
EE 7700-4 Homework 1 Due: 4 September 1998

Problem 0 below has been pre-solved, the solution and other files needed can be found in
/data4/koppel/tca/hw01 on the ECE Solaris systems. The techniques used in its solution can be
applied to the other problem.

Problem 0: Using Shade, write a program to determine the ten most frequently executed con-
secutive instruction pairs, omitting any pair that contains a save or restore. (These allow the
processor to save and restore its own registers, a special feature of the SPARC architectures.) The
output might be:

[sol] % echo /opt/local/bin/X11/netscape igroup
Instr 1 Instr 2 Count Percent
lduw subcc 14471267 2.997%
subcc be 13783327 2.854%
sethi lduw 10366120 2.147%
lduw add 10363630 2.146%
add add 10269228 2.127%
lduw lduw 10252944 2.123%
subcc bne 10109655 2.094%
subcc bne,a 7845333 1.625%
add lduw 7550369 1.564%
or jmpl 6790452 1.406%

This would indicate that in a run of netscape (Communicator) 2.997% of the instructions executed
consisted of a lduw (load unsigned word) followed by subcc (subtract and set condition code).

Problem 1: One technique to improving computer performance is merging two instructions into
one so that the combined unit does the same work in half the time. (Though it would be quite
näıve to assume that such benefit could really be achieved by combining any two instructions, it
does make a good first simulation assignment. Hardware may have to be duplicated, the cost of
that hardware might be more effectively “spent” elsewhere. Another major problem is coding the
operands in the combined instruction.)

Choose two SPARC instructions to combine, and based on simulations, determine the
performance improvement. The pair cannot include two loads, two stores, or a load and a store.
The combined instructions have a CPI of one but the two individual instructions, when appearing
alone, have a CPI of 1.2. All other instructions have a CPI of one.

Problem 2: Choose a classmate to be your adversary1. Have your adversary provide you with his
or her analyzer executable (not the source, so you can’t find out which instructions were combined).
Run a set of programs of your choosing on your adversary’s analyzer; your goal is to obtain the
highest credible execution time possible on your adversary’s system. List the programs used, the
input data, and the execution time of each run. Justify the credibility of your programs but include
a rebuttal from your adversary. (For example, justification, “ran widely used utility program;”
rebuttal, “xeyes? If that’s a utility the productivity paradox is solved!”)

1 Keep it friendly.


