
LSU EE 7700-1 Homework 3 Due: 30 April 2007

The dataset files for this assignment, the same as those used for Homework 1, are located in directory
/home/faculty/koppel/pub/ds/2007/batch.sm.0098 which should be accessible from ECE Linux machines.
The dataset files are named using run ids, view the web page index.html to see the benchmark and machine
configuration. If your system is set up properly you can view the dataset by clicking the run id.

The simulated machines have the following characteristics:

• Dynamically scheduled. (Out of order execution.)

• Superscalar. Issue (fetch/decode/commit) width (IW) is either 2, 4, 8, or 16 instructions per cycle
(depending on configuration).

• Reorder buffer (ROB) size is either 64, 128, 256, or 512 entries.

• Can predict either 1 or 3 blocks per cycle.

• Uses YAGS predictor with 8-branch GHR and 216-entry PHTs.

For the following questions refer to the rePlay paper: Brian Fahs, Satarupa Bose, Matthew Crum, Brian

Slechta, Francesco Spadini, Tony Tung, Sanjay J. Patel and Steven S. Lumetta, “Performance Characteri-

zation of a Hardware Mechanism for Dynamic Optimization,” in the proceedings of the International Sympo-

sium on Microarchitecture, December 2001, pp. 16-27. It is available on the class references Web page under

critical path compression or directly at http://www.ece.lsu.edu/tca/papers/fahs01performance.pdf.

For the following assignment it will be necessary to find sections of code containing strongly biased
branches. In class we saw that PSE shows branch information (such as prediction ratio) in the annotation
pane and this information can be used to find strongly biased branches. There is also information in the
disassembly pane that can be used to more quickly find easy to predict (and perhaps strongly biased)
branches. Some instructions are preceded by a gray W and a digit. The W stands for weakness (referring to
the prediction) if the digit is zero the prediction is accurate, higher numbers indicate lower accuracy (weaker)
predictions.

In a recent change to PSE (so far just for this class) the disassembly pane shows instructions that write
unused registers or memory locations in a strikethrough font (crossed out). These instructions might be
eliminated by rePlay’s dead-code removal optimization. So far PSE does not show all dead instructions in
strike through, but that may be available before the assignment is due. If so, something will be posted.

Problem 1: Show how rePlay can improve an execute-limited (using Fields’ definition) region. Try to find
a region in which the improvement will be large, both on the region itself and on the benchmark as a whole.
A region should cover thousands of instructions, an entire segment or a large fraction of one. Several such
regions have been discussed in class, so this part should be easy.

Note that when looking for runs with lots of execute-limited regions one should look at IW (fetch/decode
width) and ROB size.

• Give the run id, benchmark, and a segment number.

• Show the original code and the resulting frame.

• Estimate the performance improvement of the region containing the code.

• Estimate the performance improvement of the benchmark as a whole. Note that in PSE’s overview
plot, when the mouse is over a segment the address of the first instruction is shown. It is okay to
use this to estimate how many segments are similar to the one you’ve identified. One might also use
instruction counts for branches and loads to solve this part.

1

http://www.ece.lsu.edu/tca/
http://www.ece.lsu.edu/tca/papers/fahs01performance.pdf


Problem 2: Show how rePlay can improve a fetch-limited region. Try to find a region in which the
improvement will be large, both on the region itself and on the benchmark as a whole. A region should cover
thousands of instructions, an entire segment or a large fraction of one.

• Give the run id, benchmark, and a segment number.

• Show the original code and the resulting frame.

• Estimate the performance improvement of the region containing the code.

• Estimate the performance improvement of the benchmark as a whole.

Problem 3: Show how rePlay can improve a commit-limited (using Fields’ definition) region. Recall that
a region is commit-limited if performance would improve with a larger ROB.

Note that this is the most difficult problem of this assignment.

• Give the run id, benchmark, and a segment number.

• Show the original code and the resulting frame.

• Provide a sketch (or printout) showing how replay will improve performance. The sketch should show
the instruction suffering due to the commit-limiting and should show the impact that rePlay would
have.

• Estimate the performance improvement of the region containing the code.

• Estimate the performance improvement of the benchmark as a whole.

2


