Name

Computer Architecture and Implementation

EE 7700-4
Final Examination

7 December 1998, 15:00-17:00 CST

Problem 1
Problem 2
Problem 3
Problem 4

Alias Exam Total

Problem 1: The program below runs on a processor using PAp branch prediction and a JRS
confidence estimator. The PAp branch predictor uses four branch outcomes (per branch history
register) and the tables are large enough so there is no interference between branch instructions.
The branch predictor uses two-bit saturating counters. The mispredict distance counter table has
one entry per instruction (also no interference). The high confidence threshold is five. All table
entries are zero when the code below starts executing.

/* 4 5 6 7 */
int *bt[] = { 1, 1, 0, O

01 2 3
0,1, 1,0, 1,1, 0, 0 }; /* 8-element array. */

3

for(i=0; i<100; i++) for(j=0; j<8; j++) if(bt[jl) x[i]++;

(a) Find the prediction accuracy of the branch in the if statement over the entire execution of the
code (i=0 through 99). (7 pts)

(b)) What is the PVP and sensitivity of the JRS confidence estimator on the branch in the if
statement from i=50 through i=997 (7 pts)

(¢) Is the program above a good demonstration of the JRS confidence estimator? If it’s not describe
how the program could be modified to better demonstrate the confidence estimator. (6 pts)

Problem 2: The DLX assembler program below examines elements of an array. The program
is to be run on a simultaneous multithreading processor based on a 4-way superscalar processor
similar to the one described in Tulleson 96. The program runs as four threads, the value of r1
when the code below starts is different in each thread.

The instruction fetch unit can fetch four consecutive and aligned instructions per cycle. Round-
robin thread selection is used.

There are an unlimited supply of functional units. The results from ALU operations and loads that
hit the cache are available in next cycle.

The memory system can support up to two outstanding cache misses. Cache miss delay is 50 cycles
(regardless of address).

There are a total of 40 reservation stations. Reservation stations are not dedicated to a particular
functional unit so an instruction can move from any reservation stations to any functional unit.

Branch prediction is perfect.

! rl: Base address. (Each thread has own value.)
! r2: Stride, in bytes. (Same in all threads.)
! r3: Last value in array. (Same in all threads.)

LOOP:

lw r7, 0(ril) | Load value.

add r1, r1, r2

beqz r7, SKIP I Goto SKIP if r7 zero

addi r4, r4, #1
add r5, r5, r7

SKIP:
seq r6, r7, r3 I Look for terminating value.
beqz r6, LOOP I Branch taken if value not found.

The questions below ask for scenarios in which certain things become execution bottlenecks or
are operating well. The answers might specify the state of the cache (which lines are present),
the values in registers, values loaded from memory, etc. as long as they are not specified in the
comments and consistent with the code.

(a) Under what conditions would instruction fetch bandwidth limit performance? What is that
worst-case fetch bandwidth? Under what conditions would instruction fetch bandwidth be at a
maximum? What is the maximum fetch bandwidth? (8 pts)

(b) Under what conditions would the round-robin thread selection policy limit performance? Which
thread selection policy would provide better performance? (6 pts)

(¢) Consider the conditions under which the round-robin selection limits performance as asked for
above. Would the performance limit be as severe if the memory system could simultaneously service
more than two cache misses? Explain. (6 pts)

Problem 3: In a forwarding directory coherence protocol a miss by one processor to a block in an
exclusive state in another processor is serviced by having a message sent directly from the cache
holding the block to the one needing it. (Other messages are sent; since they are part of the solution
they can’t be described here.) Add forwarding to the directory cache coherence protocol presented
in the text. The new protocol should do the following:

e Forward for both read and write misses to exclusive blocks. On a read miss the exclusive
block should be changed to shared; of course for a write miss the exclusive block should
be changed to invalid.

e It’s possible that a block to be forwarded is evicted just before a forwarding message
arrives. The protocol should work correctly in this case.

e Be sure that a second read miss (at some other processor) after a block enters the
exclusive state is handled correctly.

e Be sure that it is not possible to have two caches simultaneously holding exclusive
copies of the same block for an unlimited amount of time. (Hint: This might occur in
an incomplete design if there are write misses at two different processors at the same
time.)

The solution should show new states and other information needed at the caches and memories, new
protocol messages, and new state transitions. State transitions should indicate how the directory
is changed.

Provide time diagrams showing states and messages sent for each of the situations indicated in
the bulleted items above. Show the messages and states, but do not show times (e.g., 12 cycles).
(20 pts)

Problem 4: Answer each question below.

(a) Each line in the diagrams below shows, in program order, reads and writes issued by a processor.
The letter in parenthesis indicates the address, the value written is shown with an arrow. Position
indicates program order on one processor but not necessarily time or order between processors.
Before the code is run address a holds 1, address b holds 2, address ¢ holds 3, and address e holds
4. After this initialization the memory at these addresses is only changed by the writes shown
below. (8 pts)

Indicate values returned by reads which could occur on a sequentially consistent memory system.
Write the values next to the reads.

Proc. 1: W(a)«— 11 W(b)— 12 R(c) W(e)— 14
Proc. 2: R(b) R(a) R(e) W(c)— 13 R(b)

Indicate values returned by reads which could occur on a processor consistent (total store order)
memory system but not a sequentially consistent memory system.

Proc. 1: W(a)«— 11 W(b)— 12 R(c) W(e)— 14
Proc. 2: R(b) R(a) R(e) W(c)— 13 R(b)

Indicate values returned by reads which could occur on a partial store order memory system but
not a processor consistent system.

Proc. 1: W(a)— 11 W(b)«— 12 R(c) W(e)«— 14
Proc. 2: R(b) R(a) R(e) W(c)— 13 R(b)

(b) Consider the following modification to the directory cache coherence protocol presented in the
text. On a write to a block in the shared state, rather than invalidating other shared copies, the
protocol will send the new value to each cache holding a shared copy. Is the memory system under
this protocol coherent? If not, provide an example. (8 pts)

(¢) A lock is implemented on a multiple-processor Tera MTA by a synchronizing store (using full/
empty bits) and on a multiprocessor using store-conditional and load linked instructions:

TEST:
11 r2, 0(r1l)
bnez r2, TEST
addi r2, r0, #1
sc r2, 0(r1)
beqz r2, TEST

If locked, check again.

It’s not locked! Prepare a "locked" value.
Try to write locked value.

If store failed, try again.

Suppose when the lock is held multiple processors simultaneously attempt to obtain the lock (and
so must wait). Compare the amount of memory traffic generated on the two machines over time.

After a long interval, the processor holding the lock releases it. Describe what happens, including
the amount of memory traffic generated, on the two machines. (8 pts)

(d) Describe possible execution speed advantages or disadvantages of having smaller traces and
larger traces in a trace processor, assuming hardware cost is kept roughly constant (same number
of PEs, functional units, etc.). (8 pts)

(e) Both a finite context method data predictor and a stride data predictor could predict the value
of a loop index. Give two advantages of a stride data predictor for predicting a loop index. Be
specific. (8 pts)

