
Name Solution

Computer Architecture and Implementation

EE 7700-4

Final Examination

7 December 1998, 15:00-17:00 CST

Alias Solution

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (40 pts)

Exam Total (100 pts)



Problem 1: The program below runs on a processor using PAp branch prediction and a JRS
confidence estimator. The PAp branch predictor uses four branch outcomes (per branch history
register) and the tables are large enough so there is no interference between branch instructions.
The branch predictor uses two-bit saturating counters. The mispredict distance counter table has
one entry per instruction (also no interference). The high confidence threshold is five. All table
entries are zero when the code below starts executing.

/* 0 1 2 3 4 5 6 7 */
int *bt[] = { 0, 1, 1, 0, 1, 1, 0, 0 }; /* 8-element array. */

for(i=0; i<100; i++) for(j=0; j<8; j++) if( bt[j] ) x[i]++;

(a) Find the prediction accuracy of the branch in the if statement over the entire execution of the
code (i=0 through 99). (7 pts)

←−−−−−−−−−−−−−− i=0 −−−−−−−−−−−−−−→
Past 4 Next Old Old MD

j Outcomes Outcome Count Correct Counter
0 0000 0 0 y 0
1 0000 1 0 n 1
2 0001 1 0 n 0
3 0011 0 0 y 0
4 0110 1 0 n 1
5 1101 1 0 n 0
6 1011 0 0 y 0
7 0110 0 1 y 1

←−−−−−−−−−−−− i=1,2,3,. . . −−−−−−−−−−−−→
Past 4 Next Old Old MD

j Outcomes Outcome Count Correct Counter
0 1100 0,0,0,. . . 0,0,0,. . . y,y,y,. . . 2,2,3,. . .
1 1000 1,1,1,. . . 0,1,2,. . . n,n,y,. . . 3,3,4,. . .
2 0001 1,1,1,. . . 1,2,3,. . . n,y,y,. . . 0,0,5,. . .
3 0011 0,0,0,. . . 0,0,0,. . . y,y,y,. . . 0,1,6,. . .
4 0110 1,1,1,. . . 0,0,0,. . . n,n,n,. . . 1,2,7,. . .
5 1101 1,1,1,. . . 1,2,3,. . . n,y,y,. . . 0,0,0,. . .
6 1011 0,0,0,. . . 0,0,0,. . . y,y,y,. . . 0,1,1,. . .
7 0110 0,0,0,. . . 1,1,1,. . . y,y,y,. . . 1,2,2,. . .

Notes: For branch outcome, 1 indicates taken, 0 indicates not taken. Branch prediction counters saturate at 3. Same
branch outcome table entry used at j=4 and j=7 (a collision), resulting in mispredictions whenever j=4. A single
misprediction distance counter is used for the branch, its values are in the “Old MD Counter” column. Bold entries
indicate high-confidence predictions.

As can be seen, predictions reach a stable pattern at i=3. Before i=3 24 predictions are made, 14 of them correct. At
i=3 7 of 8 predictions are correct. For the entire execution the prediction accuracy is 14+7×97

800 = 693
800 = 0.86625.

(b) What is the PVP and sensitivity of the JRS confidence estimator on the branch in the if
statement from i=50 through i=99? (7 pts)

Since predictions and confidence assignments are stable starting at i=3 one only need consider a single outer iteration,
say i=3. In such an iteration 3 branches are assigned high confidence and two are correct, for a PVP of 2

3 . Of the 7
correct branches only 2 are assigned high confidence for a sensitivity of 2

7 .

(c) Is the program above a good demonstration of the JRS confidence estimator? If it’s not describe
how the program could be modified to better demonstrate the confidence estimator. (6 pts)

This is not a good demonstration of a JRS confidence predictor because the repeated misprediction forces many accurate
predictions to be assigned low confidence. In a better demonstration the table of numbers would not result in a collision
in the branch predictor tables and so high confidence would be assigned to all branches after a short warmup.

2



Problem 2: The DLX assembler program below examines elements of an array. The program
is to be run on a simultaneous multithreading processor based on a 4-way superscalar processor
similar to the one described in Tulleson 96. The program runs as four threads, the value of r1
when the code below starts is different in each thread.

The instruction fetch unit can fetch four consecutive and aligned instructions per cycle. Round-
robin thread selection is used.

There are an unlimited supply of functional units. The results from ALU operations and loads that
hit the cache are available in next cycle.

The memory system can support up to two outstanding cache misses. Cache miss delay is 50 cycles
(regardless of address).

There are a total of 40 reservation stations. Reservation stations are not dedicated to a particular
functional unit so an instruction can move from any reservation stations to any functional unit.

Branch prediction is perfect.

! r1: Base address. (Each thread has own value.)
! r2: Stride, in bytes. (Same in all threads.)
! r3: Last value in array. (Same in all threads.)

LOOP:
lw r7, 0(r1) ! Load value.
add r1, r1, r2
beqz r7, SKIP ! Goto SKIP if r7 zero
addi r4, r4, #1
add r5, r5, r7

SKIP:
seq r6, r7, r3 ! Look for terminating value.
beqz r6, LOOP ! Branch taken if value not found.

The questions below ask for scenarios in which certain things become execution bottlenecks or
are operating well. The answers might specify the state of the cache (which lines are present),
the values in registers, values loaded from memory, etc. as long as they are not specified in the
comments and consistent with the code.

Continued on next page.

3



(a) Under what conditions would instruction fetch bandwidth limit performance? What is that
worst-case fetch bandwidth? Under what conditions would instruction fetch bandwidth be at a
maximum? What is the maximum fetch bandwidth? (8 pts)

Fetch bandwidth is the average number of useful instructions fetched per cycle. To determine fetch bandwidth one must
know how the instructions are aligned and whether the first branch is taken.

In a worst case LOOP & 0x3 == 3, that is, lw is the last instruction in a group and so each time it is fetched (after
the first iteration) three useless instructions come with it. If beqz r7, SKIP is always taken then the addi and add
following beqz will also be useless. In such an iteration five instructions are executed while 12 are fetched in three groups,
for a fetch bandwidth of 5/3 or about 1.67 instructions per fetch. (Instructions from only one thread are fetched in a
cycle, if all threads are active the per-thread fetch bandwidth is one quarter or about 0.417 instructions per cycle.)

Such worst case fetching will be the bottleneck if nothing else is. The one thing that could slow down the code above
is data cache misses. So, for fetch bandwidth to limit performance one must have the conditions described above plus no
cache misses.

(If there were lots of cache misses the reservation stations would fill, frequently stalling instruction fetch. In such a case
a fetch bandwidth of 5/3 instructions per cycle would be more than enough.)

Fetch bandwidth is at a maximum when the lw is the first instruction in an aligned group and the first branch is never
taken and there are no cache misses. In this case 7 instructions are fetched in two fetches for a bandwidth of 3.5 instructions
per cycle.

(b) Under what conditions would the round-robin thread selection policy limit performance? Which
thread selection policy would provide better performance? (6 pts)

One thread enjoys cache hits, while the other threads get only misses. The loop branch is always taken and the processor
has the ability to execute past multiple predicted branches. Frequently all reservation stations will be full, most with
instructions from the threads that missed, forcing stalls even when one thread could execute. Since only two outstanding
cache misses can be serviced there is no benefit to having multiple load instructions from a single thread issued.

The icount policy would provide better performance since the fetch mechanism would not choose those threads having
many instructions in reservation stations, as would threads waiting for the cache. Since reservation stations don’t fill other
threads are not slowed down.

(c) Consider the conditions under which the round-robin selection limits performance as asked for
above. Would the performance limit be as severe if the memory system could simultaneously service
more than two cache misses? Explain. (6 pts)

No, since time-consuming cache misses could be overlapped. Suppose the total number of cache misses needed to execute
the code above was fixed. (This would be the case if the cache were sufficiently large and no other code was running.)
A lower bound on the time to execute the code would be the time for the memory system to service the misses. Let M
denote the number of misses. If only two simultaneous misses could be serviced the lower bound is M

2 tmissdelay. The
lower bound would be nearly achieved if each time the memory finishes servicing a miss a new load instruction is ready (has
been issued and is waiting in a reservation station). If the memory system could handle 10 simultaneous misses the bound
would be M

10
tmissdelay. Since to achieve this bound a load instruction must be ready it makes sense to fetch instructions

from a thread even though it has a load is waiting for a miss. Therefore, increasing the number of simultaneous misses in
service would reduce the problems with round robin scheduling.

4



Problem 3: In a forwarding directory coherence protocol a miss by one processor to a block in an
exclusive state in another processor is serviced by having a message sent directly from the cache
holding the block to the one needing it. (Other messages are sent; since they are part of the solution
they can’t be described here.) Add forwarding to the directory cache coherence protocol presented
in the text. The new protocol should do the following:

• Forward for both read and write misses to exclusive blocks. On a read miss the exclusive
block should be changed to shared; of course for a write miss the exclusive block should
be changed to invalid.

• It’s possible that a block to be forwarded is evicted just before a forwarding message
arrives. The protocol should work correctly in this case.

• Be sure that a second read miss (at some other processor) after a block enters the
exclusive state is handled correctly.

• Be sure that it is not possible to have two caches simultaneously holding exclusive
copies of the same block for an unlimited amount of time. (Hint: This might occur in
an incomplete design if there are write misses at two different processors at the same
time.)

The solution should show new states and other information needed at the caches and memories, new
protocol messages, and new state transitions. State transitions should indicate how the directory
is changed.

Provide time diagrams showing states and messages sent for each of the situations indicated in
the bulleted items above. Show the messages and states, but do not show times (e.g., 12 cycles).
(20 pts)

New Protocol Messages

Message Name Path Cont. Purpose

Forward read request Memory to Cache PA Tells cache to forward.
Forward write request Memory to Cache PA Tells cache to forward.
Forwarded data shared Cache to Cache PAD Carries forwarded block.
Forwarded data exclusive Cache to Cache PAD Carries forwarded block.
Read forward complete Requester to Memory PAD Indicates forwarding completion.
Write forward complete Requester to Memory PA Indicates forwarding completion.

The letters P, A, and D, in the contents column above are abbreviations for processor, address, and data.

New Memory States

State Meaning

EtoE Forwarding of block to service write miss in progress.
EtoS Forwarding of block to service read miss in progress.

There are no new cache states but there are new cache state transitions.

5



New Memory State Transitions

Old State
Event
−−−−−→ New State Comments and actions.

Exclusive
Write miss
−−−−−−−−−→ EtoE Send forward write request to remote cache (owner). Set

owner to requester.

Exclusive
Read miss
−−−−−−−−−→ EtoS Put owner and requester in directory (they should be the only

two entries). Set owner to null. Send forward read request
to remote cache (former owner).

EtoE
Write forward complete
−−−−−−−−−−−−−−−−−−−→ Exclusive Forward complete.

EtoE
Data write back
−−−−−−−−−−−−−−→ Exclusive Eviction before forward message arrived. Write received data

to memory. Send data value reply message to new owner
(requester).

EtoS
Read forward complete
−−−−−−−−−−−−−−−−−−−→ Shared Forward complete. Write received data to memory.

EtoS
Data write back
−−−−−−−−−−−−−−→ Shared Eviction occurred before forward message arrived. Write re-

ceived data to memory. Remove owner from directory and
send data value reply message to remaining directory en-
try (the requester).

New Cache State Transitions

Old State
Event
−−−−−→ New State Comments and actions.

Exclusive
Forward write request
−−−−−−−−−−−−−−−−−−→ Invalid Send forwarded data exclusive message to requester.

Exclusive
Forward read request
−−−−−−−−−−−−−−−−−→ Shared Send forwarded data shared message to requester.

Not Pres.
Forwarded data exclusive
−−−−−−−−−−−−−−−−−−−−→ Exclusive Prepare new cache line and initialize with forwarded data.

Send write forward complete message to memory.

Not Pres.
Forwarded data shared
−−−−−−−−−−−−−−−−−−→ Shared Prepare new cache line and initialize with forwarded data.

Send read forward complete message to memory.

Not Pres.
Forward write request
−−−−−−−−−−−−−−−−−−→ NA Line was evicted, do nothing since memory will get data

write back sent during the eviction.

Not Pres.
Forward read request
−−−−−−−−−−−−−−−−−→ NA Line was evicted, do nothing since memory will get data

write back sent during the eviction.

In the table above Not Pres. indicates that the address specified in the message is not present in the cache. In the first
two rows where it is used a line is evicted, the state of the evicted line is not shown. In the second two rows the cache is
not changed, so there isn’t a current or next state.

Time Diagrams

To be added, eventually. If you would like to see it, ask.

6



Discussion

Under the forwarding protocol three messages bring data to a processor missing a block that is in an exclusive state
elsewhere: First the existing read miss or write miss message is sent from the cache suffering the miss to the home
memory. The home memory will respond with a new forward read request or forward write request message to the
cache holding the exclusive block (the remote cache) which will respond with a forwarded data shared or forwarded
data exclusive message to the original cache. Though the data has arrived, the job is not yet done.

An important question is what state to leave the memory in after it sends a forwarding message. To properly handle new
requests and an eviction of the exclusive lines two transition states will be added to the memory controller. The EtoE
state indicates that an exclusive block is being forwarded to another cache where it will be cached in the exclusive state.
Similarly, the EtoS indicates forwarding on a read miss.

Normally, the new states will be exited when the requesting processor acknowledges receipt of the line, using two new
messages: read forward complete and write forward complete, the former of which contains a copy of the block to
update memory.

NAK messages will be sent to third processors attempting to access the memory location while in state EtoE or EtoS;
they will have to retry. If the block is evicted from the remote cache before a forward request is received the memory will
receive the data write back and complete the original request normally and the remote cache will ignore the forward
request.

7



Problem 4: Answer each question below.

(a) Each line in the diagrams below shows, in program order, reads and writes issued by a processor.
The letter in parenthesis indicates the address, the value written is shown with an arrow. Position
indicates program order on one processor but not necessarily time or order between processors.
Before the code is run address a holds 1, address b holds 2, address c holds 3, and address e holds
4. After this initialization the memory at these addresses is only changed by the writes shown
below. (8 pts)

The solution is indicated in the diagrams below using this backhand font.

Indicate values returned by reads which could occur on a sequentially consistent memory system.
Write the values next to the reads.

Proc. 1: W(a)← 11 W(b)← 12 R(c)→3 W(e)← 14

Proc. 2: R(b)→12 R(a)→11 R(e)→14 W(c)← 13 R(b)→12

Indicate values returned by reads which could occur on a processor consistent (total store order)
memory system but not a sequentially consistent memory system.

Proc. 1: W(a)← 11 W(b)← 12 R(c)→13 W(e)← 14

Proc. 2: R(b)→2 R(a)→1 R(e)→4 W(c)← 13 R(b)→2

Indicate values returned by reads which could occur on a partial store order memory system but
not a processor consistent system.

Proc. 1: W(a)← 11 W(b)← 12 R(c)→3 W(e)← 14

Proc. 2: R(b)→12 R(a)→1 R(e)→4 W(c)← 13 R(b)→12

8



(b) Consider the following modification to the directory cache coherence protocol presented in the
text. On a write to a block in the shared state, rather than invalidating other shared copies, the
protocol will send the new value to each cache holding a shared copy. Is the memory system under
this protocol coherent? If not, provide an example. (8 pts)

The protocol is not coherent since the order of writes made by two processors close in time may be seen differently by the
two processors.

In the example below both processors write address a at the same time and then they execute two reads to that address.
On the first read each processor reads the value it wrote. In both processors, after the first read but before the second
the update messages arrives and so the second read returns the other processor’s value. Since two write orders are seen
the memory system is not coherent.

Proc. 1: W(a)← 1 R(a)→1 R(a)→2

Proc. 2: W(a)← 2 R(a)→2 R(a)→1

(c) A lock is implemented on a multiple-processor Tera MTA by a synchronizing store (using full/
empty bits) and on a multiprocessor using store-conditional and load linked instructions:

TEST:
ll r2, 0(r1)
bnez r2, TEST ! If locked, check again.
addi r2, r0, #1 ! It’s not locked! Prepare a "locked" value.
sc r2, 0(r1) ! Try to write locked value.
beqz r2, TEST ! If store failed, try again.

Suppose when the lock is held multiple processors simultaneously attempt to obtain the lock (and
so must wait). Compare the amount of memory traffic generated on the two machines over time.

After a long interval, the processor holding the lock releases it. Describe what happens, including
the amount of memory traffic generated, on the two machines. (8 pts)

When multiple processors attempt to obtain the lock both machines will generate memory traffic. The MP will initially
generate a small amount of traffic, one access per locker, but no traffic after that. The Tera will generate traffic for a
longer period of time (several accesses per locker, the number depending on the retry limit), but no traffic after that.

(In the MP the block holding the lock value is loaded into the cache and repeatedly tested. In the Tera the word will be
read from memory (along with the FE bit) and tested. Both the MP and Tera will spin (repeatedly recheck the lock).
While the MP spins it just checks the cached value, generating no memory traffic. Each time the Tera checks the lock it
will have re-load the value from memory, generating traffic (though the check is done by the hardware so CPU issue slots
are not used). After a certain number of failed attempts to find the needed FE bit, the Tera thread waiting for the lock
will set a trap bit for the word and wait, generating no more traffic.)

When the lock is relinquished the MP will generate a large amount of traffic, as cached values are invalidated from lockers’
caches and later as the lockers attempt to write the lock.

If the memory accesses instructions on the Tera have not yet given up, one will find the relinquished lock. There will be
no change in the rate of memory traffic. If, on the other hand, the threads have reached the retry limit then the thread
releasing the lock will trigger a trap and the trap handler will select one of the waiting threads. The memory traffic here
is generated by accesses to the waiting-locker list (the amount would be smaller than the MP traffic for a sufficiently large
number of lockers).

9



(d) Describe possible execution speed advantages or disadvantages of having smaller traces and
larger traces in a trace processor, assuming hardware cost is kept roughly constant (same number
of PEs, functional units, etc.). (8 pts)

Smaller traces: there would be fewer branches per trace and so there would be fewer distinct traces and a greater chance
of finding the needed trace in the trace cache (because of a shorter warm up time and because of fewer evictions).

Larger traces: Higher fetch bandwidth. More instructions would use local variables and so would benefit from the fastest
result bypass (in systems without data prediction). With more instructions in a PE more functional units could be kept
busy.

A disadvantage of larger traces (with the number of PEs held constant) is that, since a greater number of instructions are
being fetched, there would be more frequent reexecution due to next trace and data mispredictions.

(e) Both a finite context method data predictor and a stride data predictor could predict the value
of a loop index. Give two advantages of a stride data predictor for predicting a loop index. Be
specific. (8 pts)

Much less memory would be needed per loop. The number of iterations that could be predicted using an FCM predictor
is limited by its size. The FCM predictor would have to encounter a complete execution of the loop before it could start
making predictions.

10


