
LSU EE 7700-1 Homework 2 Due: 28 March 2007

The dataset files for this assignment, the same as those used for Homework 1, are located in directory
/home/faculty/koppel/pub/ds/2007/batch.sm.0098 which should be accessible from ECE Linux machines.
The dataset files are named using run ids, view the web page index.html to see the benchmark and machine
configuration. If your system is set up properly you can view the dataset by clicking the run id.

The simulated machines have the following characteristics:

• Dynamically scheduled. (Out of order execution.)

• Superscalar. Issue (fetch/decode/commit) width (IW) is either 2, 4, 8, or 16 instructions per cycle
(depending on configuration).

• Reorder buffer (ROB) size is either 64, 128, 256, or 512 entries.

• Can predict either 1 or 3 blocks per cycle.

• Uses YAGS predictor with 8-branch GHR and 216-entry PHTs.

For the problems below consider only systems that are 8-way superscalar (IW = 8) and that can predict
three blocks per cycle.

For the problems below it will be helpful to find all occurrences of a particular instruction in PSE.
To do so enter the address of the instruction into the search box displayed below the main toolbar in both
the overview and segment plots. Enter the address in hexadecimal using C syntax (e.g., 0x1da4c). In the
overview plot segments in which the instruction appears are highlighted by blue bars. The arrows on either
side of the search box can be used to move to the first, previous, next, or last occurrence.

Problem 1: Among the systems with 256-entry ROBs (and 8-way superscalar with 3 blocks per cycle
predicted) find a load with the following characteristics:

• Occurs frequently (in at least 1/3 of the segments) and experiences some L2 cache misses.

• Is a good candidate for hardware prefetch (see next problem).

• Is a good candidate for pre-execution (see Problem 3).

(a) Provide the following information: Name of benchmark, run id, address of the load, and a segment
number in which that load suffers an L2-cache miss.

(b) Using PSE determine the miss time (the time from when the address is resolved (yellow) until the data
has arrived [light blue, check dependent instructions if you’re not sure]).

Consider a Lucky Load [tm] system which is just like the one chosen for this problem except your load
(the one chosen for this problem) always hits the L1 cache (yes, it’s the lucky load!). The hit ratios for other
loads are identical (so they are not lucky) on the two systems, as are branch predictions, etc. Assume that
on both systems your load is always on the critical path. Compute the speedup of the Lucky Load system
over the original one. (The speedup is execution time of the original system divided by the execution time
of the new one.)

For benchmarks which spend the bulk of their time in a small kernel of code a single load instruction
can have a significant impact on overall execution time, on others, like gcc, even the worst-behaved load can
have only a trivial impact. For this problem, find a benchmark in which a single load does have a significant
benchmark.

Problem 2: Determine some details of hardware prefetch for the load from the previous problem. See Van-
derwiel 2000 ACM CS, http://www.ece.lsu.edu/tca/papers/vanderwiel-00.pdf, for some background.

(a) Describe the address reference pattern emitted by the load. If it’s not sequential or stride, explain how
it would be predicted in hardware. (To make life easy, limit yourselves to sequential and stride.)

(b) An important design question for hardware prefetch is triggering, when to initiate the prefetch of the
next address in the sequence. (See Section 4.1 of Vanderwiel 2000 ACM CS.) For your load describe an

1

http://www.ece.lsu.edu/tca/
http://www.ece.lsu.edu/tca/papers/vanderwiel-00.pdf


effective triggering. The triggering may be something described in Vanderwiel, something used elsewhere, or
something you invent. The triggering must be implementable and should be timed such that the prefetched
line arrives soon before the load that needs it executes.

Problem 3: Find and evaluate a good p-thread for the load. A good p-thread maximizes aggregate advan-
tage (latency tolerance minus overhead). See Roth 02 Micro (http://www.ece.lsu.edu/tca/s/roth-02.pdf)
for terminology and background, but before reading it note that the aggregate advantage computation for
this problem uses some simplifying assumptions.

(a) Find a good p-thread for the load. Show the instructions (including addresses). Show the original
instructions in the backward slice, and if any optimization was done show the final p-thread (if no optimization
is done the backward slice is the p-thread).

(b) Estimate the overhead as follows. Assume that the trigger (first backward slice instruction used to
construct the p-thread) and target load execute the same number of times and that the path from the
trigger to the load is always the same. Further, assume that p-thread instructions can be injected at a
rate of 8 insn per cycle and when doing so fetch/decode of main-program instructions stops. Assuming
pre-execution never works, what is the speedup given this overhead? (The speedup should be less than one.)

(c) Find a place where the overhead is on the critical path. If possible, find a place where overhead is not
on the critical path. Otherwise, sketch an execution diagram in which the overhead would not be on the
critical path. (Think about “fetch limited.”)

(d) Estimate the latency tolerance given that the load misses. The easiest way is to work out a pipeline
execution diagram of the p-thread (using timings based on those observed using PSE) and compare the time
that the p-thread load starts to the time the main thread load starts. (Note that the formula for latency
tolerance in Roth 02, Equation 5 in Table 1, describes the same sort of calculation one would do with a
pipeline execution diagram.)

(e) Estimate how much of that latency tolerance will result in improved performance. Do this using an
execution diagram of a sample miss.

Problem 4: Find another load which misses the L1 or L2 cache, is a good candidate for pre-execution, but
is NOT a good candidate for prefetch.

(a) Provide the following information: Name of benchmark, run id, address of the load, and a segment
number in which that load suffers a cache miss.

(b) Show a p-thread.

(c) Indicate why the load is not a good candidate for hardware prefetch.

Problem 5: Find a load which misses the L1 or L2 cache but is NOT a good candidate for pre-execution
or for hardware prefetch.

(a) Provide the following information: Name of benchmark, run id, address of the load, and a segment
number in which that load suffers a cache miss.

(b) Explain why it is not a good candidate for either mechanism.

2

http://www.ece.lsu.edu/tca/s/roth-02.pdf

