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Problem 1: A processor uses the store-set scheme to predict memory dependencies. Up to one
instruction per cycle can be issued and they are dynamically scheduled (may start or complete
out of order), limited only by true dependencies. Dependency violations are checked as the earlier
(store) instruction retires.

The code below is iterated several times, as indicated by the table. Each table row shows the time
that an iteration will start (in cycles) and some register values that will be encountered. Store data
and load addresses are available immediately but store addresses, registers r1 and r2, are available
only after a 7-cycle delay (seven cycles after they are needed by the store instruction). Instructions
before the code fragment do not stall.

0x100 sw 0(r1), r10
0x104 add r20, r20, r10
0x108 sw 0(r2), r11
0x10c lw r12, 0(r3)
0x110 lw r13, 0(r4)

Time r1 r2 r3 r4
500 1000 2000 1000 3000
600 1000 2000 1000 3000
700 1000 1000 3000 1000
800 1000 1000 1000 3000

(a) When the code starts the store set ID (SSID) table and last-fetched store table (LFST) are
empty.

• Show each change to these tables and the approximate times the changes occur.

• Indicate where and when dependence violations take place.

• Indicate where and when instructions stall (whether or not the stall was necessary).

Use reservation station numbers (make them up) in the LFST.

(b) Ignoring cost, why would it not be a good idea to use instruction addresses rather than reser-
vation station numbers in the LFST?
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Problem 2: The program below finds the longest string in a table; a table entry holds either the
address of a string or a zero (meaning no string). In this problem the program will encounter a
three-entry table, entry zero is "ab", entry one is zero, and entry two is "c".

The program is run on a four-PE trace processor with eight-instruction traces and an infinite trace
cache which is initially empty. Trace delineation is at the first indirect control-transfer instruction
or the eighth instruction.

! r1 = 3, the number of entries in the string table.
! r4 holds base of string table.
! Line numbers in first column.
A0: add r2, r0, r0 ! Initialize loop index.
A1: add r7, r0, r0 ! Initialize maximum string length to zero.
LOOP:
B0: sub r3, r1, r2 ! Check for end of loop. (Executed four times.)
B1: beqz r3, DONE
B2: slli r5, r2, #2 ! Offset of table entry.
B3: add r5, r5, r4 ! Address of table entry.
B4: lw r20, 0(r5) ! Load table entry, 0 or address of string.
B5: beqz r20, NEXT ! Skip if zero. (Taken on second iteration.)
B6: jal STRLEN ! Find string length. (See below.)
B7: sgt r8, r21, r7 ! Check if larger than max found so far.
B8: bnez r8, NEXT
B9: add r7, r21, r0 ! Update maximum.
NEXT:
B10: addi r2, r2, #1 ! Increment loop index.
B11: j LOOP
DONE:
C0: add r1, r7, r0 ! Move maximum to r1
C1: add r31, r28, r0 ! Return address.
C2: jr r31 ! Return from procedure.

STRLEN:
D0: subi r21, r20, #1
SNEXT:
D1: addi r21, r21, #1
D2: lb r22, 0(r21)
D3: bneq r22, SNEXT
D4: sub r21, r21, r20
D5: jr r31

(a) When execution starts (at A0) the trace cache is empty. Show the instructions included in each
trace stored in the trace cache after the return at C2. Assume perfect next-trace prediction. Use
the sample data provided in the problem statement and comments. Use the line numbers above,
for example, Trace 0: A0, A1, . . . Trace 1: . . ..

(b) What is the trace cache hit ratio in the execution of the code above as described in the previous
subproblem? Show how a better trace delineation technique would improve the trace cache hit
ratio executing the example above (assuming instantaneous trace cache updating).

(c) Show how the use of predicated instructions might improve the hit ratio in the trace cache on
this example (perhaps using different input data, for example a longer table).
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Problem 3: Answer each question below.

(a) Write two programs, one which performs better on a system using a PAg branch predictor and
one performing better on a system using a PAp branch predictor. C or assembler may be used.
Both predictors use 16 branch outcomes. Assume that there is no aliasing.

(b) Why couldn’t Shade be used to simulate eager execution?

(c) Assuming instantaneous table updates, what would be the prediction accuracy of a dual-delta
data predictor on the address of the array element, c + i, in the code below. State any assumptions
made about the initial state of the table(s) used by the predictor. Indicate the number of predictions
made.

char c[20];
for(i=0; i<20; i+=2)
{
c[i] = ’x’;

}

(d) Should memory dependence prediction hardware be conservative (predict many dependencies
where there may be none)?

(e) When issuing past a predicted branch, some systems make a backup copy of the register re-map
table. How would misprediction recovery be different on a system that didn’t backup the re-map
table? Illustrate with an example; be sure to show how making a backup saves time.

(f) Why is confidence estimation important in multiple-path (poly-path) eager execution?

(g) Why might it be a good idea to omit direct (non-register) jumps in the traces stored in a trace
cache? Why would it be a bad idea to omit the branches from the traces stored in a trace cache?

(h) A trace processor has 8 PE’s each containing 2 of each type of functional unit; traces hold
up to 16 instructions. Dispatch and retirement are as in the trace processor of Rotenberg et al.
A 16-way superscalar processor has 16 copies of each type of functional unit, is fully bypassed,
up to 16 instructions can issue per cycle; an instruction can issue if its operands are ready and a
functional unit is free.

Show an ILP v. window size graph that could be used to argue that a trace processor would be
nearly as fast as the superscalar even without data prediction. (Make up the data.) Show another
graph that could be used to argue that the trace processor would be substantially slower. (Make
up this data too.)
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