@ 0
% sun

microsystems

| ntroduction to Shade

Sun Microsystems, Inc. e 2550 GarciaAvenue e Mountain View, CA 94043 e 415-960-1300

V5.33A last modified 25/Jun/97

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Cali-
fornia94303, U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under
licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without
prior written authorization of Sun and its licensors, if any.

Parts of the product may be derived from Berkeley BSD systems, licensed from
the University of California. UNIX isaregistered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, Sun Microelectronics, the Sun Logo, Solaris, and
SunOS are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Pro-

ducts bearing SPARC trademarks are based upon an architecture devel oped by
Sun Microsystems, Inc.

U.S. Government approval required when exporting the product.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Govt is
subject to restrictions of FAR 52.227-14(g) (2)(6/87) and FAR 52.227-19(6/87),
or DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION ISPROVIDED "ASI1S' AND ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS
AREHELD TOBE LEGALLY INVALID.

Contents

Chapter O INrOUCLIONocooooooeeeeee s 1
Chapter 1 EXMPIE ...ttt 3
Chapter 2 Getting SEAE ... 7
Chapter 3 RUNNing and TraCing ... 11
Chapter 4 ConflictS Of INTEIESt ... 23

Contents — Continued

—-iv -

What is Shade?

A\

0

| ntroduction

Shade links instruction set simulation and trace generation with custom trace
analysis. It finds usesin such areas as computer architecture, microarchitecture,
or compiler evaluation where detailed, dynamic, instruction-level information is
needed.

Shade tends to run fast because:

1.

Shade (the tracer), the application (the tracee), and the analyzer (the trace
user) all reside within the same process, which reduces the I/0O and context
switch overhead associated with file or pipe based trace delivery.

Shade dynamically translates the application code into host machine code
(adding tracing code) which is directly executed to simulate (emulate) and
trace the application code. This new code is cached to minimize translation
overhead.

The analyzer can control how much trace information to collect and when to
collect it.

Theresult isthat for reasonably interesting analyzers, application simulation and
tracing is nearly free.

Other featuresinclude;

1

Multiple, distinct applications may be run sequentially within a single Shade
job. This eliminates the need to combine (by hand, awk, etc.) resultsfor
each command of multiple-command benchmarks.

Tracing is extensible. The analyzer can arrange for its own trace collection
functions to be called before and/or after an application instruction is run.
These functions have complete access to the application’s state including
memory and registers, and can collect information that Shade hasn’t been
preprogrammed to collect.

Many of the conflicts of interest that arise because the application and
analyzer reside within the same process (e.g. /0, signal handling, storage
alocation) are dealt with in some manner to reduce interference.

2 sun A

microsystems

SomeHistory Shade grew out of work done in the late 1980’ s by Peter Hsu, late of Sun
Microsystems. A system called Shadow then exhibited the distinguishing
features of what later became Shade: application/analyzer coresidence, and
dynamic code translation. Before Hsu' s departure, work on code translation
caching had also begun.

Shade is a new and improved Shadow. It takes the best of Hsu’s Shadow, and
adds an improved user interface, and increased robustness and efficiency.

Versions Shade currently comesin four varieties. There are versions to analyze SPARC
v8 code and to analyze SPARC v9 code. There are also versionsto analyze
applications compiled on the old SunOS (4.x) systems and on the newer Solaris
(5.x) systems. The SunOS versions run only on SunOS hosts and the Solaris ver-
sions run only on Solaris hosts. However, the SPARC v8 and v9 versions run on
either SPARC v8 or v9 hosts.

The interfaces to all four Shade versions are very similar, and this document
appliesto al of them. Most of the interface differences exist to support the 64-
bit registers on SPARC v9. These differences are described below where

appropriate.

Examples All of the example programsin this document are distributed on-line with the
Shade kit. The eg directory of the kit contains the sources for the examples and
amakefile to build and run them.

Shortcomings Roughly in order of increasing likelihood of being fixed ever:

1. Shade cannot run the kernel.

2. Shade cannot run multiprocessor applications.

Upcoming Subsequent chapters contain:

Example. Contains a short Shade analyzer for the reader to try out, complete
with source, and compiling and running instructions.

Getting Started. Describes how Shade analyzers get started, and get command
line arguments and environment. Describes how Shade analyzers start applica-
tion programs and give them command line arguments and environment.

Running and Tracing. Describes how a Shade analyzer runs an application pro-
gram while collecting and utilizing instruction trace information.

Conflicts of Interest. Describes how to share some per-process resources
between analyzer and application programs: memory allocation, 1/0, and signal
handling.

2 sun

% microsystems

Introduction 3

References “*Shade User’'sManual.”” UNIX manual pages for Shade analyzers and library
functions.

“*SpixTools User’'sManual.”” UNIX manual pages for SpixTools, upon which
Shade is based.

““Introduction to SpixTools.”” SpixTools Tutorial.

The SPARC Architecture Manual, Version 8. SPARC International, Inc.

The SPARC Architecture Manual, Version 9. SPARC International, Inc.
Acknowledgements Thanksto Peter Hsu of course for Shadow. Thanksto David Keppel for imple-

mentation ideas. Thanksto Steve Richardson and Malcolm Wing for user inter-
face, documentation, and debugging ideas.

2 sun

% microsystems

2 sun

% microsystems

Analyzer Source Code

shade_nmai n

shade trctl _trsize

shade_trctl _ih

shade_shel

N
¥

1

Example

This chapter shows how to construct and run a simple Shade analyzer.

Suppose you wish to know how often one of the operandsis zero when executing
an integer add instruction. Shade can do this by examining each add instruction
as an application executes. Figure 1.1 shows such a Shade analyzer for SPARC
v8. Figure 1.2 showsa SPARC v9 version.

Execution of the analyzer beginsat shade_rmai n. Shade makes any analyzer
command line arguments and environment variables available to the analyzer via
argumentsto shade_nmi n. (Here, for ssmplicity, no command line arguments
are expected, nor checked.)

shade_nmai n begins by specifying what trace information is desired. The

Tr ace structuredefinedint r ace. h defines the layout of instruction trace
information for a single executed instruction. Tr ace may be customized to a
degree by the user. Here TR_REGS was defined prior to includingt r ace. h to
provide storage space for integer register values. The size of the resulting

Tr ace structureis supplied to Shadeinthecall toshade_trctl _trsize.

By default, no instruction trace information is collected. The user must explicitly
specify what information is to be collected for each opcode (or opcode group).
Here, shade_trct | _i h isused to specify collection of the same information
for each of four opcodes (ADD, ADDX, ADDcc, and ADDXcc on SPARC v8;
ADD, ADDC, ADDcc, and ADDCcc on SPARC v9). Thel H_ values (defined
ini hash. h) are small integers, each representing a particular opcode.

The second and third shade_t rct | _i h arguments specify that tracing should
be enabled for the opcode, except if the instruction isannulled. The fourth argu-
ment is a bit mask specifying that the instruction text, and rsl1 and rs2 register
contents (not register numbers) should be saved for each add opcode.

shade_shel | reads commands one at atime from standard input, and for each
command, loads the specified program (setting up /O redirection, signal han-
dling, etc.), and then calls a user specified function (hereanal yze) to run the
program and utilize the trace information. shade_shel | providesanal yze

sun 5

microsystems

-
#i ncl ude <stdio. h>

#i ncl ude <I HASH. h>
#define TR_REGS 1

#i ncl ude <trace. h>
#i ncl ude <stdtr. h>
#include <trctl.h>

static double nadd, /* # adds executed */
nadd0; /* # adds with a 0 operand */

static int anal yze();
int
shade_main (argc, argv, envp)
int argc;
char **argv;
char **envp;
{
shade_trctl _trsize (sizeof (Trace));
shade_trctl _ih (IHADD, 1, 0, TC| | TCRS1 | TC RS2);
shade_trctl_ih (IHADDX, 1, 0, TC| | TCRS1 | TC RS2);

shade_trctl _ih (IHADDCC, 1, 0, TC| | TCRS1 | TC RS2);
shade_trctl _ih (IHADDXCC, 1, 0, TC| | TC RSl | TC RS2);

(voi d) shade_shell (analyze);

printf ("% Of adds, % Of addOs\n", nadd, naddO);

return (0);
}
static int
anal yze (argc, argv, envp)
int argc;
char **argv;
char **envp;
{
Trace *tr,
for (; tr = shade_step(); nadd++)
if (tr->tr_rsl == 0 ||
tr->tr_i.i_i & tr->tr_i.i_siml3 == 0 ||
Ptr->tr_i.i_i & tr->tr_rs2 == 0)
naddO++;
return (0);
}
N\

Figure 1.1. addO.c (for SPARC v8)

2 sun

% microsystems

Chapter 1 — Example

#i ncl ude <stdio. h>
#i ncl ude <I HASH. h>
#define TR_REGS 1

#i ncl ude <trace. h>
#i ncl ude <stdtr. h>
#include <trctl.h>

static double nadd, /* # adds executed */
nadd0; /* # adds with a 0 operand */

static int anal yze();
int
shade_main (argc, argv, envp)
int argc;
char **argv;
char **envp;
{
shade_trctl _trsize (sizeof (Trace));
shade_trctl _ih (IHADD, 1, 0, TC| | TCRS1 | TC RS2);
shade_trctl _ih (IHADDC, 1, 0, TCI| | TCRS1 | TC RS2);

shade_trctl _ih (IHADDCC, 1, 0, TC| | TCRS1 | TC RS2);
shade_trctl _ih (IHADDCCC, 1, 0, TC| | TC RSl | TC RS2);

(voi d) shade_shell (analyze);

printf ("% Of adds, % Of addOs\n", nadd, naddO);

return (0);
}
static int
anal yze (argc, argv, envp)
int argc;
char **argv;
char **envp;
{
Trace *tr,
for (; tr = shade_step(); nadd++)
if (tr->tr_rs1.ii[0] == 0 && tr->tr_rsl.ii[1] == 0 ||
tr->tr_rs2.ii[0] == 0 & & tr->tr_rs2.ii[1]] == 0 &&
tr->tr_i.i_i == 0 ||
tr->tr_i.i_i == 1 &&
tr->tr_i.i_siml3 == 0)
naddO++;
return (0);
}
N\

Figure 1.2. add0.c (for SPARC v9)

2 sun

% microsystems

shade_step

Compiling Analyzer

Running Analyzer

A\

with the command line arguments and environment variables for the command
being run. (Herethey aren’t used.)

anal yze runsthe command with shade_st ep. Each invocation of
shade_st ep ddiversinformation for one traced instruction (here just integer
add instructions). Untraced instructions, though run, aren’t delivered by
shade_st ep. After the command has been completely executed in this
fashion, shade_st ep returnsO.

Per previousshade_trct | _i h requests, Shade records the instruction text in
tr_i,andthersl and rs2 register contents (both recorded before the instruction
isexecuted) intr _rslandtr_rs2. Eachiteration of thef or loop incre-
ments the add counter nadd, and increments the add-zero counter naddoO if
either operand is zero. Note that in the SPARC v9 version, thetr _rs1 and
tr_rs2 fieldsarearrays. Thefirst element in the array correspondsto the high
32 bits of the register’ svalue. The second element correspondsto the low 32
bits. Since registers are only 32 bits wide on SPARC v8, these fields are not
arraysin the v8 version.

Once the commands have been run and shade_shel | returns, shade_rmai n
prints the final counter values and returns. The value returned by

shade_shel | becomesthe exit status for the Shade process. Equivalently, the
analyzer may call exi t to terminate the Shade process.

Since Shade is built atop SpixTools, include directories and libraries for both are
typically required to compile a Shade analyzer:

$ cc -O -1 $SHADE/ src/include -1$SPI X/ src/include addO.c \
-0 add0 $SHADE/li b/ 1ibshade.a $SPI X/ |ib/libspix.a

$SHADE and $SPI X here represent the directories where the Shade and Spix-
Tools software has been installed. It is not required that these variables be
present in the environment to compile or run Shade analyzers.

Now to run this analyzer on, for example, the/ bi n/ dat e command:1

$ addo

/ bin/date

Wed Jun 25 15:08:46 EDT 1997
<CTRL- D>

75426 adds, 5616 addOs

Theshade_shel | function in the analyzer readsthe/ bi n/ dat e command

1 User input isshown in bol d. Press CTRL-D to terminate the analyzer.

2 sun

microsystems

Chapter 1 — Example 9

from standard input, loads the / bi n/ dat e command into memory, and then
letsthe anal yze function run and analyze the command.

2 sun

% microsystems

10

2 sun

% microsystems

Starting a Shade Analyzer

2

Getting Started

This chapter describes how Shade analyzers and the application programs they
run get started.

Toillustrate this, the source for asimple analyzer anal echo isshown in Figure
2.1

4 R
#i ncl ude <stdio. h>

int

shade_mai n (argc, argv, envp)
int argc;
char **argv;
char **envp;

int i

printf ("argc=%l\n", argc);

for (i =0; i < argc; i++)
printf ("argv[%l]=%\n", i, argv[i]);

for (i = 0; envp[i]; i++)
printf ("envp[%l]=%\n", i, envp[i]);

return (0);

Figure 2.1. analecho.c

Hereisasamplerun of anal echo.

% Sun "

microsystems

12

Starting an Application

N
¥

4 N
$ anal echo hello world

argc=3
ar gv[0] =anal echo
argv[1] =hell o
argv[2] =wor | d
envp[0] =HOVE=/ hone/ sobchak7/rfc
[...]
N\ J

The mai n function is supplied by the Shade run-time library. nmai n interprets
and del etes Shade-specific command line options, calls some Shade initialization
functions, and then callsshade_mmai n.

Shade provides shade__nai n with the number of command line arguments

ar gc, command line arguments ar gv, and environment variable list envp
(inherited unmodified from shade). Thevariableenvi r on, which isused by,
e.g., the Clibrary functionsget env and put env, isinitialized to the same
valueasenvp.

Shade permits an analyzer to run and trace one application at atime. The func-
tion shade_| oad starts a new application program.

i nt
shade_| oad (path, argv, envp)
char *path, **argv, **envp

pat h isthe name of the file containing the application program. ar gv and
envp arethe command line arguments and environment variable list to be sup-
plied to the application. Note that the environment variables that the application
sees need not be the same as those provided to the analyzer.

If shade_| oad issuccessful, it returns 0. Otherwiseit prints a diagnostic and
returns —1.

A variant of shade_| oad which does a path search for the application is
shade_| oadp.

int
shade_| oadp (nane, argv, envp)
char *nanme, **argv, **envp

If name isunqualified, shade_| oadp usesthe analyzer environment variable
SHADE BENCH_PATH (or if thisis not present, PATH) to search for the applica-
tion program. If itisfound, shade_| oad is supplied with file name of the
application, ar gv, and envp. shade | oadp returnsO if successful, or prints
adiagnostic and returns —1.

sun

microsystems

Chapter 2 — Getting Started 13

Once an application has been loaded, it may be run and traced with shade_r un
as described in a subsequent chapter.

Thefunctionsshade_shel | andshade_f shel | read (very simple) com-
mands from a standard 1/0 stream, invoke shade_| oadp, set up I/O redirec-
tion for the application, and call a user function to run and trace each application.

Under Shadow, the convention was to specify both analyzer and application
command line arguments on the shadow command line.

[$ shadow anal yzer args -- application args]

Thefunction shade_spl i t ar gs may be used to support this convention
under Shade.

int

shade_splitargs (argv, pbargv, pbargc)
char **argv, ***pbargv;
int *pbargc

Given an argument list ar gv, shade_spl i t ar gs searchesfor the*‘- - "’
argument. If found, it is changed to O (thus null terminating the analyzer’'s argu-
ment list at that point). The remainder of the argument list and number of
remaining arguments are returned (by reference) in * pbar gv and * pbar gc.
shade_spl it ar gs then returns the new number of analyzer arguments. |If

‘- - jsn't found, the argument list is unchanged, O isreturned in * pbar gc and
the original argument count isreturned by shade_splitargs.

2 sun

% microsystems

14

2 sun

% microsystems

3

Running and Tracing

Asan application is run, instruction trace records for executed or annulled
instructions may be saved for later use by the analyzer. Shadeis preprogrammed
to record most of the information about an instruction that an analyzer might
need. An escape mechanism is provided to record additional information.
Instructions may be selectively traced by opcode or address.

Trace Records Shade trace records are composed of two variable length parts. Thefirst part is
used by Shade to record trace information that Shade knows how to collect such
as instruction addresses, |oad/store data addresses, register values, etc. The
second part may be used by the analyzer to collect any other trace information.
Either or both of these parts may be empty (zero length).

Shade currently imposes two perhaps strange restrictions on the trace record for-
mat. First, both parts of the trace record must be doubleword (8 bytes) aligned.
Second, the offsets within the trace record for information recorded by Shade are
fixed. Theserestrictions simplify trace code generation and improve the
efficiency of the resultant tracing code, but may introduce unused ‘‘holes”’ in
trace records. Offsetting this however is the placement of **more useful’’ trace
information nearer the beginning of the trace record.

Figure 3.1 shows the SPARC v8 version of thet r ace. h header file, which
defines the Shade trace record. Figure 3.2 shows the SPARC v9 version of this
header. The default trace record should be sufficient for most purposes, though
limited customization is provided by afew preprocessor symbols. Space for
integer and/or floating point registers may be reserved by defining TR_REGS or
TR_FREGS prior toincluding t r ace. h. Space for analyzer specific trace
information may be reserved by defining TR_MORE.

The Tr ace structure members are:

tr_pc
I nstruction address.

tr_i
Instruction text (word). Thetypel nstr (defined in the SpixTools header

O
2 SUun 15

% microsystems

-
#i fndef _trace_h_

#define _trace_h_

#i ncl ude <instr.h>

typedef struct {

u_long tr_pc; /* instruction address */

I nstr tr_i; /* instruction text */

char tr_annulled; /* instruction annulled? */
char tr_taken; /* branch or trap taken? */
short tr_ih; /* ihash() val ue (opcode) */
u_long tr_ea; /* target address for dcti’'s

* (NOT fall thru address for untaken branches).
* rsl+rs2|simil3 for |oads, stores, traps

*/
#if defined(TR_.REGS) || defined(TR_FREGS)
int tr_rsl; [/* rsl contents before execution */
int tr_rs2; /* rs2 contents before execution */
int tr_rd; /* rd contents after execution */
int tr_rd2; /* rd contents 2nd word (ldd, std) */
#endi f

#i f defined(TR_FREGS)
uni on isdq {

int i, ii[2y, iiii[4];
fl oat s, ss[2], ssss[4];
doubl e d, dd[2];
#i f def REAL128
| ong doubl e q
#endi f
}
tr_frsl, [/* frsl contents before execution */
tr_frs2, [/* frs2 contents before execution */
tr_frd; /* frd contents after execution */
#endi f

#i f defined(TR_MORE)
TR_MORE

#endi f

} Trace

#endif [/* _trace_h_ */

-

Figure 3.1. trace.h (for SPARC v8)
filei nstr. h)isaunion of hit fields representing the various components
of aSPARC instruction.

tr_annul |l ed
Thisis1if the traced instruction was annulled (squashed), or O otherwise.

2 sun

% microsystems

Chapter 3— Running and Tracing

17

(N
#i fndef _trace_h_
#define _trace_h_
#i ncl ude <instr. h>
typedef struct {
u_long tr_pc; /* instruction address */
I nstr tr_i; /* instruction text */
char tr_annulled; /* instruction annulled? */
char tr_taken; /* branch or trap taken? */
short tr_ih; /* ihash() val ue (opcode) */
u_long tr_ea; /* target address for dcti’'s
* (NOT fall thru address for untaken branches).
* rsl+rs2|simil3 for |oads, stores, traps
*/
#if defined(TR_.REGS) || defined(TR_FREGS)
union ix {
int ii[2];
#i f def | NT64
long | ong X;
#endi f
}
tr_rsl; [/* rsl contents before execution */
tr_rs2; /* rs2 contents before execution */
tr_rd; /* rd contents after execution */
#endi f
#i f defined(TR_FREGS)
int tr_pad;
uni on ixsdq {
int i, ii[2], iiii[4];
#i f def | NT64
long | ong X, xx[2];
#endi f
fl oat s, ss[2], ssss[4];
doubl e d, dd[2];
#i f def REAL128
| ong doubl e q
#endi f
}
tr_frsl, /* frsl contents before execution */
tr_frs2, [/* frs2 contents before execution */
tr_frd; /* frd contents after execution */
#endi f
#if defi ned(TR_MORE)
TR_MORE
#endi f
} Trace
#endif [/* _trace_h_ */
-)

2 sun

% microsystems

Figure 3.2. trace.h (for SPARC v9)

18

A\

The analyzer can control whether or not annulled instructions are traced.

tr_taken

For branch or trap instructions, thisis 1 if the branch or trap was taken, or 0
otherwise. For conditional moves (on SPARC v9), thisis 1 if the move hap-
pened, or 0 otherwise.

tr_ih

A small integer representing the opcode. These values are defined in the
SpixTools header file | HASH. h, and are returned (given the instruction
word) by the SpixTools function i hash.

tr_ea

Effective address. For load and store instructions, this is the address of the
loaded or stored data. For branch, call, or indirect jump instructions, thisis
the target (destination) address. For trap instructions, thisis the software
trap number. Note, on SPARC v9 only the bottom 32 bits of the address are
stored in thisfield.

tr_rsl,tr_rs2

Contents of the integer registers named in the instruction’s rs1 and (for
register+register addressing mode) rs2 fields before executing instruction.
Note, on SPARC v9 thesefields are arrays. Thefirst element of the array is
the upper 32 hits of the register’svalue. The second element is the lower 32
bits.

tr_rd,tr_rd2

Contents of the integer register(s) named in the instruction’s rd field after
executing instruction. On SPARC v8,thetr _r d2 field isused to hold the
value of the odd numbered register for load and store doubleword instruc-
tions. On SPARC v9, thefirst element of thet r _r d field holds the value of
the even numbered register and the second element holds the value of the
odd numbered register for load and store doubleword instructions.

tr_frsi,tr_frs2,tr_frd

Contents of the floating point registers named in the instruction’s rsl and rs2
fields prior to executing instruction, or rd field after executing instruction.
For single precision operations, the value should be accessed with thei (for
integer) or s (for single precision floating point) i sdq union member. For
double precision operations, the value should be accessed with the d (for
double precision floating point) or i i (for integer register pair) or ss (for
single precision floating point register pair) i sdg member. ii[0] and
ss[0] contain the value of the pair’ s even numbered register. For quad
precision operations, the value should be accessed with theq, iiii,

ssss, ordd members. On SPARC v9, double precision values can also be
accessed as 64-bit integers with the x or xx fields.

2 sun

microsystems

Chapter 3— Running and Tracing 19

Trace Control

A\

However the trace record is defined, Shade needs to be informed how hig it is.
Typicaly thisisassimple as:

shade_trctl _trsize(sizeof (Trace));

By default, Shade collects none of the trace information just described. For each
opcode, the user must turn tracing on or off (including, or not, annulled instruc-
tions), and turn filling on or off for each of the trace record fields.

(M
unsi gned | ong
shade_trctl_ih (ih, on, onannull ed, mask)
int ih, on, onannulled
unsi gned | ong mask

unsi gned | ong

shade_trctl_it (it, on, onannulled, mask)
unsigned long it
int on, onannulled
unsi gned | ong mask

- J

shade_trct! _i hisusedto control tracing for a single opcode identified by
i h (values are defined in the SpixTools header file| HASH. h).

shade_trctl it isusedto control tracing for agroup of instructions
specified asabit mask i t (component values are defined in the SpixTools
header file | TYPES. h).

The remaining arguments have the same meaning for both functions. on enables
tracing for the indicated opcode(s). If thisis not done, no trace records will be
generated for these opcodes. (The instruction must furthermore be in atraced
instruction range (see below) to be traced.) onannul | ed additionally enables
tracing of annulled instructions. The effective address and register value trace
record fields are not filled for annulled instructions.

mask isabit mask indicating which trace record fields should be filled. Itis
composed from values defined in the Shade header filet rct | . h.

2 sun

microsystems

20

Trace Address Ranges

N
¥

(N
#define TC| 1
#define TC_IH 2
#define TC_ANNULLED 4
#defi ne TC_TAKEN 8
#define TC_PC 16
#define TC_EA 32
#defi ne TC_RS1 64
#defi ne TC_RS2 128
#define TC_RD 256
#defi ne TC_FRS1 512
#defi ne TC_FRS2 1024
#define TC_FRD 2048
(. J

These functions return mask after clearing bits representing trace record fields
which are meaningless or unsupported for the given opcode.

(shade_trctl it justrepeatedly callsshade_trctl i h,andthenreturns
the bitwise conjunction of theshade_trct | _i h return values)

shade _trctl _ihandshade trctl it calsmay both beused. Thelast
call which applies to a given opcode sticks (overrides previous calls). The fol-
lowing sequence (from a Shade cache simulator) turns instruction address,
annulled flag, and opcode tracing on for al instructions, annulled included, and
furthermore turns effective address tracing on just for load and store instructions.

shade_trctl it (IT_ANY, 1, 1, TC ANNULLED| TC | H TC PC);
shade_trctl it (IT_LOADIT_STORE, 1, 1, TC_ANNULLED| TC | H TC PC| TC EA);

Instruction tracing may be enabled or disabled according to the instruction’s
address. Initially, tracing is enabled for instructions anywherein memory. The
user may restrict tracing to specific regions of memory with the following func-
tions.

(M
voi d
shade_addtrange (from to)
unsigned | ong from to;

voi d
shade_subtrange (from to)
unsigned | ong from to;

- J

shade_addt r ange enablestracing of instructions with addressesfrom f r om
to (but excluding) t o. Similarly, shade_subt r ange disables tracing of
instructions in a given addressrange. Any changes will take effect the next time
shade runiscaled.

sun

microsystems

Chapter 3— Running and Tracing 21

For simplicity, the low order two bits of f r omand t 0 are silently cleared before
use; instruction addresses should be word aligned. A t o value of O represents
the end of memory.

After initialization, Shade does not call these functions, even when an application
isloaded with shade | oad. If instruction address tracing restrictions have
been established, and a different application is then loaded, the previous trace
address ranges will likely be meaningless. It isthen the analyzer’ s responsibility
to cope with the situation, say by terminating with a diagnostic.

Given an addressshade_i nt r ange returns 1 if the that address lies within an
address range for which tracing is enabled, or 0 otherwise.

i nt
shade_i ntrange (a)
unsi gned | ong a

Thefunction shade_ar gt r ange is provided to simplify processing of
analyzer command line arguments which specify trace address ranges.

char *
shade_argtrange (arg)
char *arg;

ar g isastring of the form +t [from], [to] or - t [from], [tO].

shade_ar gt r ange interprets from and to as hex constants, and calls
shade_addt r ange (for +t) or shade_subtrange (for-t). If fromis
missing the start of memory is used; if to is missing the end of memory is used.
The commais aways required.

If successful shade_ar gt r ange returns 0. Otherwiseit returns a diagnostic
message string. Hereis an example of how shade_ar gt r ange might be
used.

2 sun

% microsystems

22

User Trace Functions

N
¥

(N
int
shade_main (argc, argv, envp)
int argc;
char **argv, **envp
{
char *tnsg;
int anyt, i;
for (anyt =0, i =1; i < argc; i++)
if ((argv[i][0] =="-" []|
argv[i][0] =="+) &&
argv[i][1] =="t") {
if (lanyt++ & argv[i][0] =="+")
(void) shade_argtrange ("-t,");
if (tmsg = shade_argtrange (argv[i]))
shade_fatal ("%: %", argv[i], tnsgQ)
}
/* etc */
}
-)

Note that if the user givesa+t option first, tracing isfirst turned off for al of
memory. If the analyzer did not provide this convenience, the user would have
to use oneor more -t options sinceinitially tracing is enabled for all of memory.

To collect additional trace information the user may specify functionsto be
called before or after the traced instruction is executed.

(M
unsi gned | ong

shade_trfun_ih (ih, prefun, postfun)
int ih;
void (*prefun)(), (*postfun)()

unsi gned | ong

shade_trfun_it (it, prefun, postfun)
unsigned long it
void (*prefun)(), (*postfun)()

- J

User trace functions may be specified for asingle opcodei h or opcode groupi t
aswithshade_trctl __ihandshade_trctl _it. Tracing must be enabled
(even if no preprogrammed trace record filling is enabled) to enable calling of

user trace functions. User trace functions are not called for annulled instructions.

The function pointed to by pr ef un iscalled before the traced instruction is exe-
cuted, and the function pointed to by post f un iscalled after.

User functions are called with two arguments. Thefirst is a pointer to the trace
record for the instruction. When the pre-execution user trace function is caled,
the taken flag and destination register values in the trace record will be unfilled

sun

microsystems

Chapter 3— Running and Tracing 23

A\

(these fields are filled after instruction execution). Otherwise all requested fields
will be filled when the user trace functions are called.

The second user trace function argument is a pointer to a Shade structure as
defined in the Shade header file shade. h. Figure 3.3 showsthe SPARC v8
definition of this header and figure 3.4 shows the SPARC v9 definition.

(M
#i f ndef _shade_h_

#define _shade_h_

typedef struct {

int sh_r[32]; /* int register file */
int sh_y; /* y register */
char sh_icc; /* integer cond codes (see below) */
uni on {
int i[32];

fl oat s[32];
doubl e d[16];

} sh_fr; /* fp register file */
unsi gned sh_fsr; /* fp state register */
} Shade;
#define sh_g0 sh_r[0]
#define sh_gl sh_r[1]
[-.-]
#define sh_i 6 sh_r[30]
#define sh_i 7 sh_r[31]
#define sh_fp sh_i 6
#define sh_sp sh_o6
/*
* sh_icc conponent val ues:
*/

#define SHICC N 64 /* negative */
#define SH 1CC zZ 32 /* zero */
#define SH I1CCV 16 /* overflow */
#define SHI1CCC 8 /* carry */

#endi f /* _shade_h_ */
-)

Figure 3.3. shade.h (for SPARC v8)

The trace function may extract application state from this structure, aswell as
read directly from the application’s memory space. The trace function may not
modify the Shade structure. Doing so will cause unpredictable behavior.

2 sun

microsystems

24

(N
#i f ndef _shade_h_

#define _shade_h_

typedef union {

int ii[2];

unsi gned uul 2] ;
#i f def | NT64

long I ong X;
#endi f
} xreg_t;

typedef struct {

Xreg_t sh_r[32]; /* int register file */
int sh_y; /* y register */
char sh_icc; /* integer cond codes (see below */
char sh_xcc; /* extended integer cond codes */
unsi gned char sh_asi; /* address space identifier */
unsi gned char sh_gsr; /* graphic status register */
int sh_fr[128]; /* floating point registers */
unsi gned sh_fsr; /* floating point state register, |sw*/
unsi gned sh_fcc[3]; /* fp condition codes 1-3 (in %sr fornat)
} Shade;
#define sh_g0 sh_r[0]
#define sh_gl sh_r[1]
[...]
#define sh_i 6 sh_r[30]
#define sh_i7 sh_r[31]
#define sh_fp sh_i 6
#define sh_sp sh_o6
/*
* sh_i cc conponent val ues:
*/

#define SHICC N 64 /* negative */
#define SHI1CC Z 32 [/* zero */
#define SHI1CCV 16 /* overflow */
#define SHICCC 8 /* carry */

#endi f /* _shade_h_ */

-
Figure 3.4. shade.h (for SPARC v9)
Running Applications Once tracing parameters have been established, the analyzer may begin running
the application.

2 sun

% microsystems

Chapter 3— Running and Tracing 25

int

shade_run (tr, ntr)
Trace *tr;
int ntr;

shade_r un runsthe application and fillsin successive entriesinthe array t r
(upto alimit of nt r entries) for each executed or annulled instruction for which
tracing isenabled. Notethat nt r limits the amount of tracing done, not the
number of instructions run.

shade_r un returnsthe number of t r entriesthat it filled. Thismay be less
than nt r if the application terminates or if there isinsufficient room near the end
of t r for the next ‘‘block’’ of instructions to be run. After the application has
terminated and previous calls have returned the final trace information,

shade_r un returnsO.

shade_st ep isavariant of shade_r un which goes a single traced instruc-
tion at atime.

Trace *
shade_step()

shade_st ep runsthe application through the next traced instruction, and
returns the trace information for that instruction. It returns O when the applica-
tion terminates.

Actually, shade_st ep isjust amacro defined in the Shade header file
stdtr. h. Itusesshade_r un asnecessary to fill astatically allocated trace
buffer and then marches through the buffer, one traced instruction at atime.
shade_st epistoshade_run asget char istor ead.

Example Figures 3.5a and 3.5b show a simple analyzer called syscal | which traces
application system calls. It should be compiled with - Dsol ari s if you are
using the Solaris version of Shade or with - Dsunos if you are using the SunOS
version of Shade.

This Shade analyzer relies on a particular implementation of the UNIX system
call interface for SPARC. A system call is performed by executing a software
trap instruction with trap number ST_SYSCALL. The system call is specified in
register g1 (see/ usr/i ncl ude/ sys/ syscal | . h). System call arguments
are passed in registers 00-05. Upon return, the carry bit of the integer condition
codes indicates whether the call was successful (clear) or not (set). If successful,
the return value isin registers 00 and sometimes additionally ol. Otherwisethe
error number isin register 00 (see/ usr /i ncl ude/ sys/ errno. h).

2 sun

% microsystems

-
#i ncl ude <stdio. h>

#i ncl ude <I TYPES. h>
#i ncl ude <shade. h>

#define TR_MORE int tr_syscall, tr_errno;
#i ncl ude <trace. h>
#i ncl ude <stdtr. h>
#include <trctl.h>

#i fdef solaris

include <sys/trap. h>
#el se

include <sparc/trap. h>
#endi f

static void pre_ticc();
static void post_ticc();

int

shade_mai n (aargc, aargv, envp)
int aar gc;
char **aargv;
char **envp;

{
Trace *tr;
char **bar gv;
int bar gc;
aargc = shade_splitargs (aargv, &bargv, &bargc);
if (bargc <= 0 ||
shade_| oadp (*bargv, bargv, envp) < 0)
return (1);
shade_trctl _trsize (sizeof (Trace));
shade trctl_it (IT_TICC, 1, 0, TC EA| TC TAKEN);
shade_trfun_it (IT_TICC, pre_ticc, post_ticc);
while (tr = shade_step())
if (tr->tr_syscall !=-1)
printf ("syscall %d errno %3d\n",
tr->tr_syscall, tr->tr_errno);
return (0);
}
N\

Figure 3.5a. syscal.c (Part 1 of 2)

For simplicity this analyzer, just traces system call numbers and error numbers.
The ambitious reader may wish extend it to generate such output as the trace(1)
or truss(1) commands generate.

2 sun

% microsystems

Chapter 3— Running and Tracing 27

A\

4 N
static void

pre_ticc (tr, sh)

Trace *tr;
Shade *sh;
{

if (tr->tr_ea ! = ST_SYSCALL)
tr->tr_syscall = -1;

el se {
tr->tr_syscall = sh->sh_gl;
if (tr->tr_syscall == 0)

tr->tr_syscall = sh->sh_o0;

}

static void

post _ticc (tr, sh)
Trace *tr;
Shade *sh;

if (tr->tr_syscall !=-1)
if (ltr->tr_taken)
tr->tr_syscall
el se
if (sh->sh_icc & SH ICC O
tr->tr_errno = sh->sh_o0;
el se
tr->tr_errno = 0;

_1’

Figure 3.5b. syscall.c (Part 2 of 2)

With TR_MORE we extend the Tr ace structure to add space for a system call
number tr _syscal | and asystem call error numbertr _errno. Thesize of
the resulting Tr ace structure is supplied to Shade with

shade trctl _trsize.

Theshade_trctl it cal causes Shadeto only trace non-annulled trap
instructions, and only record the software trap number (int r _ea) and aflag
indicating whether the trap wastaken (int r _t aken).

Theshade_trfun_it cal causesShadeto cal thefunctionpre_ticc
before executing atrap instruction, and call the function post _ti cc after-
wards.

Thefunction pr e_t i cc recordsthe system call numberintr _syscal | . For
non-system-call traps, —1 is stored instead. For indirect system calls (g1==0), the
real system call number (00) is recorded.

2 sun

microsystems

28

A\

The function post _t i cc records (if the trap was taken) the error number for
failed system calls, or O for successful calls.

Each invocation of shade_st ep here returnsinformation for one nonannulled
trap instruction, since that is all that tracing has been enabled for. Note that it
could be along time between executing the application system call and process-
ing the corresponding trace record in shade_nmai n.

This example is written for the SPARC v8 version of Shade. It can be ported to
SPARC v9 by changing the referencestosh_g1 andsh_oOtosh_g1l.ii[1]
andsh_00.1i[1] respectively.

Hereisasamplerun of thesyscal | analyzer.

(N
$ syscall -- /bin/date
Wed Jun 25 15:08:46 EDT 1997
syscal | 5 errno O
syscall 115 errno O
syscal | 5 errno 2
syscal | 5 errno O
syscall 28 errno O
syscall 115 errno O
syscall 115 errno O

-]

2 sun

microsystems

Memory

N
¥

A

Conflicts of Interest

This chapter describes how Shade copes with some of the contention that comes
from running analyzer and applications within the same UNIX process. The
information in this chapter is not generally needed to write Shade analyzers, and
may be skipped on afirst reading.

Shade simulates the application’ s address space. The application text, data, etc.
are placed in an out of the way place in memory, and application memory
addresses are translated to/from their corresponding actual memory addresses.
For example, when the application executes aload instruction, the application
memory address used in the load instruction is trand ated to obtain the actual
memory address that Shade usesto perform the load operation.

All application memory addresses are at fixed offset from their corresponding
actual memory addresses. This offset, or application base address, is returned by
theshade_bench_nenory function. If the analyzer wishes to examine the
application’s memory (e.g. from inside a user trace function), it should add this
value to the application memory address to obtain a pointer to dereference.

By default, Shade determines a good location for the application’s memory
addresses. Since the application may dynamically grow its address space,
though, it is possible that the application’ s addresses will collide with the
analyzer's. If thisoccurs, Shade issues an error message and terminates the
application. User’s can then avoid the problem by specifying the Shade switch
—benchmem=num (seeintro(1s) in the ** Shade User'sManual’’). This switch
alows usersto override the default location for the application’ s addresses.

It is sometimes useful to specify —benchmem=0. Thistells Shade to place the
application’s addresses at their native locations. This only works, though, if the
analyzer islinked at an out of the way spot. All the analyzers described in sec-
tion 1 of the ** Shade User’'sManual’’ are linked like this to support —ben-
chmem=0.

The method for linking an analyzer like this differs depending on the version of
your operating system. On Solaris systems, simply use the linker mapfile pro-
vided with the Shade kit. For example:

sun 29

microsystems

30

/0

N
¥

$ cc -0 addO -dn -W, -M $SHADE/ | i b/ mapfil e add0.o \
$SHADE/ |'i b/ i bshade. a $SPI X/ i b/1ibspix. a

Here, the-W , -M $SHADE/ | i b/ mapfi | e switch specifiesthe linker
mapfile that places the analyzer at an out of the way location. The —dn switch
links the analyzer statically, without shared libraries. It is better to avoid linking
the analyzer with shared libraries because shared libraries occupy more address
space and increase the likelyhood of memory conflicts with the application.

The method for linking an analyzer at a nonstandard location is more complex on
SunOS systems. On these systems you must link the analyzer as an overlay and
then run it with a special driver. A typical linker command looks like this:

$ 1d -0 add0. anal -Bstatic -A $SHADE/|i b. anal /dummy -T 10000020 \
$SHADE/ | i b. anal /crt 0.0 add0. o $SHADE/ li b/ 1 i bshade. a \
$SPI X/ 1ib/libspix.a -lc

Here, the —Bst at i ¢ switch links the analyzer without shared libraries. The -A
$SHADE/ | i b. anal / dunmy switch specifiesthat thisis an overlay. The-T
10000020 switch specifies an out of the way hexadecimal address for the
analyzer. You can change this address, but be sure to specify avalue that is 32
(20 hex) bytes larger than a page boundary. Note, the first object module
specified on the command line must be the special Shade start-up code,
$SHADE/ | i b. anal /crt 0. 0. Youmust also link against the standard C
library - c.

Once linked, you must use a specia driver program to run the analyzer:

[$ $SHADE/ bi n. anal / shade add0. anal -benchnem=0]

Note, analyzers linked this way on SunOS do not support profiling or shared
libraries. (Although, the application running under the analyzer may use shared
libraries.)

In order to reduce 1/0O conflict, Shade renumbers file descriptors as used by the
application. So for example, when the application performs an operation on stan-
dard output (file descriptor 1), it is actually using some other file descriptor (say
27) without knowing it. Thisleavesthe analyzer free and clear to use file
descriptor 1.

To do this, Shade intercepts all application system calls that use or generate afile
descriptor and tranglates the value. This renumbering may be controlled by the
analyzer at two levels. Firstly (likely most usefully), the analyzer may directly
call severa functions which Shade usesto handle application I/O system calls.

sun

microsystems

Chapter 4 — Conflictsof Interest 31

Signals

A\

For example, Figure 4.1 shows some code used by shade_shel | to handle I/O
redirection for an application command.

4)
static void
shade_shel |l _io (op, file)

char *op, *file;

{
int fd;

if (!strenp (op, "<")) {
if (0> (fd = shade_bench_open (file, 0)))
shade_fatal ("%: can’'t open", file);
(void) shade_bench_dup2 (fd, 0);
(voi d) shade_bench_close (fd);
}
else if (!strcnp (op, ">")) {
if (0> (fd = shade_bench_creat (file, 0666)))
shade_fatal ("%: can't creat", file);
(void) shade_bench_dup2 (fd, 1);
(voi d) shade_bench_close (fd);
}
else if (!strcnp (op, ">&")) {
if (0> (fd = shade_bench_creat (file, 0666)))
shade_fatal ("%: can't creat", file);
(void) shade_bench_dup2 (fd, 1);
(void) shade_bench_dup2 (fd, 2);
(voi d) shade_bench_cl ose (fd);
}
else [...]
el se
shade_fatal ("%: bad i/o redirect", op)

Figure4.1. shade shell io

At adeeper level, the analyzer may use the functions shade_napf d,
shade_mappedf d, shade_unmapf d, and shade_unmappedf d to get
and set the file descriptor mappings. For example, Figure 4.2 shows how
shade_bench_open iswritten.

For more information, see io(3s) and mapfd(3s) in ‘‘ The Shade User's Manual.”’

No, signals aren’t renumbered. Instead an ownership protocol is introduced: if
the analyzer callssi gact i on, si gnal , or si gvec for agiven signa, the
analyzer owns that signal from then on, and Shade will try to keep the application
program from interfering with the analyzer’ s use of that signal. So for example if
the analyzer wants interrupts ignored, and the application wants interrupts
caught, then interrupts will be ignored.

2 sun

microsystems

4)
int
shade_bench_open (path, node, flags)
char *path;
int node, flags;

int pfd, vfd;

if (0> (vfd = shade_unnmappedfd (0))) {
errno = EMFI LE;
return (-1);

}

if (0> (pfd = open (path, node, flags)))
return (-1);

return (shade_mapfd (pfd, vfd));

Figure4.2. shade bench open
For more information, see signal(3s) in ** The Shade User’'s Manual.””’

2 sun

% microsystems

