Name Partial Solution

Computer Architecture and Implementation

EE 7700-4
Practice Final Examination

December 1998, 0:00-23:59 CST

Problem 1 (20 pts)
Problem 2 (20 pts)
Problem 3 (20 pts)
Problem 4 (40 pts)
Alias Partial Solution Exam Total (100 pts)

Though the final exam will be cumulative this practice final only contains problems from the second

half of the course to provide a better selection of problems on the new material.

Problem 1: The program below transposes a matrix.

for(row=0; row<nrows; row++)
for(col=0; col<ncols; col++)
bl col + row * ncols] = a[row + col * nrows];

(a) Rewrite the program in DLXV assembler making effective use of the vector instructions. The
arrangement of the arrays should be the same in both programs. (20 pts)

Solution
Initially:
rl: Address of first element of a (to be read).
r2: Address of first element of b (to be written).
r3: Number of rows.

r4: Number of columns.

movi2s vlr, r4d

add r5, rO, r3

LOOP:
lvws v1, (r1,r3)
sv r2, vi

add r2, r2, r4
addi r1, r1, #1
subi r5, r5, #1
bnez r5, LOOP

Problem 2: Add support for full/empty bits to the directory cache coherence protocol described
in the text. An FE bit is associated with each block. The system should support the following
instructions:

1wFE r1,0(r2), loads r1 with the contents of address 0(r2) when its FE bit is full, sets the bit to
empty.

swFE 0(r2),r1, stores the contents of rl at address 0(r2) when its FE bit is empty, sets the bit to
full.

These instructions should be implemented so, if necessary, they wait for the FE bit to change to
the state needed. Try to minimize the number of messages sent under the protocol. The protocol
should work when there are multiple 1wFE and swFE simultaneously accessing the same location.
(The instructions would have to be completed in some order.)

Specify additional protocol messages and states and other storage added to the cache and at the
memory. Show state transition diagrams with the new states. Only show new transitions and any
existing transitions needed to describe the protocol. (20 pts)

Problem 3: Several DLX assembly language code fragments appear below. The comments indicate
initial values in memory locations and the values retrieved by load instructions. The code fragments
do not necessarily start at the same time; ellipses (. ..) indicate an arbitrary time delay. Memory
locations accessed by the code below are not accessed by other code or other processors.

Indicate which code fragments could not have been executed on a coherent memory system (based
on the comments) and explain why they are not coherent. (10 pts)

Indicate which code fragments could not have been executed on a sequentially consistent system
(based on the comments) and explain why not. (10 pts)

Fragment 1

Contents of rll same on all processors.

Contents of rl12 same on all processors, rill != ri2.
Proc. O

lw rl, 0(r11) ! rl loaded with 1.

1w r2, 0(r12) ! r2 loaded with 12.

! Proc. 1
1w r1, 0(r11) ! rl loaded with 11.
1w r2, 0(r12) ! r2 loaded with 2.

! Proc. 2 (Order of stores switched from earlier version.)
addi r2, r0, #2
sw o(r12), r2
addi ri1, r0, #1
sw o(ril), ri

! Proc. 3 (Order of stores switched from earlier version.)
addi r2, r0, #12
sw o(ri12), r2
addi r1, r0, #11
sw o(ril), ri

conherent. (PTOQQSSOY 0 and 110ad each address once, S0 there is no way TOr & Proeessor to observe the order of stores 10 &
pameu\m address. Coherence d0es not specity any ps;meu\ar ordering of 10ads of different addresses by same pYOQQSSOY.)
Not sequentially consistent because Trst 10ad 4l Processor 1 must come after second store at processor 3 but second load
at Processor 1 must come bafore Tirst store at processor 3.

! Fragment 2

! Contents of rll same on all processors.

! Before code below runs, O at address in rill.
! Proc O.

1w r1, 0(r11) ! rl loaded with O.

lw r2, 0(r11) ! r2 loaded with O.

1w r3, 0(r11) ! r3 loaded with 2.

! Proc 1.
1w r1, 0(r11) ! rl loaded with O.

1w r2, 0(r11) ! r2 loaded with 1.
1w r3, 0(r11) ! r3 loaded with 3.
! Proc 2.

addi ri1, r0, #1

sw 0(ri11), ri

addi ri1, r0, #2
sw 0(r1l), ri

addi ri1, r0, #3
sw 0(r11), ri

Conherent and sequentially consistent.

! Fragment 3

! Contents of rll same on all processors.

! Before code below runs, 9 at address in ri1l.
!

1

! Proc O.

addi ri1, r0, #0

sw 0(ri11), ri

lw r1, 0(r11) ! rl1 loaded with O.
! Proc 1.

addi ri1, r0, #1

sw 0(r1l), ri

1w r1, 0(r11) ! rl loaded with 2.
! Proc 2.

addi ri1, r0, #2.

sw 0(r1l1), ri

1w r1, 0(r11) ! rl loaded with O.

Conherent and sequentially consistent.

Fragment 4.
Contents of rll same on all processors.
Before code below runs, 0 at address in ril.

Proc 0
addi ri1, r0, #1
sw 0(r11), ri

addi ri1, r0, #2

sw 0(ri11), ri

! Proc 1

addi ri1, r0, #3

sw 0(r11), ri

1w r2, 0(r11) ! r2 loaded with 2.

addi r1, r0, #4
sw 0(r11), ri

! Proc 2
lw r1, 0(r11) ! r1 loaded with 3

1w r1, 0(r11) ! rl loaded with 2

! Proc 3
1w r1, 0(r11) ! rl loaded with 4

lw rl, 0(r11) ! rl loaded with 1

NOT coherent because 4 cannot be written after 2 but berore 1. NOt sequentially consistent since nNot conerent.

Problem 4: Answer each question below.

(a) An ordinary superscalar processor is to be converted to an SMT processor. Provide an argument
against increasing the number of functional units. (5 pts)

Inereasing the number of funetional units would increase the cost. The point of SMT i8 making more eficient use of
resources that are already present.

() Why might a multithreaded program run faster (higher IPC) than a multiprocessing workload
on a simultaneous multithreading processor? (5 pts)

Fower cache misses since threads may share data.

(¢) Why wouldn’t an SMT version of a superscalar processor not improve the performance of code
that contained frequent taken branches and jumps? Assume that branches are perfectly predicted.

(5 pts)
IT the feten unit could Oﬂ\y nandle consecutive instructions the TFQQUQI\I control transfers would result in & small number
Of instructions fetehed per QyQ\Q. That would limit peﬂ‘ormanee on a SUPQYSQQ\&Y and an SMT processor.

(d) Contrast the relative performance of SMT and Tera on code that contains frequent cache misses
(on the SMT). The programs contain as many threads as the respective processor can support.
Assume the peak TPC of the two machines are identical.

How would performance compare if the program running on Tera’s machine had the same number
of threads as the SMT processor? (5 pts)

On code having frequent caene misses an SMT processor would quickly run out of threads to run while the Tera would
always have enough, and so the Tera would be much Taster.

IT the number of threads were the same the SMT might run faster since it could execute instructions out of order, hiding
some miss latency. The SMT would also run Taster because of eache nits.

(e) Describe what the lookahead field in Tera instructions specifies and how the instruction pipeline
would have to be changed if it were not present. (5 pts)

1T specifies the number of instructions that can be executed hefore the result is needed. IT it were not present interlock
hardware which stalls the p'\pe\‘me whaen certain GQPQT\GQHQ\QS are present would have to be included.

(/) A memory system works in the following way. Load and store instructions are placed in a
load/store buffer in program order. When they are placed in the buffer the cache is checked; if the
address is not present or in the proper state the line is fetched. When an instruction reaches the
head of the load/store buffer the cache is checked again, if the address is not present (because of
eviction or invalidation) it is fetched again, and when it arrives the access completes and is removed
from the buffer. The caches are coherent and exclusive access is not granted until all invalidates
are acknowledged. Which memory model does this implement? Justify your answer. (5 pts)

Sequential consistency. The operations complete in program order. Fetehing o block early does not enange 1ts value, and
IT1Ts value is changed at another processor between the time it is Tirst fetehed and the time the cache is checked a second

time it will be invalidated.

(9) Explain why it might not be a good idea to port programs that have many difficult to predict
branches (on a conventional ISA) to a vector machine. (5 pts)

Vector instructions perform the same operation on some (US'\Y\g Q masK) or all of a vector. 1T a program Nnas many dimeult
1o prediet branches there may bHe Tew sets of data 1o which the same operation would be applied and even it o mask could
De used to &pp\y an operation o 4 subset of elements, the mask may be useful only once (SO the time needed 1o create
the mask would be greater than the time saved using '\I).

(h) A vector processor has a word size of eight bytes and memory banks in which words can be
read every 14 cycles. The bus can sustain a transfer rate of 1 word per cycle.

What is the minimum number of banks needed to read a vector of length 256 and stride 32 bytes
at a rate of 1 word per cycle?

What is the minimum number of banks needed to read a vector of length 256 and stride 112 bytes
at a rate of 1 word per cycle?? (FYI, 112 =7 x 23) (5 pts)

Number of banks used is \Qm(%s), where B is the number of banks present and S is the stride (in words). To sustain
an aceess rate of one word per cyele the number of banks used must be at least the memory cycle time, 14 cyeles. The
Minimum number of banks is found by finding the minimum B such that lem (B, .S) = Steycle, WNEQ Zeycle 18 the
memory eycle time. (Function lem(3,.S) is the least common multiple, the smallest integer that is & multiple of both B
and S. For example, lem(4,2) = 4, lem(4,3) = 12, 1em(6,15) =1em(2 x 3,3 x 5) = 2 x 3 x 5 = 30))

Length 256, stride 32 bytes. Stride 32 bytes = 4 elements.
lem(B, S)
S

mBin <tcycle =

= lem(B, S) = Steyale
lem(B,2x2)=4x14=2x2x2x7
= B=2x2x2x7=>56 bhanks

Length 256, stride 112 bytes. Stride 112 bytes = 7 elements:

o (4 _lem(B, S)
Hlén cycle — g
=1em(B, S) = Steycle
lem(B,7) =7Tx14=2x7x7
= B=2x7x7=098 banks

