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Skipper:   A Microarchitecture For Exploiting Control-flow Independence
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Abstract
Although modern superscalar processors achieve high

branch prediction accuracy, certain branches either are
inherently difficult to predict or incur destructive interfer-
ence in prediction tables, causing significant performance
loss due to mispredictions. We propose a novel microarchi-
tecture, called Skipper, to handle such difficult branches by
exploiting control-flow independence. Previous approaches
to handling difficult branches, one way or another, amount
to executing incorrect instructions, squandering cycles and
resources such as the i-cache bandwidth. Skipper altogether
avoids incorrect instructions by skipping over, without even
fetching, the control-flow dependent computation condi-
tioned by a difficult branch. Instead, Skipper fetches and
executes the control-flow independent instructions, which
are past the point where the branch’s taken and not-taken
paths reconverge, and which need to be executed irrespec-
tive of the branch outcome. Because Skipper executes the
correct control-flow dependent instructions after the diffi-
cult branch is resolved, it conserves the valuable resources.

Skipper is the first proposal to exploit control-flow inde-
pendence by skipping over control-flow dependent compu-
tation in a superscalar pipeline. Skipper fetches the skipped
control-flow dependent instructions after the post-reconver-
gent instructions, out of program order. We describe key
mechanisms to implement Skipper without unduly compli-
cating the pipeline despite out-of-order fetch. SPECint95
simulations show that Skipper performs 10% and 8% better
than superscalar and the previously-proposed Polypath,
respectively, when all three microarchitectures have equal i-
cache bandwidth and hardware resources.

1.  Introduction
Modern processors employ branch prediction to avoid

pipeline stalls caused by branches. The microarchitecture
community has made impressive improvements in predic-
tion accuracy [15,25]. Nevertheless, achieving perfect pre-
diction may be difficult because certain branches either are
inherently hard to predict or incur destructive interference
in finite-sized prediction tables. Mispredictions of such
“difficult” branches cause considerable performance loss,
and will continue to do so in   the future.

We propose a novel microarchitecture, called Skipper, to
handle difficult branches. Skipper avoids predicting difficult
branches by skipping over the computation conditioned by
such a branch, and exploits the fundamental property of

control-flow independence[17]. The computations in a
branch’s taken and not-taken paths are conditioned by
branch and arecontrol-flow dependenton the branch
because whether each of the computations gets execute
not depends on whether the branch is taken. In contrast,
computation immediately following the point where th
branch’s taken and not-taken paths reconverge iscontrol-
flow independentof the branch because thepost-reconver-
gent computation gets executed irrespective whether t
branch is taken or not. A previous study shows potent
speedups of about 30% in a wide-issue superscalar
exploiting control-flow independence [17].

Previous approaches to handling difficult branches a
(1) to execute both the taken and not-taken paths con
tioned by a difficult branch [12,24,11] or (2) upon a mispre
diction, selectively recover control-flow independen
instructions by not squashing the data independent instr
tions, and re-executing only the data dependent instructio
[17]. Because the first approach executes both paths one
which is incorrect and the second approach executes inc
rect instructions from the mispredicted path, bot
approaches squander cycles and valuable resources suc
the i-cache bandwidth. Incorrect instructions are numero
because they include not only incorrect control-flow depe
dent instructions but also control-flow independent instru
tions which are data dependent on the incorrect contr
flow dependent instructions. In [17], the proponents of th
second approach conclude that “the biggest performan
limiter is wasted resources consumed by incorrect cont
dependent instructions”.

To conserve the valuable resources, Skipper altoget
avoids incorrect instructions by skipping over,without even
fetching, the control-flow dependent instructions (bot
taken and not-taken paths) conditioned by a difficu
branch. Skipper fetches and executes the post-reconverg
instructions, which need to be executed irrespective of t
branch outcome, and executesonly the correct control-flow
dependent instructionsafter the difficult branch is resolved.
Skipper is the first proposal to exploit control-flow indepen
dence by skipping over control-flow dependent comput
tion in the context of a superscalar pipeline. Superscal
employ sophisticated out-of-order instruction-issue tec
niques which routinely skip over data dependent instru
tions but not control-flow dependent instructions. Othe
approaches, employing hardware and software ass
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vastly different than a superscalar, skip over instructions to
pursue multiple flows of control: Multiscalar [20] uses the
compiler to identify reconvergence points, Dynamic Multi-
threading [1] uses hardware to skip over loops and calls, but
not branches.

Unlike superscalars which always fetch instructions in
(predicted) program order, Skipper fetches the skipped con-
trol-flow dependent instructionsafter the post-reconvergent
instructions, out of program order. Thereby, Skipper
exploits control-flow independence of the post-reconver-
gent computation, and overlaps execution of computation
before the branch (and resolution of the difficult branch)
with the execution of the post-reconvergent computation.
Execution overlap comes from post-reconvergent instruc-
tions that are data independent of the skipped instructions.
Skipper forces the post-reconvergent instructions, that are
data dependent on the yet-to-be-fetched skipped computa-
tion, to wait till the difficult branch is resolved and the cor-
rect path within the skipped computation is fetched and
executed. Note that conventional superscalars delayall
instructions following a mispredicted branch till the instruc-
tions are re-executed. In contrast, Skipper delaysonly the
skipped instructions and the post-reconvergent data depen-
dent instructions, but doesnot delay the post-reconvergent
data-independent instructions.

We describe four mechanisms to implement Skipper in
an out-of-order pipeline: First, to identify difficult branches,
Skipper uses the previously-proposed JRS scheme [9]. Sec-
ond, to determine difficult branches’ reconvergent points,
Skipper employs a heuristic based on idiomatic control-
flow code patterns generated by modern compilers for con-
ditional constructs, without requiring scanning of instruc-
tions as in [17]. Third, despite out-of-order fetching of the
skipped instructions, Skipper maintains program order in
the instruction window and the load/store queue. On fetch-
ing a difficult branch, Skipper creates an appropriately-
sized, contiguous gap in the instruction window and the
load/store queue, to be filled later by the skipped instruc-
tions from the correct path. Fourth, to force data-dependent
post-reconvergent instructions to wait till the yet-to-be
fetched skipped instructions execute, Skipper estimates reg-
ister dependencies, learning from prior dynamic instances.
At the time of skipping, Skipper updates the register
rename tables using this dependence information, making
post-reconvergent data-dependent instructions wait.

The main contributions of this paper are:
• we propose Skipper, the first proposal to skip control-

flow dependent instructions, without wasting resources
on incorrect control-flow dependent instructions.

• we describe key mechanisms to implement Skipper
without unduly complicating the pipeline despite out-of-
order fetch.

• SPECint95 simulations show that Skipper performs

10% and 8% better than superscalar and Polypa
respectively, when the three architectures have equa
cache bandwidth and hardware resources.
In Section 2, we discuss how Skipper is mapped to

superscalar microarchitecture at a high level. In Section
we describe the pipeline details of the key mechanisms.
Section 4, we report our experimental results. In Section
we describe related work and we conclude in Section 6.

2.  Skipper Microarchitecture
Figure 1 illustrates the differences between correct pr

diction, misprediction, and skipping. Figure 1(a) identifie
the control-flow dependent (segmentsA and B) and con-
trol-flow independent, post-reconvergent (segmentC) com-
putations in a program segment, as defined in Section
Figure 1(b) shows the timelines of correct and incorre
predictions. Correct prediction leads to execution overl
among the instructions before the branch, and the instr
tions from the predicted path (A and C segments). A
misprediction usually leads to squashing ofall instructions
after the branch, irrespective of whether they are contr
flow dependent or independent (bothB andC segments).

Figure 1(b) shows Skipper’s timeline. Skipper overlap
the computation before the difficult branch (and resolutio
of the branch), with the post-reconvergent instructions th
are data independent of the skipped instructions (data in
pendent instructions from segmentC). On resolving the dif-
ficult branch, Skipper suspends execution of the po
reconvergent instructions. Skipper then executes the corr
path in the skipped computation (segmentA), allowing the
post-reconvergent instructions that are data dependent
the skipped instructions to proceed (rest of segmentC).
After fetching all the skipped instructions till the reconver
gence point, Skipper continues with the suspended po
reconvergent computation.

Despite its advantages, skipping is not always benefici
Skipping branches that would be correctly predicted m
cause performance loss, while not skipping branches t
would be incorrectly predicted results in lost opportunit
Comparing correct prediction and skipped timelines
Figure 1(b) reveals this point. The performance loss
incurred because conventional superscalars do not de
any of the instructions following a correctly predicted
branch, but Skipper unnecessarily delays the skipp
instructions and the post-reconvergent data-depend
instructions (fromC), until the difficult branch is resolved.

2.1.  Overview of the Skipper microarchitecture
We describe Skipper based on an out-of-order pipeli

using rename tables for register renaming and an instruct
window for out of order issue. Skipper employs the JR
scheme [9] to identify the branches that are repeated
mispredicted by the branch predictor. Basically JRS mon
tors the prediction accuracy of prior instances of branch
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and isolates branches with low accuracy. Along with the
prediction of every branch, JRS determines if the branch
should be skipped. If so, Skipper uses a heuristic to deter-
mine the branch’s reconvergence PC, and maintains the PC
in the Skipped Computation Information Table (SCIT).
Subsequent instances of the branch obtain the reconver-
gence PC from the SCIT.

In the following cycles, Skipper fetches the post-recon-
vergent instructions and places them in the instruction win-
dow. Skipper creates a contiguous gap, large enough to hold
all the skipped instructions (both taken and not-taken
paths), in the instruction window, and places the post-
reconvergent instructions after the gap, similar to [21].
Skipper learns thelikely maximum gap length, also main-
tained in the SCIT, by counting the number of instructions
in the skipped computation (in both the taken and not-taken
paths) in prior instances of the branch. After the skipped
branch resolves, Skipper fills the gap with the skipped
instructions from the correct (taken or not-taken) path.
Instructions in the instruction window remain in program
order, and Skipper maintains precise interrupts despite out-
of-order fetch.

Using the fact that conventional superscalars fetch
instructions in program order, the register rename table
links register value producers to consumers, and the load/
store queue deduces producer-consumer relationships for
memory values. Because Skipper fetches the post-reconver-
gent instructions out of order before the skipped instruc-
tions, as such the pipeline cannot establish data
dependencies among the skipped instructions and the post-
reconvergent instructions. Previous schemes that fetch
instructions out of order face similar problems: The Multi-
scalar architecture uses the compiler to specify register
dependencies [3]. The Dynamic Multithreading architec-
ture employs value speculation and intricate recovery [1].

In conventional out-of-order pipelines’ rename stage,
instructions map their architectural destination register to a
new physical register, and place the new, architectural to
physical rename map in the master rename table. Out-of-
order fetch presents two issues for Skipper’s register renam-
ing. First, Skipper has to ensure that the rename maps for

the skipped instructions’ source registers are not clobbe
by the post-reconvergent instructions. Second, Skipper
to ensure that the post-reconvergent consumer instructi
obtain the correct rename maps corresponding to
skipped producer instructions. To handle these issues, S
per learns the set of architectural source registers, theinpu-
treg set, and destination registers, theoutputreg set, for the
skipped instructions (both taken and not-taken paths)
prior dynamic instances. The SCIT holds the inputreg a
outputreg sets. The outputreg set is similar to Multiscala
create mask, except Multiscalar uses the compiler to de
mine this information [23], and Skipper uses hardware.

For the first issue, Skipper copies the rename maps c
responding to the inputreg set from the master rename ta
to a backup rename table, at the time of skipping a bran
At this point, the master table reflects the register state
the program at the difficult branch. Post-reconverge
instructions modify the master rename table, and not t
backup table. Later, when the skipped instructions a
fetched, they use the maps in the backup table.

For the second issue, Skipper forces the data-depend
post-reconvergent instructions to wait till the yet-to-b
fetched skipped instructions execute. The outputreg
gives Skipper a priori, albeit approximate, knowledge of th
destination registers for which the yet-to-be fetched skipp
instruction. At the time of skipping a branch, Skipperpreal-
locatesandpreassignsphysical registers for the outputreg
registers (e.g., map architectural outputreg register R3
preallocated physical register P103), and marks the phys
registers busy. Much like a data-dependent instruction
superscalars, any post-reconvergent instruction that is d
dependent on a skipped instruction waits till the corr
sponding preassigned physical register is ready
bypassed. When the skipped instruction eventually co
pletes execution, its preassigned physical register gets
value, allowing all waiting post-reconvergent instructions
proceed. Data-independent, post-reconvergent instructi
proceed without waiting, much as in superscalars.

Because several skipped computations could be in flig
Skipper uses multiple backup and preassign tables, much
superscalars use a backup rename table for each unreso

Control-flow
independent

Program snippet:
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Figure 1: Exploiting control-flow independence.
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branch in flight.
For memory dependencies, Skipper faces the same prob-

lem of imposing program order in the load/store queue, as
in the instruction window. Skipper creates an appropriately-
sized gap in the load/store queue in parallel with the
instruction window, and maintains the load/store queue gap
length information also in the SCIT. Skipper exploits con-
ventional load/store queues’ ability to allow loads to pro-
ceed without knowing all previous store addresses, letting
post-reconvergent loads to proceed even though the skipped
stores have not even been fetched. Conventional load/store
queues check if later loads complete prematurely before an
earlier store to the same address, and enforce store-load
program order via squash and rollback. Skipper can avoid
such squashes using well-known memory dependence syn-
chronization techniques [16]. Thus, Skipper’s loads and
stores remain in program order in the load/store queue,
despite out-of-order fetch.

3.  Supporting control-flow independence
Before we describe the details of how the required infor-

mation is gathered in the SCIT (Section 3.2), we explain
how we use the SCIT information.

3.1.  Using the SCIT information
The Skipper pipeline treats instructions that are not

skipped as well as branches that are not difficult much like a
conventional superscalar pipeline. The cases where Skip-
per’s actions are different from those of a conventional
pipeline are (1) when Skipper identifies a branch to be diffi-
cult, (2) when Skipper resolves a difficult branch, (3) when
Skipper fetches and executes a skipped computation, and
(4) when Skipper fetches the last instruction from a skipped
computation. The post-reconvergent instructions flow
through the pipelinewithout any special actions. Figure 2
shows an out-of-order pipeline extended with Skipper. We
do not show post-reconvergent instructions.

3.1.1.  Fetching a difficult branch
Using the predicted PC, the front-end of the Skipper

pipeline probes the JRS structure and the SCIT, in addition
to the usual branch prediction tables. If the JRS structure
identifies a branch to be difficult, the fetch stage fetches
from the reconvergence PC provided by the SCIT. If the
SCIT does not have an entry for this branch or if the
instruction window gap length as provided by the SCIT
entry is larger than thegap-length-threshold,then Skipper
defaults to branch prediction, overruling the JRS’s recom-
mendation. Gap-length-threshold ensures that Skipper does
not create inordinately large gaps in the instruction window,
under utilizing the instruction window. Skipper obtains the
reconvergence PC in parallel with the fetching of the diffi-
cult branch, much like a branch target address from the
BTB in conventional pipelines, Thus, Skipper fetches the
post-reconvergent instructions in the immediately following

cycle after the difficult branch fetch cycle, without insertin
any bubbles in the pipeline.

Skipper allocates an entry in the Skipped Instruction S
tus Table (SIST) for every skipped branch to hold inform
tion required by various pipeline stages for the skippe
computation and the post-reconvergent computation. Th
could be multiple difficult branches in flight in the pipeline
and the SIST holds an entry for every difficult branch i
flight. However, Skipper does not perform nested skippin
(i.e., skipping within a skipped computation), and so th
SIST entries are in program order. Every instruction carri
its SIST entry number so that the instruction can be asso
ated with its SIST entry in later pipeline stages.

Conventional pipelines allocate a history rename tab
when a branch enters the rename stage. Subsequent ins
tions copy the previous rename map of their destination re
isters from the master table to the history table, befo
placing their new rename map in the master table. This p
cedure essentially checkpoints the rename maps, allow
fast recovery of the maps on mispredictions. The copying
done at a rate matching the issue width. For instance, i
four-issue machine, the rename table allows, in one cyc
eight reads for the sources, and four reads and eight wr
to checkpoint the old maps and update the new maps for
destinations. Rename table bandwidth is a critical resour
and as such the entire table (e.g., for 64 architectural reg
ters and 512 physical registers, the table has 576 bits)can-
not be backed-up en masse, in one cycle. In [24], this po
was noted in the Mapping Synchronization Bus descriptio

When the difficult branch reaches the rename sta
Skipper modifies the rename tables as per the inputreg
outputreg sets. To that end, Skipper first allocates abackup
rename tableand copies the rename maps for the skipp
instructions’ inputreg and outputreg sets into the back
table. In Section 2.1, we explained why the backup tab
holds the inputreg maps, but the reason for copying the o
putreg maps will become clear in Section 3.1.3. This cop
ing proceeds at the bandwidth provided by the backup ta

Figure 2:  Skipper pipeline.
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and may stall the rename stage for as many cycles as
needed for the copying.

Skipper then preallocates and preassigns new physical
registers to the skipped instructions’ outputreg set. Skipper
updates the master table with the preassigned physical reg-
ister rename maps, and marks the preassigned physical reg-
isters as busy. Additionally, Skipper allocates another
preassign rename tableand updates the table with the out-
putreg set’s preassigned physical register rename maps. The
updating of the master and preassign tables too proceed at
the bandwidth provided. Skipper places pointers to the
backup and preassign tables in the difficult branch’s SIST
entry so that when the skipped instructions are fetched, the
pipeline knows which rename table to use.

In the out-of-order issue (OoO issue) stage, Skipper uses
the difficult branch’s instruction window and load/store
queue gap length information from the SCIT to create a gap
in the instruction window and load/store queue. Skipper
puts pointers to the instruction window and load/store
queue gaps in the difficult branch’s SIST entry so that on
fetching the skipped instructions, the pipeline knows where
to place them.

3.1.2.  Resolving a difficult branch
Till Skipper resolves the difficult branch, execution pro-

ceeds with the post-reconvergent instructions much like
conventional pipelines, and the pipeline front-end predicts
branches. The post-reconvergent instructions modify the
master table, as usual. If JRS identifies a subsequent branch
to be difficult, Skipper continues at the branch’s reconver-
gence points, allowing multiple skipped branches in flight.

Upon resolving a difficult branch, the fetch stage is
diverted to fetch from the correct path of the skipped com-
putation, temporarily suspending fetching from the post-
reconvergent computation. Skipper provides the correct
branch target to the fetch stage along with the branch’s
SIST entry number so that the skipped instructions are asso-
ciated with the correct SIST entry. Skipper holds the PC up
to which the post-reconvergent instructions have been
fetched in the difficult branch’s SIST entry, so that after the
skipped instructions are all fetched, the fetch stage can
revert back to fetching the post-reconvergent instructions
starting from that PC. The skipped instructions from the
correct path enter the pipeline starting from the cycle fol-
lowing the branch resolution. This change of fetch stream
does not entail any pipeline bubbles because the post-recon-
vergent instructions flow through the pipeline, as before.

If the post-reconvergent instructions fill up the instruc-
tion window (except for the gap) and the front-end pipeline
stages from OoO issue all the way back to fetch, Skipper
may deadlock. Basically the skipped instructions cannot get
into the pipeline even though there are instruction window
slots set aside for them. Skipper avoids such deadlocks by
squashing the instructions in the stages from OoO issue

back to fetch, freeing up the front-end stages so that
skipped instructions can get into the instruction window.

3.1.3.  Fetching and executing skipped instructions
The skipped instructions, carrying the SIST entry num

bers provided by the difficult branch, pass through the pip
line. Skipper places the skipped instructions in th
instruction window, and loads and stores in the load/sto
queue using the SIST entry’s instruction window entr
pointer and load/store queue entry pointer, respectively. T
skipped instructions use the rename tables identified by
backup and preassign table pointers, stored in the SI
entry. The backup table contains both inputreg and outp
treg registers’ rename maps corresponding to the regis
state of the program at the difficult branch.

The skipped instructions use the backup (and not mas
table both to get their source rename maps and to put th
destination rename maps. If a skipped instruction’s sou
is an inputreg register, the backup table provides the rena
map for the register. There are two issues with guarantee
correctness with regard to the outputreg registers. Fir
multiple skipped instructions writing to the same archite
tural destination register pose a problem because Skip
preassigns only one physical register per outputreg regis
Second, Skipper needs to identify when it is safe for t
dependent post-reconvergent instructions waiting on t
preassigned registers to use the values in the regist
Because multiple skipped instructions may write to th
same architectural register, it may not be correct to allow
dependent instruction to read the register as soon as a w
occurs.

Skipper handles both issues using a simple approach
the rename stage, the skipped instructions do not use
preassigned physical registers as their destinations. Inste
these instructions obtain newly allocated physical registe
As skipped instructions pass through the rename stage, t
update the backup table with the new physical regis
maps. Subsequent skipped instructions obtain the corr
rename maps for their source registers from the back
table. At the end of the skipped computation, Skipper intr
duces extra physical register move instructions call
pmoves, similar to [10,20]. Pmoves (described i
Section 3.1.4) copy the latest outputreg value from t
physical registers given by the backup table maps to t
preassigned registers given by the preassign table maps

Because the outputreg set is an estimate based on pr
ous instances, an outputreg register may not be written
the skipped instructions. In that case, the latest value for
outputreg register comes from an instruction before the d
ficult branch. It is for this reason Skipper copies the outp
treg rename maps into the backup table when the diffic
branch is in the rename stage, as mentioned
Section 3.1.1. Consequently, the backup table holds the
est rename map for the outputreg registers irrespective
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whether the skipped instructions actually write to the outpu-
treg registers or not, and therefore, the pmoves copy the
correct values.

Conventional pipelines free the previous physical regis-
ter mapped to the same architectural register as the commit-
ting instruction’s destination. Because Skipper commits
instructions in program order, this approach works for Skip-
per too. Clearly this approach works for all instructions up
to the first gap. At the gap, previous physical registers fall
into two categories: either they are mapped to outputreg
registers or not. Those mapped to outputreg registers are
freed by writes in the gap, and the writes’ registers are freed
by pmoves; if there are no writes, pmoves directly free the
previous registers. Those not mapped to outputreg registers
are freed by post-gap instructions, as usual.

It is possible that an architecture register not in the out-
putreg set is written to in the skipped computation. A
dependent post-reconvergent instruction may incorrectly
use a stale value assuming that the register would not be
written by the skipped instructions. A similar situation is
possible for the inputreg set, where a skipped instruction
needs to read a register not in the inputreg set. These condi-
tions are easily detected in the register rename stage by
comparing each skipped instruction’s destination (source)
register against the outputreg (inputreg) set of the instruc-
tion’s SIST entry. On detection, Skipper simply squashes all
post-reconvergent instructions and triggers recovery of the
missing register’s rename map, irrespective of whether or
not an incorrect value or rename map was used.

While executing the skipped instructions, Skipper pre-
dicts the branches within the skipped computation, as usual.
Incorrect branch prediction within the skipped computation
results in squashing all post-reconvergent instructions, nul-
lifying Skipper’s ability to exploit control-flow indepen-
dence. If JRS identifies a branch within skipped
computation to be difficult, Skipper suspends fetching from
the branch till the branch is resolved and reverts to fetching
from the post-reconvergent stream, using the post reconver-
gent fetch PC in the SIST entry. While this simple solution
further delays the dependent post-reconvergent instructions,
it avoids squashing post-reconvergent computation.
Another solution is to skip the difficult branches within the
skipped computation but such nested skipping may compli-
cate implementation.

Out-of-order fetching may interact with branch predic-
tion unfavorably because speculative update of branch his-
tory [8] may be disrupted by the out-of-order fetch stream.
Because this is the first paper on this approach, we avoid
this issue by assuming that branch prediction updates occur
at commit point, although previous results have shown
speculative updates to perform better than commit updates.

3.1.4.   Last instruction in the skipped computation
Each SIST entry holds the corresponding reconvergence

PC to allow the fetch stage to determine when a skipp
instruction stream merges with its post-reconvergent co
putation and stop fetching more instructions from th
skipped stream. Every cycle, the fetch stage compares
next fetch PC with the reconvergence PCs held in the SI
entries, and on a match stops fetching from the correspo
ing skipped computation further. Skipper then inserts t
extra pmoves into the instruction window, so that they ex
cute as and when the value for the outputreg regist
become available. On execution, the pmoves write to t
preassigned physical registers and mark them ready, allo
ing dependent, post-reconvergent instructions to proce
The fetch stage then reverts to the post-reconvergent co
putation by continuing from the PC at which the pos
reconvergent stream was left off.

Because the instruction window and load/store que
gap lengths are estimates based on previous instances,
possible that the gaps in the instruction window and loa
store queue fill up before all the skipped instructions a
fetched. In that case, Skipper simply squashes all the po
reconvergent instructions to make room for the rest of t
skipped instructions to be placed in the instruction windo
If the reconvergence PC obtained by the pattern-match
heuristic is incorrect, the effect of this incorrect informatio
is that the instruction window gap fills up before th
skipped instruction stream merges with the post-reconv
gent computation, causing Skipper to squash all the po
reconvergent instructions starting from the incorrect reco
vergence PC.

3.2.  Learning the SCIT information
Skipper learns all the required information about th

skipped computation from previous instances and depo
them in the SCIT for subsequent instances. The informat
collected in the SCIT are: identifying which branches a
difficult, what the reconvergence PCs are, what the instru
tion window and load/store queue gap lengths should
and the skipped instructions’ outputreg set.

3.2.1.  JRS for identifying the branches to skip
Skipper uses JRS to identify difficult branches b

accessing the JRS structures in parallel with every bran
prediction. Basically, JRS tracks the number of times
branch is mispredicted using saturated counters, much
branch prediction schemes. The counters count up on inc
rect predictions and count down on correct prediction
Depending upon the desired accuracy and coverage ra
JRS chooses appropriate values for both the up/down ra
and the count threshold above which a branch is deem
difficult. Even if a branch is deemed difficult, JRS an
branch prediction continue to make predictions and upd
the tables. If a branch is repeatedly predicted correctly, J
stops marking the branch as difficult [12].

The key aspects of JRS relevant to Skipper is that sk
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ping branches that would be correctly predicted may cause
performance loss, while not skipping branches that would
be incorrectly predicted results in lost opportunity. The per-
formance loss is incurred because conventional superscalars
do not delay any of the instructions following a correctly
predicted branch, but Skipper unnecessarily delays the
skipped instructions and the post-reconvergent data-depen-
dent instructions following the branch, until the branch is
resolved. Thus, it is a trade-off between JRS’s coverage and
accuracy, and while lower coverage means lost opportunity,
lower accuracy may mean performance loss.

3.2.2.  Heuristic for identifying the reconvergence point
For if-then-else constructs in high-level languages, the

compiler typically generates a branch to determine whether
the if clause or the else clause is to be executed. The com-
piler also generates a jump to the reconvergence PC at the
end of the if clause, to elide the else clause. Therefore, the
reconvergence PC can be determined if the jump is located.
The target of the branch is the start of the else clause and
the jump instruction is located immediately before the
branch target. For example, in Figure 1(a), the branch tar-
get, PC2, is at the start of segmentB, which is the else
clause. Thejump PC3 immediately before PC2 jumps to
PC3, which is the reconvergence PC. Accordingly, Skipper
computes the target of the difficult branch and uses the PC
immediately before the branch target to probe the i-cache
and inspects the instruction there. If the instruction is a
jump instruction, then the target of the jump instruction is
the reconvergence PC.

If the instruction at the PC immediately before the diffi-
cult branch target is not a jump, then Skipper assumes that
the difficult branch is from an if-then construct, instead of
an if-then-else construct. For if-then constructs, the com-
piler generates a branch to elide the if-clause instructions if
the condition is false, and the branch target is the reconver-
gence PC. If a difficult branch is a backwards branch (indi-
cated by a negative offset), neither of the above heuristics
work. Conceptually, the difficult branch being a loop branch
indicates that number of loop iterations is hard to predict,
and accordingly, Skipper designates the reconvergent point
to be the exit out of the loop (i.e., the PC immediately after
the loop branch). Unlike previous work [18], we do not
include the return PC of a function as the reconvergence PC
of all branches within the function body because of gap-
length-threshold constraints.

Using only one probe into the i-cache, Skipper’s heuris-
tic determines the reconvergence PC. Because the probe is
done only for difficult branches and not all branches, and
that too only if the SCIT does not have the reconvergence
PC, this probe does not degrade i-cache bandwidth. Once
the reconvergence PC of a branch is recorded in the SCIT,
the heuristic is not used until the SCIT replaces the branch’s
entry due to capacity or conflict issues. Because Skipper

obtains the reconvergence PC most of the time from t
SCIT and not the heuristic, computing the difficult branch
target for the heuristic can be slow. Consequently, this co
putation is done over many pipeline stages instead of j
decode, without affecting the cycle time.

There are compiler optimizations that may confuse t
heuristic. For instance, in code layout optimization t
improve i-cache performance, the compiler moves infr
quent control-flow paths away from the sequential strea
Such code motion changes the code pattern and renders
heuristic ineffective. However, this optimization may b
applied to only those branches that are biased towards
of the two paths, otherwise one path would not be more f
quent than the other. So, such branches may not difficult
predict and may not need to be skipped. Other optimiz
tions may cause exceeding of the gap-length-threshold.
example is tail duplication of the post-reconvergent co
into the if and else paths, increasing the gap length.

3.2.3.  Estimating the gap length
Once JRS identifies a difficult branch and the reconve

gence heuristic determines the reconvergence PC, Skip
collects the instruction window and load/store queue g
length information from subsequent instances of th
branch. Upon committing the difficult branch, Skipper cre
ates a valid entry in the Gap Information Learning Buffe
(GILB), and places the reconvergence PC in the GIL
entry. From the difficult branch onwards, every committin
instruction increments the instruction window gap leng
count ofall valid GILB entries, because each valid GILB
entry represents a distinct difficult branch whose reconv
gence PC has not been committed. Also, Skipper matc
the PC of the committing instruction against the reconve
gence PCs of all the valid GILB entries. A match indicate
that the corresponding difficult branch’s reconvergence P
has been reached. Skipper transfers the information in
GILB entries to the SCIT, and relinquishes the GILB entry

To keep the SCIT information as accurate as possib
Skipper continues to collect the information in subseque
instances of the difficult branch, irrespective of whether t
branch is predicted or skipped. If the instruction window (o
load/store queue) gap length count in any later instance
larger than the length recorded in the SCIT, Skipper upda
the SCIT entry with the larger count. If the count is smalle
it is discarded. This repeated updating of the maximu
length helps Skipper account for different control-flow pa
lengths within the skipped computation.

If Skipper does not track the maximum length, Skipp
would essentially have to predict the skipped computation
path length to estimate the gap length. Predicting the p
length may indirectly lead to predicting the difficult branch
defeating Skipper’s purpose. Because the maximum len
is longer than all but the longest path within the skippe
computation, Skipper is conservative in setting aside t
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instruction window gap. Some of the instruction window
slots remain empty if the actual path within the skipped
computation is not the longest. This conservative choice is
better than predicting the difficult branch because the num-
ber of wasted slots is still much smaller than the slots spent
on numerous incorrect instructions (including not only
incorrect control-flow dependent instructions, but also con-
trol-flow independent instructions which are data dependent
on the incorrect control-flow dependent instructions) in out-
of-order superscalars and other approaches (Section 1).

3.2.4.  Determining outputreg and inputreg set
Along with the gap lengths, the GILB also tracks the

outputreg and inputreg set of the skipped computation using
a bit-vector field in the GILB entries. From the difficult
branch onwards, every committing instruction’s destination
(source) register is added to the outputreg (inputreg) bit-
vector ofall valid GILB entries. Because Skipper collects
outputreg and inputreg information at commit point, incor-
rect predictions within the skipped computation do not
adversely affect the accuracy of the information. When the
gap length information is transferred to the SCIT from the
GILB, the GILB entry’s bit-vectors are bit-wise ORed with
the SCIT entry’s corresponding bit-vectors. The ORing
accounts for different outputreg and inputreg sets along dif-
ferent control-flow paths within the skipped computation.
The outputreg and inputreg set are conservative union over
all control-flow paths within the skipped computation. Not
considering all the paths would cause Skipper to predicting
the difficult branch indirectly, as argued above.

4.  Experimental Results
We modified the Simplescalar2.0 simulator [4] to model

Skipper. Table 1 shows the base system configuration
parameters used throughout the experiments, unless speci-
fied otherwise.We assume a hybrid predictor and 9-cycle
misprediction penalty. We assume generous branch predic-
tion tables each of which has 8K entries to allow as high a
prediction accuracy as possible, but a modest SCIT size of
about 3KB. We use a bimodal JRS with 4K, 4-bit entries for
a total of 2KB. We model the return address stack (RAS),
and account for RAS and BTB mispredictions which are
not addressed by Skipper.

We accurately model the extra rename bandwidth to
handle inputreg and outputreg sets, and the extra pmoves at
the end of skipped computation. We do not include any
memory dependence synchronization mechanisms, but
account for memory dependence squashes. Because Skip-
per’s key advantage is in conserving i-cache bandwidth, we
carefully model i-cache bandwidth. Table 2 presents the
SPECint95 benchmarks and their inputs used in this study.
We run the benchmarks to completion.

4.1.  Performance of Skipper
In this section, we present the base performance of Skip-

per, compared to an out-of-order superscalar with bran
prediction. In the two left bars, we vary the instruction win
dow size from 128 to 256 entries. The speedups are norm
ized against an out-of-order superscalar with the sa
instruction window size. The numbers above the bars a
the speedups for a 128-entry superscalar with perf
branch prediction, to serve as an idealized referen
Because Skipper uses extra storage for SCIT and J
(about 6KB) compared to a superscalar, we also show Sk
per’s speedups normalized with respect to a “large sup
scalar” using an extra 6KB in larger prediction tables (16
entries each table, total size 12KB) in the two right bar
For both Skipper and superscalar, we use one port for
128-entry instruction window and two ports (and doub
front-end width for decode and rename stages) for the 25
entry instruction window. Each cycle only one block can b
fetched through one port and the entire block may not
useful due to branches and jumps within the block. For t
256-entry Skipper and superscalar, we assume aggres
front-ends that can obtain two fetch PCs from the bran
predictor and use both the ports for fetching.

From the first two bars in Figure 3, we can see that for
128-entry instruction window, Skipper achieves a wid
range of speedups up to 15% forijpeg, 14% for li, 9% for
go, and 8% form88ksim, all the way down to small slow-
downs forperl andcompress. These speedups indicate tha

Table 1: Hardware parameters for base systems.

Processor 8-way issue,128-entry window, 43-entry load/
store queue, (9 cycle branch penalty)

Branch
prediction

8k/8k/8k hybrid, 4k 4bit JRS, gap length thresh-
old 48, 128-entry RAS, 4-way 4K BTB

Caches 64KB 2-way 2-cycle I/D L1, 2MB 8-way 12-
cycle L2, both lockup free and pipelined

Main
memory

Infinite capacity, 100 cycle latency;
split transaction, 32-byte wide bus

SCIT 3KB: 128 entries each 199-bit wide, 4-way
(24-bit tag, 32-bit reconvergence PC, 67-bit out-
putreg and inputreg, 6-bit instruction window
gap length, 6-bit load/store queue gap length)

SIST 864 bytes: 36 entries each 192-bit wide (fetch
PC 32 bits, 7-bit pointers for instruction window,
load/store queue and RAS, 5-bit rename table
pointer, 67-bit outputreg and inputreg sets

GILB 896 bytes: 36 entries each similar to SCIT entry

Table 2: Benchmarks and inputs.

Input # insts Input # insts

cc1 cccp.i (test) 1.3*109 compress train 36*106

go 2stone9 548*106 ijpeg vigo 1.5*109

li test.lsp 957*106 m88ksim ctl.in(test)490*106

perl jumble 2.4*109 vortex train 2.5*109
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Skipper successfully skips around difficult branches and
overlaps branch resolution with control-flow independent
instructions. With a 256-entry instruction window, Skipper
achieves higher speedups, resulting in up to 22% speedups
for ijpeg and li, 16% for m88ksim, and small speedups for
compress. Increasing the instruction window size improves
speedups because Skipper uses the extra entries better than
a conventional superscalar. While Skipper brings more use-
ful instructions into the extra entries in the instruction win-
dow, conventional superscalar is limited by mispredictions
and squanders the extra entries on incorrect instructions.

The two right bars show Skipper’s speedups normalized
against the “large superscalar”. Comparing the left bars
with the right bars for the same instruction window size, we
see that the change in Skipper’s speedups is less than 3% in
all cases. These results indicate that the extra prediction
storage does not give superscalar much performance advan-
tage and is better used by Skipper.

4.1.1.  Effectiveness of Skipper’s mechanisms
Skipper’s speedups widely vary across benchmarks and

are still far lower than those for perfect branch prediction;
the measurements in Table 3 explain the reasons.JRS cov-
erage(related to the metrics in [6]) is the ratio of the num-
ber of branches JRS identifies as difficult to the total
number of mispredicted branches.Heuristic accuracyis the
ratio of the number of branches with correctly-determined

reconvergence PC to the total number of branches w
reconvergence PC within the gap-length-threshold.Actual
coverageis the ratio of the number of actually skipped
branches to the total number of mispredicted branch
Actual coverage measures the opportunity exploited
Skipper. JRS coverage attenuates to actual coverage du
both mispredicted branches having reconvergence P
beyond the gap-length-threshold and the heuristic determ
ing reconvergence PCs incorrectly.

Overshootis the ratio of the number of skipped branche
which would have been correctly predicted in a supersca
to the total number of branches. Overshoot measures unn
essary stalling.Reconvergence accuracyis the ratio of the
number of successfully skipped branches to the number
actually skipped branches. A successfully skipped branch
one for which the reconvergence PC is reached within t
instruction window gap, and there are no squashes due
in-gap branch mispredictions (Section 3.1.3), incorrect o
putreg set, or skipped stores (Section 3.1.1). Reconverge
accuracy measures the accuracy of SCIT information lea
by Skipper. Skipper’s misprediction rate is the ratio of th
number of incorrectly predicted and unsuccessfully skipp
branches to the total number of branches.

We see that overshoot is mostly less than about 11% a
reconvergence accuracy is usually higher than 95%,
actual coverage is low. While JRS coverage is about 78
98%, actual coverage falls within a mere 17-58%. W
experimented with JRS’s parameters but could not obta
significantly better JRS coverage forcc1, ijpeg, m88ksim,
andvortex. Actual coverage can fall far below JRS coverag
due to either poor heuristic accuracy or reconvergence P
being farther than the gap-length-threshold. Heuristic acc
racy is 75%-100%, which is too high to degrade actual co
erage by a large margin, implying that gap-length-thresho
prevents a large fraction of difficult branches from bein
skipped. We vary gap-length-threshold in Section 4.4, b
found that many difficult branches have far away reconve
gence points (more than 200 instructions), requiring inord
nate gap-length-threshold values. Missed opportunity d
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Figure 3: Base performance of Skipper.

Table 3:  Measurements of Skipper’s mechanism.

Bench-
marks

JRS
coverage

%

Heuristic
accuracy

%

Actual
coverage

%

Overshoot
%

Reconver-
gence

accuracy %

Skipper’s
mispredict

rate %

Superscalar
mispredict

rate %
#gaps #in #out #instr #slot

cc1 92 75 19 7 92 8 10 1.4 6 4 7 14

compress 98 100 25 9 100 8 12 1.5 4 3 4 10

go 98 87 20 11 89 16 24 1.4 8 5 10 21

ijpeg 90 96  58 8 98 3 9 2.0 6 4 5 13

li 96 77 17 6 100 4 8 1.2 5 3 9 16

m88ksim 78 90 32 11 99 2 4 2.1 4 2 5 9

perl 94 98 16 2 100 3 4 1.3 5 3 4 8

vortex 88 79 17 2 98 1 1 1.0 5 3 8 13

Table 4: Gap characteristics.
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to low actual coverage is the key reason for Skipper lagging
far behind perfect prediction.

cc1 andgo incur many mispredictions both within and
outside skipped computations (gaps). These mispredictions
are not caught by Skipper due to its low coverage and cause
squashing of post-reconvergent computation, nullifying
Skipper’s advantage.compressruns out of instruction win-
dow slots for a 128-entry instruction window, alleviated
only slightly by a 256-entry instruction window. In addition
to mispredictions,goalso incurs many memory dependence
squashes (go is the only benchmark with this problem).
ijpeg and m88ksimhave higher coverages than the rest,
translating to higher performance. Inli , Skipper skipsentire
short unpredictable loops (dynamic instructions in all itera-
tions less than 10). Because loop back branches within
skipped loops inli are not predicted but suspended till reso-
lution, li avoids many mispredictions, achieving high
speedups.li ’s coverage is small because the coverage num-
bers do not include such suspended branches which are not
mispredicted but not skipped either.Perl has many non-
return, indirect jump mispredictions both within and out-
side skipped computations, which have the same effect as
cc1’s mispredictions.Vortex’s prediction accuracy is high,
leaving little opportunity for Skipper.

4.1.2.  Characteristics of skipped computations
Table 4 shows the average number of actually skipped

branches in flight (“#gap” column), inputreg and outputreg
registers per difficult branch (“#in” and “#out” columns),
dynamic instructions per skipped computation (“#instr”
column), and the average instruction window gap length,
not including pmoves (“#slot” column). The benchmarks
have less than two difficult branches in flight, implying that
only two skipped computations need to be tracked in the
GILB and SIST. The number of skipped instructions ranges
between four and ten, even though the gap-length-threshold
is 48, implying that the threshold is not hit often. The differ-
ence between the gap lengths and the number of skipped
instructions is about seven, implying that Skipper wastes
only a few instruction window slots. The number of outpu-
treg registers being about four means that Skipper inserts
around four extra pmoves, which could execute together in
one cycle on a 4-way issue machine. The number of inpu-
treg and outputreg registers together is about ten implying
that Skipper needs to handle only ten rename maps per
skipped branch. In comparison, rename tables in a 4-way
issue machine handle 12 registers (8 sources and 4 destina-
tions) every cycle, suggesting that Skipper incurs low
rename bandwidth overhead.

4.2.  Comparison between Skipper and Polypath
In this section, we compare Skipper against the previ-

ously-proposed Polypath architecture [12, 11]. We vary the
configuration from 128 instruction window entries with one

i-cache port (two left bars) to 256 entries with two i-cach
ports (two right bars). The speedups are all normalized to
superscalar with equal instruction window size and equ
number of i-cache ports.

For Polypath, we use the fetch policy and JRS param
ters recommended in [12,11]. Our model of Polypath is d
ferent than those in [12,11] in two ways, which affect it
speedups. First, the Polypath papers compare a Polyp
system using two i-cache ports and double pipeline wid
for decode and rename stages, with a superscalar using
i-cache port. However, such a comparison fails to isolate t
impact of the architecture from the impact of the fetc
bandwidth. Therefore, we assume exactly equal fetch ba
width for Skipper, Polypath, and superscalar. Second,
Polypath papers do not charge any extra cycles to copy
entire rename table (the equivalent of inputreg set) need
to execute both paths of difficult branches. Because of t
arguments given in [24] and in Section 3.1.1, we char
cycles for this copying as per the bandwidth of the renam
tables. This charging is done for both Skipper and Polypat

As before, for the 256-entry case, we assume an aggr
sive superscalar that can obtain two fetch PCs from the p
dictor and use both the i-cache ports. If there are no diffic
branches in flight, both Skipper and Polypath use the po
exactly the way superscalar does. Polypath fetches b
paths of difficult branches. Skipper fetches the post-reco
vergent stream and the control-flow dependent instructio
if there are any resolved skipped branches, and defaults
superscalar mode, if none of the skipped branches
resolved. We also compare a two-port Polypath witho
charging cycles for rename table copying, against a on
port superscalar and show the numbers above the bars.

From the left two bars in Figure 4, we see that for th
128-entry case, Skipper outperforms Polypath significan
for ijpeg, m88ksim, li , and go, and modestly or not at all fo
the other benchmarks. Polypath achieves no speed
mainly because with only one i-cache port, there is n
enough bandwidth to fetch down both taken and not-tak
paths on difficult branches. This experiment clearly show
that Skipper achieves speedups because of much more
cient use of i-cache bandwidth than Polypath. From the tw
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Figure 4: Comparison of Skipper and Polypath.
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right bars, we see that for the 256-entry, two i-cache port
case, Skipper outperforms Polypath significantly for go,
ijpeg, m88ksim, andli , similar to the 128-entry case. In the
case ofcompress, Polypath performs better than Skipper by
3%. Further investigation reveals thatcompresshas dense
data dependencies, disallowing any overlap of post-recon-
vergent instructions. Because Polypath executes the
skipped instructions without any delay unlike Skipper,
compress benefits from Polypath.

Compared to the 128-entry, one-port case, Skipper
achieves even higher speedups using 256 entries and two
ports, with the exception ofvortex, indicating that Skipper
can better use higher i-cache bandwidths than a superscalar.
Also, a two-port Polypath with no rename table copy over-
head achieves speedups compared to a one-port superscalar,
as shown in previous papers [12,11].

4.3.  Misprediction Penalty
To see the effect of deepening pipelines, we varied

misprediction penalty as 6, 9, and 12 cycles in Figure 5. On
one hand, a longer misprediction penalty gives Skipper the
opportunity to achieve higher speedups by eliminating the
more-expensive mispredictions. On the other hand, a longer
misprediction penalty forces Skipper to find more data
independent, post-reconvergent instructions to execute
before the difficult branch can fill the pipeline with the cor-
rect control-flow dependent instructions. Thus, it is a con-
flict between opportunity and data independence. We see
two trends in speedups on increasing penalty: One in which
Skipper’s speedups forijpeg, li , and compressindicating
that opportunity overcomes dependencies in these bench-
marks. And the other in which Skipper’s speedups for the
rest of the benchmarks reduce due to dependencies offset-
ting opportunity. Skipper’s low coverage restricts opportu-
nity to avoid mispredictions.

4.4.  Effect of gap-length-threshold
Because the analysis in Section 4.1.1 indicates that gap-

length-threshold impacts coverage, we varied the gap-
length-threshold as 24, 48, and 72. While a larger threshold
allows better actual coverage, larger threshold also allows
branches with larger gap lengths to be skipped, incurring
wasted instruction window and load/store queue slots.
Thus, it is a trade-off between coverage and instruction
window utilization. Increasing the threshold from 24 to 48
improves coverage for all the benchmarks by about 1%-6%
reaching the values shown in Table 3. We found that except
for go, the rest of the benchmarks are not affected by
increasing the gap-length-threshold beyond 48. Increasing
the threshold from 48 to 72, go’s speedup improves from
8% to about 11%. This experiment shows that Skipper’s
actual coverage is limited not by the threshold setting but by
long gaps inherent in programs.

We also varied the SCIT size as 32, 128, and 512 entries

and found that increasing the SCIT size beyond 128 entr
does not improve speedups. Because the base predic
accuracy is high, only a few (static) branches are identifi
as difficult and they fit within 128 entries.

5.  Related work
There have been several results on the potential

exploiting control-flow independence [17]. Many previou
ideas to handle difficult branches, amount to executing bo
the taken and not-taken paths conditioned by such a bran
using varying degrees of ISA support for predication. Pr
posals such as Multipath [24], Polypath [12,11], dual pip
lines [13] and instruction windows [5], and Dynamic
Hammock Predication [10] explicitly follow this approach
ISA support for predicated execution removes difficu
branches, but at the cost of executing instructions from bo
the taken and not-taken paths [14,2].

Researchers [17] have proposed selective recovery
control-flow independent instructions after a mispredictio
but they point out in a later paper that the scheme is hard
implement [18]. Selective squashing may require expan
ing/contracting the instruction window at multiple, arbitrar
points because the incorrect and correct path instructio
are intertwined in the instruction window. Out-of-orde
pipelines usually track data dependencies through regis
rename map tables at the granularity of a block of instru
tions (typically between successive branches), and not in
vidual instructions. This coarse granularity reduces t
number of map tables and makes misprediction handli
fast and efficient, but disallows fast extraction of selectiv
information about individual instructions. For a realisti
selective recovery scheme [18], they propose using Tra
processors’ hierarchical organization, a solution not app
cable to superscalars. (Although Pentium IV has a tra
cache, it is not a trace processor.) Instruction reuse [19] i
general technique which can quickly recover control-flo
independent instructions after a misprediction. But instru
tion reuse also squashes all instructions following a misp
diction. Multiscalar [20] and Dynamic Mutithreading [1]
use hardware or compiler to demarcate threads, which m
choose control-flow independent threads to shield intr
thread mispredictions from squashing other threads.
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Figure 5: Effect of misprediction penalty.
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6.  Conclusions
Skipper exploits control-flow independence by skipping

over control-flow dependent computation of frequently
mispredicted branches, in the context of a superscalar pipe-
line. Skipper fetches the skipped control-flow dependent
instructions after the post-reconvergent instructions, out of
program order. We describe key mechanisms to implement
Skipper without unduly complicating the pipeline despite
out-of-order fetch, including (1) identifying difficult
branches using the previously-proposed JRS scheme, (2)
determining the difficult branch’s reconvergence point with-
out scanning, (3) handling out-of-order fetching of the
skipped instructions but maintaining program order in the
instruction window, and (4) handling data dependencies
among the skipped instructions and the yet-to-be fetched
post-reconvergent instructions using the existing register
rename tables and load/store queue. SPECint95 simulations
show that Skipper performs 10% and 8% better than super-
scalar and the previously-proposed Polypath, respectively,
when all three microarchitectures use a 256-entry instruc-
tion window and two i-cache ports.
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