
Data Prefetching by Dependence Graph Precomputation

Murali Annavaram, Jignesh M. Patel, Edward S. Davidson
Electrical Engineering and Computer Science Department

The University of Michigan, Ann Arbor
fannavara, jignesh, davidson g@eecs.umich.edu

Abstract

Data cache misses reduce the performance of wide-issue
processors by stalling the data supply to the processor.
Prefetching data by predicting the miss address is one way
to tolerate the cache miss latencies. But current applica-
tions with irregular access patterns make it difficult to ac-
curately predict the address sufficiently early to mask large
cache miss latencies. This paper explores an alternative to
predicting prefetch addresses, namely precomputing them.
The Dependence Graph Precomputation scheme (DGP) in-
troduced in this paper is a novel approach for dynamically
identifying and precomputing the instructions that deter-
mine the addresses accessed by those load/store instruc-
tions marked as being responsible for most data cache
misses. DGP’s dependence graph generator efficiently gen-
erates the required dependence graphs at run time. A sepa-
rate precomputation engine executes these graphs to gener-
ate the data addresses of the marked load/store instructions
early enough for accurate prefetching. Our results show
that 94% of the prefetches issued by DGP are useful, reduc-
ing the D-cache miss stall time by 47%. Thus DGP takes us
about half way from an already highly tuned baseline sys-
tem toward perfect D-cache performance. DGP improves
the overall performance of a wide range of applications by
7% over tagged next line prefetching, by 13% over a base-
line processor with no prefetching, and is within 15% of the
perfect D-cache performance.

1 Address Prediction vs. Precomputation

Out-of-order execution is the norm in current superscalar
processor designs; it is intended to allow processors to tol-
erate pipeline stalls due to data dependences, resource con-
flicts, cache misses, etc., by buffering stalled instructions
in reservation stations and executing other ready instruc-
tions out of program order. However, today’s dominant
application domains, including databases, multimedia, and
games, have large memory footprints and do not use proces-
sor caches effectively, resulting in many cache misses. Fur-
thermore, processor clock speeds are continuing to outpace

memory access speeds, resulting in larger cache miss laten-
cies (measured in processor cycles). Thus the large number
of cache misses of today’s dominant application domains,
coupled with the increasing cache miss latencies of current
processor designs cause significant performance degrada-
tion, even in aggressive out-of-order processors.

Prefetching data is one way to reduce the high miss
rates of these irregular applications, but most existing data
prefetch schemes are not effective in predicting prefetch ad-
dresses for irregular applications. Furthermore, previous
work [11] has shown that for integer applications it is diffi-
cult to both accurately predict prefetch addresses and issue
the prefetches in a timely fashion, i.e. sufficiently ahead
of the corresponding demand reference to mask the large
cache miss latencies.

In this paper we explore an alternative to predicting
prefetch addresses for irregular access patterns, namely pre-
computing them. The Dependence Graph Precomputation
scheme (DGP) introduced in this paper is a novel approach
to prefetching. Once an instruction is fetched from the I-
cache into the Instruction Fetch Queue (IFQ), its depen-
dences are determined and stored as pointers with the in-
struction in the IFQ. When a load/store instruction that is
deemed likely to cause a cache miss enters the IFQ, a De-
pendence Graph Generator (DGG) follows the dependence
pointers still within the IFQ to generate the dependence
graph of those instructions yet to be executed that will de-
termine the address of the load/store instruction. The de-
pendence graphs generated by DGG are fed to a separate
Precomputation Engine (PE) that executes them to generate
the load/store addresses early enough for timely prefetch-
ing. DGG does not remove any instructions from the IFQ;
consequently all precomputed instructions will be executed
in the normal manner by the main processor pipeline. Fur-
thermore, the results generated by PE are used only for
prefetching data; in particular they are not used for updating
the architected state of the main processor. Since precompu-
tation of the dependence graphs is speculative, it runs ahead
of the normal computation by avoiding fetch queue and re-
order buffer delays experienced by the normal computation



due to the in-order decode and the instruction scheduling
priorities of the main processor pipeline.

Our results show that 98% of the precomputed addresses
match the actual address accessed by the marked load/store
instructions, indicating that prefetch addresses generated by
DGP are highly accurate. DGP actually issued a prefetch
for only 15% of these addresses, since 85% of the precom-
puted addresses were found to be already in the L1 cache.
Of the prefetches issued by DGP, 94% are useful, reducing
the D-cache miss stall time by 47%. Thus DGP takes us
about half way from an already highly tuned baseline sys-
tem toward perfect D-cache performance. DGP improves
the overall performance of a wide range of applications by
7% over tagged next line prefetching, by 13% over a base-
line processor with no prefetching, and is within 15% of the
performance obtained with perfect D-cache.

The rest of this paper is organized as follows. Sec-
tion 2 describes a hardware implementation for generating
the dependence graphs of the load/store instructions that are
marked as likely to miss. It then describes a mechanism to
precompute the instructions in the dependence graphs and
generate the prefetch addresses. Section 3 describes the
simulation environment and performance analysis tools that
we used to assess the effectiveness of DGP. Results of this
assessment are presented in Section 4. Section 5 compares
DGP with the most relevant prior work in the area of de-
pendence graph generation; it also contrasts DGP with prior
data prefetching techniques by highlighting the applicabil-
ity and constraints of prior schemes that use either address
prediction or precomputation for prefetching. Conclusions
and some future directions for DGP are presented in Sec-
tion 6.

2 Dependence Graph Generation and Pre-
computation

Figure 1 highlights (in bold capital font) the additional
hardware added by DGP. For the simulation results of this
paper, the set of load/stores that generated 90% of the D-
cache misses in a profile run were marked for prefetching
during the production execution of each benchmark. The
dependence graph of a load/store instruction, I , in the In-
struction Fetch Queue (IFQ) is the set of all unexecuted in-
structions, waiting either in the IFQ or in the Reorder Buffer
(ROB), that contribute to the address accessed by I . In this
paper we approximate the dependence graph by considering
only the set of instructions that are in the IFQ at the time
that the dependence graph of I is being generated. Note
that the approximate definition ignores the dependence of
I on unexecuted instructions waiting in the ROB. To build
this approximate dependence graph for a marked load/store
instruction, I , in the IFQ, we place I in the graph and re-
cursively find and add to the graph, earlier instructions in

the IFQ which define the register operands of instructions
already in the graph. In the Alpha instruction set architec-
ture used in this study, all instruction operands are either
registers or immediate values. Since an immediate operand
value is available in the instruction itself, these operands
are not dependent on any other instruction, and hence are
not considered while generating dependence graphs.

In our processor model the fetch stage of the processor
pipeline fetches instructions from the I-cache and buffers
them in the IFQ. The IFQ is a circular FIFO buffer with
2N entries that store the fetched instructions in program or-
der. We modified the IFQ entry format by adding three new
fields, namely the Index-Tag bit (IT), OP1 and OP2. Each
instruction, as it enters the IFQ, is assigned the next sequen-
tialN+1 bit index value (modulo 2N+1). The lowerN bits
of the index determine the IFQ entry number where the in-
struction will be buffered; the most significant bit (MSB) of
the index is stored in the IT bit of that entry. IT is thus tog-
gled between 0 and 1 each time IFQ wraps around, e.g. the
sequence of instructions in the 4th entry of a 16 entry IFQ
will have indices that alternate between 00011 and 10011.
The IT bit helps prevent stale or incorrect instructions from
being included in dependence graphs (see Section 2.1).

I-cache

Fetch Execute Writeback Commit

GENERATOR

 IT Inst OP1 OP2

Predecode

RDV

SRF

BUFFER

Decode

Data
Prefetches

ROB

ENGINE
PRECOMPUTATION

IFQ

DEPENDENCE GRAPH

DEPENDENCE GRAPH

Figure 1. DGP hardware

The OP1 field of the IFQ entry for instruction I stores
the N + 1 bit index of an earlier instruction in the IFQ that
defines the value of input operand 1 of instruction I ; if no
earlier instruction still residing in the IFQ defines operand
1, or if I has no input operand 1, then OP1 is set to NULL.
OP2 is defined similarly for operand 2. The Predecode
stage of the processor pipeline is responsible for carrying
out the dependence analysis. To do so, the predecoder is
augmented with a new hardware structure, called the Reg-
ister Definition Vector (RDV). RDV has one slot for each
architected register of the processor. RDV slot j stores the
N + 1 bit index value of the instruction that most recently
defined register Rj . When the predecoder decodes instruc-
tion I , stored in entry i of the IFQ, it accesses the RDV slots
corresponding to the input operand fields of I and sets the
OP1 and OP2 fields of ith IFQ entry to the corresponding
indices read from RDV. The predecoder then considers the
result register, Rd, of instruction I and sets RDV slot d to
the N + 1 bit index of instruction I (namely i or 2N + i



according to the IT bit of instruction I).
DGP is not concerned with the remaining stages of the

pipeline or the ROB shown in Figure 1. They operate as in a
traditional out-of-order superscalar processor and hence are
not described here.

2.1 What to Precompute

The Dependence Graph Generator (DGG) scans the pre-
decoded instructions in the IFQ in program order. When-
ever it finds a load/store instruction, L, that is marked for
prefetching, it initiates the process of building a dependence
graph forL. DGG begins this process by storing the marked
load/store instruction, L, along with its IT, OP1, and OP2
fields from the IFQ in a new dependence graph.

Then for each instruction, I , added to the dependence
graph, DGG follows the pointer in its OP1 field, if any, to an
earlier instruction , E, in the IFQ that defines the first input
operand of I . It is possible, however, thatE has left the IFQ
by this time. In this case the IFQ entry vacated byE may be
empty, or it may contain a new instruction due the circular
FIFO ordering of IFQ. If a new instruction,N , occupies the
IFQ entry then the OP1 field of I points to N which does
not define the input operand of I ; furthermore N is to be
executed after I in the program order. DGG therefore adds
an instruction to the dependence graph only if OP1 is not
NULL, the IFQ entry it points to is not empty, the register
defined by the instruction pointed to by OP1 matches the
operand 1 register of I , and the IT bit in the entry pointed
to by OP1 matches the MSB of the OP1 index. The OP2
field of instruction I is then used similarly to determine the
instruction, if any, in the IFQ that defines the second input
operand of I .

Note that this scheme does not always prevent a newer
instruction from being included in the dependence graph. If
the RDV slot used to define OP1 has a stale value, i.e. the
IFQ entry it points to has been overwritten by a newer in-
struction since the RDV slot was last defined. Often in this
case the IT bit will not match. However, if the IFQ entry
that the RDV slot points to has been overwritten an even
number of times since the time the RDV slot was last de-
fined, then the IT bit will match the MSB of the OP field.
But even in this case, given 32 registers, it is possible but
unlikely that the result register of the new instruction in the
IFQ entry will match the input operand register of I . In
our precomputation method (see Section 2.2), precomputed
instructions from the dependence graphs never modify the
architected state of the main processor. Thus although in-
correct instructions in the dependence graphs, if any, will
almost certainly result in generating a wrong prefetch ad-
dress, they do not corrupt the architected state of the ma-
chine; they simply reduce the DGP performance gain.

DGG builds the dependence graph by repeating the
above operations until it finds no new (unanalyzed) instruc-

tions in the dependence graph, or the Dependence Graph
Buffer (DGB) is full. If the DGB is full, the DGG squashes
the dependence graph that it is currently generating, as it
is too large to store in DGB and would also be relatively
unlikely to result in a timely prefetch due to its size. Oth-
erwise, the graph for L is deemed complete and is stored in
DGB. Each entry in DGB holds one dependence graph; the
order of the instructions in the entry is the order in which
DGG added them to the graph.

DGG then resumes searching the IFQ for the next
marked load/store instruction. It is possible that a new
marked load/store instruction, M , enters the IFQ while
DGG is still in the process of building the dependence graph
of an earlier load/store instruction,L. The graph generation
for M is delayed until DGG completes building the depen-
dence graph for L. In our evaluations we assume a simple
implementation of DGG that takes one cycle for each in-
struction added to the dependence graph.

As shown in Section 4.2, 92% of the dependence graphs
have fewer than 8 instructions, and the largest has only 15
instructions. In our evaluations, the IFQ holds up to 32 (or
64) instructions, the DGB has 2 entries, and the size of each
DGB entry is 64 bytes (16 instructions). No dependence
graph encountered in our benchmark evaluations exceeded
this size. Of the two DGB entries, one is used by DGG to
store the dependence graph that it is generating; the other
holds a completed dependence graph that is ready for exe-
cution or is being executed by the Precomputation Engine.

Since the dependence graph of one load/store instruc-
tion may use the register value loaded by another load in-
struction, dependence graphs may contain intermediate load
instructions. The dependence graph generator follows the
OP1 and OP2 pointers of an intermediate load instruction,
IL, as usual to identify the earlier instructions in the IFQ
that define the address accessed by IL. During the pre-
computation IL, the processor’s cache is accessed using the
precomputed address to get IL’s operand value. However,
if there is an uncommitted store to the same address which
precedes IL in program order, this hazard cannot be de-
tected by DGG since the operand addresses of load/store in-
structions in the IFQ are unknown. Such hazards may cause
incorrect addresses to be generated for marked load/store
instructions. Nevertheless, as shown in Section 4, 94% of
the prefetches issued by DGP are useful. Thus such haz-
ards are not a significant hindrance to generating accurate
prefetch addresses using DGP.

2.2 How to Precompute
A separate Precomputation Engine (PE) is used to exe-

cute the dependence graphs stored in the Dependence Graph
Buffer. Since DGG generates the dependence graphs by
tracking dependences backwards from a marked load/store
in the IFQ, PE executes the dependence graph by beginning
with the last instruction added to the graph and continuing



forward until it executes the marked load/store instruction
at the root of the graph.

PE executes instructions speculatively. The results gen-
erated by PE are used only for prefetching data, and in par-
ticular they never update the architected state of the main
processor. When executing a marked instruction, PE gen-
erates the load/store address and prefetches the data into
the L1 cache without loading a value into the main proces-
sor’s register (for a load) and without storing a value in the
prefetched address (for a store). Since PE is prevented from
modifying the architected state of the main processor, it can
speculatively run ahead of the actual computation without
having to guarantee the correctness of the precomputation.
Note that DGG does not remove any instructions from the
IFQ; consequently all precomputed instructions will be exe-
cuted in the normal manner by the main processor pipeline.

The PE is a simple single issue, in-order execution en-
gine that executes one integer instruction every cycle (ex-
cept that multiply takes 2 cycles, and integer divide takes
4). As soon as it finishes one graph it proceeds to the next
buffered graph. Since address computation arithmetic does
not involve any floating point operations, and DGG (since it
operates on instructions in the IFQ) follows only the pre-
dicted control flow path from the branch predictor while
building the dependence graphs, the dependence graphs
never contain floating point operations or branch instruc-
tions. Hence PE needs no floating point or branch execu-
tion units or branch prediction hardware. The precomputa-
tion engine has a scratch register file (SRF) to store the live
results of precomputed instructions. The maximum number
of SRF registers needed is equal to the maximum width of
the dependence graph, which never exceeded 4 instructions
in our benchmarks. Since PE executes at most one instruc-
tion every cycle, the SRF needs only two read ports and one
write port. PE is thus a simple fixed-point engine that can
be implemented with a modest transistor count.

The SRF registers are all set to unassigned before begin-
ning a new graph. Before PE executes an instruction, I , an
SRF register is assigned to store its result. To get the neces-
sary operand values for I , PE accesses the SRF only if the
corresponding OP field of I is not NULL, in which case an
already executed instruction in the dependence graph would
have generated the operand value and stored it in the SRF.
When the OP field is NULL, the PE obtains the correspond-
ing operand value by accessing the processor’s register file
and the ROB for forwarding uncommitted register values.
Hence in our implementation, the register file and the ROB
of the main processor each need two additional read ports
for PE accesses.

Due to the lack of interlocks between PE and the main
processor, operand values read by PE from the main proces-
sor’s register file and ROB could be incorrect. At the time
PE accesses a main processor register, the desired value

might not yet be defined (because the instruction that de-
fines it has not yet executed), or might have already been
overwritten by a later instruction if the main processor has
run ahead of the PE. Accessing the ROB as well as the reg-
ister shifts (and generally reduces) this problem, but does
not eliminate it. Thus we note that register hazards may
arise due to the lack of interlocks between the main proces-
sor pipeline and PE. However, we must be careful not to
delay the operation of the main processor pipeline. Further-
more we note that any hazards that do manifest themselves
will simply reduce DGP performance, and our experimental
results indicate that DGP is quite robust in practice.

The PE accesses the processor’s cache to get the values
for intermediate load instructions, if any, in the dependence
graph; if such an access results in a miss, the PE squashes
the remaining precomputation; it does not issue a prefetch,
and moves on to begin precomputing the next dependence
graph in the dependence graph buffer, or await its arrival.
After the last (load/store) instruction in a dependence graph
is executed, the address generated is used to prefetch the
data into the processor’s L1 cache. The prefetch is squashed
by L1 if the data is already present.

2.3 Graph Generation and Precomputation Costs
Since DGG takes one cycle to generate each instruc-

tion in the dependence graph, one way to reduce this cost
is to cache recently generated dependence graphs so as to
avoid regenerating a graph every time its root load/store
instruction is encountered. Caching would save the time
needed to regenerate dependence graphs and might thereby
increase prefetch timeliness. One simple caching strategy
is to store the most recently generated dependence graph of
each marked load/store instruction in a dependence graph
cache. DGG could then access the graph cache using the
PC of a marked load/store instruction as an index. On a hit,
the graph is sent to the dependence graph buffer to await
precomputation. But on a graph cache miss, DGG must
build the dependence graph as before. Whenever a new
dependence graph is built, it is sent to the buffer to await
precomputation and is also stored in the dependence graph
cache, replacing some previously stored entry. We imple-
mented this simple graph caching scheme, but our results
(not presented here) show that it actually degrades the per-
formance. Caching dependence graphs gains better timeli-
ness at the cost of using a cached graph that may be inaccu-
rate because the predicted control path that leads up to the
current instance of the marked load/store may be different
from the path used to generate the cached graph. The per-
formance loss due to the reduced accuracy of cached graphs
outweighed the performance gains due to the more timely
prefetching.

In our implementation we did not explore the possibil-
ity of reducing the instruction overhead due to precompu-
tation. One way to reduce this overhead is to let PE up-



date the main processor’s architected state after executing
the instructions in the dependence graphs, thereby eliminat-
ing the need to re-execute them in the main processor. In
our implementation, instructions executed by PE never up-
date any architected state of the main processor. We chose
this approach because it avoids complicating the main pro-
cessor by almost entirely decoupling the DGG and PE from
the main processor pipeline execution. Constraining the PE
to update the architected state would significantly increase
the control logic and add performance degrading interlocks
between the PE and the main processor pipeline to ensure
correct updating of the processor state. This would also in-
crease the complexity of the testing and verification process
of the design. Moreover the increased communication be-
tween the PE and main processor would add new wire de-
lays which may reduce the clock speed.

Thus in our implementation we chose the simplicity of a
free running PE without interlocks, despite the often redun-
dant reexecution of precomputed instructions in the main
processor. Our evaluations show that on average PE exe-
cutes about 20% of the main processor’s instructions. Fur-
thermore as 98% of the precomputed addresses generated
by PE match the addresses generated by the main processor,
we infer that the vast majority of the instructions executed
by the PE are in fact eventually reexecuted by the main pro-
cessor without change, as otherwise the addresses would be
highly unlikely to match. For future processors with further
increased transistor counts [9], the 20% reexecution over-
head will be even less of a concern relative to the savings in
cache miss stall overhead achieved without slowing down
the main processor pipeline [1].

The additional hardware needed for implementing DGP
is the Dependence Graph Generator, Dependence Graph
Buffer, and the Precomputation Engine, in addition to aug-
menting the IFQ and adding the RDV to the predecode
stage. We assumed a simple Dependence Graph Genera-
tor that reads one entry from the IFQ every cycle. The
Dependence Graph Buffer uses only 128 bytes of storage.
The Precomputation Engine has one general purpose inte-
ger functional unit and a small scratch register file with two
read ports and one write port. Even with such simple hard-
ware components, DGP reduces the data cache miss stalls
quite significantly. Thus we believe that the extra compu-
tation and the transistor budget required for DGP is well
justified.

3 Simulation Environment and Benchmarks

To evaluate DGP performance we selected seven bench-
marks from the CPU2000 integer benchmark suite (gzip,
gcc, crafty, parser, gap, bzip2 and twolf) and two sets of
database queries generated from eight queries (1 through 7
and 9) from the Wisconsin benchmark [2] and five queries
(1,2,3,5, and 6) from the TPC-H benchmark [7]. These

benchmarks were selected because they exhibit poor data
cache behavior and our existing simulation infrastructure
allows us to run them without modifying the benchmark
source codes. The wisc workload consists of all the eight
Wisconsin queries running on a 10MB database; wisc+tpch
is all eight Wisconsin queries plus the five TPC-H queries
running concurrently on a database of size 40MB. The
database queries are implemented on top of SHORE [4],
a fully functional storage manager which has been used ex-
tensively in the database research community and is also
used in some commercial database systems.

All the benchmarks were compiled on an Alpha 21264
processor running OSF Version 4.0F using the Compaq
C++ compiler, version 6.2, with -O5 -ifo -inline and speed
optimization flags turned on. To the O5 optimized binary,
we applied the OM [12] tool which reduces I-cache misses
by performing feedback-directed code layout. Although
OM is targeted toward improving the spatial locality of the
code, it’s ability to analyze object level code at link time
also opens up new opportunities for redoing some tradi-
tional compiler optimizations, such as inter-procedural dead
code elimination and loop-invariant code motion, which
even the O5 optimizations could not perform effectively at
compile time. Thus, in addition to reducing I-cache misses,
OM also reduces the number of instructions executed in a
program. Although the CPU2000 benchmarks do not ben-
efit much from the OM optimizations, OM does provide
an 11% performance improvement over O5 code for the
database benchmarks. We used this highly optimized bi-
nary as a baseline to study the performance impact of DGP.

The CPU2000 benchmarks were first run on the test in-
put set provided by SPEC. The set of load/store instructions
were sorted according to the number of misses they gener-
ated, then those that missed most often were marked in the
code down to the level where 90% of the cache misses were
covered. Similarly, a set of three queries from the Wiscon-
sin benchmark: query 1 (sequential scan), query 5 (non-
clustered index select) and query 9 (two-way join) were run
on a small database of 2100 tuples, and the load/store in-
structions that caused 90% of the cache misses were marked
in the wisc and wisc+tpch workloads. Recall that during
actual execution of the full workload on the large datasets,
DGG will generate dependence graphs only for the marked
load/store instructions.

The CPU2000 benchmarks were then run on the train in-
put set, wisc was run on a 10MB database, and wisc+tpch
on a 40MB database. The results presented in this paper
were generated by terminating the execution of each bench-
mark after 2 billion committed instructions.

The SimpleScalar out-of-order processor simulator [3]
was modified by adding a predecode stage between the fetch
and dispatch stages of the processor pipeline. We also added
the DGG and the PE that execute concurrently with the main



processor simulator. This modified simulator was used for
detailed cycle-level processor simulation. The microarchi-
tecture parameters were set as shown in Table 1.

4 Simulation Results
In this section we first present the results from our initial

feasibility studies. We measure the instruction delays in the
processor pipeline of the target microarchitecture (Table 1)
and show that instructions spend 23 cycles on average in the
IFQ and ROB before entering the execution stage. Our mea-
surements also show that most marked load/store instruc-
tions have dependence graphs of fewer than 8 instructions.
The 23 cycle delay between the fetch and the beginning of
execution, coupled with the small dependence graph sizes
encouraged us to consider prefetching by dependence graph
precomputation. We then show that DGP did in fact reduce
the D-cache miss stall time by 47%, resulting in a 13% av-
erage overall performance improvement.

Fetch, Decode & Issue Width 4
Inst Fetch Queue Size 32,64
Reservation stations 64
Functional Units 4GeneralPurpose/2mult
Memory system ports to CPU 4
L1 I and D cache each 32KB,2-way,32byte
Unified L2 cache 1MB,4-way,32byte
L1 hit latency(cycles) 1
L2 hit latency(cycles) 16
Mem latency (cycles) 80
Branch Predictor Hybrid(2-lev+2-bit)

Table 1. Microarchitecture Parameter Values

4.1 Delays in the IFQ and Reservation Stations
In our processor model the fetch stage of the pipeline

can fetch 4 instructions every cycle and the processor can
commit 4 instructions every cycle. But the IPC column of
Table 2 shows that on average only 1.4 instructions are actu-
ally committed per clock cycle by the baseline system with-
out prefetching. (The average figures in Tables 2-4 and Fig-
ure 2 are computed as if all 9 benchmarks were combined
into one long run, and dividing by 9 for the counts in Ta-
bles 3 and 4.) IPC is much less than the maximum fetch
rate because of pipeline stalls due primarily to branch mis-
predictions, cache misses, and resource conflicts. Because
of this disparity between the instruction fetch and comple-
tion rate, the IFQ will fill quickly and tend to remain near
full as can be seen from the IFQ full% column. IFQ is full
on average for 69% of the execution time. In fact, a careful
analysis of the IFQ occupancy showed that the only time
IFQ is not full is immediately after a branch misprediction,
during which time the fetch entries are all squashed and in-
structions from the correct path are being fetched. Wisc and
wisc+tpch suffer from much higher branch misprediction
rates than the CPU2000 benchmarks, resulting in their IFQs
being full only 39% and 44% of the time, respectively.

An instruction in the processor pipeline spends some-
time (IFQ Delay) in the IFQ waiting for both an available
decoder and an empty reservation station before it can leave
the IFQ; Table 2 shows a 13 cycle IFQ wait for the aver-
age instruction. After leaving the IFQ, instructions wait in a
reservation station for dependence resolution and functional
unit availability (Exec Delay) before beginning execution,
this takes the average instruction 10 additional cycles. Thus
an average instruction spends 23 cycles in the pipeline be-
fore entering the execution stage. After beginning execu-
tion, it spends another 8 cycles before it is committed.

Assuming the average 23 cycle delay before beginning
execution, to completely mask a 16 cycle L1 D-cache miss
latency, a prefetch for the corresponding load/store instruc-
tion would have to be issued within 7 cycles after that in-
struction enters the IFQ. Thus the dependence graph gen-
eration plus the precomputation of the address, which both
depend on the size of the dependence graph, would have
to be completed within 7 cycles from the time the marked
load/store instruction enters the IFQ. Of course individual
cases will vary from this average and an out-of-order pro-
cessor should be capable of masking some portion of the
miss latency itself. Furthermore, although masking the full
miss latency is most desirable, masking a portion of the la-
tency is still helpful.

Pipeline Delay (cycles)
IPC IFQ full% IFQ Exec Commit

gcc 1.5 72% 11 7 7
parser 1.0 92% 21 18 12
twolf 1.5 86% 12 12 6
gap 1.3 87% 14 11 7
crafty 2.1 78% 9 8 7
bzip2 2.4 99% 13 10 11
gzip 2.0 91% 11 11 8
wisc 1.1 39% 13 4 8
wisc+tpch 1.0 44% 15 6 10
Avg 1.4 69% 13 10 8

Table 2. Instruction Flow and IFQ occupancy
(baseline system)

4.2 Dependence Graph Size
Figure 2 shows the cumulative distribution of depen-

dence graph sizes for each benchmark and the average. On
average 92% of the dependence graphs have 8 instructions
or fewer. Since DGG takes one cycle to generate each in-
struction in the dependence graph, 92% of the dependence
graphs can be generated within 8 cycles. Likewise PE can
execute these dependence graphs and generate the prefetch
address in at most 8 cycles. Thus a prefetch can almost al-
ways be issued within 16 cycles after a marked load/store
enters the IFQ. Since the average instruction spends 23 cy-
cles before entering the execution stage we estimate that at
least 7 cycles of the D-cache miss latency would be masked



by these prefetches. Thus a 16 cycle miss stall might be
reduced to 9 cycles, a 44% reduction for an 8 instruction
graph. Moreover, since 56% of all the dependence graphs
have 3 or fewer instructions, 56% of the prefetches can be
generated within 6 cycles, leaving 17 cycles to complete
the prefetch. Thus over half the prefetches should com-
pletely mask the 16 cycle cache miss latency. This obser-
vation encouraged us to explore precomputation as a viable
technique for prefetching.

1 3 5 7 9 11
Dependence Graph Size

0

20

40

60

80

100

%
 D

ep
en

de
nc

e 
C

ha
in

s

gcc
parser

twolf
gap

crafty

bzip2

gzip

wisc
wisc+tpch

Avg

Figure 2. Cumulative Distribution of Depen-
dence Graph Sizes (in instructions)

4.3 Marked Load/Store Characteristics
Table 3 shows the basic characteristics of the load/stores

that generated 90% of the cache misses in the pro-
file run, and were marked for precomputation. Out of
57,493 load/stores in the average benchmark, only 166
were marked for precomputation. Thus only a very few
load/stores in a program cause the vast majority of D-
cache misses. Precomputation can therefore focus only on
this small set of load/stores, which in turn greatly reduces
the dependence graph generation and precomputation over-
head.

Tot L/S Mark L/S Mark Ref% Over%
gcc 117880 294(0.24%) 13.5% 13.1%
parser 19276 258(1.33%) 25.8% 34.2%
twolf 31360 158(0.50%) 23.5% 24.7%
gap 51668 108(0.20%) 17.4% 23.0%
crafty 19461 153(0.78%) 17.5% 22.5%
bzip2 9382 59(0.62%) 46.2% 45.3%
gzip 10261 45(0.43%) 4.6% 6.8%
wisc 127157 152(0.11%) 4.4% 3.9 %
wisc+tpch 130989 268(0.20%) 10.0% 8.9%
Avg 57493 166(0.28%) 10.8% 19.9%

Table 3. Marked Load/Store Characteristics

The total references generated by the marked load/stores
(Mark Ref%) on average account for 11% of all the refer-
ences during the actual execution. The average instruction
overhead (Over%) of 20% shows that on average, 1 instruc-
tion is executed by PE per 5 instructions executed by the

main processor. In bzip2 the marked load/stores from the
profile run accounted for 46% of the total references gen-
erated in the actual execution, and 45% of all its instruc-
tions were also precomputed by PE. Since DGP generates a
dependence graph for every dynamic instance of a marked
load/store execution, bzip2 has significantly higher instruc-
tion overhead than the other benchmarks.

4.4 Precomputation Characteristics
Table 4 shows the characteristics of precomputed ad-

dresses and the resulting prefetches that were issued by
the PE. Of the 110,008,552 precomputed addresses (Prec)
of the marked load/stores in the average benchmark, 98%
matched the address generated by the main processor, in-
dicating that PE is highly accurate in generating prefetch
addresses. Thus neither the potential register hazards due to
the lack of interlocks between the main processor pipeline
and the PE, nor the inability of DGP to detect memory
aliases, significantly hinder DGP from generating accu-
rate prefetch addresses. Recall that a prefetch is issued to
L2 only if the precomputed address is not already in L1;
Pref Iss shows that 19% of the total precomputed addresses
resulted in a prefetch being issued. Pref Used indicates that
on average 18% of the total precomputations (94% of the
issued prefetches) resulted in a useful prefetch, i.e. the
prefetched line was used by the main processor before being
replaced.

Prec Match Prec Pref Iss Pref Used
gcc 102.8 101.7 34.2 33.6
parser 140.0 133.0 29.3 27.8
twolf 130.7 127.8 49.3 46.1
gap 121.3 119.6 20.0 19.3
crafty 82.2 80.7 14.7 10.9
bzip2 277.1 276.7 17.4 17.3
gzip 23.1 22.3 2.8 2.2
wisc 33.9 33.6 5.5 5.3
wisc+tpch 79.0 78.1 19.7 19.3
Avg 110.0 108.2(98%) 21.4(19%) 20.2(18%)

Table 4. Precomputations and Prefetches (in
millions)

4.5 Performance Improvement with DGP
Figure 3 shows the reduction in execution cycles due to

DGP. There are six bars for each benchmark. The leftmost
bar shows the base performance with a data cache size of
32KB. The second bar shows performance with tagged next
line (NL) prefetching, where the main processor issues a
prefetch to the next cache line on every cache miss and also
on a first hit to a previously prefetched cache line. The per-
formance of DGP with and without NL, using an IFQ size
of 32, is shown in the third and fourth bars, respectively.
The fifth shows the execution cycles that would be required
with a perfect data cache, wherein every access to the data



gcc parser twolf gap crafty bzip2 gzip wisc wisc+tp
ch

Avg
0.0

0.5

1.0

1.5

2.0

2.5

E
xe

c 
C

yc
le

s(
X

10
^

9)

dcache NL DGP NL+DGP Perf-dcache 8wide

Figure 3. Performance with a 32 entry IFQ

cache is completed in 1 cycle. The rightmost bar shows the
performance when the baseline processor’s issue width and
general purpose functional units are doubled (from 4 to 8),
with other parameters remaining as in Table 1.

These results show that NL prefetching improves the per-
formance by 7%. When DGP is used with or without NL it
reduces the average cache miss stall time by 47%. This stall
time reduction results in a 7% further improvement over
NL, and 13% over the baseline processor with no prefetch-
ing. Furthermore doubling the issue width and functional
units of the main processor gives only a 2% performance
improvement over DGP. The extra transistors required to
implement DGP is approximately equivalent to adding only
one additional issue width and one functional unit to the
4-wide baseline processor. DGP is also within 15% of the
perfect data cache performance.

4.6 Prefetch Effectiveness and Bus Traffic
Figure 4 shows the prefetch effectiveness of DGP with-

out NL by categorizing the issued prefetches into three cat-
egories. The bottom component, Pref Hits, shows the num-
ber of times that the next reference to a prefetched line
found the referenced instruction already in the L1 cache.
The center component, Delayed Hits, shows the number of
times that the next reference to a prefetched line found the
referenced instruction still en-route to the L1 cache from
lower levels of memory. Finally the upper component, Use-
less prefetches, shows the number of cache lines that were
prefetched, but replaced before their next reference. On av-
erage, for IFQ size 32 (left bars) only 6% of the prefeches
issued by DGP are useless. Thus the extra traffic generated
due to DGP is minimal. Of the 94% useful prefetches (Pref
Hits+Delayed Hits), 40% are Delayed Hits. Further anal-
ysis of the delayed hits showed that 35% of them incurred
less than 8 cycles of miss penalty. Another 35% incurred
more than 16 cycles of miss penalty because the prefetched
line was also missing in the L2 cache. Since DGP is most
effective in covering L1 miss penalties, it could benefit from

techniques that improve L2 cache performance. However,
note that 57% of the prefetches fully masked the corre-
sponding miss penalty which is consistent with the ballpark
estimate in Section 4.2.

30.3

19.2

35.1

6.7 5.7

14.2
1.7

1.7
8.0

13.6

3.4

8.7

10.8

12.7

5.7

3.0

0.3

3.9

12.6
6.8

0.9

1.9

4.4

1.3

5.6
0.2

0.4
0.2

0.7 1.7

29.7

16.6

32.2

4.6 4.0

13.7
1.6

1.4
4.9

12.1

3.9

11.2

13.9

14.6

6.9

3.6

0.6

4.0

14.4

8.1

0.6

1.5

3.3

0.7

3.9

0.1

0.7

0.2

0.3
1.2

gcc parser twolf gap crafty bzip2 gzip wisc wisc+tp
ch

Avg
0

8

15

23

30

38

45

53

P
re

co
m

pu
ta

ti
on

 D
is

tr
ib

ut
io

n(
X

10
^

6)

Useless

Delayed-Hits

Pref-Hits

fq64_wasted_precomp

delayed_precomp

timely_precomp

IF
Q

 S
IZ

E
=3

2

IF
Q

 S
IZ

E
=6

4

Figure 4. Distribution of DGP prefetches is-
sued with IFQs of 32 and 64 entries

4.7 Increasing Timeliness with a Larger IFQ
One possible way to increase prefetch timeliness is to in-

crease the IFQ size, allowing instructions to be buffered in
the IFQ for a longer time, and thereby giving more time for
the precomputations to complete. However, to fill a longer
IFQ the fetch stage has to run further ahead of the execution
stage, which it does by predicting several more branches
ahead, which in turn decreases the branch prediction accu-
racy. Decreased branch prediction accuracy may negate the
gains due to increased prefetch timeliness. Moreover in-
creasing the IFQ size may also increase dependence graph
sizes, thereby increasing the time required to generate and
precompute the dependence graphs. To evaluate these trade-
offs we simulated IFQ sizes of 64, 128, 256 and found that
the queue size has a negligible effect on performance; re-
sults for IFQ size 64 are shown in Figure 5.

gcc parser twolf gap crafty bzip2 gzip wisc wisc+tp
ch

Avg
0.0

0.5

1.0

1.5

2.0

2.5

E
xe

c 
C

yc
le

s(
X

10
^

9)

dcache NL DGP NL+DGP Perf-dcache 8wide

Figure 5. Performance with a 64 entry IFQ

The right bars in Figure 4 show the distribution of pre-
computations for an IFQ of size 64. As can be seen the use-
ful precomputations increase and delayed precomputations



decrease when the fetch queue size is increased from 32 to
64. However, the number of useless precomputations also
increases because of the increase in branch mispredictions.

Although Figure 4 shows that a longer IFQ allows more
of the precomputations to be useful, Figure 5 shows that the
actual performance of DGP with a 64 entry IFQ, due to a 2%
reduction in branch prediction accuracy which negates the
gains from better prefetch timeliness, is nearly unchanged
from the 32 entry IFQ (third bar in Figure 3). However, the
two database benchmarks, wisc and wisc+tpch, despite hav-
ing lower branch prediction accuracy than the CPU-2000
benchmarks, do show a modest net gain with the larger IFQ.

5 Comparison of DGP with Previous Work

Program slicing [13] is a more general technique used for
focusing on parts of a program that have a direct or indirect
effect on the values computed at some points of interest.
The concept of a dependence graph, used in this paper, is
one way of generating a program slice. Dependence graphs
are used extensively by compilers for performing several
traditional compiler optimizations and by debuggers in or-
der to focus in on instructions that cause a program bug.
Typically these dependence graphs are generated at compile
time, but their size is too large to be useful for precomputa-
tion. DGP uses hardware to generate its dependence graphs
dynamically, which significantly reduces the graph size and
makes precomputation quite feasible, as the domain of in-
terest includes only the predicted control path and extends
back only as far as the unexecuted instructions that still re-
side in the IFQ.

Zilles and Sohi [14] studied the characteristics of depen-
dence graphs called “backward slices” for performance de-
grading instructions such as cache miss generating instruc-
tions and hard to predict branches. Their results show that in
a window of 512 instructions leading up to a performance
degrading instruction, fewer than 10% of the instructions
contribute to the data used by the performance degrading
instruction. Roth and Sohi [10] proposed speculative data
driven multithreading (DDMT) in which backward slices
are first generated from a program trace and are then preex-
ecuted on a separate thread in a simultaneous multithreaded
(SMT) processor. Speculative threads are spawned when
a designated trigger instruction from the non-speculative
thread starts execution. In their scheme, instructions in the
speculative threads are not reexecuted by the main thread
and hence speculative threads do update the processor’s ar-
chitected state. To guarantee correct updating of the ar-
chitected state by the speculative thread, their approach re-
quires complex instruction issue and register renaming logic
in the processor core

Collins, et al. [6] use the DDMT approach to generate
backward slices for cache miss causing loads from program
traces. These slices are preexecuted on a separate thread in

an Itanium processor for early generation of load addresses.
However, as in DGP, the speculative slices are used only for
prefetching data, and in particular do not update the archi-
tected state of the processor. This approach has the advan-
tage that it avoids complicating the processor core by al-
most entirely decoupling speculative thread execution from
main thread execution. Collins proposes a chaining trigger
mechanism whereby speculative threads are also allowed to
spawn other speculative threads. This trigger mechanism
differs from Roth’s approach wherein only non-speculative
threads are allowed to spawn speculative threads. While all
the approaches above use trace driven analysis to generate
their dependence graphs, in this paper we have presented
an easily implementable technique to generate these graphs
dynamically at runtime, together with a mechanism to pre-
compute the dependence graphs and generate accurate and
timely prefetches.

Farcy, et al. [8] use precomputation to generate branch
outcomes earlier. To precompute the branch outcome of a
loop branch they skip several iterations of the loop and get
ahead of the normal execution to determine future branch
outcomes of the loop branch. This technique relies on
the regularity of the program to gain the required distance
for precomputation. But in the case of a cache miss, the
miss address needs to be generated further ahead of the
demand in order to completely mask today’s increasingly
large cache miss latencies. The technique presented in [8]
is not suitable for masking large L1 cache miss latencies for
irregular applications.

6 Conclusions and Future Work

Today’s dominant application domains exhibit irregular
access patterns resulting in a significant number of cache
misses. Furthermore, processor clock speeds are continuing
to outpace memory access speeds, resulting in longer cache
miss latencies. Thus even aggressive out-of-order proces-
sors suffer significant performance degradation when exe-
cuting these applications due to their frequent cache misses
and increasingly long cache miss latencies. Existing data
prefetch techniques, do not accurately predict the prefetch
addresses for irregular applications in a timely fashion. In
this paper we have explored an alternative to predicting
prefetch addresses, namely precomputing them.

Dependence Graph Precomputation (DGP) is a novel
approach for accurately and dynamically identifying and
precomputing the instructions that determine the addresses
accessed by those load/store instructions deemed to be re-
sponsible for most data cache misses. The Dependence
Graph Generator described in this paper efficiently gener-
ates the required dependence graphs at run time. A separate
Precomputation Engine executes these dependence graphs
to generate the data addresses of the designated load/store
instructions early enough for timely prefetching. The re-



sults generated by PE are used only for prefetching data;
in particular they do not update the architected state of the
main processor. Since PE is prevented from modifying the
architected state of the main processor, it can speculatively
run ahead of the actual computation without having to guar-
antee the correctness of the precomputation; nevertheless, it
is nearly always correct.

We have used a very aggressive out-of-order proces-
sor with well tuned application codes as a baseline system
for studying the performance impact of DGP. Even with
this formidable baseline, our results show that 94% of the
prefetches issued by DGP are useful, reducing the D-cache
miss stall time by 47%. Thus DGP takes us about half way
from an already highly tuned baseline system toward per-
fect D-cache performance. DGP improves the overall per-
formance of a wide range of applications by 7% over tagged
next line prefetching, by 13% over a baseline processor with
no prefetching, and is within 15% of the perfect D-cache
performance.

The prefetch timeliness of DGP can be improved if the
IFQ size is increased. But increasing IFQ size decreases
branch prediction accuracy, thereby reducing the net perfor-
mance. Hence branch prediction accuracy will eventually
limit the size of the IFQ that should be used for the pur-
pose of generating the dependence graphs. Although this
paper focuses on load/store address precomputation, this
technique could also be used for early generation of branch
outcomes, thus enabling it to ameliorate both the instruction
and data supply problems of current processors. Another
alternative to implementing the precomputation engine is
to execute the dependence graphs on special threads in a si-
multaneous multithreaded processor, as suggested by Chap-
pell, et al. [5]. We are currently considering this alternative
to implementing the precomputation engine.

The insights gained from this work can also be used to
change the scheduling priority among the reservation sta-
tions. By scheduling and executing the instructions in the
dependence graphs of marked load/store instructions ahead
of other ready instructions, results similar to those shown in
this paper might be achieved without a special precompu-
tation engine. One of the main advantages of out-of-order
processors is their ability to tolerate cache miss latencies
by executing other ready instructions in the reservation sta-
tions. If a simple in-order main processor were used with
several autonomous precomputation engines to simultane-
ously reduce cache misses and branch mispredictions, it
would be interesting to see whether complex out-of-order
processors could still be justified.

7 Acknowledgements

This research was supported by a gift from IBM. The
simulation facility was provided through an Intel Technol-
ogy for Education 2000 grant. We would like to thank Josef

Burger for providing us a version of SHORE that runs on
Alpha machines, and Steve Reinhardt for his suggestions
and for graciously allowing us to use his Alpha machines.
We would also like to thank Joel Emer for suggesting sev-
eral future directions for this work.

References

[1] M. Annavaram, G. Tyson, and E. Davidson. Instruction
Overhead and Data Locality Effects in Superscalar Proces-
sors. In Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software, pages 95–100,
April 2000.

[2] D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking
Database Systems A Systematic Approach. In 9th Interna-
tional Conference on Very Large Data Bases, pages 8–19,
October 1983.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set. Techni-
cal report, University of Wisconsin-Madison, Computer Sci-
enceDepartment Technical Report #1342, June 1997.

[4] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe,
J. Naughton, D. Schuh, M. Solomon, C. Tan, O. Tsatalos,
S. White, and M. Zwilling. Shoring Up Persistent Applica-
tions. In Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 383–394,
May 1994.

[5] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Si-
multaneous Subordinate Microthreading (SSMT). In Pro-
ceedings of the 26th International Symposium on Computer
Architecture, pages 186–195, June 1999.

[6] J. D. Collins, H. Wang, D. M. Tullsen, H. J. Christopher,
Y. Lee, D. Lavery, and J. Shen. Speculative Precomputation:
Long-range Prefetching of Delinquent Loads. In Proceed-
ings of the 28th Annual International Symposium on Com-
puter Architecture, page ??, July 2001.

[7] T. P. P. Council. TPC Benchmark H Standard Specification
(Decision Support). In Revision 1.1.0, June 1999.

[8] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Anal-
ysis of Branch Mispredictions and Its Applications to Early
Resolution of Branch Outcomes. In Proceedings of the 31st
International Symposium on Microarchitecture, pages 59–
68, Dec 1998.

[9] Y. Patt, S. Patel, M. Evers, D. Friendly, and J. Stark. One
Billion Transistors, One Uniprocessor, One Chip. In IEEE
COMPUTER, volume 30(9), pages 51–57, Sept. 1997.

[10] A. Roth and G. Sohi. Speculative Data-Driven Multithread-
ing. In Proceedings of the High Performance Computer Ar-
chitecture, pages 37–48, Jan 2001.

[11] C. Selvidge. Compilation-Based Prefetching for Memory
Latency Tolerance. PhD thesis, MIT, May 1992.

[12] A. Srivastava and D. Wall. A Practical System for Inter-
module Code Optimization at Link-Time. Technical Report
Technical Report 92/6, Digital Western Research Labora-
tory, June 1992.

[13] M. Weiser. Program Slicing. IEEE Transactions on Software
Engineering, 11(4):352–357, 1984.

[14] C. Zilles and G. Sohi. Understanding the Backward Slices
of Performance Degrading Instructions. In Proceedings of
the 27th Annual International Symposium on Computer Ar-
chitecture, pages 172–181, June 2000.


