induction unrolling, which spawn a p-slice for each itera-
tion.

A chaining p-diceis smply a basic p-dice which is ter-
minated by an unconditional branch to the beginning. When
repeatedly executed (namely, “chained” together), accurate
prefetches are generated for future instances of the load.
When one p-dlice chains another, the new p-slice is consid-
ered the youngest p-slicein the machinewith regardsto fetch
policy, despite occupying the same thread context. This pre-
vents chaining p-slices from monopolizing fetch bandwidth.

However, two dangers exist from the use of chaining p-
dlices. First, speculative threads must be prevented from ex-
ecuting so far ahead that useful datais evicted from the cache
before being accessed. Second, speculative threads must not
be allowed to chain indefinitely, but must be terminated when
the non-specul ative thread | eaves the targeted code section (a
loop body, for example). For other p-slices this occurs im-
plicitly, asthey are only spawned in response to execution of
atrigger instruction. We introduce a modified version of the
Outstanding Slice Counter (OSC) [6] to addresstheseissues.

Outstanding Slice Counter  The OSC is a structure which
controls the execution of chaining p-dices in two ways —
it limits execution distance ahead of the non-speculative
thread (counted in loop iterations) and kills chaining p-dlices
when the non-speculative thread leaves the targeted section
of code.

Because it encompasses an entireloop iteration, the range
of non-speculative PCs analyzed in the RIB during p-dlice
construction is taken as the targeted program section. The
effect of function calls within this code section, however,
will distort this instruction range and must be filtered out.
Thus, only the instructions within the RIB at the shallowest
(least nested) call depth (at which no return instructions are
present in the RIB) are counted. Also, the call depth between
the delinquent load and the shallowest level is captured.

When a chaining p-dice is spawned, an OSC entry isini-

tialized with a counter indicating the number of levels be-
tween the delinquent load and the shallowest level. The
OSC monitors the non-speculative thread, incrementing this
counter for each call executed and decrementing for each
return. If the non-speculative thread commits an instruc-
tion when this counter is negative (indicating it is “below”
the targeted instruction range), or outside this range when
the counter is zero, the corresponding speculative thread is
killed.

Additionally, when aload which produces alive-in value
to a future p-dice instance dereferences an invalid address,
the p-dliceis killed. This does not include, for example, the
final load in the p-dlice if prefetch conversion has been ap-
plied.

Each OSC entry also tracks the number of loop itera
tions ahead of the non-speculative thread that its p-dice ex-
ecutes. When a chaining p-dlice is spawned, this counter is
initialized to the upper limit for that p-slice. This counter is
decremented each time the p-dice chains and incremented
each time the non-speculative thread completes aloop itera-
tion. Speculative threads are not permitted to fetch when the
counter is zero, giving the non-speculative thread a chance
to catch up.

I dentifying the completion of aloop iteration, however, is
not atrivial matter. Execution of the targeted delinquent load
itself cannot be used because the load may not be executed
every loop iteration. Instead, we assume that the instruc-
tion with the smallest PC value (at the shallowest call level)
which was analyzed during p-slice construction marks the
top of the loop. Each time this instruction is executed in the
non-speculative thread, it indicates the completion of aloop
iteration. Section 5.4 presents an algorithm for determining
the permitted runahead distance.

Capturing Chaining P-dices Chaining p-slices are cre-
ated in multiple passes, but, unlike for induction unrolling,
the number of passesis not known a priori. Thisis because
the register live-in set is more difficult to compute, since a
chaining p-slice must not only produce values needed by its
prefetch, but also those needed for all future instantiations of
the chaining p-dice; thus, our analysis mechanism must iter-
atively identify loop-carried dependenceswhich affect future
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Figure 7. Speedup provided by Dynamic SP when
using advanced optimizations over baseline proces-
sor without SP. Only the average performance for
thefive ILP limited benchmarksis shown.

delinquent loads. This is achieved by executing additional
RIB passes until a pass in which no further instructions are
included in the p-dlice (during this final pass the set of in-
structions which kill the p-slice when dereferencing an in-
valid address is determined). Normally, this requires very
few passes; however, heavily software pipelined loops may
require several. Section 6.3 shows that dynamic SP perfor-
mance is extremely tolerant of p-slice construction latency
and that the cost of these passesis not high.

When using chaining p-dices, asight complicationarises
in applying prefetch conversion — if the data loaded by the
delinquent load in one p-dlice instance is consumed by a fu-
ture instance (such as in the traversal of alinked data struc-
ture), the delinquent load must not be converted. This situa-
tion is identified if the destination register of the delinquent
load isinthe p-slice’slive-in set.

Figure 6¢ shows a chaining p-slice targeting the loop of
Figure 2. All instructions producing values needed in fu-
ture instances are added to the p-dlice, including 14 :add
r2=r2+8, even though its result value is not necessary
when targeting only a single loop iteration ahead. Instruc-
tions are ordered within a chaining p-dice in the same or-
der asthey occurredinthe RIB. Thus, T4 :add r2=r2+8
is located after the delinquent load prefetch, despite coming
before it in program order. The p-slice ends with an uncon-
ditional branch back to the beginning.

5.4. Induction Unrolling and Chaining Distance

Induction unrolling and chaining are applied progres-
sively to p-slices which are effective, but generate untimely
prefetches. When a delinquent load is first targeted, the p-
dice is constructed without employing chaining or induc-
tion unrolling. When the p-dlice is evaluated, if it satisfies
the following conditions, a new p-slice which makes use of
the more aggressive technique (induction unrolling or chain-

ing) is created. The p-slice must be found to be effective
(using the metric of Section 4.6), and more than 10% of its
prefetches not having arrived before non-speculative access.
Additionally, optimizations are only applied to p-dices in
which fewer than 10% of memory accesses are to invalid
addresses (which are a sign that the main program followed
adifferent control path from what was expected), and which
are executed 250 timesin the previous 128K instructions, in-
dicating that delinquent load instances typically occur close
together.

Thebasic p-dice construction algorithm presented in Sec-
tion 4.3 isdlightly modified to now save the pattern of branch
outcomes it encounters during p-slice construction into the
corresponding SIT entry. When applying induction unrolling
or chaining it is possible to use this information to target
the same control flow as before by remaining in instruction-
gathering mode until this control path is repeated.

When a p-slice employing either of these optimizations
is evaluated as effective but with more than 10% of its
prefetches untimely, it is modified to target an additional
loop iteration ahead. When such ap-sliceisfoundto beinef-
fective, itismodified to target onelessloop iteration ahead of
the non-specul ative thread. If the p-slice employs induction
unrolling, a new p-slice must be captured. Chaining p-slices
require only modifying the maximum runahead distance. If
the runahead distance reaches one loop iteration ahead, the
optimization is abandoned and a basic p-dice is recaptured.

5.5. Performance of Aggressive Optimizations

Figure 7 shows performance gains from applying the
three described optimizations. All configurations make use
of prefetch conversion. Additionally, the chaining and un-
rolling configuration makes use of improved triggers.

Initially, when applying the improved triggers optimiza-
tion to the recursive benchmarks, performance was severely
degraded. This is because logical control flow in recursive
programs differs significantly from loop based programs;
moving the trigger instruction “earlier” in the RIB may ac-
tually place it at the end of the targeted recursive function,
greatly increasing the number of useless prefetches gener-
ated. Thus, in the results above, the improved trigger op-
timization is not applied to p-slices identified as recursive
(using the hint from Section 4.5).

For other benchmarks, improved triggers often provide
a moderate performance gain, with an average speedup of
3.7% over only applying prefetch conversion. Induction un-
rolling and chaining p-slices achieve very large speedups for
programs they can be applied to, especially those with pre-
dictable control flow. For instance, mst achieves a speedup
of more than 90% for either technique. Overall, induction
unrolling and chaining give average speedups of 31.9% and
33.7% respectively, compared to a processor which does not
implement SP.

Performance improvement from applying SP to the five
ILP limited benchmarks is fairly modest (average speedup
1%). However, this does show that the described mecha-
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Figure 8. Breakdown of delinquent load memory
accesses for different SP optimizations. Configura-
tions shown are, left to right, no SP, prefetch con-
version, improved triggers, induction unrolling and
chaining.

nisms do prevent SP from being applied in cases for which it
isnot beneficial.

Figure 8 showswherein the memory hierarchy delinquent
loads are satisfied when assuming the p-slice optimizations
described above. Generally, these optimizations provide sig-
nificant improvements in prefetch timeliness compared to
those with only basic optimizations. For example, apply-
ing chaining or unrolling to mst results in more than 60% of
delinquent loads hitting in L1 cache, compared to only 14%
when using basic p-slices.

6. Further SP Evaluations

Results to this point have reflected a processor (1) having
alarge number of total hardwarethread contexts, (2) execut-
ing only a single non-speculative thread, and (3) assuming
ideal RIB analysis and thread spawning hardware. Next we
evaluate the impact of varying these assumptions. Unless
stated otherwise, results reflect only memory limited bench-
marks.

6.1. Reduced Thread Contexts

Figure 9 shows the speedup from applying SP on a pro-
cessor with two, four and eight total hardware thread con-
texts. Predictably, speedup drops as the number of contexts
is reduced, but even a processor with only two thread con-
texts and no advanced optimizations achievesa’5.5% average
speedup. Due to their more efficient use of thread contexts,
chaining p-dlices provide the largest speedup for any number
of thread contexts, and perform nearly as well with only two
total contexts as a processor with eight total thread contexts
which implements only basic p-dlices.

6.2. Multiple Non-speculative Threads

SP techniques are most useful when the system is execut-
ing a single non-speculative thread, because the processor
is least able to hide memory latencies and idle contexts are
in abundance. However, SP aso provides benefit when a
processor executes multiple non-speculative threads. Thisis
true even if only one of thethreadsis memory limited, as ac-
celerating thisthread will reduce contention for execution re-
sources, such as renaming registers, which would otherwise
be occupied while the thread waits for a memory request to
be resolved [19].

When multiple non-specul ative threads execute, SPis ap-
plied to the worst behaving loads in the machine, regardliess
of which thread they belong to. Thus, if one thread is signif-
icantly memory limited, all SP resources may be allocated
exclusively to target delinquent loads within that thread.

However, to insure some degree of sharing among avail-
able hardware thread contexts, all currently executing chain-
ing p-slices are killed every 128K total committed instruc-
tions. This gives other threads an opportunity to spawn their
own chaining p-dlices if they have constructed any. Other-
wise, the thread contexts are quickly reoccupied, with little
overall performance loss. Because non-chaining p-dices are
very short-lived, no specia actions are required to prevent
monopolization of resources by one thread. DLIT and SIT
entries are allocated on afirst-come, first-serve basis.

The fetch mechanism is changed slightly over a previ-
ously proposed SMT processor [20]. First, the fetch fam-
ily with lowest total ICOUNT is selected for fetch, where a
fetch family is the aggregate of a non-speculative thread and
its speculative children. If speculative threads exist in the
fetch family and are ready to fetch, the oldest is allowed to
fetch. Otherwise, the non-speculative thread fetches.

Figure 10 shows performance when applying SP with
more than one non-speculative thread executing. For each
configuration, pairs of benchmarks are simulated for 300
million total instructions without employing SP, and the
number of instructions executed by each of the threads is
recorded. For simulations which enable SP, each benchmark
executes as many instructions as it had in the baseline case,
then goes idle. Thus, the program region simulated from
each thread is the same between the baseline and the SP
configurations. Speedup is given as the ratio of throughput
(combined I PC) between the two cases.

Results are shown for eight total hardware contexts both
for combining two memory limited benchmarks and com-
bining one memory limited and one ILP limited benchmark.
Chaining p-dices provide the largest speedup in both cases.
This is especialy true when combining two memory lim-
ited threads, where the more efficient utilization of thread
contextsis critical. On average, chaining p-slices provide a
speedup of 8.9% when executing amemory and ILP limited
thread and a speedup of 17.6% when executing two memory
limited threads. Thus we see, as indicated in previous re-
search [23], SP has the effect of actually reducing the overall
execution resources needed by the thread it targets, despite
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Figure 9. Speedup from Dynamic SP when exe-
cuting a single non-speculative thread and reduced
thread contexts.

the execution of speculative threads. This results in overall
improvements in instruction throughput, even if not all exe-
cuting threads are directly targeted by SP.

6.3. Relaxing | dealized Har dware Assumptions

To this point, results reflect three idealized SP hardware
assumptions, (1) RIB analysis occurs instantaneously, (2)
speculative instructions are fetched from a hardware dice
cache, and (3) threads are spawned from the non-specul ative
thread without overhead to copy live-in values. Next, we
evaluate the performanceimpact of morerealistic implemen-
tations.

A redlistic RIB ismodeled by adding an analysisdelay for
each instruction. While busy, the RIB cannot accept new in-
structions from any thread. We model this delay as a very
conservative 10 cycles per instruction in order to demon-
strate the latency tolerant nature of p-slice construction. This
delay isimposed for each timean instruction is analyzed dur-
ing p-slice construction and improved trigger placement, and
accounts for multiple pass analysis.

As described in Section 4.7, when using a software dlice
cache, p-dice instructions are stored in an OS controlled
memory region, rather than a hardware structure. We model
a 32K B software dice cache, which is divided into 256 byte
(64 instruction) blocks. When constructed, a p-sice is writ-
ten into a dlice cache block so that, when brought into the
ICache, it will be located as far away from the delinquent
load it targets as possible. This eiminates |Cache conflicts
between the p-dlice and the program code it is attempting to
accelerate.

Two aternate schemes for p-slice spawning are model ed.
Move insert moves values between threads by inserting ex-
plicit inter-thread move instructions into the non-specul ative
thread instruction stream immediately following the trigger
instruction. Because these instructions are renamed before
any p-dice instructions, the p-slice executes correctly. Move
stall operates similarly, but doesn’t inject the move instruc-
tions until the following cycle, and renames only move in-
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Figure 10. Speedup from Dynamic SP when exe-
cuting multiple non- speculative threads.

structions on that cycle. Thus, move instructions are re-
named one cycle after thetrigger instruction is renamed, and
the instruction originally following the trigger is renamed
two cycles after the trigger.

Figure 11 shows the performance of each of these proces-
sor configurations. RIB construction latency plays a small
performancerolefor all configurations, including those mak-
ing use of chaining and induction unrolling. Even though
these p-dices require multiple RIB analysis passes, p-dlice
construction is sufficiently rare that analysis delays do not
impact performance. The aternate thread spawning mech-
anisms have a greater impact, but even when implementing
move stall an 11.0% average speedup is still achieved using
only basic p-dlices. Chaining p-slices perform only slightly
worse than when assuming ideal spawning hardware because
the vast mgjority of p-slices are spawned from chaining p-
slices, rather that from the non-speculative thread. In con-
trast, induction unrolling provides a 6.0% smaller speedup
than it did with ideal hardware. The impact of the software
dice cache is negligible, due to the small instruction foot-
print of the p-slices.

7. Conclusion

This paper presents Dynamic Speculative Precomputa-
tion, a runtime technique that identifies a program’s delin-
guent loads, and generates precomputation slices to prefetch
them. P-slices are generated using a back-end structure,
the Retired Instruction Buffer, which captures a sequence
of instructions as they are committed by the non-speculative
thread. Even when only minimal p-slice optimization is per-
formed, a speedup of 14% is achieved on a varied set of
memory-limited benchmarks. More aggressive p-slice op-
timizations yield an average speedup of 33%. SP also pro-
vides improved throughput when applied to multiple non-
speculative threads, even if only one of the threads benefits
directly from SP. In sum, the use of Dynamic Speculative
Precomputation enables available hardware thread contexts
to target the worst behaving loads in a processor, improving
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both the targeted thread’s latency as well as overall instruc-
tion throughput.
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