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Block Ciphered Systems With Erroneous Ciphertexts
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Abstract—TIt has long been held that errors in received noisy ci-
phertexts should be eliminated using as many as possible powerful
error correcting codes in order to reduce the avalanche effect on
legitimate users’ performance in block ciphered systems. However,
the negative effect of erroneous ciphertexts on cryptanalysis by an
eavesdropper has not been well understood, nor the possible mea-
surable trade-off between security enhancement and performance
degradation under noisy ciphertexts. To address these questions,
we have launched a case study in this paper using Data Encryp-
tion Standard (DES)-based block ciphers operating in cipher feed-
back (CFB) mode to show quantitatively the pros and cons of ex-
ploiting voluntarily or nonvoluntarily introduced binary errors in
ciphertexts of block ciphered systems using our proposed compar-
ison metrics. A serially concatenated scheme with both outer and
inner encoder-encipher pairs is proposed which allows us to quan-
titatively reveal the sacrifice made by legitimate users in its postde-
cryption capacity, as well as the security improvement factor (SIF)
which reflects the additionally required plaintext-ciphertext pairs
for eavesdropper’s known plaintext attack, in the presence of noise
in ciphertexts. Simulation results demonstrate the accuracy of de-
rived approximations of the postdecryption performance for the
legitimate receiver.

Index Terms—Block ciphered systems, concatenated encoding-
encryption, linear cryptanalysis, noisy ciphertexts, postdecryption
performance.

I. INTRODUCTION

S WIRELESS devices and networks have become more

and more ubiquitous, security issues of underlying sys-

tems shall be addressed as one of the foremost concerns of the
integral solution to system and network design. There are many
aspects on security issues in general [1]. In this paper our atten-
tion is focused on the confidentiality issues of communications.
One of the common practices behind those widely used
cryptal primitives in wireless networks is to either separate
crypto blocks from physical layer with the aim of getting error
free ciphertexts at a legitimate receiver [2] or put stream-ci-
phered encryption right after coded modulation block [3].
The rationale is because of the diffusion property which any
strong block cipher should satisfy [4], stipulating that a single

Manuscript received May 22, 2012; revised December 22, 2012; accepted
February 06, 2013. Date of publication February 25, 2013; date of current ver-
sion March 11, 2013. The associate editor coordinating the review of this man-
uscript and approving it for publication was Dr. Kah Chan Teh.

S. Wei is with the School of Electrical Engineering and Computer Science,
Louisiana State University, Baton Rouge, LA 70803 USA (e-mail: swei@ece.
Isu.edu).

J. Wang, R. Yin, and J. Yuan are with the Department of Elec-
tronic Engineering, Tsinghua University, Beijing, 100084, China (e-mail:
jian-wang@tsinghua.edu.cn; jyuan@tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2013.2248724

bit change to a block ciphertext must result in significant and
random-looking changes to the decrypted messages. In average,
one half of the decrypted bits should change whenever a single
input bit to the decryption device is flipped. Consequently, there
will be severe error propagation in encryption systems if erro-
neous ciphertexts are received, which explains why encryption
and encoding are put in such a way as described above.

Recently, the effects of channel error on the throughput
of encryption system have received more and more atten-
tion [5]-[10]. Nonetheless, most works on studying how the
physical channel quality worsens the reliability at Bob rely
on extensive simulations. Very few analytical study on this
issue exists in literature. More importantly, there is one critical
missing component in existing works, namely, the study of
consequences of having erroneous ciphertexts on Eve’s efforts
in her cryptanalysis. Intuitively, erroneous ciphertexts received
by Eve could also make her attack more difficult. However, to
the best of our knowledge, very few works in literature have
investigated how noise in ciphertexts could further substantiate
Eve’s efforts engaged in cryptanalysis.

Therefore, one immediate question that needs to be addressed
is: If we are willing to sacrifice the postdecryption system per-
formance for legitimate users to some degree, how much addi-
tional gain could we attain from security perspective by having
some erroneous ciphertexts due to either physical channel noise
or some intentionally added interference,! and what is the proper
way of reaping such security benefits? The primary objective of
this work is to answer these questions by demonstrating both
pros and cons in exploiting erroneous ciphertexts in block-ci-
phered systems.

To accomplish the precedent goals, we adopt a DES based
block ciphered system working in cipher feedback (CFB) mode,
and then investigate and quantify the effect of noise in received
ciphertexts on both cryptanalysis at an eavesdropper and the
postdecryption quality of recovered plaintext bits at Bob. The
noise in binary ciphertexts is characterized by bit flipping prob-
ability, namely, the cross-over probability, of binary symmetric
channels (BSC) between transmitted ciphertexts and received
(eavesdropped) ciphertexts. The motivation of adopting BSC
channel is due to its simplicity and also its wide application in
modeling postdecoding errors from received ciphertexts, as well
as its characterization of intentionally added independent binary
noise in ciphertexts.

For security metric, we adopt the number of plaintext and
ciphertext pairs required in linear cryptanalysis by an eaves-
dropper (Eve). The average information bit error rate (BER)

IIn fact, in some recent designs of encryption algorithms, deliberate errors
are used to enhance the security [11], [12].
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after decryption at the legitimate receiver is taken as a perfor-
mance metric. To further quantify the security enhancement, we
propose security improving factor (SIF) which is defined as the
ratio of known plain-ciphertext pairs for the case with errors in
ciphertexts over that without errors. The degradation of perfor-
mance is characterized by either the information BER normal-
ized by BSC cross-over probability, or the factor of degradation
of achieved postdecryption capacity.

DES is a symmetric key encryption cipher which has plain-
texts and ciphertexts of size 64-bit with the key length of 56 bits.
The rationale behind selecting DES as the block cipher in our
case study is because of its widely known and mature crypt-
analysis techniques [13], [14], namely, linear cryptanalysis and
differential cryptanalysis. CFB mode is one of the operational
modes that can be used to derive a key stream from block ciphers
like DES and has also been considered in wireless communica-
tions [9], [15]. The reasoning for adoption of CFB mode, rather
than counter-mode, is exactly because of its introduced error
propagation which will certainly deteriorate postdecryption per-
formance, but also pose a problem for cryptanalysis, whose
trade-off is what we are going to characterize. Recently the idea
of intentionally introducing noise in ciphertexts together with
error propagation prone block chaining mode has also been ex-
plored in Error Correction Based Cipher (ECBC) [16], [17].

Three encryption systems are proposed with progressively in-
creasing complexity and capability. They are DES only (DC),
DES concatenated with Reed Solomon encoding (DCRS), and
DES concatenated with RS coding and encrypted S-box diffu-
sion (DCRSS). Selection of Reed Solomon coding is because of
its power in correcting burst errors caused by inverse of S-box
in the presence of noise in ciphertexts, and the off-the-shelf ana-
lytical results on evaluating its decoding performance. We have
found the required known plain-cipher text pairs in each system
for linear attack by Eve. In addition, performance analysis in
terms of decoded information bit error probability for Bob, the
legitimate receiver, has been conducted for each system, whose
accuracy is later verified by simulation results.

Towards the end of our study, a serially concatenated scheme
with both outer and inner encoder-encipher pairs is proposed
which allows us to quantitatively reveal the sacrifice made by
legitimate users in its postdecryption capacity, as well as the ad-
ditional SIF gains, both of which are contributed by remaining
noise in ciphertexts. In particular, some cryptanalysis method
has been developed to exploit the linear relationship inherent in
channel codewords before the block ciphering operation. Our
proposed concatenated scheme carries the same spirit as the
concatenation coding which serves the sole purpose of error cor-
rection [18]. As a contrast, the concatenated encoding-encryp-
tion approach proposed here could be deemed as the one making
balance between security and error correction.

To the best of our knowledge, the most relevant to ours is
[19] where an encoding-then-encryption framework was also
proposed aiming at further enhancing security of the under-
lying stream-ciphers by exploiting Wyner-type wiretap channel
coding [20], [21] and erroneous ciphertexts. The consideration
of stream ciphers apparently is due to the concerns of nega-
tive consequence of avalanche effect on legitimate users’ per-
formance. In addition, they also focus on the known-plain text

attack, but analyze the security from an information theoretical
point of view, namely, the condition entropy metric as initially
proposed in [20].

As a comparison, our work is a case study with a proposed
outer-inner encoding-encipher framework including the chosen
cipher, its cryptanalysis, error correction coding and encrypted
S-box. Such framework is not as general as the one considered in
[19] which is formulated in an information theoretic context in
a stream-ciphered system. However, despite the specifications
carried in our case study, our approach does provide a compar-
ison framework under which performance degradation in terms
of the normalized postdecryption capacity or error rate is mea-
sured against normalized security enhancement (e.g. SIF). More
importantly, our case study demonstrates in a quantitative way
that even in a block ciphered system noise in ciphertexts could
be exploited to further enhance security at the cost of degraded
legitimate user’s performance.

Further commented is the generality of the principle devel-
oped here on reliability and security analysis for block ciphers,
which function under a chaining mode in the presence of noise
in ciphertexts. For security analysis under linear attacks, the
equivalent channel error probability is reflected in the proba-
bility of a correct input to the block cipher. More precisely, the
bias of the probability of satisfying the linear Boolean func-
tion is affected by the bit-wise error probability for those in-
volved active bits, which is further determined by the equiva-
lent channel error probability. For the analysis of information bit
error probability at Bob after decryption, the properties related
with avalanche effect of block ciphering [22], as well as the in-
formation bit error probability after channel decoding should be
exploited. These principles could be applied to similar trade-off
analysis in other block ciphered communication systems where
different channel coder or encryption primitive is adopted.

II. DESCRIPTION OF THREE ENCRYPTION SYSTEMS

In this section, we describe the three encryption systems that
will be analyzed. All the systems employ DES based block ci-
phers in cipher feedback (CFB) mode.

A. DES Encryption in CFB Mode (DC)
The first system uses DES in CFB mode. It encrypts 64-bit

plain text each time. As is shown in Fig. 1(a), at time n, the
64-bit ciphertext ¢,, is produced by Xoring the plaintext p,, with
the key-stream s,,:

)

CTI, = pn @ Sn~

The keystream s,, is obtained by encrypting the previous cipher-
text block ¢, _; with DES, and have the following iterative re-
lationship:

Sp = DESIC(Cnfl)- (2)
For the first keystream s, the previous ciphertext does not exist.
Therefore an initialization vector IV is used, i.e.,c_1 = I'V.
The ciphertext ¢, is transmitted to the receiving point and
may be intercepted by the eavesdropper. Here we define two
different channels: channel, and channel.. channely is the
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Fig. 1. Cipher feedback (CFB) mode of the DES.

equivalent binary symmetric channel (BSC) between the le-
gitimate parties and channel, represents the BSC channel via
which a wire-tapper has access to the ciphertext, whose cross-
over probabilities are v and a g, respectively. Assume that the
ciphertext obtained by the legitimate receiver is é,,. ¢, may not
be equal to ¢,, due to the error introduced by channely,. Then at
the receiving end the following transformation is applied to é,,
to recover the original message p,, .

g’n = DESk(énfl)a pn - (An S '§n (3)
Similarly, we assume the wire-tapper can intercept the trans-
mitted ciphertext ¢, . via channel..

For compactness, the DES CFB encryption and decryption
are represented with the block E and D respectively. In this
way, the system in Fig. 1(a) is shown again in Fig. 1(b). In
the following descriptions of other systems, we adopt this
representation.

B. DES Encryption With RS Code (DCRS)

Since DES decryption in CFB mode is sensitive to bit er-
rors induced in ciphertexts, the system in Fig. 1 has severe error
propagation, thereby degrading its end-to-end performance. To
overcome this problem, channel codes can be used to correct er-
rors in the ciphertexts. In this paper, we adopt the Reed-Solomon
(RS) codes [23] and thus obtain the system shown in Fig. 2(a).
Reed-Solomon codes are maximum distance separable (MDS)
codes with good burst error correcting capability, which is ex-
ploited to cope with burst errors introduced in the inverse non-
linear operation for the next scheme with encrypted S-box.

1) RS Codes: We consider (M, L) systematic RS codes over
GF(28), where L denotes the number of data symbols being
encoded and M denotes number of symbols in the encoded
block. The symbol-error correcting capability of (M, L) codes
ist = | (M — L)/2] [23]. The L. x M generator matrix has
the following form G = [I P], where I is a . x L iden-
tity matrix and P is a matrix of dimension L x (M — L).
The codewords can be divided into two parts. The first L sym-
bols denoted by v} = (vo,v1 ., vL_1.,) are the same
as the corresponding message symbols ¢,,, i.c., v,Il = ¢,. The
following M — L symbols are the parity symbols which are

P ?,
p” ; n
—3 —

channel,

(b)
Fig. 2. (a) CFB mode of the DES with RS channel code. (b) CFB mode of the
DES with RS channel code and secret substitution box.

eavesdropper

denoted by v} = (vL{1.n,V1m, s vsr—1.4). The following
linear equation features the relationship between these two parts
of a codeword:

vl =l P. @)

2) Descriptions of the System: As is shown in Fig. 2(a), the
64-bit ciphertext of DES is divided into . = 8 bytes ¢, =
(¢oms Clms*+, CL—1,n). Then ¢, is used as the input of the RS
code. In this paper, a (M, L) = (16,8) RS code over GF(2%) is
adopted. After RS encoding, 16-byte encoded block is obtained
as Un, = (V0.nsV1m, "+ Uar—1,n), which is sent to the receiver
via channel channel,. At the receiving end the received cipher-
text 0y, is first decoded by using Berlekamp—Massey algorithm
[23] and then decrypted to obtain the plaintext p, .

C. DES Encryption With RS Codes and Secret Sbox (DCRSS)

When an error correcting code is put after enciphering, not
only does that help alleviate the effect of channel distortion at
Bob, but also result in an undesired effect in terms of security
against Eve whose cryptanalysis is made easier thanks to the
error correction to the noisy ciphertexts. Therefore, a second
encrypted nonlinear operation (e.g. encrypted S-box) has to be
concatenated after the channel encoder and designed in such a
way that the decryption efforts at the eavesdropper is signif-
icantly increased without compromising the decoding perfor-
mance at the legitimate receiver noticeably. This goal can only
be attained by exploiting the characteristic of a properly selected
channel error correcting code and the second encryption de-
vice. In this paper, we take advantage of MDS property of Reed
Solomon code, as well as the strong nonlinearity in the S-box de-
signed for Advanced Encryption Standard (AES) cipher, which
allows us to achieve a better trade-off between reliability and
security, as shown later in Section IV.

More specifically, for the system shown in Fig. 2(a), we add
a secret substitution box (Sbox) after the RS coding and thus
obtain the system in Fig. 2(b). This modification is to makes
eavesdroppers not able to access ¢, or ¢,, which is the 64-bit
ciphertext of DES and can be used to attack the system. There-
fore, the system in Fig. 2(b) is more secure in comparison with
the other two systems. The secret Sbox is a one-to-one mapping
under the control of a 128-bit secret key £;. In this paper, we
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adopt the well known Sbox used in Advanced Encryption Stan-
dard (AES) as our Sbox [24], which transforms one byte into
another byte. It first computes the multiplicative inverse of the
input byte in finite field GF(2®) and then use a affine transfor-
mation to obtain the output byte. The 128-bit secret key %1 can
be divided into M = 16 bytes ]\71 = (kl,(]: ]{,‘1’1, Ty k/l,ﬂ/ffl),
then the secret Sbox can be formulated as follows

bi,'n = S(’”i,n) 2] kl,i~ (5)

At the receiving end, the inverse S-box S~ should be applied
before RS decoding after the key stream is added back to the
ciphertext. As S-box operates on byte basis, the bit error event
out of the channel will be thus restricted over each byte after the
inverse operation of the S-box at Bob. Thus adding an encrypted
S-box after RS encoding does not affect the symbol-wise error
probability.

III. ANALYSIS OF CHANNEL ERROR EFFECTS ON SECURITY
AND RELIABILITY

In this section, we theoretically analyze the effects of errors in
ciphertexts on security and reliability of the three systems. For
security analysis, we consider the known plaintext attack for DC
and DCRS, and both known plaintext attack and ciphertext only
attack for DCRSS for its outer cipher (DES) and inner cipher
(keyed S-box), respectively. In these attacking approaches, Eve
has an oracle to query whose answers go through a noisy binary
symmetric channel where noise sequences are introduced either
voluntarily as an integral part of the underlying block ciphered
system or nonvoluntarily by a physical channel. The security
enhancement is measured quantitatively by using linear crypt-
analysis. For the reliability analysis, the theoretically estimated
information bit error rate (BER) between the legitimate parties
are obtained.

A. DES Encryption in CFB Mode

1) Security Enhancement Against Wire-Tap Attack: We ana-
lyze the security enhancement for the system in Fig. 1(b). First,
we provide a brief description on the classical linear cryptanal-
ysis [14] against this system where there are no errors in re-
ceived ciphertexts, i.e., &, . = ¢, With zero cross-over prob-
ability in the corresponding BSC channel. The eavesdropper
can apply linear cryptanalysis to the system as follows. Since
the consecutive ciphertext of DES ¢,, is transmitted by wire-
less channel, it can be intercepted by the eavesdropper. Assume
that the eavesdropper can also get the corresponding plaintext
P, 1.€., the eavesdropper can get many (p,,, ¢, ) pairs. Then
the input and output of DES can be computed as (7, $,) =
(Cho1.Dn & cp), that is

Sn = Pn @ Cp = DESk(Cr,yfl). (6)

Linear cryptanalysis exploits high probability occurrences of
linear equations involving bits in r,, and s, to attack DES and
obtain some key bits [25]. The linear equations to be used have
the following form:

silgslelg . gslidgrlilgrlklg. geld =0, (7)

where sgf:”] represents the ,,-th bit of s,,.

Generally, the complexity of linear cryptanalysis could be
characterized by the data required to mount the attack. Assume
the probability that the above equation holds is Py, The bias
from 1/2 of Pr, denoted by ¢ = |Pr — 0.5] is called the linear
probability bias. Then it requires about (1/¢2)(7y,, $,) pairs to
mount a successful attack [25]. For the attack against DES,
247(7*7,,, $n) pairs are needed to achieve a desired success prob-
ability [25]. Note that two consecutive transmitted data blocks
¢n—1 and ¢, are needed in order to obtain one (7, s,,) pair. For
simplicity, assume that a transmitted data block is just used once
in computing the (r,,, s,) pair, thus it needs about N = 243
transmitted data blocks to mount a successful attack.

Next we analyze the security enhancement in the presence
of errors in received ciphertexts. Due to noise, the intercepted
transmitted data blocks ¢, . and é,_; . may have errors, which
leads to a wrong (7., $5,) pair, i.e., s, # DESy(ry,). The eaves-
dropper doesn’t know whether a (7, s,,) pair is wrong or not,
and thus she has to mount linear cryptanalysis all the same.
This affects the probability that the linear equation holds. In this
case, the complexity of the attack should be determined by the
changed probability, which is computed below.

Assume that the bit error rate of BSC channel is «:g, the input
and output of DES computed by eavesdropper is denoted by
(Tres Sne). Since (rrne, Sne) = (én—t1.e,Pn @ Cn.) and the
known plaintext p,, does not have bit error, the error bits in
7n,e and s, . are just induced by the corresponding error bits
in é,_1 . and ¢, .. The bit correct probability for bits in ¢, _1 ¢
or ¢, . is 1 — ag, therefore we have

®
(€))

n.e

P(s{;’“} :5{”]) =l—-apg. z=12,---,u

P (’7[1]”] = ’Lj,vé]> =1- op, Y= 1: 25 Y

Then we substitute b[,f] in (7) by a{fe] and 7£{ o) by rﬁf%] The
following expression is obtained:

sidse-esplenllentle. cerll=0 0
The eavesdropper just uses (10) to mount the linear attack. To
estimate the complexity of attack, we need to compute the linear
probability bias of (10). According to Piling-Up Lemma [13],
[14], this linear probability bias €. can be calculated as

(1 —ap —0.5)"

g, =24
=(1 - 2ag)"“te

(11)

where € = | Py, — 0.5] is the linear probability bias of (7), i.e., it
is the linear probability bias when there is no wire-tap channel
error.

We can apply similar analysis as that without noise in cipher-
text to estimate the data needed, and the number of transmitted
data blocks required to mount a successful attack is
e R —
g2 220ut0)(1 — ap — 0.5)2(ut0)

N

= (1= 2ap)20) (12)

Npc =

where N is the number of transmitted blocks required when
there is no wire-tap channel error, « 4 v is the number of bits
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involved in the linear (7). We find that the number of blocks re-
quired is (1/22+)(1 — ag — 0.5)2(“t)) times larger than
N in the presence of channel errors as featured by ag . There-
fore we can use the quantity (1/22(“+*)(1 — ag — 0.5)2(u+v))
to measure the security enhancement induced by the wire-tap
channel. Since the effective linear equations for DES block ci-
pher involve about 15 bits, we choose v 4+ v = 15 in this paper.

2) Bit Error Rate Analysis: Let Fy denote the bit error event
in restoring the plaintext p,, when compared with the trans-
mitted plaintext p,,. From deciphering of DES block cipher, the
deciphered text p,, satisfies: p, = DESg(én_1) @ é,. Due
to the highly nonlinear property as captured by its diffusion
characteristic [26] of DES cipher, if there are bit errors in re-
ceived cipher text ¢, _1 as an DES cipher input, the average bit
error probability in the output ciphertext can be approximated
as 0.5, i.e. P(Ey|én_1 # cn_1) = 0.5. When no error oc-
curs in receiving the ciphertext ¢,,_1, i.e. ¢,_1 = ¢,_1, the bit
error rate of p,, is the same as the bit error rate of ¢,,, which
is determined by the channel cross over probability ap, i.e.
P(Ey|én-1 = ¢n—1) = ap. Therefore, we have

PDC(Eb) =P (Eb|én—1 7£ cn—l) P(én—l 7£ Cn—l)
+ P(Eb|énfl = Cnfl) P(énfl = Cnfl)
=0.5(1 - (1 - ap)®) +ap(l —ap)®*

=0.5— (0.5 —ag)(1 —ag)*t, (13)

where L = 8.

B. DES Encryption With RS Code

1) Security Enhancement Against Wire-Tap Attack: We ana-
lyze the security enhancement for the system in Fig. 2(a). With
RS codes in this system, the eavesdropper can correct some
channel errors. In addition, as the eavesdropper can detect RS
decoder failure, she can filter out some erroneous transmitted
data blocks. In this way, the required transmitted data blocks to
mount a successful attack is decreased.

With the intercepted data block 4, ., the eavesdropper can
obtain the decoded block ¢;, ... A (16,8) Reed-Solomon code can
correct up to ¢ = 4 symbol errors in each codeword ¥, . [23].
Therefore if the transmitted codeword #,, . suffers 4 or fewer
symbol errors, the decoded block ¢, . is equal to ¢,,. That is

P(én,e = Cn) =V

> (") -0 ey’

s=0

x [(1 - ap)?] o

(14)

On the other hand, if ¢,, . suffers more than 4 symbol errors, RS
decoder failure may happen. According to the results in [27], the
probability of decoder failure is Py > 1 — L =1 — 4 ~ 0.96.
In addition, the undetected error under our selected RS code is
4.18 x 10~7 [28], indicating Eve can nearly ignore undetected
errors, thereby focusing on corrected errors and decoding fail-
ures. Therefore the eavesdropper can find out the erroneous de-
coded block ¢, . and then choose to either avoid it in the linear

cryptanalysis or rather keep the information bits only for these
blocks.

In the former case where failed blocks are discarded, which
happens once 4y, . suffers more than 4 symbol errors, and under
the additional assumption that two consecutive decoded blocks
én—1. and &, . are independent which holds due to indepen-
dent channel errors, the probability that ¢, . and ¢, . are both
correctly decodedis Pr = P(én—1.c = ¢n1,6n.e = n) & V2,
Consequently, the number of ¢, ., required to mount a successful
attack is

1 1
NRS,l = P—(,N% —N.

= (15)

where N is defined in the same way as in (12).

In the later case where Eve keeps the information bits of the
systematic code even in the presence of decoding failure, the av-
erage decoded information bit error probability is reduced from
ag to ngs) = (1 — V)ag. With the similar technique as
that for the uncoded system by applying Piling-Up Lemma [13],
[14], we obtain the number of transmitted data blocks required
to mount a successful attack for coded system without dropping
the failed codewords as

N

N = .
RS2 (1 _ 2P(S’}§'S))2(u+v)

(16)

To drop or to keep the failed packets is subject to the compar-
ison between Ngrg 1 and Nggs 2, from which Eve always gets
the smaller one. As a result, the ultimately required number of
pairs of plain-cipher text pairs is

]VDCRS = IIliIl{NRS’l, .ZVRS,Q}
N

" max {Vz, (1- 2P£,}§'S))2(“+v)} '

(17)

2) Bit Error Rate Analysis: The bit error rate analysis for
coded systems is similar as that for uncoded systems. If there
are errors in the input ¢,,_1 to a DES cipher under CFB mode,
the output cipher text has 0.5 error probability. Due to RS de-
coding, the probability P(é,_1 # ¢,—1) can be approximated
by 1 — Vg, where V3 is the probability of successful decoding
of RS code for the channel between Alice and Bob, which can
be obtained as of (14) by replacing «vg, with &, the cross over
probability of the BSC channel to Bob.

When no error occurs in the received cipher text ¢,, 1, leading
us to P(Fy|én—1 = ¢—1) which is essentially the information
bit error probability under RS decoding at Bob. Under the given
systematic RS code, the decoder could directly pick the received
information bit when a decoding failure occurs. Hence we have
an approximation for the information bit error probability under
RS decoding, which is P(Ey|én—1 = ¢n—1) & (1= Vg)ag. As
a result, the overall information bit error probability under the
coded DES cipher with CFB mode is

Ppcors(Ey) =P (Ey|én 1 # o 1) P(én 1 # ¢n1)
+P(Eb|én71 = cn,fl)P(énfl = Cnfl)
%05(1 — VB) + P (Eb‘én,fl = (1n,1) Vg

~0.5(1 — Vg)+ ap(l — Vs)Vs (18)
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C. DES Encryption With RS Code and Secret Shox

1) Attack Against the Secret Sbox: For the system shown
in Fig. 2(b), the secret Sboxes are employed after RS codes.
Thus, there exist linear relationships between the input bits to
the Sbox. The eavesdropper can use these linear relationships
to mount an attack on the secret Sbox and get some k7 bits [3].
In this section, we consider this kind of attack.

Firs}, the wire-tap channel noise is not considered, i.e., we as-
sume by, . = b,. In this case, we describe the linear cryptanal-
ysis against this system and give the complexity of the attack.
The linear correlation between bits in RS encoded codeword
vy, have been shown in (4). The relationship between the trans-
mitted codeword b,, and the RS encoded codeword v,, is given
as below:

bi,n - S('Ui,n) b kl,i~ (19)

For simplicity, we denote S(v; ) by S; .. Thus (19) can be
rewritten as

bin =3Sin® ki (20

With the analysis in (4) and (20), we get the relationships
between the bits in the transmitted codeword b,,, which are
shown in Fig. 3. The attacker can exploit some linear ap-
proximations between b. = (bg.. b1, . br_1,) and
by = (bpn, b1, bar—1,,) to mount linear cryptanalysis.
With such a cryptanalysis, the attacker can get some parts of the
k1 bits. The required linear approximations have the following
form:

e g plesl bl = B o kP e R @1y

2

where {a1,---,ax} and {dy,---,d,} are the active bits in-
volved in linear cryptanalysis from the ciphertext and key
sequence, respectively.

To find equation of the form (21), we first analyze the linear
approximations between the inputs to the matrix P, v} and the
outputs, v7. Since matrix P represents a linear transformation,
there exist linear relations
ol g gzl o gl =g,

qi;n qz2,n Qn,n

1:G2. - qn € [0, M — 1],
(22)

which holds with the probability 1. In (22), 4; =

(%17 ai2,---,ai0,) denotes the active bits positions for the
g;-th symbol and U([f,l = U,[Ia,,l le 'U([I[ff’rf] DD u,[lang]

denotes the Boolean summation of the active bits of the g;-th

symbol v, ,. Corresponding to (22), the following linear
approximations of Sbox are sought and constructed:

[Ae] — glJw] —
Vo =0y w=1,2,--- h.

(23)

where [J,,] denotes the active bits to be approximated in the
attacked Sbox. Since the Sbox is nonlinear, the probability that
these equations hold is less than 1. The probability bias of these
equations are denoted by ¢ .,. Then we substitute vfﬁ’j;} in (22)
by Sq‘,hf,},, and obtain the following expression:

1}

Sl e skl .. e sl =o. (24)
Further, by using (20), we get
(bfhm D kl,fll)[‘h] D (qum @ kl:qz)[h]
DD (bfl;,,,n, 52 kl,q;,,)[‘]h1 =0. (2%

This is just the required equation in the form of (21). We next
compute the linear probability bias of this equation. According
to Piling-Up Lemma, the linear probability bias of (25) can be
calculated as

h
e =2"x [] esw x (1 - 0.5).

w=1

(26)

where £ ,, represents the probability bias of the Sbox. For AES
Sbox, the probability biasiszg ., < £§%* = 274 [24]. And A in
(26) is the number of Sbox that needs to be approximated. From
(22), we find that A is the number of input and output bytes that
are linearly correlated. The value of /i represents the diffusion
property of matrix P.

We qualitatively describe the diffusion property of ma-
trix P as follows. Assume two input values of matrix P,
ay and ag satisfy ag ¢ as = (Ag,Aq,---,Ap_1). The
two corresponding output values are 31 and 32, 1 § 2 =
(Ap,Ary1,- . Apr—1). Interms of RS encoder, (e, 1) and
(g, B2) are both RS codewords. Since RS codes are linear
block codes, (w1 & aa, 31 & F2) = (Ao, Ay, Ap1)
are also RS codewords. RS codes are MDS codes. Therefore
there are at least (M — L + 1 = L + 1)A; that is nonzero.
Now we analyze the diffusion property of matrix P. When
the input value of P changes from «; to s, the input dif-
ference (Ag, Ay, -+, Ap_1) diffuse to output difference
(Ap,Ary1, -, Apr_1). The total number of changed sym-
bols is at least L + 1. Intuitively, there are at least L + 1 input
and output symbols of P that are correlated. In fact, the total
number of changed symbols is defined as the branch number of
matrix P in cryptography:

B = QIIQLIQ {HANA € {Ap, Ar, -+ Apr 1 ) 27

According to the results in [14], [29], for (2L, L) RS codes, the
branch number of matrix P is B = L + 1. Thus, the number of
Sbox that needs to be approximated is & > L + 1, and the (26)

can be further written as
55 < 2L (EgLa:!J)L"'l — 2—3L—4. (28)

Then it requires at least Ng = (1/¢2) = 20148 = 256 trans-
mitted blocks &,, to mount a successful linear attack. Ns can be
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further written as Ng = 28V, where IV is the number of data
blocks needed for the attack on DES in CFB mode.

Now we analyze the security enhancement in the presence
of wire-tap channel errors. Assume that there are totally H bits
involved in (22). Then with the similar analysis as to the system
in Fig. 2(a), the number of IBT,,,Q required is

1
N = N,
S T 22H(] — gy — 0.5)2H
28
= = N 2
(1= 20p)2H 29)

For each Sbox, there is at least one bit involved in (22). The
number of Sbox need to be approximated is 2 > L + 1. There-
fore H > L 4 1. Thus we finally get a lower bound on the
number of b,, . required as
rl 28
Ng,. > WN.

2) Attack Against the Entire System: The attack against the
entire system shown in Fig. 2(b) consists of two steps. In the first
step, the eavesdropper has to mount a known-ciphertext-only
attack on the secret Sbox and get the key 4. In the second step,
with the key k1, the eavesdropper launches a known plaintext
attack by applying linear cryptanalysis to DES in CFB mode
and get the key k. The attack in this step is very similar to the
attack on the system in Fig. 2(a).

What we need to reevaluate is the resulting average bit error
probability after the inverse operation of Sbox. For a powerful
Sbox adopted in this work, the average bit error probability due
to the channel distortion and inverse operation of Sbox is

(30)

€2))

where the first term is the probability of a symbol (8-bit) error
over the BSC channel, as whenever there is an error in the input
8-bit symbol of the Sbox, the output surely has an error. The
second term e, denotes the average probability per output
bit of S-box in Rijndeal, satisfying the bounds 0.5(1 — e) <
esbor < 0.5(1 + €), where ¢ < ema, = 0.0352 [30]. As a
result, we have a bound on the equivalent bit error probability
after the inverse of S-box at Bob or Eve. Actually, ¢;. can be
computed precisely by exploring the differential uniformity of
Rijndael S-box [24], which can be shown nearly the same as the
approximation in (31).

As each Sbox has an 8-bit input and 8-bit output, the symbol
error probability after S ' remains the same as the one without
Sbox, which is 1 — V with V' determined in (14). Therefore the
resulting decoded average information bit error probability after
RS decoding with Sbox is

PSS — (1 - Ve,

c,e

€se = [1 - (1 - OCE)(S] €sboxs

(32)

Using the similar approach as the case with only RS encoding
but without Sbox in Fig. 2(a) and (17), the number of b, . re-
quired to mount the second step of the attack for DCRSS is

N
N§76 = STOTEEN (33)
max {VQ, (1 — ZPC{I;S’S)) }

which is subject to Eve’s decision on whether to drop the entire
information-bit block in the presence of decoding failure.

Note that the eavesdropper launches ciphertext only attack to
analyze encrypted Sbox and then the known plaintext attack to
analyze DES. Consider the most favorable case for the eaves-
dropper, we assume that the eavesdropper can get all the cor-
responding plaintexts for the ciphertexts used in the first step.
Thus the total number of b,, . needed to mount a successful at-
tack on the entire system is

Npcrss = max {val',eﬂ NSQ',E}

28N
= MaXx e ————
(1—2ap)2@+D)”

N
2(re)
max {VZ, (1—2P££’S’S)) }

(34

3) Bit Error Rate Analysis: As S-box operates on byte basis,
the bit error event out of the BSC channel will be thus confined
over each byte after the inverse operation of the S-box at Bob.
Thus adding an encrypted S-box after RS encoding does not af-
fect the symbol-wise error probability, meaning that the proba-
bility V' of correcting four or less symbol errors at Bob after the
inverse mapping of S-box remains the same as in (14). When
a decoding failure occurs, the information bit error probability
after RS decoding is (1—Vp)é.p, where €, = [1—(1—P,)8]0.5,
as that obtained in (31). Therefore the overall average informa-
tion bit error probability is

PDC’RSS(Eb) ~ 0.5(1 — VB) + VB(l — VB)€sb- (35)

IV. COMPARISON METRICS AND SIMULATION RESULTS

A. Bit Error Rate at Bob

Simulations have been undertaken to find out the average in-
formation bit error probability at Bob for the three systems con-
sidered in this paper, namely, uncoded DES under CFB (DC),
coded (RS coding) DES under CFB (DCRS), and S-box aided
coded DES under CFB (DCRSS). In Fig. 4, theoretically de-
rived approximation of the average BER for each scheme is
compared against simulation results. It can be seen that simula-
tion results agree well with the derived approximations. Further-
more, channel coding reduces error rate significantly as com-
pared with the uncoded approach. In addition, adding nonlinear
and encrypted S-box only increases the BER slightly as com-
pared with the case DCRS, which is desired.

From Fig. 4, we can see that as the channel cross-over proba-
bility «p = e is greater than 0.1, all approaches perform poorly,
yielding nearly 0.5 information bit error probability. This is be-
cause as the channel becomes worse, the sequence error prob-
ability at the input of each DES cipher is close to one, thereby
making the diffusion effect become dominant, and consequently
creating nearly 0.5 bit error probability at the output of DES ci-
pher. Thus, we can say given the system framework considered
in this paper, the upper-bound apg ;.. for ap is 0.1, beyond
which the end-to-end channel between Alice and Bob will be
saturated with 0.5 postdecryption bit error probability, resulting
in a zero capacity, not usable to legitimate users any more.
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B. Secrecy Improving Factor

From our analysis on the effect of channel error rate on
the security of proposed three schemes, namely, DC, DCRS
and DCRSS, we can see that the amount of efforts in terms
of required plaintext and ciphertext (PC) pairs increases as
the channel between Alice and the eavesdropper degrades. To
quantify this effect, we herein introduce a metric coined as
secrecy improving factor (SIF) defined as the ratio between
the required PC pairs in the presence of channel error and that
without channel errors, which can be obtained from (12), (17)
and (34). In Fig. 5, different schemes are compared in terms of
SIF.

In this figure, we intentionally separate the SIF of coded cases
with or without Sbox under the option of dropping codewords
and keeping the information bits, respectively, when decoding
failure occurs. That means for (17) and (33), we consider the
arguments of the maximum operation separately. In addition,
for the coded case with Sbox (DCRSS), its SIF only includes
the effort in the second step in its cryptanalysis by assuming the
key for encrypted Sboxes has been cracked successfully so that
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DCRS and DCRSS can be compared on the same basis. It can be
seen from Fig. 5 that the eavesdropper should keep the decoded
information bits for DCRS whereas the failed packets should be
dropped for the DCRSS in order to minimize the resulting SIF.
Also can be seen is that the scheme DCRS yields smaller SIF
than the uncoded DC scheme because channel coding improves
channel quality.

Without concerning the efforts made in attacking the en-
crypted Sboxes, when channel error probability is below certain
value (e.g. 0.06 in this case), DCRSS and DCRS attains the
same SIF in cracking DES in CFB mode. On the other hand,
when channel is degraded beyond certain extent (e.g. 0.09), the
SIF for the uncoded case DC is nearly the same as DCRS, but
much smaller than that under DCRSS.

C. Trade-Off Between BER and SIF

From Fig. 4 and Fig. 5, we can see that if the channel between
Alice and Eve has ag = € greater than € = 0.1, not only will
that lead to a significant amount of additional efforts for Eve to
engage in cryptanalysis, it also results in a nearly 0.5 informa-
tion bit flipping probability even after Eve successfully gets the
secrete key from its cryptanalysis, which demonstrates the pow-
erfullness of channel errors in enhancing security of the studied
block-cipher system.

However, the degradation in information bits restoration after
decryption in the presence of channel errors also applies to the
legitimate receiver. Therefore to take advantage of channel error
effect, Alice could consider to put intentional errors to the output
of either RS coder for DCRS or encrypted Sbox for DCRSS at
its transmitter even if the actual physical channel errors could be
completely eliminated. That additional error serves the purpose
of making trade-off between BER degradation and SIF enhance-
ment. To be noted is that Eve receives her erroneous ciphertexts
during the course of making inquiries to an Oracle to conduct
her known plaintext attack, whereas Bob gets his distorted ci-
phertexts in a phase of regular communication with Alice. The
binary errors in their respective ciphertexts are therefore inde-
pendently and identically distributed.

In order to further reveal the trade-off between reliability (to
Bob) and security (to Eve), we consider a case where the cross-
over probabilities of the two BSC channels to Bob and Eve are
the same, i. e. «p = ag = €. The trade-off for a scheme is
characterized by a curve featuring the relationship between the
normalized SIF in terms of SIF per key bit log(SIF/K,) and
normalized information error probability log(P. /€), as shown
in Fig. 6 and Fig. 7, where K and K» denote the total number
secrete key bits for DCRS and DCRSS, respectively. The SIF
for DCRSS in Fig. 6 has K» = 56 when we don’t count the
effort in attacking encrypted nonlinear Sboxes. As a contrast,
that effort is incorporated in computing the total cryptanalysis
SIF with Ko = 128 + 56 = 184 for DCRSS in Fig. 7. Due
to the space limitation and the focus of this paper, we are not
able to provide a more comprehensive analysis about the cost in
establishing an agreement on K between legitimate users, and
put that in the context of security enhancement as measured by
a normalized secrecy enhancement factor (SIF), which will be
further investigated in our future works.
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Tradeoff between BER degradation and Normalized SIF after Cracking Sbox
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Fig. 6. Trade-off between security and reliability: Normalized SIF
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counting the efforts in cracking the Sbox.
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Fig. 7. Trade-off between security and reliability: Normalized SIF
log(SITF/IK) versus normalized information BER log(P(E:)/e) after
counting the efforts in cracking the Sbox.

As seen from these curves, DC achieves the same SIF as
DCRS and DCRSS at the expense of more degradation of
its performance in terms of larger P, than € at the legitimate
receiver. Without counting the effort in cracking encrypted
Sboxes, DCRS and DCRSS achieves nearly the same trade-off
between security enhancement and performance degradation.
Moreover, to have a notable SIF improvement, DCRS and
DCRSS have to suffer a degradation of P, around a factor of
e? = 7.4 of ¢ for its restored information bits, corresponding
to ¢ in the range of [0.05, 0.07]. However, when the effort in
crypt-analyzing encrypted Sboxes is taken into account, there
is a significant improvement in the resulting normalized SIF
(by Ky = 184) for DCRSS, which suggests the additional
complexity expended in the second encryption block pays
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Tradeoff between capacity degradation and SIF enhancement in Cracking Sbox and DES
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Fig. 8. Trade-off between capacity degradation and SIF in cracking both DES
and encrypted Sboxes.

back well in terms the further gains in SIF under the same
degradation of FP..

The final remark is that in order to have the proposed system
really work, we should add the last processing layer before DES
encryption, which is intended to correct all residual errors at
Bob caused by performance degradation due to the added in-
tentional errors. We therefore have essentially proposed the fol-
lowing two-layer concatenated scheme: outer channel coding
with outer encryption concatenated with inner channel coding
and inner encryption, after which some intentionally induced
channel noise could be added to further aggravate the crypt-
analysis effort and postcryptanalysis performance at Eve. Some
powerful error correction techniques, such as LDPC codes [31]
or polar codes [32] could be adopted as candidates for the outer
channel encoder to achieve the mutual information rate I{ P, ) =
1+ P.log(P.) + (1 — P.)log(1 — P.) of the resulting binary
symmetric channel, where P, denotes the postdecryption infor-
mation bit error probability of the outer-decryption block of the
concatenated system.

In Fig. 8, we compare the trade-off between SIF and its as-
sociated capacity degradation defined as 1/[rI(F,)] where r is
the coding rate of the inner-channel coder. For example, in our
case study, » = 1 for DC (the uncoded case), and + = 0.5 for
DCRS and DCRSS where 0.5 is the coding rate of the adopted
RS code. From Fig. 8, we can see that, for instance, if the legit-
imate users are willing to sacrifice the rate reduction by a factor
of 100 in decreasing from 1 for the case without induced noise
to 0.01 for the case with induced noise, the gains attained in
SIF for DC, DCRS, and DCRSS are roughly around 7, 20 and
2000, respectively. It is up to the system designer to decide if
it is worthwhile to gain additional security enhancement at the
expense of sacrificing the throughput of the system to such an
extent. Therefore putting SIF and 1/[rI(P,)] together provides
us an ultimate way in demonstrating the pros and cons of ex-
ploiting channel errors in terms of performance loss and secu-
rity enhancement.
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