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Abstract

We present a new scheme of distributed detection in sensor networks using Sigma-Delta
(Σ−∆) modulation. In the existing works local sensor nodes either quantize the observa-
tion or directly scale the analog observation and then transmit the processed information
independently over wireless channels to a fusion center. In this thesis we exploit the advan-
tages of integrating Σ−∆ modulation as a local processor into sensor design and propose a
novel mixing topology of parallel and serial configurations for distributed detection system,
enabling each sensor to transmit binary information to the fusion center, while preserving
the analog information through collaborative processing. We develop suboptimal fusion
algorithms for the proposed system and provide both theoretical analysis and various sim-
ulation results to demonstrate the superiority of our proposed scheme in both AWGN and
fading channels in terms of the resulting detection error probability by comparison with
the existing approaches.
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Chapter 1
Introduction

1.1 Distributed Detection

Distributed detection in wireless sensor networks has been gaining intensive research inter-

ests for decades. This interest was first sparkled by the requirement of military surveillance

systems and has also been extended to other applications such as monitoring of environment

since. In a distributed sensor network, multiple sensors work collaboratively to distinguish

two or more hypothesis, e.g. tracking the presence of a phenomenon. Each local sensor

performs some preliminary data processing and may send the information to other sensors.

Ultimately the locally processed information is collected by a fusion center where a fusion

decision is performed to reach a final decision based on the theory of statistical hypothesis

testing.

Classical detection theory was first extended to the case of distributed sensors in [1]

because of the consideration as cost, reliability, survivability, communication bandwidth in

practical systems, applications and there is never total centralization of information where

all the sensor signals are implicitly assumed to be available in one place for processing.

There are three major topologies used in distributed signal processing: parallel, serial or

tandem, and tree configuration [2, 3]. Parallel topology given in Fig. 1.1 is often adopted

in recent research reports.

We will present a well accepted formulation of distributed detection problem. We assume

a binary hypothesis testing problem in which the observations at all the sensors either cor-

respond to the presence of a signal (hypothesis H1) or to the absence of a phenomenon (hy-

pothesis H0). Suppose that there are N sensor nodes observing the random phenomenon

and each sensor collects only one noisy observation. The observations {x1, x2, · · · , xN}
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FIGURE 1.1. Distributed detection system scheme of parallel topology

at local sensors are characterized by the conditional probability density function (pdf)

f(x1, x2, · · · , xN |Hj), j = 0, 1. Sensor nodes locally process the observation and transmit

their outputs {y1, y2, · · · , yN} to the fusion center over orthogonal wireless channels char-

acterized by f(ŷ1, ŷ2, · · · , ŷN |y1, y2, · · · , yN).

The fusion center receives {ŷ1, ŷ2, · · · , ŷN} and makes a global decision θ based on an

optimal or suboptimal fusion rule. Denote the prior probability by πj = P (Hj), j = 0, 1.

The detection performance is characterized by the detection error probability

Pe,N = π0P (θ = H1|H0) + π1P (θ = H0|H1) (1.1)

The goal is to minimize the detection error probability by designing a proper local trans-

mission strategy {γi}N
i=1 that maps xi to yi and the corresponding fusion rule γ0 that maps

{ŷ1, ŷ2, · · · , ŷN} to θ at the fusion center. The optimal fusion rule at the fusion center is

the maximum a posteriori probability (MAP) decision [4]

γ0(ŷ1, · · · , ŷN) =

 H0, Λ ≥ π1

π0
,

H1, Λ < π1

π0
.

(1.2)

where

Λ =
f(ŷ1, · · · , ŷN |H0)

f(ŷ1, · · · , ŷN |H1)
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is the likelihood ratio (LR) of the joint probability density function (pdf) of {ŷi}N
i=1 under

each hypothesis.

In the context of data fusion, local decision strategy at each sensor node and global fusion

rule at the fusion center should be dealt with in a collaborative manner to gain optimal

system level performance. The situation becomes substantially more complicated when

communication capabilities are integrated into each sensor and information may be lost

in transmission. Binary sensor nodes which make binary decision locally were investigated

earlier [5, 6, 1] and an universal detector has been constructed in [7]. Optimal local sensor

detection does not necessarily yield a global optimal detection [1] and compromises should

be made with each other as well as the fusion rule at the fusion center. Another type

of sensor nodes adopts the local mapping strategy that directly retransmits the scaled

version of the analog observation to the fusion center in order to preserve more information.

Such sensor nodes will perform better with a high channel signal to noise ratio (SNR) [8].

Reference [6] shows that for the problem of detecting deterministic signals in additive

Gaussian noise, having a set of identical binary sensor nodes is asymptotically optimal, as

the number of observations per sensor goes to infinity. Thus, the gain offered by having

more sensors exceeds the benefits of getting detailed information from each sensor as analog

sensor nodes. However in practical systems, we will be more interested in the case that we

have limited finite number of sensor nodes and observations. Indeed, there is a crossover

between the two different mapping strategies dependent on different sensor and channel

conditions [8].

Channel-aware distributed detection is proposed in [9, 10, 11] which integrates the wire-

less channel conditions in algorithm design. In [11], person by person optimization as well

as greedy search methods are presented for optimal system detection performance. Fading

channels receive more attention in recent research reports [12, 13]. Most design typically

assumes the clair-voyant case, i.e. global channel state information (CSI) is known at the
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design state In [12, 11], non-coherent detection where only channel fading statistics, instead

of the instantaneous CSI are available to the fusion center. This is more practical since the

exact knowledge of CSI may be costly to acquire. In the case of fast fading channels, the

sensor decision rules need to be synchronously updated for different channel states. This

adds considerable overhead which may not be affordable in resource constrained systems.

Computational complexity is also an important issue because the optimal fusion rule such

as likelihood ratio test (LRT) can be computationally very demanding even in synthesis of

simple distributed detection networks [14]. Therefore, several suboptimal fusion rules are

proposed and evaluated in [10]. The LRT based fusion rule reduces to a statistic in the

form of an equal gain combiner (EGC) based on the assumption that all the sensors have

the same detection performance and the same channel SNR.

Most of the research works mentioned above assume that sensor observations are condi-

tionally independent (conditioned on the hypothesis), which implies that the joint density

of the observations obeys

f(x1, x2, · · · , xN |Hj) =
N∏

i=1

f(xi|Hj) (1.3)

Although this assumption is easy to analyze, there are many occasions where the obser-

vations at the different sensors consist of noisy observations of random signals which were

produced by the same source. General design principles are discussed in [15] for joint sensor

detection of a deterministic signal in correlated noise. [16, 17] also explore the possibility of

employing a shared multiple access channel (MAC) subject to an average power constraint

instead of orthogonal parallel access channel (PAC). [18] focuses on such cases where

sensor tests are based only on the ranks and signs of the observations, and non-Gaussian

additive noise distribution is completely unknown. [19] provides two examples of detecting

a constant signal in additive Gaussian noise and in Laplacian noise.
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Generally there is no universal optimal distributed detection system scheme. Yet bi-

nary and analog sensor nodes with parallel configuration are the two prevailing strategies

currently. Under the given framework their performance has crossover based on different

channel and sensor observations. In this thesis we will develop a distributed detection

scheme with a mixing topology of parallel and serial topologies which allow communication

between adjacent sensor nodes. We will provide a local mapping strategy based on the well

adopted Sigma-Delta (Σ−∆) modulation and a corresponding global LRT fusion algorithm

at the fusion center.

1.2 Σ − ∆ Modulation

Within the last several decades, the Σ−∆ modulation has become a popular technique for

Analog to Digital converter (ADC) [20, 21]. It is a relatively simple yet challenging system

because of its nonlinearity involved. The Σ − ∆ converter digitizes an analog signal with

a very low resolution (1 bit) ADC at a very high sampling rate. By using oversampling

techniques in conjunction with noise shaping and digital filtering, it can achieve overall

high resolution digital signal to reconstruct the analog signal.

Analog to digital Converter(ADC) is usually implemented in two separate processes:

sampling and quantization. A continuous time signal is sampled at a uniformly spaced

time intervals, Ts, the inverse of which is defined as the sampling rate. The sampling

rate or sampling frequency fs should be twice greater than the signal bandwidth fB to

avoid aliasing in signal spectrum that is known as the Nyquist Rate Conversion [22]. Once

sampled, the signal samples must be then quantized in amplitude to a finite set of output

values. An ADC or quantizer with L output levels is said to have M bits of resolution if

M = dlog2(L)e. It is obvious that the higher the resolution of an ADC has, the better

performance it shall have in terms of the quantization error e(n) = y(n) − x(n) and its
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FIGURE 1.2. First order Σ−∆ modulator AD system

power E(e(n)2) = σ2
e where x(n) is the sampled input signal and y(n) is its quantized

version.

Consider an M bit ADC with Ln = 2M quantization levels and the maximum and mini-

mum quantized outputs are always 1 and −1 respectively. The least significant bit (LSB) is

defined as δ = 2/(Ln−1) = 2/(2M −1). In practical systems, high resolution of a quantizer

is usually not achievable due to the hardware complexity. Most conventional ADC, such

as the successive approximation, subranging, and flash converters quantize signals sampled

at or slight above the Nyquist rate. However, there are also other AD techniques such as

Σ − ∆ conversion that provide a tradeoff between resolution and bandwith by employing

the oversampling technique, i.e., samples are acquired from the analog waveform at a rate

significantly faster than the Nyquist rate. Each of these samples is quantized by an 1 bit

ADC. The total amount of quantization noise power injected into the sampled signal σ2
e is

exactly the same as the noise power produced by a Nyquist rate converter yet uniformly

spread in the signal spectrum with a much higher sampling frequency fs. After low-pass

filtering and downsampling, which is known as the decimator, the quantization noise power

is significantly reduced.

A block diagram of a first order Σ−∆ modulator A/D system is shown in Fig. 1.2. The

modulator consists of and Σ−∆ modulator, followed by a digital decimator. The modulator

consists of an integrator, an internal A/D converter or quantizer, and a feedback path.
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The continuous-time signal is first oversampled before being input into the Σ−∆ mod-

ulator. The signal that is quantized is not the input x(n) but the difference between the

input and the analog representation of the quantized output and then pass through a dis-

crete time integrator whose transfer function is z−1/(1 − z−1). Applying the linear model

in [21], we obtain the Z domain relationship between the input and output of the Σ − ∆

modulator,

Y (z) = X(z)z−1 + E(z)(1− z−1) (1.4)

where Y (z) and X(Z) are the Z domain transform of input x(n) and output y(n) respec-

tively. E(Z) is the Z domain transform of the quantization noise e(n) = x(n) − y(n). The

output is now the input signal modulated by a signal transfer function Hx(z) = z−1, plus

the quantization noise modulated by a noise transfer function He(z) = 1 − z−1, which is

just a delayed version of the signal plus quantization noise that has been shaped by a first

order differentiator or high-pass filter. To evaluate the performance of such a convertor, we

need to find the total signal and noise power at the output of the converter. If a wide-sense

stationary random process with power spectral density P (f) is the input to a linear filter

with transfer function H(f), the power spectral density of the output random process is

P (f)|H(f)|2. Explicitly, signal power spectral density and noise power spectral density at

the output of the Σ−∆ modulator are given as

Pxy(f) = Px(f)|Hx(f)|2 (1.5)

Pey(f) = Pe(f)|He(f)|2 (1.6)

where Pe(f) is the power spectral density of the 1-bit quantizer error, which is white over

the sampling frequency fs and

Pe(f) =
σ2

e

fs

where σ2
e is the quantization error power for a conventional Nyquist rate A/D converter.

Assuming an ideal low-pass filter with cutoff frequency equal to the signal bandwidth fB
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following the Σ − ∆ modulator, the in-band noise power, σ2
ey at the output of the A/D

converter is

σ2
ey =

∫ fB

0

Pey(f)df =

∫ fB

0

σ2
e

fs

|He(f)|2df = σ2
e

π2

3
(
fB

fs

)3 (1.7)

Note that some of the noise power is now located outside of the signal band as the result of

the oversampling. So the in-band power σ2
ey is less than what it would have been without

any over sampling. Since the signal power is assumed to occur over the signal band only,

it is not modified in any way and the signal power at the output σ2
xy is the same as the

input signal power σ2
x. This oversampling process reduces the quantization noise power

in the signal band by spreading a fixed quantization noise power over a bandwidth much

larger than the signal band. On the other hand the noise transfer function modulates

the quantization noise spectrum by further attenuating the noise in the signal band and

amplifies it outside the signal band. Consequently, this process of noise shaping by the Σ−∆

modulator can be viewed as pushing quantization noise power from the signal band to other

frequencies. The modulator output can then be low-pass filtered to attenuate the out of

band quantization noise and finally can be downsampled to the Nyquist rate. The output

of the digital decimator thus becomes a multi-bit finite-valued digital data reconstructing

the analog input.

The linear model in (1.4) is rather an approximation due to the nature of nonlinearity

involved in Σ − ∆ modulation. [23, 24] investigate the statistic characteristics of Σ − ∆

modulation with independent identical distributed (i.i.d) Gaussian input which provide us

more insight of its time domain behavior. Preliminary research reports also propose schemes

that integrate Σ−∆ data converter into wireless transceiver [25, 26]. [27] presents a radio

frequency identification (RFID) temperature sensor design embedded with Σ−∆ ADC. An

iterative computation process to obtain the joint pdf of Σ−∆ outputs is studied in [26].
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1.3 Contribution

In this thesis, we propose a novel distributed detection scheme for binary hypothesis test.

We are motivated by the fact that analog mapping strategy preserves more information

regarding the hypothesis while binary transmission is robust against wireless channel dis-

tortion. Inspired by the concept of analog to digital converter which converts analog signals

to bit-stream, we propose a novel Σ − ∆ modulation-based distributed detection scheme

where wireless sensor nodes jointly process the analog observations using Σ−∆ modulation

without oversampling and decimation. Due to the limited power budgets, each local sensor

is only allowed to take one sample of observation and send one bit message to the fusion

center. Furthermore, each sensor is allowed to communicate to its next adjacent sensor,

considering that the communication over the wireless channel between the two adjacent

sensors is more reliable than the channels between sensors and the fusion center. The novel

combination of serial and parallel topology enables us to form an equivalent Σ − ∆ loop

across space within the wireless sensor network. As shown in our simulation results, the

Σ − ∆ modulation-based distributed detection system outperforms both the binary and

analog approaches in both AWGN channels and fading channels under certain conditions.

Our thesis is organized as follows. Motivating examples of single sensor detection using

Σ−∆ modulation are first presented in Chapter 2. Distributed detection in AWGN chan-

nels is studied in Chapter 3. The Σ − ∆ modulation-based distributed detection system

is formulated in Section 3.1. Suboptimal fusion rule as well as analytical detection perfor-

mance of Σ − ∆ modulation based distributed detection system in AWGN channels are

derived in Section 3.2. LRT-based fusion rules of binary and analog distributed detection

system are presented in Section 3.3. Detection performance evaluation is provided in Sec-

tion 3.4. We investigate the system over non-coherent fading channels in Chapter 4. An

iterative computation process to obtain the joint pdf of the Σ − ∆ modulator output is

presented in Section 4.2. We develop the LRT-based fusion algorithm for Σ − ∆ modula-

9



tion based distributed detection system in Section 4.3. Optimal fusion rules of binary and

analog distributed detection system in fading channels are presented in Section 4.4. Simi-

larly detection performance in fading channels is evaluated via simulations in Section 4.5.

Extensive study on distributed detection over coherent fading channels and of correlated

observations is presented in Chapter 5. Finally, the thesis is concluded in Chapter 6.

Summary

In this chapter, we

• Introduce the distributed detection system and review the related works.

• Introduce the Σ−∆ modulation AD converter and review its applications in wireless

communication.
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Chapter 2
Single sensor detection using Σ − ∆
Modulation

Before we exploit the distributed sensor detection using Σ−∆ modulation, in this chapter

we will first provide a motivating example to demonstrate how to integrate Σ−∆ Modulator

into single sensor design for detection with multiple input. With rigorous analysis to be

presented in the next two chapters, we will observe the robust performance of Σ − ∆

Modulation based detection via a sequence of simulations.

2.1 Sensor node embedded with a first order Σ − ∆

ADC

In this thesis, we focus on the distributed detection of a binary hypothesis testing problem.

For single sensor detection or centralized detection, the sensor node collects N analog

noisy observations and preliminarily process the data before communicating with the fusion

center. We integrate the complete Σ − ∆ ADC model into the sensor node for detection

of multiple input observations as the signal processing module. Fig. 2.1 shows the block

diagram of a single sensor detection system with Σ−∆ ADC. The noisy observation input

into the sensor node at sample time n is,

FIGURE 2.1. Single sensor detection with Σ−∆ modulator system model

11



H1 : x(n) = s + w(n), n = 1, 2, · · · , N

H0 : x(n) = w(n), n = 1, 2, · · · , N

The output of the Σ − ∆ modulator {y(n)}N
n=1 is then fed into a digital decimator

with decimation factor K, K < N , and becomes a multi-bit finite-valued data z(m), m =

1, 2, · · · , dK/Ne. M-PSK digital modulation of the bitstream is performed following the

digital decimator and the message is then transmitted over an AWGN channel. At the

receiver end, signals are demodulated and collected to perform an LR test or other sub-

optimal fusion rule like equal gain combining (EGC). The LRT based detection rule and

EGC suboptimal fusion rule at the fusion center will be discussed in details in Section 3.2

and Section 4.3. The detection performance depends on the number of input samples N

as well as the resolution of the ADC. An alternative system scheme is showed in Fig. 2.2

where the Σ−∆ modulator output {y(n)}N
i=1 are directly modulated and transmitted to the

fusion center where final decision will be made based on the received {ŷ}N
i=1 directly. As the

low-pass filter is removed from the sensor, circuit complexity will be reduced and energy

consumed will be saved inside the signal processing module of the sensor. Furthermore,

the system detection performance will be improved in the sense that redundant informa-

tion will be provided to the fusion center through the noisy wireless channel at the cost

of transmitting more bits, meaning that more power shall be spent at the communication

module.

Simulation results of single sensor detection performance using Σ − ∆ ADC are shown

in Fig. 2.3. The number of sampled observations is 160 and the transmission power Pt

is 20dB. We chose BPSK modulation at the communication module. The second system

model is adopted here so that the number of bits transmitted is also equal to N . We use

EGC or average decoder as a global detector throughout this chapter. We use the output

12



FIGURE 2.2. Single sensor detection with first order Σ − ∆ ADC system model, decimator at
receiver end

FIGURE 2.3. Single sensor with first order Σ − ∆ ADC detection error probability versus Ps,
compared to the performance of analog information directly available at fusion center without
ADC and channel distortion, Pt=20dB, N=160, BPSK
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of the EGC described by

Z =
1

N

N∑
n=1

ŷ(n)

as the detection statistics and make the final decision by the fusion rule

θ =

 H0, if Z < s/2,

H1, if Z ≥ s/2.

The details of the decision fusion rules for distributed detection using Σ−∆ modulation will

be discussed in the next two chapters. Detection performance for the case where the analog

observations are directly accessible to the fusion center without ADC and channel distortion

is provided as benchmark (dash line). Its performance is optimal given the number of

samples and the sensor SNR Ps in light of the sufficient statistics argument. Performance

of the binary system in which each sensor makes a local binary detection based on each

analog observation is also shown for comparison. The detection rule for binary and analog

systems will be discussed in Section.3.3. Fig. 2.3 demonstrates that sensor detection with

Σ −∆ modulation can outperform the binary system with same number of input samples

and binary data transmitted. In addition, it also has performance close to the benchmark

of ideal optimal situations.

2.2 Sensor node embedded with a second order

Σ − ∆ ADC

Another example of single sensor detection using a second order Σ − ∆ ADC is discussed

in this subsection. Second order Σ−∆ modulation (Fig. 2.4) provides a further shaping of

quantization noise spectrum, resulting in a better detection performance. The modulator

realize Hx(z) = z−1 and He(z) = (1 − z−1)2. Note that, compared with the first order

Σ − ∆ noise transfer function, the seconde order noise transfer function provides more

quantization noise suppression over the low frequency signal band, and more amplification

14



FIGURE 2.4. Second order Σ−∆ modulator AD system

of the noise in the high frequency signal band. The derivation from (1.7) leads to

σ2
ey =

∫ fB

0

Pey(f)df =

∫ fB

0

σ2
e

fs

He(f)df = σ2
e

π4

5
(
fB

fs

)5 (2.1)

The simulation results shown in Fig. 2.5 give the detection performance of single sensor

embedded with second order Σ − ∆ ADC versus Ps. With the same parameter set as

in the first order Σ − ∆ case except that the number of samples taken for one trial of

detection is reduced to 48, the single sensor detection system with second order Σ − ∆

ADC showed robust performance compared the ideal case that analog signal is directly

accessible to the fusion center without ADC. Considering that N is substantially reduced,

the conclusion that the second order Σ−∆ ADC will improve the system performance by

further eliminating the quantization noise is easily drawn, as expected.

2.3 Σ − ∆ modulator with feed forward loop or

pre-FIR filter

It has been demonstrated that the essence of the Σ − ∆ modulator is to shape the power

spectrum of the quantization noise with the feedback loop while keeping the signal power

spectrum unaltered before low-pass filtering it so that the 1 bit ADC quantization noise is

reduced significantly. For our specific interest of detection, the input signal also contains the

sensing noise whose spectrum spreads over the sampling frequency. Our design philosophy
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FIGURE 2.5. Detection performance of single sensor with second order Σ − ∆ ADC versus Ps,
compared to the performance of analog information directly available at fusion center without
ADC and channel distortion, Pt=20dB, N=48, 16PSK, Sinc filter, K=16

is to distinguish the two possible inputs rather than recover them, it does no harm to

reshape the signal spectrum if we can filter more sensing noise through suitable change

in the design. We now introduce one extra feed forward loop in the Σ − ∆ modulator in

Fig. 2.6.

From the Σ−∆ linear model described in (1.4), the signal transfer function now becomes

a+Z−1 instead of Z−1 which is a low pass filter whereas the noise transfer function remains

the same. The total power of the sensing noise is reduced thorough this process. Note that

to keep the magnitude response of the low pass filter at one at zero frequency, the output

should be scaled down by a factor of 1 + a.

The simulation result shown in Fig. 2.7 compares the detection performance between the

standard Σ−∆ modulator and one with the feed forward loop for different values of a. The

number of samples is reduced to 12 in order to show the difference more clearly. There is

tremendous improvement on detection performance when the number of samples available
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FIGURE 2.6. Σ−∆ modulator with feed forward loop

for one detection is very limited. Performance of the analog system is again provided as a

benchmark which assumes analog observations are directly accessible by the fusion center.

We can also adopt this change for the second order Σ−∆ modulator with second order

feed forward loop shown in Fig. 2.8. The signal transfer function now becomes

Hx(Z) = a + (1− a + b)Z−1 − bZ−2

The parameters a and b determine the coefficients of the second order filter Hx(Z) and its

frequency response. The simulation results shown in Fig. 2.9 indicate a reduction in prob-

ability of error compared to the second order Σ−∆ modulator without feed forward loop

as well as the first order Σ−∆ modulator with first order feed forward loop. As expected,

the second order Σ−∆ modulation provides further attenuation of the quantization noise

power as well as the measurement noise power in the input observation samples. From the

simulation we also find the relationship between the detection error probability and the

stop frequency θ of the magnitude response of the second order filter Hx(Z), i.e. θ is the

angular position of the roots of |Hx(Z)| = 0. Since the roots of a+(1−a+b)Z−1−bZ−2 = 0

are on the unit circle if ab = −1 in which case the roots are uniquely specified by angular
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FIGURE 2.7. Single sensor detection performance of Σ − ∆ modulator with feed forward loop,
N=12, Pt=20dB

FIGURE 2.8. Second order Σ−∆ modulator with feed forward loop
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position θ, we can find the optimal scaling factors in the second order feed-forward link

via a sequence of simulations with different values of θ and the corresponding a and b. The

results show that the optimal value of a and b = −a in terms of detection performance

would be a = 1, b = −1, θ = 2
3
π (Fig. 2.10).

In simulations shown in Fig. 2.9, we first compare the detection performance of second

order Σ−∆ modulation with feed-forward loop to first order Σ−∆ modulation with feed-

forward loop and optimal benchmark. The right figure shows the detection performance

of second order Σ − ∆ modulation with feed-forward loop of different values of θ, a and

b = −a. The proper value of a and b will further improve the detection performance.

Since Σ − ∆ ADC is a well developed product in industry, it may not be economic to

add a loop inside the VLSI chip. Therefore we use another equivalent design to substitute

this modification. From ( 2.1) and Fig. 2.6, the time domain relationship between input

and output of the Σ − ∆ modulator with a first order feed forward loop can be rewritten

as

v(n + 1) = v(n)− y(n) + x(n) + ax(n− 1);

y(n) = q(v(n));

where

q(v) =

 1, v ≥ 0,

−1, v < 0
(2.2)

We find this is equivalently a standard Σ − ∆ modulator with the input of a colored

gaussian sequence {x̃n|n = 0 · · · } and x̃n = xn + axn−1. We therefore introduce a pre-FIR

filter before the standard Σ−∆ modulator to implement the equivalent feed forward loop,

as showed in Fig. 2.11. By intentionally correlating the white input sequence before fed into

the standard Σ−∆ modulator, we achieve the same signal modulation as Σ−∆ model with
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FIGURE 2.9. Single sensor detection performance of second order Σ − ∆ modulator with feed
forward loop, N=24, Pt=20dB

feed forward loop. Considering the fact that it is easier to implement, this design improves

the performance for single sensor detection of i.i.d gaussian input with Σ−∆ ADC.

As motivating examples, our investigation in the single sensor detection shows the po-

tential of employing Σ−∆ modulation in distributed detection. Based on rigorous analysis

to be presented in the next two chapters and observations from the simulation results using

only a 1-bit quantizer, the Σ − ∆ ADC is capable of maintaining and reconstructing the

analog observation under the hypotheses to be distinguished. Under distributed detection

framework, the time domain approach of the Σ − ∆ modulation can be transformed to

space domain due to the invariance of the signal. An extra inter-sensor communication link

is added to implement the space domain Σ − ∆ loop. Moreover, BPSK modulation is a

natural choice since each sensor takes only one sample of the observation and transmit only

1 bit information to the fusion center. We will also make use of the soft information at the

receiver end instead of hard decision to optimize the detection performance.
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FIGURE 2.10. Detection error probability versus θ when Ps=-6dB, Pt=20dB and N=24

FIGURE 2.11. Σ−∆ Modulator with a pre-FIR filter
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Summary

In this chapter, we

• Present the single sensor detection system using the first order and second order Σ−∆

modulation and evaluate the system performances.

• Exploit an additional feed forward loop or a pre-FIR filter block in Σ−∆ modulator

block to improve the system performance.
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Chapter 3
Σ−∆ modulation based distributed detection
in AWGN channels

3.1 System model

Suppose that there are N sensor nodes observing a random phenomenon. Each sensor

collects only one noisy observation described by

H1 : xi = s + wi, i = 1, 2, · · · , N

H0 : xi = wi, i = 1, 2, · · · , N

where s is a known constant signal and {w1, w2, · · · , wN} are measurement noises that

are mutually independent and identically distributed as real Gaussian random variables

with mean zero and variance σ2
w. Different from distributed detection systems with parallel

topology, we also allow communication between adjacent sensor nodes. As a result, the N -

sensor actually follows a mixing of serial and parallel topology as shown in Fig. 3.1. For this

topology, sensor node i maps its local observation xi and the signal vi−1 sent by the adjacent

sensor node i − 1 to its output (vi, yi−1) = γi(xi, vi−1), in which yi−1 is then transmitted

to a fusion center respectively over a unique assigned channel (e.g. a time slot). vi which

carries the information of the ith observation is then transmitted to the next sensor node

over another assigned orthogonal channel. The received signal at the fusion center from the

ith sensor node is given by

ŷi = yi + ni, i = 1, · · · , N (3.1)

where ni is AWGN with variance σ2
n.

The fusion center receives {ŷ1, ŷ2, · · · , ŷN} and makes a global decision θ based on an

optimal or suboptimal fusion rule which will be discussed in the next two sections. The

detection performance is characterized by the detection error probability in (1.1) with

respect to the sensor measurement SNR Ps
∆
= s2/σ2

w denoted and the inter-sensor channel
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FIGURE 3.1. Σ−∆ modulation based distributed detection system model

SNR (with normalized transmission power 1/σ2
n) denoted by Pt = 1/σ2

n. With the statistic

knowledge of wi, hi, ni, the optimal fusion rule at the fusion center is the LRT rule described

in (1.2).

We now consider to integrate the Σ − ∆ modulator into the sensor node as a local

quantizer with only 1 bit resolution. From the motivation example of single sensor detection

system using Σ − ∆ ADC presented in Chapter 2, in which we provided details of how to

integrate the Σ−∆ ADC as a signal modulation and processing module into sensor design,

we extend the application to distributed detection, we need the extra communication link

between sensor nodes to implement the space domain Σ−∆ loop.

The fusion center uses the output bit stream of the modulator that represents the analog

observation to make a binary decision. From Fig. 1.2 the relationship between the input

and output of the Σ−∆ modulator is given by

vi+1 = xi − yi + vi, (3.2)

yi = q(vi).
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FIGURE 3.2. Equivalent model for Σ − ∆ modulation based distributed detection system over
AWGN channels

where

q(v) =

 1, v ≥ 0,

−1, v < 0
(3.3)

assuming that the output of the one bit quantizer is either 1 or −1. For the detection

purpose, we drop the oversampling block in the Σ − ∆ modulator due to the following

reason: Our purpose is not to reconstruct the analog input signal xi, but to distinguish

between two hypothesis; Without oversampling, the spectrum of the measurement noise in

xi is spread in the same way as the quantization noise spectrum, most of which will be

filtered by the subsequent decimator. We also add a scaler block in front of the modulator

to optimize the detection performance which will be discussed in detail in Section 3.3.

Fig. 3.1 shows the Σ − ∆ modulation based distributed detection scheme and Fig. 3.2

shows its equivalent model. Assume that each sensor node takes only one sample of xi.

Since the time domain approach of the Σ − ∆ modulation can be transformed to spacial

domain, we implement the Σ − ∆ modulation in the distributed sensor network with a

combination of serial and parallel topology [2]. The ith sensor node transmits yi−1 to the

fusion center and vi to the (i + 1)th sensor node over an inter-sensor AWGN channel with

power PI and

PI =
E(v2

i )

σ2
η

(3.4)
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where E(v2
i ) will be given in Section 3.2 and σ2

η is the variance of AWGN ηi. We assume

no fading in the inter-sensor channels throughout the thesis because of the close distance

between adjacent sensor nodes. At the (i + 1)th sensor node, vi + ηi is quantized to obtain

yi. The (i + 1)th sensor uses vi + ηi and yi as the feedback to generate vi+1, meanwhile

transmitting yi to the fusion center and vi+1 to the next sensor node. Therefore we form

an equivalent Σ−∆ modulator loop within the sensor network. The fusion center will use

{ŷ1, ŷ2, · · · , ŷN} to perform detection. By modifying (3.2), this process can be characterized

by,

vi+1 = xi − yi + vi + ηi,

yi = q(vi + ηi).

Note that the 1st sensor does not output and the last sensor produces two outputs yi−1

and yi to the fusion center.

3.2 Fusion rule for Σ − ∆ modulation based

distributed detection system

We first investigate our proposed scheme and develop a suboptimal detection algorithm. A

closed-form solution to the detection error probability is obtained for the algorithm.

WLOG, we assume π0 = π1. The optimal fusion rule is the likelihood ratio test (LRT)

based fusion rule [28]. It requires the joint pdf of yi and ŷi in order to compute the likelihood

ratio in (1.2). We will develop the LRT based fusion algorithm in Section 4.3. However, the

LRT does not yield any insight regarding the performance discrepancy between different

approaches. Therefore we will adopt a suboptimal fusion rule first and for AWGN channel

it has close performance to the LRT fusion rule.

In [23], it was shown that averaging {yi}N
i=1 is an efficient decoder that functions as a

digital decimator for single loop Σ − ∆ modulators with i.i.d Gaussian input. This result

inspires us to employ a simple form of equal gain combiner (EGC) Z := 1
N

∑N
i=1 ŷi as
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our detection statistics. The averaging of {ŷi}N
i=1 is compared with a threshold which will

be shown to be s/2 later. Although the results in [23] are obtained for traditional Σ −

∆ ADC with i.i.d Gaussian inputs, our simulation results demonstrate that it is a good

approximation when inter-sensor SNR is reasonably high.

3.2.1 Statistics of binary quantizer error in Σ−∆ modulation
with i.i.d Gaussian input

Applying the analog observation signal model in (3.1) and assuming it has already been

scaled before fed into the Σ − ∆ loop inside each sensor node, without the inter-sensor

noise, we rewrite (3.2) and obtain

vi+1 = vi − q(vi) + m + wi (3.5)

where m = 0 under H0 and m = s under H1. The desired LR f(Z|H0)
f(Z|H1)

= f(Z|m=0)
f(Z|m=s)

. Denote

λ(v) := v− q(v)+m. We can transform the quantization error by defining ēi := λ(vi). Now

(3.5) can be written as vi = ēi−1 + wi−1 that yields the recursion:

ēi+1 = λ(ēi + wi)

It is proved in [23] that the process ē = {ēi|i = 0, 1, ...} is a real valued discrete-time

Markov process and it has a unique invariant probability measure if and only if |m| < 1.

Note for |m| ≥ 1, we can always scale accordingly the quantization level in (3.3) to make

the equivalent m < 1. For n ≥ 1 ēi can be represented as

ēi = ēi−1 − erf(ēi−1/
√

2σw) + m + ξi (3.6)

where {ξi}i≥1 is an uncorrelated sequence of random variables (innovations) with zeros

means and

erf(x/
√

2σ2
w) = 2

∫ x

−∞
(1/

√
2πσw)e−t2/2σ2

wdt− 1

Moreover, ēi can be split into two independent random variables

ēi = gi + m + oi
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FIGURE 3.3. An example of Σ − ∆ binary quantizer error power spectrum and autocorrelation
function under granular mode

The random variable gi is referred as“granular noise” which is uniformly distributed over

the interval [−1, 1], and oi as “slope overload noise”. In the time domain, oi is the recon-

struction error due to that the single-loop modulator can only estimate the input by steps

of magnitude 1 while gi is simply due to the coarseness of the 1 bit quantizer and that q(vi)

changes its sign often. In the frequency domain, oi is concentrated in the high-frequency

end of the spectrum while gi is concentrated in the low-frequency end, which are referred

as granular mode and slope overload mode respectively.

The spectral density sē(Ω) is given by [23]

sē(Ω) =
1

2π
|β(Ω)|2v(Ω) (3.7)

where the Markovian model corresponds to v(Ω) = 1 and

β(Ω) =
1− γ2

1 + γ2 − γ · cos(Ω)
(3.8)

The parameter γ is the linear recursion factor in the first-order Markov model ēi =

γ · ēi−1 + ξi/σw which can be approximated as

γ = (1− 2b/
√

π + b/2
√

π · (4σ2
w − 2)) (3.9)
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and is restricted by the condition

−1 < γ < 1 (3.10)

where b is the quantization level and in this thesis b is normalized to 1. From the (3.7)-

(3.9) we can see the influence of granular and slope overload noise on the spectrum of ēn,

elaborated as follows. Large values of the quantizer step b makes γ satisfying (3.10) negative

and the spectral density in (3.8) as well as (3.7) is concentrated in the high-frequency end

of [0, π/2], when the granular noise is dominant, while small values of b makes γ positive

and the spectral density is concentrated in the low-frequency end of [0, π/2]. Since the

quantization step is fixed to 1, large |m| and σ2
w makes quantization step small in the sense

that there are a large number of input samples that exceed b and the modulator predicts

the input with a relatively small b and renders the error spectral in the slope overload

mode. An example of Σ − ∆ binary quantizer error power spectrum and autocorrelation

function under granular mode is shown in Fig. 3.3.

3.2.2 Detection error probability using Equal gain combiner as
the suboptimal detector

We now assume that the Σ − ∆ modulation in distributed detection is under granular

mode, meaning the auto correlation function of ēi will fall to zero rapidly with large N.

This is reasonable since vi will not be large enough to produce the slope overload noise. This

assumption is extended to our distributed detection scheme even though now inter-sensor

noise ηi is included in the Σ−∆ recursion.

For the distributed detection scheme in Fig. 3.1 and Fig. 3.2, after including inter-sensor

channels, we can modify (3.5) as

vi+1 = vi + ηi − q(vi + ηi) + m + wi (3.11)

where ηi is the white Gaussian noise in the inter-sensor channel with variance σ2
η =

E(v2
i )/Pt.
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The binary quantizer error ēi is modified as

ēi = vi + ηi − q(vi + ηi) + m. (3.12)

We still approximate ēi as

ēi ≈ gi + m

with stationary uniform distribution between [m + 1, m− 1]. Then we can write the power

of vi as

E(v2
i ) = E(ē2

i ) + σ2
w = 1/3 + s2/2 + σ2

w

Combining (3.11), (3.12) and (3.1) yields

yi+1 = q(vi+1 + ηi+1) = m + wi + ηi+1 + ēi − ēi+1 (3.13)

ŷi+1 = yi+1 + ni+1 = m + wi + ni + ηi+1 + ēi − ēi+1 (3.14)

At the fusion center, upon receiving {ŷ1, · · · , ŷN}, we use Equal Gain Combiner (EGC) as

the suboptimal detector and its output to perform the LRT detection. To write the output

Z of EGC explicitly,

Z =
1

N

N∑
i=1

(ŷi) =
1

N

N∑
i=1

(yi + ni) (3.15)

where ni is the noise of channel from sensor node to the fusion center with variance σ2
n =

1/Pt.

From (3.14) we can see why EGC is an efficient decoder for Σ − ∆ modulator since it

cancels most of the quantization error part in the output bit stream. In frequency domain,

it performs a low-pass filtering to the quantization noise whose power is concentrated in

the high frequency end under granular mode assumption. Combing (3.15) and (3.14), we

obtain the detection statistics,
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n̄ =
1

N
[
N−1∑
i=0

(wi + ηi + ni)] +
1

N
(ē0 − ēN), (3.16)

where n̄ := Z −m. The first term in (3.16) is a zero-mean Gaussian random variable with

variance σ2 = 1
N

(σ2
w + σ2

η + σ2
n) where σ2

w + σ2
η + σ2

n is referred as the total noise power.

Under granular mode ē0 − ēN can be replaced by g0 − gN . Denote

ê :=
1

N
(ē0 − ēN) (3.17)

as the detection-wise quantization error. When N is large enough such that the correlation

between g0 and gN is very weak, ê becomes the sum of two i.i.d random variables uniformly

distributed over [−1/N, 1/N ] with power E(ê2) = 2
N2 E(g2

i ) = 2
3N2 . Its pdf is a triangular

waveform given by

fê(x) =


1
4
N2x + N

2
, x ∈ [−2/N, 0],

−1
4
N2x + N

2
, x ∈ [0, 2/N ].

Since the noise wi, ηi, ni are mutually independent and are all independent of ēi. The pdf

of n̄ for large N can thus be approximated as the convolution of a zero-mean Gaussian pdf

with variance σ2, denoted as Ψ(x) and the triangular waveform function fE(x),

fn̄(y) =

∫ ∞

−∞
Ψ(x)fê(y − x)dx

=
N2σ

4
√

2π
[e
−(y− 2

N
)2

2σ2 + e
−(y+ 2

N
)2

2σ2 − 2e
−y2

2σ2 ] +
N2

4
[2yQ(

y

σ
)

−(y − 2

N
)Q(

(y − 2/N)

σ
)− N2

4
(y +

2

N
)Q(

(y + 2/N)

σ
)] (3.18)

where Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt.

It can be seen that fn̄(y) is an even function. Consequently, the pdf of Z under each

hypothesis is fn̄(Z − m), which is concentrated over 0 or s. The standard LRT rule gives

us the detection threshold y0 = s/2 and the decision rule based on EGC output Z,

θ =

 H0, if Z < s/2,

H1, if Z ≥ s/2.
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Then the detection error probability is derived as,

Pe,N,Σ−∆ =

∫ ∞

y0

fn̄(y)dy

=

∫ ∞

y0

∫ y

y− 2
N

Ψ(x)[
1

4
N2(x− y) +

N

2
]dxdy +

∫ ∞

y0

∫ y+ 2
N

y

Ψ(x)[−1

4
N2(x− y) +

N

2
]dxdy

=

∫ y0

y0− 2
N

Ψ(x)

∫ x+ 2
N

y0

[
1

4
N2(x− y) +

N

2
]dydx +

∫ ∞

y0

Ψ(x)

∫ x+ 2
N

x

[
1

4
N2(x− y) +

N

2
]dydx

The result of the integral yields

Pe,N,Σ−∆ =
N2

8
A +

N2σ

8
√

2π
B (3.19)

where

A = [(y0 − 2
N

)2 + σ2]Q( (y0−2/N)
σ

) + [(y0 + 2
N

)2 + σ2]Q( (y0+2/N)
σ

)− 2(y2
0 + σ2)Q(y0

σ
)

and

B = 2y0e
−y2

0
2σ2 − (y0 − 2

N
)e
−(y0−

2
N

)2

2σ2 − (y0 + 2
N

)e
−(y0+ 2

N
)2

2σ2

This closed form solution gives a good approximation to the system detection error

probability if N is large, as shown by the simulation results in Fig. 3.4. From (3.16),(3.18)

and (3.19) we can also get some insights regarding the detection performance with respect

to various parameters Ps, Pt, PI , s and N . The three independent white Gaussian noise wi,

ni and, ηi make the same contribution to the detection performance and it does not yield

the same performance with fixed Ps while y0 = s/2 varies. The other noise we are dealing

with is the detection-wise quantization error ê in (3.17)and its power falls to zero at a rate

of N2 while the gaussian noise part fall to zero at a rate of N . Applying the central limit
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FIGURE 3.4. Analytical and simulation results for detection error probability in (3.19) versus
N of the Σ − ∆ modulation based distributed detection system in AWGN channels, Pt=10dB,
PI=15dB, Ps=-2dB, s=0.4

theorem (CLT), the detection-wise signal to noise ratio of Z can be simplified to a form

under Gaussian approximation,

SNR =
s2

(σ2
w+σ2

n+σ2
η)

N
+ 2

3N2

(3.20)

Replace σ2
w with s2

Ps
in the above formula. It is clear that with fixed other parameters, the

signal to noise ratio as well as the detection performance is monotonicly increasing with

s until it exceeds 1 or the modulator is under slope overload mode. Therefore, it is very

important to place a scaler block in front of the modulator in each sensor to ensure s is

scaled to a proper value in the sense that we can achieve an optimum performance if the

quantization level is set to 1.
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3.3 Fusion rule for Binary and Analog distributed

detection system

We consider comparing the detection performance of our proposed scheme under the mixing

topology with that of binary and analog approaches under the parallel topology for sensor

nodes.

Binary system

In binary distributed detection systems under parallel topology, each sensor node locally

makes a binary decision by comparing the measurement xi with the threshold of s/2 and

then transmits the binary message to the fusion center. The LR of {ŷi}N
i=1 at the fusion

center under two hypothesis can be easily derived as,

Λ =
N∏

i=1

f(ŷi|H0)

f(ŷi|H1)

=
N∏

i=1

f(ŷi|yi = 1)P (yi = 1|H0) + f(ŷi|yi = −1)P (yi = −1|H0)

f(ŷi|yi = −1)P (yi = −1|H1) + f(ŷi|yi = 1)P (yi = 1|H1)

=
N∏

i=1

Pfe
− (ŷi−1)2

2σ2
n + (1− Pf )e

− (ŷi+1)2

2σ2
n

Pfe
− (ŷi+1)

2σ2
n + (1− Pf )e

− (ŷi−1)

2σ2
n

(3.21)

where Pf = Q(s/2σw) is the local detection error probability. Note that false alarm prob-

ability and false detection probability are equal in this case. The optimal LRT fusion rule

is thus straightforward to implement using (1.2). Simulation results for binary system de-

tection performance will be provided in Section 3.4.

In order to further analyze the binary detection system performance, we also investigate

in a suboptimal fusion rule that use the demodulated hard information at the fusion center

for detection. The LR of the received hard information can be written as

Λ =
N∏

i=1

Wi
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where

Wi =

 φ = (
(1−Pf )(1−Pb)+Pf Pb

(1−Pf )Pb+Pf (1−Pb)
, if ŷi = 1

1
φ
, if ŷi = −1

where Pb = Q( 1
σn

) is the communication bit error probability of BPSK modulation system.

Denote N{ŷi}N
i=1=−1 the number of −1s in the demodulated {ŷi}N

i=1. It is easy to show that

Λ > 1 when N{ŷi}N
i=1=−1 > N/2. The LRT detection rule based on the hard information

{ŷi}N
i=1 can thus be obtained by a majority vote,

γ0(ŷ1, · · · , ŷN) =

 H0, if N{ŷi}N
i=1=−1 ≥ N/2

H1, else

The detection probability error probability at fusion center thus can be written explicitly

as

Pe,N,B =
N∑

i=dN
2
e

(N
i )P i

te(1− Pte)
(N−i) (3.22)

where Pte = Pf + Pd − PfPd = Q( s
2σw

) + Q( 1
σn

) − Q( s
2σw

)Q( 1
σn

) is the detection error

probability from single sensor node and dxe is the smallest integer greater than x.

Binary system has been extensively studied in recent years. Channel aware distributed

detection was brought up in [9, 10, 11] that integrate wireless channel conditions in local

sensor design. Under the framework of this thesis, the channel aware design means the local

mapping rules {γ1, γ2, · · · , γN} should be jointly selected with the global optimal fusion rule

at the fusion center, adaptive to the channel conditions f(ŷ1, · · · , ŷN |y1, · · · , yN , Hj). For

local binary decision, optimal LRT decision rule does not necessarily yields global optimal

detection performance. However, since both local observations and channel conditions are

i.i.d, we will only consider i.i.d local optimal decision rule for such homogeneous networks,

with global LRT decision rule at the fusion center, and we will use it to compare with our

proposed system.
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Analog System

The second type of transmission mapping strategy at local sensor is that each sensor

node retransmits a scaled version of its own analog observation. The receive signal at the

fusion center from sensor i can be written as,

ŷi = α(m + wi) + ni

where α is the scaling factor that ensures its unity transmission power and α =
√

2
s2+2σ2

w
.

Since it is an independent Gaussian random variable with mean αm and variance (ασw)2 +

σ2
n, detection error probability for N sensors can be written explicitly as,

Pe,N,A = Q

(
αs/2√

(α2σ2
w + σ2

n)/N

)
(3.23)

Fig. 3.5 illustrates that under which circumstance the two strategy would have lower

probability of error. For analytical purpose we compare optimal analog detection perfor-

mance with suboptimal binary detection performance using hard decision. However the

conclusion will still hold for binary soft decision WLOG. As the number of sensors grows,

the detection performance for analog communication dominant over transmitting binary

decisions when Pt is large and Ps is small. This can be intuitively explained in the sense

that on one hand, when the communication link is very good, i.e. the fusion center have

all the data from every sensor almost error free, rN
i would be the sufficient statistics for

the detection of H1 and H2, on the other hand when the noise at each sensor for local

decision is overwhelming, the local detection error is too large making the binary local

decision, suggesting it is better to collect all the analog data together at fusion center for

one detection with less probability of error. This evaluation matches the results presented

in [8] which provide the asymptotic detection performance comparison between analog and

binary system using large deviation technique.

Comparison of the three schemes will be discussed in Section 3.4.
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FIGURE 3.5. Analytical detection performance comparison between analog and binary system
using (3.22) and (3.23)

37



3.4 Performance evaluation

In this section we compare the performance of our proposed Σ − ∆ modulation based

distributed detection system with that of binary and analog system in terms of detection

error probabilities.

Fig. 3.6, Fig. 3.7 and Fig. 3.8 illustrate the detection performance of three distributed

detection systems as a function of Ps, Pt, N in AWGN channels, respectively. In Fig. 3.6,

simulation results are provided for binary system using the optimal soft decision described

in (3.21) while numerical results are provided for analog and Σ−∆ modulation based system

using (3.23) and (3.19). In this way, we can compare fairly the performance of the three

performance with the optimal soft decision fusion rule. In Fig. 3.7 and Fig. 3.8, we use (3.22)

for binary system with optimal hard decision to present numerical comparison of the three

systems. From these figures we can see that Σ−∆ modulation based distributed detection

system can outperform both the analog and the binary distributed detection system under

certain conditions. To better understand this, let us neglect ē0−ēN and inter-sensor channel

noise ηi in (3.16). This is reasonable when σ2
n, σ2

w and N are large. In addition, inter-sensor

channel link is assumed to be good due to the close distance between adjacent sensor

nodes. Hence the detection symbol Z can be approximated as m+ 1
N

[
∑N−1

i=0 (wi +ni)]. This

is exactly the detection statistics for analog distributed detection system when scale factor

α = 1. Since detection error probability in (3.23) increases as α decreases, it is easy to see

that Σ − ∆ modulation based system will outperform the analog system when α < 1, i.e.

s2/2 + σ2
w > 1.
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FIGURE 3.6. Detection error probability versus Ps in AWGN channels with N=99, Pt=0dB,
PI=15dB, s=0.6

FIGURE 3.7. Detection error probability versus sensor number N in AWGN channels, PI=15dB,
Pt=10dB, Ps=10dB,s=0.6
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FIGURE 3.8. Detection error probability versus Pt in AWGN channel, Ps=-5dB, PI=15dB, s=0.6,
N=99

Summary

In this chapter, we

• Present the system model of distributed detection in AWGN channels.

• Investigate the statistical characteristics of the Σ−∆ modulation based on which we

develop a suboptimal detector for Σ − ∆ modulation based distributed detection system

with closed-form detection error probability.

• Provide the optimal fusion rule for analog and binary system and its system perfor-

mance.

• Evaluate the proposed system detection performance in AWGN channels by comparing

it to the analog and binary systems.
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Chapter 4
Σ−∆ modulation based distributed detection
in non-coherent fading channels

In this chapter we extend the study to Σ−∆ modulation based distributed detection from

AWGN channels to fading channels. For non-coherent detection in fading channels, it is

generally impossible to obtain a closed-form formula for the detection error probability

with finite number of sensors. We will provide the optimal fusion rule based on the joint

pdf of {ŷi}N
i=1 for the three distributed detection systems and evaluate their performances

by simulations. We also study the alternative suboptimal detection algorithms for Σ − ∆

modulation based system in order to gain some analytical insights.

4.1 System model

The distributed detection system model is similar to that described in section (3.1) except

that, yi is now transmitted to a fusion center respectively over a unique assigned channel

that experiences independent flat fading with respect to other orthogonal channels. The

received signal at the fusion center from the ith sensor node over fading channel now is

FIGURE 4.1. Equivalent model for Σ − ∆ modulation based distributed detection system over
fading channels
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given by

ŷi = hiyi + ni (4.1)

where ni is AWGN with variance σ2
n and hi is the Rayleigh distributed fading channel gain

with power E(|hi|2) = 1. The pdf of hi is given by,

f(hi) = 2hie
−h2

i

We also assume non-coherent detection at fusion center where only channel fading statistics

instead of global channel state information (CSI) is available. An equivalent system block

diagram is shown in Fig. 4.1.

4.2 Iterative procedure to obtain joint pdf of Σ − ∆

modulator output

In order to obtain the likelihood ratio in (1.2), we first need to get the joint pdf of {yi}N
i=1 at

the Σ−∆ modulator output. [26] presents an iterative procedure to compute f(y1, · · · , yN).

We will adopt this method and modify the algorithm to include the inter-sensor channel.

Rewrite (3.11) we get,

vi+1 = xi − ei (4.2)

where

ei = q(ṽi)− ṽi (4.3)

is the 1-bit quantization error and

ṽi = vi + ηi (4.4)

is the received signal at sensor i from the previous sensor. Assuming that the stochastic

process xi and −e(i) are independent, the pdf of vi+1 denoted as f(vi+1) can be found as

a convolution between the pdf of xi and the reflected pdf of ei denoted as f(−ei).

f(vi+1) = f(xi) ∗ f(−ei) (4.5)
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where the pdf of −ei follows from (4.3) as

f(−ei = ν) = u(ν + 1)f(ṽi = ν) + u(−ν + 1)f(ṽi = ν) (4.6)

in which u(e) is the step function defined as 0 for e < 0 and 1 for e ≥ 0 and the pdf of ṽi

follows from (4.4) as

f(ṽi) = f(vi) ∗ f(ηi) (4.7)

where f(ηi) is a zero mean Gaussian pdf with variance σ2
η. In order to find the pdfs f(vi)

and f(ei) for every i, an initial value v1 = x1 = m + w1 corresponding to a pdf with mean

m and variance σ2
w, and the initial quantization error pdf can be found by using (4.6) and

(4.7). The procedure continues iteratively by finding the pdf of vi+1 with (4.5) where f(xi)

is always a Gaussian pdf with mean m and variance σ2
w. The actual calculation of these

continuous pdfs requires a numerical evaluation and the accuracy of the algorithm depends

on the resolution of the numerical convolution. The joint probability mass function (pmf)

can thus by calculated by

P (y1 = 1, · · · , yN = 1) =

∫ ∞

0

· · ·
∫ ∞

0

f(v1, · · · , vN)dv1 · · · dvN (4.8)

4.3 LRT-based fusion algorithm for Σ − ∆

modulation based distributed detection system

A straightforward approach to get f(ŷ1, · · · , ŷN |Hj) for LRT rule is to write it as,

f(ŷ1, · · · , ŷN |Hj) =
∑

y1,··· ,yN

N∏
i=1

f(ŷi|yi)P (y1, · · · , yN |Hj)

where P (y1, · · · , yN |Hj) can be numerically calculated using (4.8). However, this approach

requires to sum up 2N P (y1, · · · , yN |Hj), which means a computational complexity of

O(2N). Instead we develop an iterative procedure to derive the desired joint pdf which

only requires a computational complexity of O(N).The algorithm will be referred as SLRT
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(suboptimal LRT based) algorithm since we use approximation in the computing process

and it is not the optimal way for calculating the LRT. First derive f(ŷ1, · · · , ŷN |Hj) as,

f(ŷ1, · · · , ŷN |Hj) =
N∏

i=2

f(ŷi|ŷi−1, · · · , ŷ1, Hj)f(ŷ1|Hj)

=
N∏

i=2

[
∑
yi

f(ŷi|yi)P (yi|ŷi−1, · · · , ŷ1, Hj)]f(ŷ1|Hj)

=
N∏

i=2

[
∑
yi

f(ŷi|yi)P (yi|ŷi−1, · · · , ŷ1, Hj)]
∑
y1

f(ŷ1|y1)P (y1|Hj) (4.9)

Our algorithm is developed based on (4.9) to compute f(ŷi|ŷi−1, · · · , ŷ1, Hj) for every

i, which relies on the computation of f(ŷi|yi) and P (yi|ŷi−1, · · · , ŷ1, Hj) in each iteration.

The details of each computation will be elaborated as follows.

First of all, f(ŷi|yi = 1) can be found as the convolution of the pdf of Gaussian zero-mean

random variable ni with variance σ2
n and the pdf of Rayleigh distributed random variable

hi with E(h2
i ) = 1. This pdf has a closed form derived as,

f(ŷi|yi = 1) =

∫ ∞

0

2xe−x2 1√
2πσn

e
− (x−y)2

2σn2 dx

=
2σn√

2π(1 + 2σ2
n)

e
− y2

2σ2
n [1 +

√
2πaye

(ay)2

2 Q(−ay)] (4.10)

where

a = 1/(σn

√
(1 + 2σ2

n)

Similarly we can find

f(ŷi|yi = −1) = f(−ŷi|yi = 1)

From Bayes rule, we can write

P (yi = 1|ŷi)

P (yi = −1|ŷi)
=

f(ŷi|yi = 1)P (yi = 1)

f(ŷi|yi = −1)P (yi = −1)
(4.11)

Here we assume the marginal probability of yi without any condition P (yi = 1) = P (yi =

−1). Therefore, we can get P (yi|̂i) from (4.11) and the condition P (yi = 1|̂i) + P (yi =

−1|̂i) = 1.
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Secondly, the computation of P (yi|ŷi−1, · · · , ŷ1, Hj) requires f(vi|ŷi−1, · · · , ŷ1, Hj), for

which we need to compute f(vi−1|ŷi−1, · · · , ŷ1, Hj) first. for f(vi−1|ŷi−1, · · · , ŷ1, Hj), we

here use an approximation

f(vi−1|ŷi−1, · · · , ŷ1, Hj) = Norm[u(vi−1)f(vi−1|ŷi−2, · · · , ŷ1, Hj)]P (yi−1 = 1|ŷi−1)

+Norm[u(−vi−1)f(vi−1|ŷi−2, · · · , ŷ1, Hj)]P (yi−1 = −1|ŷi−1) (4.12)

where Norm(f(x)) = f(x)R∞
−∞ f(x)dx

performs the normalization, u(x) is the step function,

f(vi−1|ŷi−1, · · · , ŷ1, Hj) is obtained from the previous iteration and P (yi − 1| ˆi− 1) can

be computed using (4.11). In (4.12) we use a heuristic approach rather than the rig-

orous method using Bayes’ rule. The idea is utilizing the updated ŷi−1 and the corre-

sponding P (yi−1|ŷi−1) in the i − 1th iteration to reshape the conditional pdf of vi−1 given

{ŷi−2, · · · , ŷ1, Hj}, obtained from the i− 2th iteration, which is simply scaled for positive

vi−1 and negative vi−1 separately to get a heuristic f(vi−1|ŷ2−1, · · · , ŷ1, Hj).

The next step is to compute f(vi|ŷi−1, · · · , ŷ1, Hj) based on f(vi−1|ŷi−1, · · · , ŷ1, Hj) by

applying the results in Section 4.2. Since

vi = xi − ei−1 (4.13)

= xi + ṽi−1 − q(ṽi−1)

= xi + vi−1 + ηi−1 − q(vi−1 + ηi−1)

where ei and ṽi are specified in (4.3) and (4.4). We first use f(vi−1|ŷi−1, · · · , ŷ1, Hj) to get

f(ṽi−1|ŷi−2, · · · , ŷ1, Hj) and f(−ei−1|ŷi−2, · · · , ŷ1, Hj) based on (4.3) and (4.4),

f(ṽi−1|ŷi−1, · · · , ŷ1, Hj) = f(vi−1|ŷi−1, · · · , ŷ1, Hj) ∗ f(ηi−1)

f(−ei−1 = ν|ŷi−1, · · · , ŷ1, Hj) =

u(ν + 1)f(ṽi−1 = ν|ŷi−1, · · · , ŷ1, Hj) + u(−ν + 1)f(ṽi−1 = ν|ŷi−1, · · · , ŷ1, Hj)
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FIGURE 4.2. Iterative computation flow to calculate f(ŷ1, · · · , ŷN |Hj)

Then we can compute the desired f(vi|ŷi−1, · · · , ŷ1, Hj) using (4.13) as

f(vi|ŷi−1, · · · , ŷ1, Hj) = f(xi|Hj) ∗ f(−ei−1|ŷi−1, · · · , ŷ1, Hj)

and finally we can obtain P (yi|ŷi−1, · · · , ŷ1, Hj) as

P (yi = 1|ŷi−1, · · · , ŷ1, Hj) =

∫ ∞

0

f(vi|ŷi−1, · · · , ŷ1, Hj)dvi

Using P (yi|ŷi−1, · · · , ŷ1, Hj) and f(ŷi|yi) computed for each i we can get the joint pdf of

the received signals f(ŷ1, · · · , ŷN |Hj) under each hypothesis using (4.9). Note that initial

value v1 = x1 + η1, corresponding a Gaussian distributed pdf with mean m and variance

σ2
w + σ2

η and P (y1 = 1|Hj) =
∫∞

0
f(v1|Hj)dv1.

The essence of the algorithm lies in the prediction of the pdf of ŷi given {ŷj}i−1
j=1. The

computation process flows as f({ŷj}i−1
j=1), P (yi−1|{ŷj}i−1

j=1), f(vi−1|{ŷj}i−1
j=1), f(ṽi−1|{ŷj}i−1

j=1),

f(−ei−1|{ŷj}i−1
j=1), f(vi|{ŷj}i−1

j=1), P (yi|{ŷj}i−1
j=1), f(ŷi|{ŷj}i−1

j=1), as illustrated in Fig 4.2. The

procedure continues N times and the likelihood ratio of the received {ŷi}N
i=1 can hence be

numerically computed. The SLRT detector is thus constructed straightforwardly.

As an alternative approach, EGC is adopted again as suboptimal detector. EGC for

distributed detection over fading channels will be analyzed in Section 5.1. Due to the

fading gain hi, EGC can no longer eliminate the quantization noise power as in AWGN
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case, its usefulness yet depends on how much performance loss it suffered compared to

the optimal fusion rule. In the context of non-coherent fading detection, it is the only

suboptimal detector that do not need global CSI.

4.4 Optimal fusion rule for Binary and Analog

distributed detection system

Similar to the distributed detection over AWGN channels, we also need to develop optimal

detectors for binary and analog systems to compare their detection performance.

Binary case:

For binary distributed detection system over fading channel, the local sensor has the

same decision threshold s/2 as the AWGN case. The desired LR at the fusion center is

Λ =
N∏

i=1

Pff(ŷi|yi = 1) + (1− Pf )f(ŷi|yi = −1)

Pff(ŷi|yi = −1) + (1− Pf )f(ŷi|yi = 1)

where f(ŷi|yi = 1) is specified in (4.10) and Pf = Q(s/2σw).

Analog case:

For analog system, yi = αxi, the breceived signal at the fusion center ŷi is

ŷi = hiα(m + wi) + ni

Conditional on hi ŷi is a Gaussian distributed random variable with mean hiαm and vari-

ance h2
i α

2σ2
w + σ2

n, the joint pdf of {ŷi}N
i=1 can be obtained by

f(ŷ1, · · · , ŷN |Hj) =
N∏

i=1

∫ ∞

0

f(ŷi|hi, Hj)f(hi)dhi

=
N∏

i=1

∫ ∞

0

2he−h2 1√
2π(h2α2σ2

w + σ2
n)

e
− (ŷi−αhm)2

(h2α2σ2
w+σ2

n) dh

The rest of the procedure to obtain the LR is exactly the same as the binary case. The

comparison between the three schemes will be discussed in Section. 4.5.
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4.5 Performance evaluation

We investigate the detection performance of Σ−∆ modulation based distributed detection

using the SLRT algorithm with respect to various parameters, under the 1st order Markov

process approximation of {ŷN
i=1}, compared to the performance of analog, binary system

as well as suboptimal EGC detector of Σ−∆. Benchmark curve of optimal detection per-

formance without any channel distortion is also shown. As illustrated by Fig. 4.5, Σ − ∆

performance is a convex function of s with optimal value around 0.8. The sensor node

should scale input signal first or choose the proper quantization level of the 1 bit quantizer

to achieve the optimal performance. Clearly Σ−∆ distributed detection system with SLRT

detector can outperform both analog and binary sensor nodes with the extra links between

sensor nodes and it can be very robust against the fading channel distortion with perfor-

mance very close to the optimal detection assuming input signal is directly accessible to the

fusion center, as evidenced by Fig. 4.3 and Fig. 4.4. The question is how much performance

degrading will the inter-sensor channel distortion cause on the overall performance of the

system.

Our study in Σ − ∆ modulation based distributed detection assumes that there is no

fading in the inter-sensor channels. It is reasonable because of the close distance between

adjacent sensor nodes. However, we would like to see how much our proposed system will

suffer if there is also fading effect existing in the inter-sensor channels. Fig. 4.6 provided the

detection performance of Σ − ∆ system as a function of PI with both fading inter-sensor

channel and non-fading inter-sensor channel being examined. It demonstrates that for non-

fading inter-sensor channels, we need at least 10dB inter-sensor channel SNR to assure the

performance advantage. For fading inter-sensor channel case, we still use the fusion rule

assuming the inter-sensor channel is AWGN. The received signal from the ith sensor at the

i + 1th sensor becomes

v̂i = h̄ivi + ηi
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FIGURE 4.3. Noncoherent detection error probability versus Ps, PI=15dB, Pt=15dB, s=0.5,
N=24

where h̄i is the Rayleigh distributed fading gain with E(h̄2
i ) = 1 and ηi is the inter-sensor

channel white Gaussian noise. From the simulation results, the detection performance de-

grades substantially. This illustrates that the Σ−∆ modulation based distributed detection

needs reliable inter-sensor communication to achieve its potential benefits since it requires

additional communication links between local sensor nodes.
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FIGURE 4.4. Noncoherent detection error probability versus Pt, PI=15dB, Ps=-4dB, s=0.7, N=24

FIGURE 4.5. Noncoherent detection error probability versus s, Ps=-4dB, PI=15dB, Pt=15dB,
N=24
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FIGURE 4.6. Noncoherent detection error probability versus PI , Ps=-4dB, Pt=15dB, s=0.7, N=24

Summary

In this chapter, we

• Investigate the distributed detection system in non-coherent fading channels.

• Develop the optimal fusion algorithm for Σ−∆ modulation based distributed detection

system.

• Provide the optimal fusion rule for analog and binary systems in non-coherent fading

channels.

• Evaluate the proposed system performance in non-coherent fading channels by com-

paring it to the analog and binary systems.
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Chapter 5
Distributed detection of correlated
observations over coherent fading channels

Although the reliance on the global Channel State Information (CSI) in obtaining the

local decision rules was relaxed to make the distribute detection system more practical,

in certain applications we may still be able to afford obtaining the complete knowledge

of CSI through training-based channel estimation for slowly varying channels. Thus the

distributed detection with coherent reception will be studied in order to see how much

we can gain by obtaining CSI in terms of detection performance. In this chapter, we will

provide more thorough comparison between different schemes, based on the analysis of

their asymptotical performance in high Pt and Ps region. Furthermore, we would like to see

what effect would be caused on the detection performance of distributed detection when

the observations at local sensor nodes are correlated.

5.1 Fusion rules for distributed detection over

coherent fading channels

From the numerical results of performance discrepancy between binary and analog dis-

tributed detection system in AWGN channels, we know that under different channel and

sensor conditions, the performance comparison exhibits different behaviors. To be specific,

analog system has stronger performance in low Ps region and high Pt region, and binary

system outperforms analog system in low Pt region and high Ps region. We try to see this

result can be duplicated in fading channels. What’s more, we will also investigate the per-

formance of our proposed Σ−∆ distributed detection system in coherent fading channels.

Binary system

In binary distributed detection systems, local optimal binary decision is still made in each

sensor node by comparing the measurement xi with the threshold of s/2 and then transmits
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the binary message to the fusion center. Given the transmitted signal, the received signal

from the ith sensor node becomes a Gaussian random variable with mean ±hi and variance

σ2
n. The LR of {ŷi}N

i=1 given {hi}N
i=1 at the fusion center under two hypothesis can be

modified from (3.21),

Λ =
N∏

i=1

f(yi|H0, hi)

f(yi|H1, hi)

=
N∏

i=1

Pfe
− (ŷi−hi)

2

2σ2
n + (1− Pf )e

− (ŷi+hi)
2

2σ2
n

Pfe
− (ŷi+hi)

2σ2
n + (1− Pf )e

− (ŷi−hi)

2σ2
n

(5.1)

where Pf = Q(s/2σw). The optimal detection employing the LRT based fusion rule can

then be constructed.

Analog system

For analog system, each sensor node scales the local observation xi by a factor of α =√
2

s2+2σ2
w

and transmits to the fusion center through the coherent fading channel. The

received signal from the ith sensor node becomes a Gaussian random variable with mean

αhim and variance α2h2
i σ

2
w +σ2

n. The LR of {ŷi}N
i=1 given {hi}N

i=1 at the fusion center under

two hypothesis can be written as

Λ =
N∏

i=1

f(yi|H0, hi)

f(yi|H1, hi)

=
N∏

i=1

e
− (ŷi)

2

2α2h2
i

σ2
w+σ2

n

e
− (ŷi−αhis)2

2α2h2
i

σ2
w+σ2

n

(5.2)

The optimal LRT based fusion rule for analog distributed detection system can be im-

plemented exactly like the previous cases.

Σ−∆ modulation based system

The joint pdf of received signals {ŷi}N
i=1 for Σ−∆ modulation based distributed detection

system can be derived similar as (4.9) except that the channel condition is changed because
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of CSI.

f(ŷ1, · · · , ŷN |Hj, h1, · · · , hN)

=
N∏

i=2

f(ŷi|ŷi−1, · · · , ŷ1, Hj, hi−1, · · · , h1)f(ŷ1|Hj, h1)

=
N∏

i=2

[
∑
yi

f(ŷi|yi, hi)P (yi|ŷi−1, · · · , ŷ1, Hj, hi−1, · · · , h1)]f(ŷ1|Hj, h1)

where

f(ŷi|yi, hi) =
1√

2πσn

e
− (ŷi−hiyi)

2

2σ2
n

and

P (yi = 1|ŷi, hi)

P (yi = −1|ŷi, hi)
=

f(ŷi|yi = 1, hi)f(yi = 1, hi)

f(ŷi|yi = −1, hi)f(yi = −1, hi)

. we use the similar assumption f(yi = 1, hi) = f(yi = −1, hi) so that P (yi = 1|ŷi, hi) can

be computed. The rest of the steps to find P (yi|ŷi−1, · · · , ŷ1, Hj, hi−1, · · · , h1) are similar

to those in section 4.3.

The LRT based fusion rule can now be implemented using the SLRT algorithm. Like

AWGN and non-coherent fading case, we would like to investigate alternative suboptimal

fusion rule to gain more insights. EGC has been shown to be an efficient suboptimal de-

tector for Σ − ∆ modulation based distributed detection systems. There are some other

suboptimal detector for coherent detection. For coherent fading channels, maximum ratio

combining is known as a diversity technique that achieves maximum SNR in wireless com-

munications [29]. It is one of the best techniques to mitigate the effect of fading in diversity

combining of independently fading signal paths. Applying this technique in distributed
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detection, we modify the detection statistics in (3.15) to,

ZMRC =
1

N

N∑
i=1

hiŷi

=
1

N

N∑
i=1

hi(hiyi + ni)

=
1

N

N∑
i=1

[h2
i (m + wi + ηi) + hini + h2

i (ēi − ēi+1)] (5.3)

while the detection statistics for EGC without the requirement of channel CSI is

ZEGC =
1

N

N∑
i=1

ŷi

=
1

N

N∑
i=1

(hiyi + ni)

=
1

N

N∑
i=1

[hi(m + wi + ηi) + ni + hi(ēi − ēi+1)] (5.4)

While MRC is optimal in that in maximizes the output SNR in the communication link

from local sensors to the fusion center, it does not deal with the sensor SNR. In the context

of sensor networks, this is not necessarily the case due to the nature of the problem. To

analyze this, based on (5.3) and (5.4) we can calculate the first two moments of the test

statistics and write the detection-wise SNR by applying the Central Limit Theorem (CLT)

and Gaussian approximation,

SNRMRC =
s2

1
N
{2(σ2

w + σ2
η) + m2 + σ2

n + 2E[(ēi − ēi+1)2]}
(5.5)

SNREGC =
s2

1
N

4
π
{σ2

w + σ2
η + (1− π

4
)m2 + σ2

n + E[(ēi − ēi+1)2]}
(5.6)

By comparing the denominators in (5.5) and (5.6), we find that MRC only maximize

the signal to channel noise (ni) ratio while EGC is more robust against all the other noise

components (wi, ηi, and ēi − ēi+1). Unless channel noise is overwhelming, EGC should be

preferable since it requires least of the channel information, as evidenced by the simulation
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FIGURE 5.1. Simulation results of detection error probability versus Ps for MRC and EGC,
Pt=15dB, PI=15dB, s=0.6, N=20

results given in Fig. 5.1, Fig. 5.2 and Fig. 5.3. We compare the detection performance of

the two suboptimal fusion rule versus Ps for different channel SNR Pt. EGC outperforms

MRC in all cases.

We approximate E[(ēi − ēi+1)
2] = 2/3− 2Rēi

(1) [23] and the detection error probability

can be evaluated easily [28] applying Gaussian density function with obtained mean and

variance. We compared this approximation to the simulation result of EGC.

Fig. 5.4 gives the detection error probability versus Ps obtained by simulation and ana-

lytical approximation using the CLT for EGC as a suboptimal detector. In this example,

the total number of sensors is 15, PI is 15dB and Pt is 10dB. While some discrepancy exists,

the approximation using the CLT matches relatively well to the simulation results in high

sensor SNR region. We have also found through extensive simulations that the accuracy of

the CLT approximation not only depends on Ps but also other parameters such as N , PI

and Pt.

Single sensor detection with binary repetition coding scheme
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FIGURE 5.2. Simulation results of detection error probability versus Ps for MRC and EGC,
Pt=20dB, PI=15dB, s=0.6, N=20

FIGURE 5.3. Simulation results of detection error probability versus Ps for MRC and EGC,
Pt=5dB, PI=15dB, s=0.6, N=20
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FIGURE 5.4. Detection error probability versus Ps obtained by simulation and numerical approx-
imation for suboptimal detector EGC, Pt=10dB, N=15, PI=15dB

In addition to these three schemes, consider a single binary sensor detection with K

observations {x1, x2, · · · , xK}. It makes a local optimal decision y based on LRT of k

samples and transmit the decision repeatedly L times (denoted as {y1, y2, · · · , yL}) to the

fusion center.

For analytic purposes, assume the fusion center uses MRC to decide the local binary

decision y and the hypothesis Hi upon receiving {ŷ1, ŷ2, · · · , ŷL}. Specifically, the MRC

decision rule at the fusion center,

R =
L∑

i=1

hiŷi

The signal to noise ratio of the output R is

γΣ = ΣL
i=1

h2
i

σ2
n

= ΣL
i=1h

2
i Pt

Assume i.i.d. Rayleigh fading on each branch of MRC with equal average SNR E(h2
i )Pt =

Pt, the distribution of γΣ is χ2 with 2L degrees of freedom,

pγΣ
(γ) =

γL−1e−γ/Pt

PL
t (L− 1)!

, γ ≥ 0
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The transmission error probability given global CSI P (ŷ 6= y|h1, · · · , hL) is given as

P (ŷ 6= y|h1, · · · , hL) = Q(
√

2γΣ)

where the decision rule is

ŷ =

 1, R ≥ 0,

−1, R < 0.

The average probability of transmission error is

Pb = P (ŷ 6= y) =

∫ ∞

0

Q(
√

2γΣ)pγΣ
(γ)dγ

= (
1− Γ

2
)LΣL−1

l=1 (L−1+l
l )(

1 + Γ

2
)l,

where Γ =
√

Pt/(1 + Pt). The total detection error probability for single binary sensor with

K observations and L repetitions is,

Pe,rep = P (ŷ = 1|H0)P (H0) + P (ŷ = −1|H1)P (H1)

= P (ŷ = 1|y = 1)P (y = 1|H0)P (H0) + P (ŷ = 1|y = −1)P (y = −1|H0)P (H0)

+ P (ŷ = −1|y = 1)P (y = 1|H1)P (H1) + P (ŷ = −1|y = −1)P (y = −1|H0)P (H0)

= Pf (1− Pb) + (1− Pf )Pb (5.7)

where Pf = Q( s/2√
σ2

n/K
) is the local detection error using K i.i.d. Gaussian observations.

This equation is plotted in Fig. 5.5.

The relations between Pe and K, L, Pt, Ps depicted in Fig. 5.5 and Fig. 5.7 can be shown

from (5.7). Assuming K +L is constant, high Pt and low Ps results in that Pe is dominated

by Pf (1 − Pb), which means larger K leads to overall better detection performance. On

contrast, low Pt and high Ps results in that Pe is dominated by (1−Pf )Pb, and thus larger

L is in favor of in this case. Although this is a single sensor detection scheme, we would like

to see how well its performance is by comparing it to distributed detection systems with

K = L = N .
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FIGURE 5.5. Detection error probability versus Pt of single binary sensor with repetition coding
in coherent fading channels

5.1.1 Performance evaluation

The simulation results of comparison between single binary sensor detection with repeti-

tion coding, binary distributed system, analog distributed system and Σ − ∆ distributed

detection system in coherent fading channels are provided in Fig. 5.7 and Fig. 5.8, where

K = L = N = 24 and observations are conditionally independent. Optimal detection rules

are adopted for binary distributed system, analog distributed system and Σ−∆ distributed

detection system using SLRT detection algorithm. Analytical results for binary repetition

coding scheme is provided using (5.7).

First of all, these results shows that if the single sensor detection scheme can be imple-

mented in the distributed detection framework, significant performance improvement can

be achieved.
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FIGURE 5.6. Detection error probability versus Ps of single binary sensor with repetition coding
in coherent fading channels

To further understand the performance discrepancy of the other three distributed detec-

tion schemes. Asymptotical performance will be analyzed for different schemes with very

large Pt and Ps, which is consistent with the error floors in the simulation results.

As Pt goes to infinity, analog system with fixed Ps renders the optimal performance of

the scenario that all the observations are directly accessible to the fusion center,

Pe,a,Pt→∞ = Q(
s/2√
σ2

w/N
) (5.8)

Same results can be justified for single binary sensor detection with repetition coding and

Σ−∆ distributed system. For binary distributed detection system, as Pt increases to infinity,

local binary decisions are available to the fusion center error free, and the LRT decision

rule simplifies to the form of majority vote. The corresponding detection error probability

is characterized by,

Pe,b,Pt→∞ =

dN
2
e∑

i=1

[1−Q(
s/2

σw

)]i[Q(
s/2

σw

)](N−i)
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FIGURE 5.7. Detection performance comparison between single binary sensor with repetition
coding, distributed binary sensors, distributed analog sensors and Σ−∆ distributed sensors using
SLRT algorithm in coherent fading channels, K=L=N=24, Pe versus Pt

This error probability is larger than (5.8), which is shown in Fig. 5.7 as the gap between

the error floors of analog and binary system.

On the other hand, as Ps increases to infinity, local observations are deterministic con-

stant signal given the hypothesis and distributed detection becomes a pure communication

problem. For binary distributed system, all the transmitted signal from local sensors are

bit ones given H1 and bit zeros given H0. This is the same as the binary repetition coding

scheme. The probability of error is reduced to the form of Pb in (5.7).

Pe,b,Ps→∞ =

∫ ∞

0

Q(
√

2γΣ)pγΣ
(γ)dγ

= (
1− Γ

2
)LΣL−1

l=1 (L−1+l
l )(

1 + Γ

2
)l,
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FIGURE 5.8. Detection performance comparison between single binary sensor with repetition
coding, distributed binary sensors, distributed analog sensors and Σ−∆ distributed sensors using
SLRT algorithm in coherent fading channels, K=L=N=24, Pe versus Ps
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where Γ =
√

Pt/(1 + Pt). This is the average transmission error probability in coherent

fading channels with BPSK modulation and N branch MRC.

For analog system, all the local sensors directly transmit the same signal αm to the fusion

center. αm =
√

2 given H1 and αm = 0 given H0. This is equivalently the on-off keying

modulation in digital communications. Using maximum ratio combing, the average error

probability can be calculated by

Pe,a,Ps→∞ =

∫ ∞

0

Q(
√

γΣ)pγΣ
(γ)dγ

Essentially for binary and analog distributed detection systems, the problem is simplified as

transmitting a binary hypothesis with repetition coding schemes of length N . The difference

between analog system and binary system in high Ps region is the values of the repetition

code symbol, which can be considered as different digital modulation types equivalently.

Since BPSK has larger Euclidean distance between two basis function than On-Off keying,

the probability of error given channel CSI for binary system Q(
√

2γΣ) is smaller than

that of analog system Q(
√

γΣ) given the same average transmission power, resulting in

the overall detection performance difference illustrated in Fig. 5.7. For Σ − ∆ distributed

detection system, the transmitted sequence {yi} when s = 1 is {1,−1, 1,−1, · · · } given

H1 and {0, 0, · · · } given H0 [21]. The Euclidean distance between the two codes is smaller

than binary and analog system. Therefore, in high Ps region Σ − ∆ scheme has the worst

performance of all.

As for the case of low Ps and Pt region, the results shown in simulations are similar to

AWGN and noncoherent fading cases as expected.

In summery, binary repetition coding scheme has the overall best performance. Among

the other three distributed schemes,

• In high Ps region, binary system has the best performance of three.

• In high Pt region, analog system and Σ−∆ system has better performance than binary
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system.

• In low Ps region, Σ − ∆ system has the best performance of three. Analog system has

better performance than binary system.

• In low Pt region, Σ − ∆ system has the best performance of three. Binary system has

better performance than analog system.

Analog Binary Repetition Coding Σ−∆

High Pt Region Optimal Majority vote Optimal Optimal

(Asymptotical)

High Ps Region MRC with MRC with MRC with Smallest

(Asymptotical) On-Off Keying BPSK BPSK distance

Low Pt Region Worst Third Best Second

Low Ps Region Third Worst Best Second

TABLE 1. Summary of detection performance of different schemes.

5.2 Detection of correlated observations

The distributed detection study presented in this thesis so far assumes that sensor obser-

vations are conditionally independent with the joint pdf of the observations obeys (1.3).

Although this assumption is easy to analyze, there are many occasions where the obser-

vations at the different sensors consist of noisy observations of random signals which are

correlated. We will provide an example of detecting correlated observations with corre-

sponding fusion rules for different schemes in this section.
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Assume the covariance matrix of the measurement noise wi is

Kw =



σ2
w σ2

w/2 0 · · · · · · · · · 0

σ2
w/2 σ2

w σ2
w/2 0 · · · · · · 0

0 σ2
w/2 σ2

w σ2
w/2

...

... · · · · · · . . . . . .
...

0 0 · · · · · · . . . . . .
...

0 0 0 · · · · · · σ2
w σ2

w/2

0 0 0 · · · · · · σ2
w/2 σ2

w



. (5.9)

Now we need to find the LR for the three systems.

Binary system

For local binary decision the decision rule at each sensor remains un-changed. For sim-

plicity we use hard decision instead of soft decision detection. The joint probability of the

local binary decisions p(y1, y2, · · · yN |Hj) can be calculated by integration of the the joint

pdf of x1, x2, · · ·xN given Hj , which is given by

f(x1, x2, · · ·xN |Hj) =
1

(2π)N/2|Kw|1/2
e[− 1

2
(x−m)T K−1

w (x−m)] (5.10)

where x is the input sequence vector {xi}N
i=1 . m = 0 under H0 and m = s under H1.

However, the N dimensional integration is not easy to calculate. Instead, we obtained the

joint probability of y1, y2, · · · yN by

p(y1, y2, · · · yN |Hj, h1, · · · , hN) = p(y1|Hj)p(y2|Hj, y1)p(y3|Hj, y1, y2) · · · p(yN |Hj, y1, y2, · · · yN−1)

= p(y1|Hj)p(y2|Hj, y1)p(y3|Hj, y2) · · · p(yN |Hj, yN−1)

=
N∏

i=2

p(yi|Hj, yi−1)p(y1|Hj)

=
N∏

i=2

p(yi−1, yi|Hj)

p(yi−1|Hj)
p(y1|Hj)
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At the fusion center,the received signal is demodulated first and hard decision is applied.

The conditional joint probability of ŷ1, ŷ2, · · · ŷN is given by

p(ŷ1, · · · ŷN |Hj, h1, · · · , hN) =
∑

y1,···yN

p(ŷ1, · · · ŷN |y1, · · · yN , h1, · · · , hN)p(y1, · · · yN |Hj)

=
∑

y1,y2,···yN

N∏
i=1

p(ŷi|yi, hi)p(y1, y2, · · · yN |Hj)

Analog system

For analog communication, the received signal at the fusion center is

ŷi = hiαxi + ni

The covariance matrix of ŷN
i can be written as,

Kr = α2HT KrH + INσ2
n (5.11)

Where H is the diagonal matrix of the fading gain {hi}N
i=1 and x is the input vector

{xi}N
i=1. Since {ŷi}N

i=1 is also joint gaussian random vector, we are able to write the joint

pdf of {ŷi}N
i=1 given {hi}N

i=1 and Hj.

f(ŷ1, · · · ŷN |Hj, h1, · · · , hj) =
1

(2π)N/2|Kr|1/2
e[− 1

2
(x−mh)T K−1

r (x−mh)] (5.12)

where h is the fading gain vector {hi}N
i=1.

Σ−∆ modulation based system

For Σ − ∆ ADC, we apply EGC detector since optimal LR based fusion rule is very

hard to implement. Our purpose is trying to see if correlation will change the performance

discrepancy of Σ−∆ ADC against the other two approaches.

5.2.1 Performance evaluation

Fig. 5.8 gives the detection performance of correlated observations versus N with the covari-

ance matrix of {xi}i=1N described in (5.9). The performance discrepancy is not substantial
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FIGURE 5.9. Detection error probability versus N with correlated observations, Ps=-5dB,
Pt=15dB, s=0.5, PI=15dB, covariance matrix of {xi}i=1N . LRT for analog and binary systems.
EGC for Σ−∆ system.

though Σ − ∆ modulation based system still outperform the binary and analog system.

Recall that in Chapter 2, for single sensor detection using Σ−∆ modulation, we add a feed

forward link inside Σ−∆ modulator or add a pre-FIR block to improve the performance.

This modification equivalently makes the input from being conditionally independent to

correlated. Next we assume the measurement noise covariance matrix is exactly as if we

perform a first order filtering to a white input sequence.

The covariance matrix of wi now becomes

Kw =



σ2
w σ2

w/2 0 · · · · · · · · · 0

σ2
w/2 σ2

w/2 σ2
w/4 0 · · · · · · 0

0 σ2
w/4 σ2

w/2 σ2
w/4

...

... · · · · · · . . . . . .
...

0 0 · · · · · · . . . . . .
...

0 0 0 · · · · · · σ2
w/2 σ2

w/4

0 0 0 · · · · · · σ2
w/4 σ2

w/2



. (5.13)
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FIGURE 5.10. Detection error probability versus N with correlated observations, Ps=-5dB,
Pt=15dB, s=0.5, PI=15dB, covariance matrix of {xi}i=1N described in (5.13). LRT for analog
and binary systems. EGC for Σ−∆ system.

Applying the optimal fusion rule for analog system obtained in Section 5.2 and EGC

for Σ − ∆ system, we had another series of simulations as shown in Fig. 5.9. We compare

the detection performance of Σ − ∆ system to analog system with covariance matrix of

{xi}i=1N described in (5.13), as well as the detection performance of Σ − ∆ system with

independent observations. It demonstrates that Σ−∆ system has even better performance

when observations are not conditionally independent. Although it does not show tremen-

dous superiority against analog system, yet considering binary and analog system uses the

optimal coherent detectors that need to obtain channel CSI hi for every i while Σ − ∆

uses suboptimal non-coherent detector that requires minimum channel information, the

detection performance for Σ−∆ modulation based system is quite robust.
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Summary

In this chapter, we

• Investigate the distributed detection in coherent fading channels and extend the study

to detection of correlated observations.

• Provide optimal fusion rule for analog and binary systems in coherent fading channels

and of correlated observations.

• Propose another single sensor detection scheme using repetition coding.

• Evaluate the performance of different systems in coherent fading channels and of

correlated observations with simulations.
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Chapter 6
Conclusion

A novel Σ−∆ modulation based distributed detection scheme is proposed, which essentially

transforms the ADC loop from temporal domain to spatial domain. Each sensor does not

require global information and only needs to exchange information with its adjacent close

neighborhoods. Our simulation result demonstrate this novel mixing of serial and parallel

topology can yield better detection performance than the existing schemes under the par-

allel topology in homogeneous networks (i.e. statistics are all assumed i.i.d here). It reveals

that even though we have not optimized the way in exchanging information between adja-

cent sensors, a simple collaborative processing of observations of sensor nodes outperforms

the ones with independent processing.

Our preliminary study thus raises the following fundamental question: what is the optimal

way to collaboratively process the local measurements and what is the optimal fusion rule in

order to optimize the detection performance under certain constraints imposed by practical

issues on the amount of possible collaborations? The Σ − ∆ distributed detection scheme

should be considered as a special case of such collaborative distributed detection scheme

with the constraint that only adjacent sensor nodes are allowed to communicate. Even

under such constraint, we can not justify that Σ−∆ is the optimal solution. For example,

consider another scheme that each sensor node directly transmits it analog observation to

its adjacent sensor and makes a local optimal decision based on two observations (received

signal form pervious sensor and its own observation) and transmit the binary decision to the

fusion center. Such scheme will certainly yields better performance in high Pt region than

Σ−∆ scheme. In addition, we have already shown in chapter 5 that, though maybe hard to

implement in distributed detection systems, binary repetition coding scheme has significant

71



performance improvement by allowing local processing to fully exploit the cooperation

of all the local observations. The questions should motivate the future work on optimal

collaborative distributed detection while the work presented in this thesis can be considered

as a special case under such framework.
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Appendix: Matlab code of optimal fusion
algorithm for Σ − ∆ modulation based
distributed detection system

% Optimal non-coherent detection algorithm for Sigma-Delta ADC

% based distributed detection system over Rayleigh fading channel.

% The fusion center makes a global decision $\theta$ regarding

% the hypothesis H_j upon receiving {yhat(1),yhat(2),...,yhat(N)}

% based on LRT rule.

%

%

% Number of sensors $N$, sensoring SNR $P_s$, channel SNR $P_t$,

% inter-sensor channel SNR $P_I$, constant $s$ in the input signal

% under H_1 need to specified prior to running the algorithm.

%^ Channel CSI is not required for this algorithm.

% The performance of this detection algorithm depends on the resolution

% of the numerical convolution, which can be modified correspondingly.

%

%

%

% Copyright Dimeng Wang, LSU

% Date: 2007/03/09 16:16:08

%

%- Calculate $\sigma_w$, $\sigma_n$, $\sigma_{\eta}$

sigma_w=sqrt((s^2/((10^(0.1*P_s))*2)));
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sigma_n=sqrt(((1)/((10^(0.1*P_t))*2)));

sigma_eta=sqrt(((1)/((10^(0.1*P_I))*2)));

%- Calculate the joint pdf of {yhat(1),...,yhat(N)} conditional on H_1

%- First get the numerical pdf of x, eta, and v_1

m=s;

x=[-2:0.005:3];

pr=exp(-((x-m).*(x-m))/(2*sigma_w^2))/(sqrt(2*pi*sigma_w^2));

pr=pr/(sum(pr));

x=[-1:0.005:1];

peta=exp(-((x).*(x))/(2*sigma_I^2))/(sqrt(2*pi*sigma_I^2));

peta=peta/sum(peta);

x=[-3:0.005:4];

pv=exp(-((x-m).*(x-m))/(2*sigma_w^2))/(sqrt(2*pi*sigma_w^2));

pv=pv/(sum(pv));

%- Get the probability of y_1 given yhat_1

y=yhat(1);

a=1/(sigma_n*(sqrt(1+2*sigma_n^2)));

py_1=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*y*exp((a*y)^2/2)*qfunc(-a*y));

py_0=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*-y*exp((a*y)^2/2)*qfunc(a*y));

summ_y=py_1+py_0;

py_1=py_1/summ_y;
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py_0=py_0/summ_y;

%- Get the pdf of yhat_1

pyh(1)=((sum(pv(602:1401))+pv(601)/2))/sum(pv)*py_1+

((sum(pv(1:600))+1/2*pv(601)))/sum(pv)*py_0;

for n=1:(N-1);

%- Get the probability of y_n given yhat_n

y=yhat(n);

py1(n)=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*y*exp((a*y)^2/2)*qfunc(-a*y));

py0(n)=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*-y*exp((a*y)^2/2)*qfunc(a*y));

summ_y=py1(n)+py0(n);

py1(n)=py1(n)/summ_y;

py0(n)=py0(n)/summ_y;

%- Get the pdf of v_n given y_n and yhat_n

pv_y1=pv;

pv_y0=pv;

pv_y1(1:600)=0;

pv_y1(601)=pv_y1(601)/2;

pv_y1=pv_y1/sum(pv_y1);

pv_y0(602:1401)=0;
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pv_y0(601)=pv_y0(601)/2;

pv_y0=pv_y0/sum(pv_y0);

%- Get the pdf of v_n given yhat_n

pv=py1(n)*(pv_y1)+py0(n)*(pv_y0);

pv=pv/sum(pv);

% Get the pdf of \tilde{v}_n given yhat_n

pv=conv(pv,peta);

pv=pv(201:1601);

pv=pv/sum(pv);

% Get the pdf of e_n given yhat_n

pe(201:601)=pv(601:1001)+pv(201:601);

pe(1:200)=pv(1:200);

pe(601:1001)=pv(1001:1401);

pe=pe/sum(pe);

% Get the pdf of v_{n+1} and the probability of y_{n+1} given yhat_n

pv=conv(pr,pe);

pv=pv/sum(pv);

py1t(n+1)=sum(pv(802:2001))+1/2*pv(801);

py0t(n+1)=sum(pv(1:801))+1/2*pv(802);

pv=pv(201:1601);

pv=pv/sum(pv);

y=yhat(n+1);
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py_1=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*y*exp((a*y)^2/2)*qfunc(-a*y));

py_0=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*-y*exp((a*y)^2/2)*qfunc(a*y));

%- Get the pdf of yhat_{n+1} given yhat_n

pyh(n+1)=py1t(n+1)*py_1+py0t(n+1)*py_0;

end

%- Get the joint pdf of {yhat(1),...,yhat(N)} conditional on H_1

pyh_H1=prod(pyh);

%- Repeat the procedure for the joint pdf of {yhat(1),...,yhat(N)}

%conditional on H_0

m=0;

x=[-2:0.005:3];

pr=exp(-((x-m).*(x-m))/(2*sigma_w^2))/(sqrt(2*pi*sigma_w^2));

pr=pr/(mean(pr)*length(pr));

x=[-3:0.005:4];

pv=exp(-((x-m).*(x-m))/(2*sigma_w^2))/(sqrt(2*pi*sigma_w^2));

pv=pv/(sum(pv));

x=[-1:0.005:1];

peta=exp(-((x).*(x))/(2*sigma_I^2))/(sqrt(2*pi*sigma_I^2));

peta=peta/sum(peta);
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y=yhat(1);

py_1=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*y*exp((a*y)^2/2)*qfunc(-a*y));

py_0=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*-y*exp((a*y)^2/2)*qfunc(a*y));

pyh(1)=((sum(pv(602:1401))+pv(601)/2))/sum(pv)*py_1+

(sum(pv(1:600))+1/2*pv(601))/sum(pv)*py_0;

summ_y=py_1+py_0;

py_1=py_1/summ_y;

py_0=py_0/summ_y;

for n=1:(N-1);

y=yhat(n);

py1(n)=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*y*exp((a*y)^2/2)*qfunc(-a*y));

py0(n)=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*-y*exp((a*y)^2/2)*qfunc(a*y));

summ_y=py1(n)+py0(n);

py1(n)=py1(n)/summ_y;

py0(n)=py0(n)/summ_y;

pv_y1=pv;

pv_y0=pv;

pv_y1(1:600)=0;

pv_y1(601)=pv_y1(601)/2;

pv_y1=pv_y1/sum(pv_y1);
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pv_y0(602:1401)=0;

pv_y0(601)=pv_y0(601)/2;

pv_y0=pv_y0/sum(pv_y0);

pv=py1(n)*(pv_y1)+py0(n)*(pv_y0);

pv=pv/sum(pv);

pv=conv(pv,peta);

pv=pv(201:1601);

pv=pv/sum(pv);

pe(201:601)=pv(601:1001)+pv(201:601);

pe(1:200)=pv(1:200);

pe(601:1001)=pv(1001:1401);

pe=pe/sum(pe);

pv=conv(pr,pe);

pv=pv/sum(pv);

py1t(n+1)=sum(pv(802:2001))+1/2*pv(801);

py0t(n+1)=sum(pv(1:801))+1/2*pv(802);

pv=pv(201:1601);

pv=pv/sum(pv);

y=yhat(n+1);

py_1=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*y*exp((a*y)^2/2)*qfunc(-a*y));

py_0=2*sigma_n/(sqrt(2*pi)*(1+2*sigma_n^2))*exp(-y^2/(2*sigma_n^2))

*(1+sqrt(2*pi)*a*-y*exp((a*y)^2/2)*qfunc(a*y));

pyh(n+1)=py1t(n+1)*py_1+py0t(n+1)*py_0;

end
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pyh_H0=prod(pyh);

%- Compute the likelihood ratio of {yhat(1),...,yhat(N)}

%- and make the global decision based on the LRT fusion rule.

if pyh_H1/pyh_H0>1;

theta=1;

else

theta=-1;

end
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