
PHYSICAL LAYER SECRECY CHANNEL CODING

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

in

The Department of Electrical & Computer Engineering

by
Bandali K. Akkawi

B.Sc., Princess Sumaya University for Technology, Amman-Jordan, 2005
August 2008



Acknowledgments

First of all, I would like to express my deepest gratitudes to my supervisor Dr. Shuangqing
Wei for his consistent guidance and great support throughout the course of this thesis,
without which this work could not be done. I appreciate his great patience and kindness,
his timely ideas and suggestions. I have learned a lot from him in the past two years and
adored his commitment and love for his work. I also would like to thank Dr. Morteza
Naraghi-Pour and Dr. Xue-Bin Liang for being members of my thesis defense committee.

I also want to thank my friend George Amariucai for his helping hand, suggestions
and ideas throughout the time we spent working together.

And last but not least, I would like to express my greatest gratitudes and thanks to
my parents and brothers who always stand by me, support me, and be there for me.
They never fail to encourage and give me enough confidence to continue my journey . . .

ii



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Wireless Communication and Security . . . . . . . . . . . . . . . . . . . 1
1.2 Information Theoretic Secrecy . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Our Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 Catastrophic Codes . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Introduction to Convolutional Codes . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Catastrophic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Study of Catastrophic Codes . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Parallel Paths and Parallel States . . . . . . . . . . . . . . . . . . 18
2.2.2 Catastrophic Events . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Decoded Bits Behavior After One or More Catastrophic Events . 23
2.2.4 Performance Statistics . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.5 Parameters Affecting Performance and Results . . . . . . . . . . . 28
2.2.6 Theoretical Calculation . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.7 Taking Control of Catastrophic Codes BER Curves . . . . . . . . 35
2.2.8 Simulation Procedure for Viterbi Decoding . . . . . . . . . . . . . 36

2.3 BCJR Decoding of Catastrophic Codes . . . . . . . . . . . . . . . . . . . 37
2.3.1 Description of the BCJR Decoding Algorithm . . . . . . . . . . . 37
2.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Terminating Simulation with All-Zero State . . . . . . . . . . . . . . . . 40
2.5 Second Order Statistics of Information Bit LLRs and Errors . . . . . . . 41
2.6 Trial to Improve Catastrophic Decoding through Watching LLRs . . . . . 46

Chapter 3 Serial Concatenated Convolutional Codes (SCCC) . . . . . 48
3.1 Concatenated Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Overview of Decoding Process . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Detailed View of Different SCCC Modules . . . . . . . . . . . . . 50

3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Testing Our SCCC Algorithm with MATLAB’s Demo . . . . . . . . . . . 56

iii



3.4 Using Catastrophic Inner Codes in SCCC . . . . . . . . . . . . . . . . . . 56
3.5 Controlling Non-Catastrophic SCCC . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Introducing Burst Errors . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Random BSC-like Errors . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.3 Puncturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.4 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Second Order Statistics of Information Bit LLRs and Errors . . . . . . . 63
3.7 ARQ Using LLR Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1 Convolutional Catastrophic Codes vs. SCCC . . . . . . . . . . . . . . . . 74
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Appendix A: Simulation Code Description . . . . . . . . . . . . . . . . . . 81
Description of the Code Used in Viterbi Simulation . . . . . . . . . . . . . . . 81
Description of the Code Used in BCJR Simulation . . . . . . . . . . . . . . . . 82
Description of the Code Used in SCCC Simulation . . . . . . . . . . . . . . . 85

Appendix B: MATLAB Code . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Theoretical Calculation of Regular Catastrophic Codes PER and BER . . . . 92
MATLAB Iterative Decoding of SCCC Simulation . . . . . . . . . . . . . . . . 94

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

iv



Abstract

Wireless communications is expanding and becoming an indispensable part of our daily
life. However, due to its channel open nature, it is more vulnerable to attacks, such as
eavesdropping and jamming which jeopardize the confidentiality of wireless data, com-
pared to its counter-part, wireline communications. Security in wireless communication is
thus a very important factor that should be perfected to accommodate the rapid growth
of wireless communication today.

Motivated by information theoretic secrecy definitions, we adopt a simple way to de-
fine the secrecy of a system by looking at its Bit-Error-Rate (BER) curves, the correlation
of error vectors and Log Likelihood Ratios (LLRs) of the decoded information bits. The
information bit errors and LLRs of a physical layer secure system should be uncorrelated
and the BER curve should have an acceptable sharp transition from high to low BERs
at prescribed signal to noise ratio (SNR) thresholds.

We study catastrophic codes and Serial Concatenated Convolutional Codes (SCCC)
as two candidates. For the former, we provide both detailed analytical and simulation
results, to demonstrate how we can change the encoding parameters to make the result-
ing BER curves have the intended properties. For SCCC, we study two options. One is
having a catastrophic code as an inner code. The other is to use regular SCCC. Several
approaches are proposed to change the shape of the resulting BER curves.

In addition, the correlation present in their information bit errors and LLRs are in-
vestigated to see how it can be used to detect or even correct errors. We find that regular
SCCC codes have strong correlation in their error vectors which is captured by the as-
sociated LLRs. In low SNR regions, eavesdropper can easily make reliable decisions on
which packets to drop based on LLRs, which thus undermines the security of the main
channel data. On the other hand, by selecting proper outer codes, SCCC with catas-
trophic encoder does not have such a weakness.

We conclude that Catastrophic convolutional codes, as well as serial concatenated
catastrophic codes have desired properties. Therefore, they can be considered promising
approaches to achieving practical secrecy in wireless systems.

v



Chapter 1

Introduction

1.1 Wireless Communication and Security

The time we live in is very much described as the communication era, where modern
technology has enabled us to communicate with each other literally with a single click.
Internet has grown very rapidly that it has made modern society depend so heavily on its
functions and abilities. Recently, wireless applications start being ubiquitous, replacing
all wired technology, and making us connected whenever and wherever we might be [1].
With wireless communication and public networks, more and more concern is focused on
the security features of modern technology [2]. Every human being wants to make sure
that whatever he is doing is kept secret and that no one should be able to gain any private
information from what is being transmitted through the complex worldwide networks.

Unfortunately, wireless communications are found to be relatively easier to attack
than conventional wired networks [3]. The more popular wireless communications be-
comes, the easier to find a way to crack into it, and maybe even use it to crack into the
wired networks as well. Attacking methods have become much more sophisticated and
innovative with wireless [4]. Cracking has also become much easier and more accessible
with easy-to-use Windows-based and Linux-based tools being made available on the web
at no charge [2].

Finding appropriate methods to secure wireless networks is one of the major topics
in research today. One of the most widely used security mechanisms is encryption. En-
cryption is a mathematical process through which confidentiality can be ensured [5]. It
is based on mathematical functions (encryption/decryption algorithms) to encrypt plain-
text messages into cipher-texts. For this reason, it can also be called computational
security. In most cases, two related functions (keys) are employed, one for encryption
and the other for decryption [6]. Cryptography is manifested in methods such as sym-
metric and public-key encryptions. With symmetric-key encryption, the encryption key
can be calculated from the decryption key and vice versa. With most symmetric algo-
rithms, the same key is used for both encryption and decryption. In this scenario, the
key must be totally kept secret between the two communicating parties. If any outsider
were able to get the key, then the confidentiality of the communications is failed, since it
can decrypt and understand all the messages transmitted. On the other hand, in public
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key encryption, one public key is used to encrypt a message and another private key
to decrypt it. The public key can be widely distributed so that anyone can encrypt a
possible message, while the private key is kept secret by the receiver which uses it to
decrypt the message. Although the two keys are mathematically related, however, it is
very practically difficult to derive the private key from the public one [7].

A well-known example of public-key cryptography is the RSA method, which generates
the keys as follows [8]:� Choose two distinct large prime numbers p and q.� Compute n = pc (the modulus for both the public and private keys).� Compute the tent ϕ(n) = (p − 1)(q − 1).� Choose an integer e such that 1 < e < ϕ(n), and e and ϕ(n) are coprime.� Compute d to satisfy the congruence relation de ≡ 1(mod ϕ(n)).� e is released as the public key exponent, and d is kept secret as the private key

exponent.� Encryption of a message m is done by producing the cypher c = me mod n.� Decryption of c is similarly done by m = cd mod n.

The RSA as can be seen is a completely mathematical system. Its security is a function
of some mathematical problems such as factoring large prime numbers [8] (i.e. p and q
from n). For this reason, the best way to keep the system secure is to choose n as large
as possible (typically, they are 1024-2048 bits long). Some experts believe that 1024-bit
keys may become breakable in the near term (though this is disputed); few see any way
that 4096-bit keys could be broken in the foreseeable future [9]. Therefore, it is generally
presumed that RSA is secure if n is sufficiently large.

As seen, computational security always assumes that the communicating parties are
more knowledgeable than the attacker (e.g. knowledge of keys), and is deemed secure
whenever there are no publicly known efficient attacks that crack into the system. Be-
cause of the computational nature of these schemes, they rely on the assumption that
the attacker does not have enough computational power to crack the system [10]. Thus,
if an attacker could arrange enough computational power, breaking the system will then
be a possibility.

In addition to computational security schemes, another form of security is actively
being researched today, which is information theoretic security [11]. Unlike computa-
tional security methods that rely on practical mathematical difficulties in decryption to
imply security, information theoretic approach tend to go further and puts perfect se-
crecy as the ultimate goal, where the attacker will not be able to extract anything from
its received message, not because the message (plain-text) is very powerfully encrypted,
but simply because the received message is too noisy to understand. It is also notable

2



that, unlike computational security, information theoretic secrecy tries to avoid giving
an advantage of prior knowledge to the communicating parties, and thus making them
and the attacker equally knowledgeable. However, information theoretic security does
rely on the differences of channel qualities between the communicants and the attacker
to provide security, as will be shown in the next section.

1.2 Information Theoretic Secrecy

Today, most security systems are implemented through the use of cryptographic pro-
tocols working above the already established physical layer (such as RSA, AES etc).
These protocols exploit the almost error-free physical channel and take it simply as a
perfect transportation medium between the communicants. When using such protocols,
the physical message will be perfectly clear to anyone that can intercept it, its only dif-
ficulty would be breaking the cypher being used. These methods provide a reliable way
to achieve security, but nevertheless they are neither perfectly secret nor secure since the
whole physical message can be easily caught by any interceptor.

Perfect secrecy, however, is presented and introduced in information theoretic con-
cepts, in which the physical layer itself ought to be designed in such a way that even if an
interceptor received the message, it would not be able to decode or infer any information
from it. Lately, this problem started to get more attention due to an urgent need to
re-examine the security issues in communications.

Perfect secrecy was first introduced by Shannon [12], where he introduced the one-
time pad concept, proving that a plain-text message M can be sent in perfect secrecy by
transmitting a cipher-text C = M ⊗K produced by adding the original message M to a
random key or pad K, where ⊗ is the mod 2 addition. The transmitted C gives absolutely
no additional information about the original message M , thus, the a priori probability
of a plain-text message M is the same as the a posteriori probability of a plain-text
message M given the corresponding cipher-text C. Mathematically, this is expressed as
H(M) = H(M |C) or I(M ; C) = 0, where H(M) is the entropy of the plain-text and
H(M |C) is the conditional entropy of the plain-text given the cipher-text C and I(M ; C)
is the mutual information between the plain-text and cypher-text. In order to keep the
message secure, the pad must be at least as long as the message (i.e.H(K) ≥ H(M)) and
must be used only once (hence the name one-time pad).

Later Wyner built further on Shannon’s notion of perfect secrecy and introduced the
famous “Wire-Tap Channel” [13] where he investigated the secrecy of messages trans-
mitted over a channel (from Alice to Bob) with a wire-tapper (Eve) listening through a
degraded channel hoping to get any possible information. He proved that perfect secret
communications between Alice and Bob is possible whenever Eve’s channel is degraded.
The basic model for this communication system can be seen in Figure 1.1.

The system can be described as follows. Alice, being the source, produces the infor-
mation sequence as identically independent distributed random variables Ak, k = 1, 2, . . .
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Figure 1.1: Wire-tap channel model

that take values from the finite set A with cardinality |A|. The probability law defining
{Ak} is known, and the entropy of the source is

H(Ak) = HA = −∑

x∈A
Px(x) log2 Px(x), {Px(x) : x ∈ A}. (1.1)

The encoder is a mapping rule (fE : AK → XN), where the K source variables AK =
(A1, . . . , AK) are the encoder input and the N outputs XN = (X1, . . . , XN) are the
encoder output. Both the main channel and the wire-tap channel are regarded as discrete
memoryless channels with transition probabilities QM(y|x) and QW (z|y), x ∈ X, y ∈
Y, z ∈ Z, where Y, Z are finite alphabet sets at the output of the main and wiretap
channels respectively. A cascaded channel can be constructed from Alice to Eve to have
a transition probability of

QMW (z|x) =
∑

y∈Y

QW (z|y)QM(y|x) (1.2)

The decoder is a reverse mapping (fD : Y
N → B

K or fD : Z
N → E

K) that should output
in ideal conditions the same input sequence AK .

An important measure of secrecy in Wyner’s paper [13] is the equivocation rate (∆)
which is defined as

∆ ,
1

K
H(AK |ZN) (1.3)

This equivocation rate is taken as the criterion of wire-tapper’s confusion. The larger ∆
is, the more confused the wire-tapper is about the original message AK . Wyner goes on
to define a region R within the rate-equivocation space that includes all the achievable
(R,d) pairs such that

HAK
N

≥ R − ǫ
∆ ≥ d − ǫ
Pe ≤ ǫ

(1.4)

where Pe is Bob’s average error rate

Pe =
1

K

K
∑

k=1

Pr{Ak 6= Bk} (1.5)
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In defining the region, it can be seen that (R, d) ∈ R satisfies

0 ≤ R ≤ CM

0 ≤ d ≤ HA
(1.6)

where CM = supp(x) I(X; Y ) is the main channel capacity. Another variable Γ(R) is also
used to define R, Γ(R) measures the maximum information that can be shared between
Alice and Bob without the knowledge of Eve (i.e. secret information) at any given rate
R.

Γ(R) , supp(x) I(X; Y |Z) = supp(x) [I(X; Y ) − I(X; Z)] (1.7)

which equals to supp(x) I(X; Y )− supp(x) I(X; Z) = CAB −CAE whenever both the main
channel (Alice to Bob) and the cascade of the main and wiretap channel (Alice to Eve)
are symmetric [14]. Under these definitions, Wyner proved that the achievable region
must also be contained in the region where

Rd ≤ HAΓ(R) (1.8)

and thus R is given in Figure 1.2

Figure 1.2: Region R

In his proof, Wyner described an encoding scheme in which the encoder in Figure 1.1
is divided into a source and channel encoders as shown in Figure 1.3. The source encoder
maps the information sequence AK into one of M symbols or words W (FE : AK →
{1, 2, . . . , M}). The channel encoder consists of M subcodes C1, C2, . . . , CM , each with
M2 points, totaling M1 = M × M2 points xm ⊆ XN , m = {1, 2, . . . , M1}. Each subcode
Ci consists of

Ci = {x(i−1)M2+1, . . . ,xiM2
}, 1 ≤ i ≤ M (1.9)
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Figure 1.3: Wyner Encoder

When Alice produces a random variable AK , the source encoder maps it to some W = i ∈
{1, 2, . . . , M}. The channel encoder then randomly chooses one point from the subcode
Ci, and thus producing

XN = x(i−1)M2+j , 1 ≤ j ≤ M2 (1.10)

The decoder role is to map back the received signal (Y N for Bob, or ZN for Eve) to one
of the channel code words xm, m ∈ {1, 2, . . . , M1}. From which the subcode Ci is easily
known and hence the original source coded W = i is found. In order for the transmission
to have above-zero secrecy at an above-zero rate, M1 and M2 should be selected such
that M1 ≤ 2N×I(X;Y ) and M2 ≤ 2N×I(X;Z), where I(X; Y ) and I(X; Z) are the mutual
information between X, Y and X, Z respectively.

As an example, consider an error-free main channel and a BSC wiretap channel, with
crossover probability p0, as shown in Figure 1.4, and let the encoder rate to be 1/N . Let

Figure 1.4: Error-free main channel and a BSC wiretap channel

C0 be the subset (subcode) of binary N space, {0, 1}N , consisting of those N vectors with
even parity (i.e. an even number of ones). Let C1 ⊆ {0, 1}N be the subset of vectors with
odd parity. The encoder works as follows. When A1 = i, (i = 0, 1), the encoder output
XN , a randomly chosen vector in Ci. Thus the encoder has the following transition
probability

Pr{XN = x|A1 = i} =

{

2−(N−1), x ∈ Ci

0, x /∈ Ci
(1.11)

for i = 0, 1. Clearly, Bob’s decoder can recover A1 from XN perfectly with Pe = 0. The
wiretapper, Eve, on the other hand observes ZN , the output of the BSC corresponding
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to the input XN . Let z ∈ {0, 1}N be a vector, say, of even parity. Then

Pr{A1 = 0|ZN = z} = Pr

{

The BSC makes an
even number of errors

}

=

N
∑

j=0
j even

(

N

j

)

pj
0(1 − p0)

N−j =
1

2
+

1

2
(1 − 2p0)

N .
(1.12)

The last equality can be verified by applying the binomial formula to

[(1 − p0) ± xp0]
N =

N
∑

j=0

(

N

j

)

pj
0(1 − p0)

N−j(±x)j . (1.13)

Then,

2
∑

j even

(

N

j

)

pj
0(1 − p0)

N−j = (1 − p0 + 1.p0)
N + (1 − p0 − 1.p0)

N (1.14)

= 1 + (1 − 2p0)
N . (1.15)

Similarly, for z ∈ {0, 1}N of odd parity,

Pr{A1 = 0|ZN = z} = Pr

{

The BSC makes an
odd number of errors

}

= 1
2
− 1

2
(1 − 2p0)

N .
(1.16)

Therefore, for all z ∈ {0, 1}N ,

H(A1|ZN = z) = h[
1

2
− 1

2
(1 − 2p0)

N ], (1.17)

where,

h[λ] = −λ log2 λ − (1 − λ) log2(1 − λ), 0 ≤ λ ≤ 1 (1.18)

so that,

∆ = H(A1|ZN) = h[1
2
− 1

2
(1 − 2p0)

N ]
→ 1 = H(A1), as N → ∞ (1.19)

Thus, as N → ∞, the equivocation at the wire-tap approaches the unconditional source
entropy, so that communication is accomplished in perfect secrecy. Unfortunately, as
N → ∞, the transmission rate K/N → 0.

Although the transmission rate in the example above went to zero in order to achieve
perfect secret communications between Alice and Bob, Wyner proved that above-zero
rates can be obtained while maintaining perfect secrecy as shown in Figure 1.2. But at
the same time, near channel capacity transmission can never achieve complete secrecy,
and a reduced transmission rate (R) must be used to increase the equivocation (∆),
which is bound by its upper limit (HA). Therefore the highest rate that achieves this
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∆ = HA becomes the secrecy capacity rate (CS = Γ(CS)) at which Alice and Bob can
communicate in perfect secrecy leaving Eve with nothing valuable.
The existence of CS is guaranteed whenever the main channel capacity (CM) is larger
than the cascaded channel capacity (CMW ) and satisfies

0 < CM − CMW ≤ CS ≤ CM . (1.20)

In [15], the wiretap model was extended to Gaussian channels, modeling the main
and wire-tap channels as Additive Wight Gaussian Noise (AWGN) channels such that

Y = X + NM (1.21)

Z = Y + NW (1.22)

where NM , NW are have normal distributions N (0, σ2
M) and N (0, σ2

W ) respectively. Lim-
iting the channel power to P , we get

CM = 1
2
log

(

1 + P
σ2

M

)

CMW = 1
2
log

(

1 + P
σ2

M +σ2

W

)

CS = CM − CMW

(1.23)

and the region R becomes defined by

R ≤ CM

d ≤ 1
Rd ≤ CS

(1.24)

which consequently leads to the conclusion that confidential communication in perfect
secrecy is always possible in degraded channels where the signal-to-noise ratio (SNR) of
the main channel exceeds that of the cascaded channels.

Csiszár and Körner in [16] then studied broadcast channels with confidential messages,
as a generalization of the wire-tap channel. Where the sender (Alice) also wishes to trans-
mit common information to both the legitimate receiver (Bob) and the wire-tapper (Eve)
in addition to the private (confidential) information to the legitimate receiver. Moreover,
they generalized Wyner’s model by proving that Alice-to-Eve channel need not be a de-
graded version of the main channel, but it is sufficient to be more noisy than the main
channel for a perfect secret communication to be possible.

These works, as can be seen, concentrate on information theoretic bounds, not giving
much insight on how to construct practical systems, and thus these problems were not
given much attention until Maurer [17] used a similar concept to computational security,
and proved that Alice and Bob can generate and use a secret key even when they have a
worse channel than Eve’s. This is proved through using an extra insecure yet authenti-
cated public channel. In [17],[18] and [19], the secret key distribution problem in wiretap
channels was studied extensively, with the objective to let Alice and Bob share a secret
common k-bit key about which Eve’s conditional entropy is maximized. In this context of
key distribution, the k bits can be unknown to Alice before transmission, which contrasts
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the secure message communication where Alice has a k-bit message and wants to trans-
mit it to Bob as in Wyner. Nonetheless, powerful ideas such as common randomness,
advantage distillation and privacy amplification were developed and deployed in this con-
text [19][20], and several key distribution protocols were developed and studied, where
most require some level of interactive communication between Alice and Bob to arrive at
a common and secret key. Information exchange at this implementation point is based
on the use of parallel, error-free public channel available to both legitimate communicants.

Coding schemes problems using only the forward channel with no parallel channel
did not receive much attention. Some examples of coding schemes were provided in [13]
and [17], and a condition for constructing such codes for a modified wiretap channel as
introduced in [21] was studied in [22]. However, code construction methods and their
connection to security have not been explored much. Recently, low density parity check
(LDPC) codes got the attention in this area, especially after proving that coding schemes
for various generalized wiretap channel scenarios do exist based particularly on the use of
LDPC codes [23]. In [24], for example, a secret key agreement protocol over the Gaussian
wiretap channel was investigated. The protocol is based on efficient information reconcili-
ation method based on LDPC codes, which allows two parties having access to correlated
continuous random variables to agree on a common bit string. In other results, the use
of a public error-free channel was avoided as seen in [25] and [26], where Thangaraj et-
al presented some secrecy-achieving codes for a Binary Erasure Channel (BEC) wiretap
channel and an error-free main channel. They also provided some code constructions and
conditions to achieve perfect secrecy when the two channels are BEC, as well as some cod-
ing solutions using good error detecting codes when the wiretap channel is a BSC and the
main channel is error-free achieving perfect secrecy asymptotically and leading the rate to
zero. In other works, Bloch et-al [27][28] developed another protocol for secret key agree-
ment for Gaussian channels, that performs close to secrecy capacity limits determined in
[27], over wide range of channel values without the need for a noiseless, authenticated
public channel. The presented protocol makes use of opportunistic transmission, message
reconciliation and establishes the secret key through privacy amplification.

The wire-tap problem was also present in Multiple Access Channels (MAC), where
communications consist of more than one user trying simultaneously to send or receive
data with a shared destination. Each user may send two types of data: shared common
information and some confidential messages intended only to the legitimate recipient. The
problem arises when the users also receive each others’ messages though some channel
(because of the broadcast nature of wireless communications). This means that each user
may extract the others’ messages, including what supposed to be confidential data. In this
scenario, a possible approach is to make each user treat the others as possible wire-tappers
wishing to keep them as ignorant as possible. This approach, for example, is studied for
two users in [29], in which different cases are considered, including counterparts for [13]
and [16] having only one user sending confidential messages. Another case is studied is
when both users have some confidential data to be sent to the destination. For the latter
case, an inner bound on the capacity-equivocation region is obtained. A similar problem
is also studied in [30], where communication is done over a Gaussian broadcast channel.
In this paper, however, one common transmitter (multi-antenna) wants to communicate
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with different users (again two users) sending independent confidential information to
each one of them. Each user would like to obtain its own confidential message in a reliable
and safe manner making sure that the other is ignorant of it. Secrecy-rate regions and
bounds are developed based on Gaussian codebooks achieving this goal.

1.3 Our Objective

Motivated by Wyner’s original wiretap channel [13] and its equivalent Gaussian model
presented in [15], our work is concentrated on investigating some practical schemes that
will exploit the extra noise found at Eve, to render its information practically useless,
while making sure that Bob receives and decodes the message correctly.

The model we used is presented in Figure 1.5. As it can be seen, the model is slightly

Figure 1.5: Wire-tap Gaussian channel model

different than that in Figure 1.1 but similar to the model of Csiszár and Körner in [16];
Eve’s channel is no longer two concatenated channels but rather one Gaussian channel
that is by assumption worse than the main (Alice to Bob) channel (i.e. σ2

W > σ2
M). In

other words, whenever Alice sends a message, the SNR of the message received at Eve is
lower than that at Bob.

As a deviation from the definition of secrecy presented in [13], we adopt another way
to define the secrecy of a system. In most communications systems, the bit error rate
(BER) of any system is used to show its reliability regarding reception and decoding. For
example, if a system’s BER is 10−5, it can be said that it is a reliable system (of course
depending on the application being used), while on the other hand, if it has a BER of 0.5,
then the system is practically useless, since each bit decoded has a 50% probability that
it might be wrong. This obvious measure of a communication system reliability can lead
to a new definition of security that we have used in our investigations. A wiretap system
modeled in Figure 1.5 can be said to be practically secure if Bob received Alice’s message
with a BER below a certain threshold (again, depending on the application used), while
Eve received the message with a BER higher than 0.1, for example, and have uncorrelated
errors at Eve’s SNR. From here, we can say that our main objective of this study is to
investigate the construction of a code that behaves similar to the BER curve shown in
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Figure 1.6: The desired code should have a BER curve that has a sharp transition at an
SNR higher than Eve’s but lower than Bob’s

Figure 1.6, in which there is a sharp transition at an SNR higher than Eve’s while at the
same time having lower BER than that of Bob. In addition, we need the errors in the
code to be uncorrelated. In this way, Eve’s received message is practically useless while
Bob’s message is received and decoded reliably. Needless to say, since Bob and Eve’s
SNRs are variables depending on the systems and environments they are in, the desired
code need also to be flexible in a way that allows us to shift the curve to lower or higher
SNRs as needed.

In Wyner’s [13] approach, the SNRs at Bob and Eve are used to find the secrecy
capacity CS at which the desired code should achieve perfect secrecy asymptotically. We,
on the other hand, take another approach to the problem. We employ codes of constant
rates and try to see how much more secure can we make them and at what expenses.
Consider a certain application. The BER above which the data is useless is Pe1 = 1×10−1,
and the BER below which everything is clear is Pe2 = 1 × 10−4. Let SNR1 = SNR(Pe1)
and SNR2 = SNR(Pe2), the region where SNR < SNR1 can thus be considered useless,
and the region SNR > SNR2 can be considered perfectly clear, while the buffer zone
region SNR1 < SNR < SNR2 is neither. We start with some code with rate R as
the regular convolutional code in Figure 1.7. As seen, this code has SNR1 < 1dB and
SNR2 = 5dB, with all the region in between belong to the buffer zone, which is not
perfectly secure. In order to secure the low SNR region, we must increase SNR1 to some
requirement that is considered above Eve’s channel capability. This increase will have
as its expense the increase of SNR2 as well, to satisfy Pe2. Of course the ideal case is if
SNR2 could equal SNR1 with a BER curve having a very sharp transition at that SNR.
However, according to Wyner’s work, any secret transmission must be done below the
secrecy capacity CS which is a function of the difference between SNR1 and SNR2, and
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Figure 1.7: Regular convolutional code compared with two samples of catastrophic codes

hence that ideal case does not hold theoretically because a rate R < CS = 0 must be used
for transmission. Therefore, a buffer zone must always be present for secret transmission
to take place. We then use other codes with the same rate R of the regular convolution
code to achieve the SNR1 requirement. Catastrophic codes, studied in Chapter 2, were
shown to have a better desired curve as the two sample codes in the same Figure 1.7. Take
the catastrophic code 1 for example. SNR1 is raised to 8dB, at the expense of increasing
SNR2 to about 11.25dB, while for code 2, we are able to get SNR1 = 7.5dB with a lower
SNR2 = 9.75dB. To compare the three codes, we introduce a metric ρ = f(R, Pe1, Pe2);
defined as

ρ =
SNR2 − SNR1

SNR2

(1.25)

where 0 ≤ ρ ≤ 1, with 0 being the best and 1 being the worst. Comparing the three
codes will yield that the regular code’s ρ > 0.8, while that of the catastrophic codes 1
and 2 to be ρ = 0.289 and ρ = 0.231 respectively. This clearly shows how the example of
new catastrophic codes better serve for a more secure communication.

1.4 Our Contribution

In this thesis, we present a study of mainly two types of codes. The first code is almost
always avoided in coding applications, catastrophic codes. Catastrophic codes are known
to have a very bad BER at low to mid SNRs, which enhances at higher SNRs. The very
bad BER at low SNRs is what we were first interested in, for that behavior is, in a way,
our objective for Eve. We present a detailed study of catastrophic codes in Chapter 2
and their possible use as secure codes containing some new ideas, including:
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� Introducing the concept of parallel catastrophic paths and parallel states, and how
catastrophic codes behavior is based on them.� Studying the catastrophic errors’ events and how they affect the behavior of decoded
bits throughout the transmitted sequence.� Studying the effects of finite packet length transmission of catastrophic codes, as
well as the lattice labeling of the transmitted symbols. How controlling these two
parameters can change the BER curves.� Providing a simple theoretical method to estimate the BER curve of catastrophic
codes.� Analyzing decoded bits Log-Likelihood Ratios (LLRs) to better understand the
correlation between these bits and the decoding errors of the uncoded information
bits.

Then in Chapter 3, we study the powerful Serially Concatenated Convolutional Codes
(SCCC) [31]. SCCC codes have the desired characteristic of a very sharp transition
from a very bad BER to almost error-free transmission in a span of less than 1-2 dBs.
However, this transition is at a very low SNR which must be shifted to a higher SNR for
our objective to be met. A study is presented including the following:� See whether catastrophic codes can be used in SCCC to achieve our objective� Study different methods to shift the SNR and see their effects on SNR1 and SNR2.� Analyze the LLRs as done in Chapter 2 and propose a new simple ARQ method to

be used in concatenated codes.

Finally, the thesis is concluded in Chapter 4 with a summary and prospecting future
work.
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Chapter 2

Catastrophic Codes

In this chapter, we will study the use of catastrophic codes in the context of physical layer
security. Catastrophic codes have been always avoided due to their poor performance
in low-mid SNRs, but their behavior in high SNRs should not be separated from the
normal codes [32] since catastrophic codes perform similar if not even better than normal
convolutional codes in such regions. Because of this, there is a sharper transition from
high to low BER located at mid-high SNRs. This behavior is what interests us and is
studied in this here.

2.1 Introduction to Convolutional Codes

2.1.1 Convolutional Codes

• Brief Description

A convolutional code is generated by passing an information sequence to be transmitted
through a linear finite-state shift register. The shift register consists of L bits (the con-
straint length) that are used to generate n linear algebraic functions as shown in Figure
2.1. The information sequence is passed k bits at a time, generating n output bits for
each time. The code rate is thus k/n.

The encoder is usually defined by its generating polynomial G, which has n numbers
(usually in octal) representing the n outputs, each of which has L binary bits representing
the register constraint length as presented in [33]. Each number in G represents one linear
function generator that is composed of a modulo-2 adder that adds all the shift register
bits that correspond to 1 in its binary form. Another way to represent the convolutional
code as presented in [34] is using a k × n matrix G(D) consisting of code generating
polynomials such that

G(D) =







g11(D) . . . g1n(D)
...

...
gk1(D) . . . gkn(D)






(2.1)

In this latter case, the encoder is represented in ⌈L/k⌉ registers each with 1 input bit and
n outputs bits. These registers are added up together to form the k/n encoder, hence
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Figure 2.1: Convolutional Encoder

the k ×n matrix G(D). In most of the thesis, we will present the encoder as presented in
[33], unless on certain occasions where G(D) is better suited for the context.

There are 2L−k possible states in any convolutional code (a state is represented by the
first L−k bits in the register). Depending on the state of the register, each input (k-bits)
will shift the register to a different state outputting the corresponding n output bits. And
thus it follows that each convolutional encoder can be represented by a state diagram,
where transitions between states are defined by the input as well as the corresponding
output.

An example of a regular convolutional code can be seen in Figure 2.2. This is a

Figure 2.2: Convolutional Encoder Example with G = [5, 7, 7]

4-state 1/3 rate code with a generating polynomial G = [5, 7, 7] = [101, 111, 111] or
G(D) = [1 + D2, 1 + D + D2, 1 + D + D2].
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A trellis diagram can be constructed to represent all the transitions that occur between
states from start to finish such as the one shown in Figure 2.3. Usually all convolutional

Figure 2.3: Trellis Diagram for the 4 states 1/3 rate code with G=[5,7,7]

coding systems start with the all-zero state and then continue onwards. This trellis
diagram is very helpful in the decoding process of convolutional codes.

• Hard and Soft Decision Decoding in the Viterbi Algorithm

It is well known that Viterbi algorithm is the optimum decoding algorithm to minimize
the sequence error probability and produce the maximum likelihood (ML) sequence of
inputs in a convolutional code. In many cases, the n output bits from the encoder pro-
duced at time t : t ∈ {1, 2, . . . , T} are mapped to one of M symbols (M = 2n) present
in an M-ary modulation scheme, where T is the decoding period. Let A be the set of
M symbols and let ai ∈ A, i ∈ {1, 2, . . . , M} represent each symbol. Without loss of
generality, we assume that each symbol ai ∈ Z is a complex number ai = ai,R + jai,I .
Once a symbol st = ai is transmitted through a channel, it will get distorted by noise.
The received symbol (rt) will thus be a deviation from the originally transmitted st. In
an AWGN channel for example, rt = st +dt, where dt = dt,R + jdt,I and di, dj ∼ N (0, σ2

d).
The received symbols sequence (rt|Tt=1) is then used for decoding.

ML decoding is done by searching for the optimum path popt among all possible paths
P in the trellis diagram of the code. Viterbi algorithm minimizes the number of paths
that need to be searched by keeping the most probable path (surviving path) to each state
and eliminating all others, so that at every time instant t, there is only one surviving
path for each state. Each path p ∈ P has a path metric (PM) which is calculated by
adding all the branch metrics (µp,t|Tt=1) of all transitions along p.

PM(p) =

T
∑

t=1

µp,t

popt = arg min
p∈P

PM(p).

(2.2)

There are two ways to calculate the branch metric for each transition (i.e. Hard and
Soft decoding). Each trellis branch has a corresponding output associated with it (i.e
the n-bits). Let these n-bits be represented as ηp,t = {ηp,t,1, ηp,t,2, . . . , ηp,t,n} depending on
the trellis path and time, and let αp,t be the mapping of ηp,t into A. In hard decoding,
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the branch metric of any transition is the Hamming distance between the demodulated
symbol rt and the branch symbol ηp,t and is calculated as follows:

µp,t =

n
∑

j=1

(ηp,t,j ⊕ ρt,j) (2.3)

where ⊕ is the XOR binary operator, and ρt = {ρt,1, ρt,2, . . . , ρt,n} is the nearest symbol
in A mapped back to its original n-bits.

ρt = (i)b :

{

ai = arg min
∀ai∈A

‖rt − ai‖2

}

(2.4)

where (i)b is the n-bits binary representation of the ith symbol ai ∈ A.
As for soft decoding, the branch metric µp,t depends on the Euclidean distance between
the received symbol rt and the branch symbol αp,t

µp,t = ‖rt − αp,t‖2 (2.5)

When popt is found, a look at the input k-bits along popt will give the optimum decoded
information sequence.

2.1.2 Catastrophic Codes

Catastrophic codes are those convolutional codes that exhibit a characteristic behavior
called catastrophic error propagation, where a small number of errors in the received se-
quence, transmitted through a noisy channel, can result in a large error sequence in the
decoded information bits.

Catastrophic codes are easily recognized from the state diagram of the code. A code
is defined as catastrophic when a non-zero state returns back to the same state through a
zero Hamming distance path. For example take the code with rate 1/3 and G = [5, 3, 6],
this code has a state diagram shown in Figure 2.4. The numbers on each transition
represent the corresponding input/output. This means that one can loop around this

Figure 2.4: Catastrophic Code (G = [5, 3, 6]) State Diagram

zero-distance path an infinite number of times without increasing the distance relative
to the all-zero path and thus result in an infinite number of errors. A trellis diagram of
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Figure 2.5: Trellis Diagram of a Catastrophic code with looping around a wrong state

such a case is shown in Figure 2.5, where the zero loop is mistaken for the loop around
state 3.

A necessary and sufficient condition for catastrophic convolutional encoders was ob-
tained in [35]; Let ∆i(D) be the determinant of the ith k×k minor matrix of G(D), then
G(D) represents a non-catastrophic code if and only if

GCD {∆1(D), . . . , ∆(n
k)

(D)} = Dd (2.6)

for some d ≥ 0, where GCD is the Greatest Common Divisor of the polynomials. These
codes are non-catastrophic because they have an inverse function and hence a unique
decoded sequence, while on the other hand, catastrophic codes do not have this unique
inverse and hence more than one possible decoded sequence. For this reason, catastrophic
codes are avoided in real systems designs.

2.2 Study of Catastrophic Codes

In this section, we will present a study of catastrophic codes to better understand their
behavior and analyze their BER curves. In this study, will introduce several new ideas
related specifically to catastrophic codes, which will enables us to look at what actually
happens in catastrophic codes, how to understand it and what can we do to control it.

2.2.1 Parallel Paths and Parallel States

The first notion we will introduce is the parallel paths and parallel states, which is
very important when discussing catastrophic codes and their behavior. In any normal
non-catastrophic convolutional code, the most common decoder used is the soft-decision
Viterbi decoder, which minimizes the sequence errors as it finds the most likely trans-
mitted sequences of messages yielding the shortest Euclidean distance from the received
signal. In fact, this decoder works great because of one simple but yet very important
reason. In all convolutional codes, there is only one unique “Correct Path” which is
the actual trellis path taken by the encoder before transmission. Non-catastrophic codes
does not have any Parallel Paths to this unique “Correct Path” and hence, it is the only
possible path to follow while decoding. A Parallel Path can be defined as a path that
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can be mistaken which, given the same sequence of received symbols, yields a different
uncoded message than the correct path. A more detailed definition with some examples
will follow afterwords in the case of catastrophic codes. As for non-catastrophic codes,
it is known that errors happen all the time in any transmission, and may cause a slight
deviation in the decoded trellis path, but eventually all the deviated wrong paths will
merge again with the One and Only “Correct Path”. A simple visual analogy would clear
the concept; Suppose there is a long iron rod with a small magnetic ball attached to
it, the rod represents the correct path of the trellis and the ball represents the decoded
sequence. Noise can be represented by shaking the rod a little. Hence, if no noise is
present, the small magnetic ball will move along the iron rod with no problems; while if
some noise is present, the ball will jump up and down leaving the correct path (rod) a
little but eventually end up coming back to the rod again.

Now let us look at an example of a normal 4-states, rate 1/3 convolutional code using
generating polynomials G = [4, 5, 1] having a trellis as shown in Fig 2.6. The numbers
on each branch represent the corresponding input/output. As it can be seen, there is

Figure 2.6: Trellis Diagram for the 4 states 1/3 rate code with G=[4,5,1]

no all-zeros loop from any non-zero state to itself, hence this code is not catastrophic.
Suppose that an error-free signal of 3 symbols is received consisting of 3 n−bit zeros (i.e
000 000 000), the decoded sequence will be 0 0 0. This decoded path is the same “Correct
Path” that was used to encode this message and hence, no confusion is present in any
non-catastrophic code.

The case in catastrophic codes is different, because there is at least one Parallel Trellis
Path to the actual “Correct Path” where the decoded trellis sequence might get stuck.
Let us look at the definition of what a “Parallel Path” is. Take a look first at parallel
lines, they are two or more lines that does not share the same starting point and continue
endlessly without meeting. The same can be said about parallel trellis paths. Two paths
are said to be parallel if, when decoding the same sequence of received symbols, they
start from different code states and continue without intersecting to the end yielding the
same path metrics, and hence, both paths are equally likely. At each time instant (i.e.
at each trellis section) along the whole trellis, the state of the first path and the state of
the second parallel path are together called “Parallel Trellis States”.

By definition, catastrophic codes are convolutional codes that contain a non-zero state
which can come back to itself yielding an encoded sequence of all-zeros. The transitions
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involved going from that state and returning back can be described as being parallel
to the all-zero states transitions. Thus it can be easily put in the notion of “Parallel
Paths and States” by taking the path taken from the non-zero state (which would be a
“Parallel State” to the zero state) to itself as a “Parallel Path” to the all-zero states path.

As another example, consider a catastrophic 4-states 1/3 convolutional code with gen-
erating polynomials G = [5, 3, 6] having its trellis shown in Fig 2.7. In this trellis, aside

Figure 2.7: Trellis Diagram for the 4 states 1/3 code with G = [5, 3, 6]

from the normal loop in the zero state, there is one more loop in state 3, where it returns to
itself with an output of zero and non-zero inputs. This indicates the presence of a parallel
path that may trick the decoder and suck it inside an endless sequence of wrong paths.
Suppose as before, that an error-free signal of 3 symbols is received consisting of 3 n−bit
zeros. Looking at the trellis, it can be seen that there are 2 possible paths to be taken;
The all-zero path resulting in a decoded bits sequence of 0 0 0, or the all state 3 path
resulting in decoded bits 1 1 1. And hence, it is easily seen that states 0 and 3 are parallel.

As seen in the previous example, any catastrophic code has at least two parallel paths,
the “Correct Path” that is no longer the one and only path present as in normal convolu-
tional codes. We could end up with at least one other parallel path which can be called
the “Wrong Path”. When errors happen, the transitions in the decoded path no longer
follow the one and only correct path, because there is another path out there which can
easily be followed that will not increase the path metric. If we return to the iron rod and
the small magnetic ball example, a catastrophic code can be said to have more than one
iron rod (the correct rod, which the ball should stick to and the wrong rod which acts
as a parallel path to the correct one). In this case, when some excess noise happens, the
magnetic ball will jump from the correct rod to the wrong one and stick with the wrong
rod until another powerful error happens that takes it back again to the first correct rod.

The number of parallel paths and states can be easily obtained by studying the code.
The number of parallel paths corresponds to the number of states from which a received
sequence of all-zeros drive back to the same starting states. These states are parallel
states to each other and form one of the groups of parallel states in the given code. The
other states which are not part of this group will form other groups by using the same
principle. Rather than using an output sequence of all-zeros, other sequence of outputs
can be used. A “Parallel States Group” is a group of parallel states sharing the same set
of outputs permuted between all the possible outgoing branches from each parallel state.
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In previous example, state 3 is considered parallel to state 0 and thus they both form a
parallel states group, since they both have the same set of outputs {0,5} but for different
inputs. If we take the other states (1 and 2) that are not part of the first group, it can
be noticed that they too are parallel to each other, in the sense that they both return to
themselves having a sequence of two 3’s as output, and hence form another parallel group.

To further clarify the notations, take another example of a 4-state but 2/3 catastrophic
convolutional code having generating polynomials of G = [5, 12, 17] with its trellis shown
below in Fig 2.8. Because of the many branches found in this diagram, the branch labels
are put in order on the right side of the figure, showing the input/output of the incoming
branches into the ending state. As seen, this code has 3 self-loops other than the zero

Figure 2.8: Trellis Diagram for the 4 states 2/3 code with G = [5, 12, 17]

loop, since all states return to themselves with a received zero making them all parallel
to each other. Hence, if the same error-free signal of 3 symbols is received consisting of
3 n−bit zeros, it can be decoded in 4 different ways (each corresponding to a different
parallel path). It can decoded by passing through the all-zero states resulting in decoded
bits of 00 00 00, or the all-one states resulting in 01 01 01, the all-two state resulting
in 10 10 10 or the all-three states resulting in 11 11 11. Since all states are parallel to
each other, this code has one parallel states group including all states. Hence there are 4
parallel paths that a received sequence can be decoded through, only one is correct, and
all other 3 being wrong.

2.2.2 Catastrophic Events

After introducing the parallel paths and parallel states, the question that need to be an-
swered is what is a catastrophic event and how it is initialized. A catastrophic event can
be defined as the sequence of errors that shift the decoding from one path to another par-
allel path. This shift can be identified when comparing the actual encoded correct path
with the decoded path, the error event is that sequence of errors that lead the decoded
path to a state parallel to the state of the correct path, when they both have started
from the same state. In soft-decision Viterbi decoding, this means that the Euclidean
distance between the received signal and the path leading to the parallel state is smaller
than the distance between the received signal and the correctly transmitted path. Since
after any catastrophic event, the path metric at the wrong parallel state is less than that
of the correct state, and also the two states are parallel, then all the subsequent coming
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signals will affect the two paths in the same manner and thus the path metric of both will
increase in exactly the same amount keeping the wrong parallel path in the lead unless
another catastrophic event takes place.

Note that there is a big difference between a catastrophic event or error and a regular
error that happens in any usual transmission. The normal errors deviate the decoded
path from the correct path for a small period of time, after which they will join again
given that the signals are received correctly for some time after the error. While a catas-
trophic error shifts the correct path to a complete parallel path that they will never join
again even if the received signals were perfectly error-free. Only another catastrophic
error has a chance of joining them again.

Example: Look at the code in Fig 2.7 and suppose that an all-zero message is trans-
mitted, making the correct trellis path consisting of the sequence of zero states (note
that states 0 and 3 are parallel). Since noise is present in any transmission, the fist two
received output symbols may be closer to the sequence of outputs 5 and 6 rather than the
correct transmitted sequence of two zeros. When that happens, the path metric at state
3 will be less than that at state 0 causing a catastrophic error. See Fig 2.9. Since a catas-

Figure 2.9: Trellis Diagram of a Catastrophic Event

trophic error already took place, even if the noise burst is ended and the next signal is
received correctly as zero, the decoded path will never go back to the previous path (since
they are parallel paths) and thus the decoder will be sucked in an endless loop of wrong
decoding until another catastrophic event happens taking it away and putting it in an-
other parallel path (the correct path in case of only two parallel paths as in this example).

As it can be seen, this event started at state 0 and ended at the parallel state 3, rather
than the correct state 0. This catastrophic event can be said to have a length of 2 (the
length is the period from the start of the error burst until ending up in a parallel state).
In this code there are 16 possible catastrophic events of such length, since we have 4 states
to begin and end with, and only one wrong parallel path, remembering that this code has
only two parallel paths. The list of all these 16 events can be found below in Table 2.1,
where 0-0-0 represents an evolution of state transitions. Notice that all wrongly received
paths end with a parallel state to the actual transmitted path. The transmitted signals
are presented as tx1 and tx2 for the first and second transmissions respectively and rx1
and rx2, represent the first and second received signals. As it can be seen, Table 2.1
exhausts all possible paths of length 2. Catastrophic events of length larger than 2 are
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Table 2.1: All possible catastrophic events of length 2 in the code used in Fig 2.7.
Transmitted Path States Received Path States Signals [(tx1,tx2),(rx1,rx2)]

0-0-0 0-2-3 [(0,0),(5,6)]
0-0-2 0-2-1 [(0,5),(5,3)]
0-2-1 0-0-2 [(5,3),(0,5)]
0-2-3 0-0-0 [(5,6),(0,0)]
1-0-0 1-2-3 [(6,0),(3,6)]
1-0-2 1-2-1 [(5,6),(3,3)]
1-2-1 1-0-2 [(3,3),(5,6)]
1-2-3 1-0-0 [(3,6),(6,0)]
2-1-0 2-3-3 [(3,6),(6,0)]
2-1-2 2-3-1 [(3,3),(6,5)]
2-3-1 2-1-2 [(6,5),(3,3)]
2-3-3 2-1-0 [(6,0),(3,6)]
3-1-0 3-3-3 [(5,6),(0,0)]
3-1-2 3-3-1 [(5,3),(0,5)]
3-3-1 3-1-2 [(0,5),(5,3)]
3-3-3 3-1-0 [(0,0),(5,6)]

sure to be found in any code, but from our observations while working on this particular
code, the errors dominating the low SNR region always happen to have a length of 2,
while they disappear as SNR increases. This observation is later emphasized when we
perform theoretical calculation based on this assumption, and results in theoretical curves
that almost exactly match the simulations.

2.2.3 Decoded Bits Behavior After One or More Catastrophic

Events

As mentioned before, a catastrophic event shifts the decoded path from one parallel path
to another. Hence, between any two catastrophic events, the path in between will be one
of the possible parallel paths discussed earlier. Since parallel paths are related in one way
or another, a relation between decoded bits in different parallel paths is expected. Let
us look at the two catastrophic codes found above in Figures 2.7 and 2.8

At any instant in a trellis, most probably the decoded state is in the same parallel
group as the correct state since errors usually have a low probability of happening while
catastrophic events have their effect long after the actual occurrence of the event. Take
the first catastrophic code in Fig 2.7 as an example, this code has 2 parallel paths and
thus 2 parallel states per parallel group. Hence, if the correct state is 0, the decoded
state is either 0 or 3 depending on the current parallel path taken in decoding. Of course
if the decoded state is the same as the correct state, then the parallel path taken is the
correct one and thus no errors should occur. But what if the decoded state is 3, which
definitely belong to the other wrong parallel path? To see the effect, we need to see
what happens to the next received signals and how they are decoded. The next received
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symbol should be either 0 or 5, since they represent the two branches emerging from
state 0, while at the same time, they also represent the two branches leaving from state
3, but with different information bits (input). Thus, whatever the actual value of the
next signal, the decoding will not sense anything wrong even if it is at state 3, and will
make the decision accordingly. Decoding the symbols back into the information bits is
what matters, so we want to see the difference between decoding while starting at state
0 or state 3. Supposing that state 0 is the correct current state, an error vector can be
defined to be the difference in information bits between the correct path (starting at state
0) and the wrong path (starting at state 3). Table 2.2 summarizes the differences. The
same thing can be said about the other parallel group which include states 1 and 2, see
Table 2.3.

Table 2.2: Decoded bits in states 0 and 3 and the corresponding error vector

Received Signal
Decoded bits when starting at

Error Vector
state 0 state 3

0 0 1 1
5 1 0 1

Table 2.3: Decoded bits in states 1 and 2 and the corresponding error vector

Received Signal
Decoded bits when starting at

Error Vector
state 1 state 2

3 1 0 1
6 0 1 1

Another helpful example to show the error vectors in a better way is to see the effect
of a catastrophic event of the 2/3 4-state encoder used with its trellis shown in Fig 2.8.
Since all states fall into the same parallel group, any catastrophic event will lead to even
more confusion than the example above. Table 2.4 summarizes the decoded bits and error
vectors for this encoder. It must be noted that the error vectors are calculated assuming
that the current state in the correct parallel path is 0. However, if the current state is
taken as 1,2 or 3, the error vectors will be the same but permuted between the decoded
paths that might be taken by the decoder.

Table 2.4: Decoded bits in all states and the corresponding error vectors for the 2/3
encoder assuming that the correct state of transmission is state 0

Received Signal
Decoded bits when Error vector assuming decoded
starting at state parallel path is at state
0 1 2 3 0 1 2 3

0 00 01 10 11 00 01 10 11
3 10 11 00 01 00 01 10 11
5 01 00 11 10 00 01 10 11
6 11 10 01 00 00 01 10 11
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It can be seen that error vectors correspond to the different parallel paths that might
be taken while decoding. Thus at the start of any transmission, the decoder will operate
in the correct parallel path since no catastrophic errors are yet present, but when a
catastrophic event happens, the parallel path taken will change and thus the error vector
between the correct data and the decoded data will no longer be zero. This error vector
will repeat for every decoded signal until another catastrophic event takes place. Thus,
when a message is received having c catastrophic errors, the decoded message will consist
of c + 1 parts each with a specific error vector that differs from the previous one. So in
the case of the sample code in Fig 2.7, the decoded message parts will oscillate between
completely correct and completely wrong (assuming only catastrophic errors occur), while
if the code in Figure 2.8 is used, the decoded message parts will take any value from the
4 possible error vectors that differs from the previous one. Figures 2.10 and 2.11 show an
example of the error vectors between the sent and received data for both codes in Figures
2.7 and 2.8.

Figure 2.10: Sample of a 50-bit transmission containing 5 catastrophic events using the
code in Figure 2.7 (Assuming that only catastrophic errors exist)

Figure 2.11: Sample of a 50-bit transmission containing 5 catastrophic events using the
code in Figure 2.8 (Assuming that only catastrophic errors exist)
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2.2.4 Performance Statistics

Bit Error Rate (BER) and Packet Error Rate (PER) are used to describe the performance
of communication systems. PER is mentioned because in catastrophic codes, transmitting
an infinite number of bits will, with high probability, produce at least one catastrophic
event. When we measure PER, a specific number of bits, which can be called a Packet
Length (which will be discussed later), is used for transmission. Many packets are used
to get an average value of PER.

• Single Packet

A single packet transmitted (simulated only one packet at each Signal to Noise Ratio
(SNR)), will have a very interesting BER curve. For all low-medium SNR values, the
BER will be very high (around 0.5), but suddenly, an SNR will come that not a single bit
was in error (we are talking about packets of finite length). This means that at all lower
SNRs, catastrophic errors happened skyrocketing the BER values, while at that specific
SNR, no catastrophic events took place and thus no bit errors happened what so ever.
Thus a very sharp transition is found. Figure 2.12 shows an example.

Figure 2.12: Example of a transmission of a single 1000 bit packet using the catastrophic
code G = [5, 3, 6]

• Large Number of Packets

When a large number of packets is transmitted, the SNR value at the drop-off will not be
the same for all packets since each transmission is unique in its own way. This urges us
to take the average of all packets and put them all together in one BER curve. Another
statistic that can be used here is the PER, where a packet error is defined whenever a
packet is received with at least one bit error. Because of this averaging, some changes
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in the BER will occur. Of course for low SNR, where all kinds of errors are high, the
PER is maintained at one while BER is around 0.5, where at high SNRs, both PER and
BER will become quite small. But in the middle SNR range, we no longer see that sharp
transition as that when using one packet, however, it is still much steeper slope than
regular convolutional codes, as seen in Figure 2.13.

Figure 2.13: Example of a transmission of 100000 packets of 1000-bit each using the code
G = [5, 3, 6]

At this point, it is beneficial to introduce two main types of packet received with
errors.

1. Normal packet error, that contain few bits in error (similar to most coding schemes).

2. Catastrophic packet error, that contains many bit errors (around half the packet
length)

In the mid-high SNR range, most of the packets will be received error free or with errors
of the first type, but nevertheless, some errors of type 2 will eventually appear. Although
their appearance will not affect the PER that much, but it will cause drastic consequences
for BER, since, in one type 2 error, so many bits will be in error to an extent that they
very likely exceed the total number of regular type 1 errors that happen in all the other
packets combined, thus increasing the average BER to a value that does not precisely
reflect the exact situation we have, and thus giving a false impression of the code BER
performance. From here it can be seen how the sharp transition found in a single packet
transmission was lost when many packets were used. Looking at the simulation results in
Figure 2.13, it can be noticed that the PER and BER curves have about a 3dB difference
(i.e. PER is double the BER). Take SNR = 10 dB for example, the PER ≈ 4 × 10−3

while BER ≈ 2× 10−3; Knowing that the simulations included 100000 packets, then the
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approximate number of error-free packets is 100000 × (1 − 4 × 10−3) = 99600 and only
100000×4×10−3 = 400 packets contained errors. These 400 packets must then contain all
the bit errors present. Well, there are 100000 packets of 1000 bits each, making a total of
108 bits and the BER ≈ 2× 10−3 meaning that there are about 108 × 2× 10−3 = 200000
bit errors as total. This means that the 400 error containing packets have 200000 bit
errors of their total 400000 bits at a BER of 0.5. From this simple calculation it is seen
that out of the 100000 packets transmitted 99600 were received error-free and 400 packets
were received with a BER of about 0.5.

2.2.5 Parameters Affecting Performance and Results

• Packet Length

Catastrophic codes do not behave in the same way as all other codes. An error in any
normal code will not have any big consequences, mostly, there will be some period of
uncertainty after which everything will be clear again. While in a catastrophic code, a
single error may lead to an infinite number of errors. Any catastrophic code will behave
very much like any other code until the first catastrophic event happens, thus this first
event is one of major importance. The BER will be small (comparable or even better
than normal convolutional codes) until this event happens, which drags BER to very high
numbers because of the large sequence of errors that follow any catastrophic event land-
ing on a wrong parallel path (the first event will surely land on a wrong path). Hence, a
very important factor is the position of the first catastrophic event in any transmission.

As in any probability problem, an infinite message length using a catastrophic code
will, with high probability, have a catastrophic event and thus a high BER. This is why
the length of the transmitted message becomes very important. The longer the message,
the more probable a catastrophic event will occur sending the BER to astronomical highs.
Thus the packet length must be considered when dealing with such codes.

To show the dependence of the catastrophic code BER curve on various packet lengths,
we ran simulations using one catastrophic code (G=[5,3,6], trellis shown in Figure 2.7)
while changing the packet lengths used. Take a look at the BERs and PERs of 1000,
10000 and 100000 bit length packets in Figure 2.14. It can easily be noticed that the
larger the packet size, the larger the SNR required to get to the transition between high
and low BER. Thus the packet length is of significant importance when talking about
performance of catastrophic codes. One more observation that can be made is that
the larger the packet the steeper the BER slope after the SNR threshold, theoretical
calculation will confirm our observation.

• Constellation and Labeling

A second important factor is the constellation mapping. Constellation size, positioning
and labeling affect all coding schemes including catastrophic codes. However, in catas-
trophic codes, they have a bigger effect due to the fact that catastrophic events depends
highly on the Euclidean distances between the different parallel paths. Whenever the
correct path and a wrong path of states are near each other, there is a high chance that
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Figure 2.14: BER and PER comparison of different packet lengths

an error of catastrophic nature will occur, while on the other hand, expanding the dis-
tance as much as possible decreases the catastrophic errors probability. Thus, labeling
also plays a big part in the value of the SNR where the drop of waterfall effect occurs.
The larger the distance between parallel paths, the lower the SNR needed to have a
transmission with no catastrophic errors.

Again, as in packet lengths, we ran simulations to show our results using the same
code as above. The constellations are designed specifically for the catastrophic code be-
ing used. For this reason, we will provide a study of this particular catastrophic code,
knowing that all other catastrophic codes can be studied in the same way.

Before looking at the simulation results, a deeper study of catastrophic events is
needed in order to draw the constellations. From Table 2.1 we can find all the possi-
ble combinations of (rx1,tx1) and (rx2,tx2). Although there are 16 possible individual
events, there are actually only 4 groups of 4 events each, where each group has the same
combinations considering the Euclidean distance between the rx’s and tx’s. For example,
the first event which has [(0,0),(5,6)] catastrophic sequence means that for a catastrophic
event to happen, a 0 must be mistaken as 5, followed by another 0 mistaken as 6, but this
is the same as the 4th event of [(5,6),(0,0)] only that for a catastrophic event to happen,
5 must be mistaken as 0 followed by a 6 mistaken as 0. Generally speaking, the only
thing that matters is the distance between rx1 and tx1 and the distance between rx2 and
tx2. Thus all the 4 possible groups are summarized in Table 2.5.

We can see that each group has a common element between (tx1,rx1) and (tx2,rx2).
This element is important in the case of initializing a catastrophic event since two signals
are needed to be mistaken to initiate the event, both containing this common element.
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Table 2.5: All possible catastrophic groups in the code used in Fig 2.7.
(tx1,rx1) (tx2,rx2)

(0,5) (0,6)
(0,5) (5,3)
(6,3) (0,6)
(5,3) (3,6)

Thus the squared error distance needed to start a catastrophic error is the summation of
the squared distances between this common element and two others. For example, the
first group in Table 2.5 represents the catastrophic events involving 0 with 5 and 0 with
6, thus the squared error distance d2

catneeded to start the catastrophic event is

d2
cat1 = d2

0,5 + d2
0,6 (2.7)

The same can be done to all the other groups

d2
cat2

= d2
0,5 + d2

5,3

d2
cat3

= d2
6,3 + d2

0,6

d2
cat4 = d2

5,3 + d2
3,6

(2.8)

An average value d2
cat = 1

4

∑4
i=1 d2

cati
can be used to describe the labeling and the BER

behavior of catastrophic codes as can be seen in the following. Let us look at some ex-
amples to see the effects of constellation mapping and labeling. The code we are using
has 3 output bits, which requires a constellation of size 8, however, only 4 out the 8
possible outputs are being used, specifically (0,3,5 and 6). Figure 2.15 shows 4 different
constellations that are used with their specific d2

cat.

Simulation results using these different constellations are shown Figures 2.16. It can
be easily noticed that d2

cat is directly related to the performance of catastrophic codes. A
low d2

cat means catastrophic events are easily triggered and thus BER remains high until
a larger SNR, while a high d2

cat on the other hand produces a BER curve that has a lower
SNR threshold. Change in constellation as it seems does not change the slope after the
SNR threshold as in the case of packet length.

We can thus conclude that both packet length and constellation positioning and la-
beling play very important roles in the performance of catastrophic codes.

2.2.6 Theoretical Calculation

In this section, we will engage in theoretical study of the performance of catastrophic
codes in terms of the analytical results on BER and PER. In order to calculate BER
and PER, the probability of a catastrophic event must be calculated first. For this
reason, theoretical results are also code specific, because different codes require different
calculations using the same procedure. Calculating the probability of a catastrophic
event involves an analytical study of all possible catastrophic events described previously
in Table 2.1 (all catastrophic events are assumed to be of length 2, larger lengths were
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Figure 2.15: Different constellations with their corresponding d2
cat

ignored because of our observation in simulations before, where only length 2 catastrophic
errors were present. This assumption is verified when the calculated theoretical results
match the simulations to a very high degree.). For any single event, the probability that
the wrong path is selected rather than the correct path, given that the correct path was
transmitted, must be calculated. We will study codes with catastrophic errors of length
2, thus let

c1 = c1i + jc1j

c2 = c2i + jc2j
(2.9)

be the transmitted signals, and

r1 = r1i + jr1j

r2 = r2i + jr2j
(2.10)
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Figure 2.16: BER and PER comparison of different constellations using 1000 packets of
1000-bit each, using the same code G = [5, 3, 6]

be the received signals with each component

rxy = cxy + nxy (2.11)

where nxy are Gaussian independent variables with a zero mean and σ2 variance (N (0, σ2))
where xy ∈ {1i, 1j, 2i, 2j} and let w1 = w1i + jw1j , w2 = w2i + jw2j denote the wrong
signals that must be received to shift the path into another parallel path. The probability
of a catastrophic event given the transmitted signal P [E|Tx] is thus

P [E|Tx] = P [|r1 − w1|2 + |r2 − w2|2 < |r1 − c1|2 + |r2 − c2|2]
= P [r1ie1i + r1je1j + r2ie2i + r2je2j < K]

(2.12)

where

exy = cxy − wxy ∀x ∈ {1, 2}, y ∈ {i, j}
K = (C − W )/2
C = c2

1i + c2
1j + c2

2i + c2
2j

W = w2
1i + w2

1j + w2
2i + w2

2j .

(2.13)

Let

R = r1ie1i + r1je1j + r2ie2i + r2je2j (2.14)

which consequently has a normal distribution of N (µR, σ2) where

µR = c1ie1i + c1je1j + c2ie2i + c2je2j

σ2 = (e2
1i + e2

1j + e2
2i + e2

2j)σ
2 (2.15)
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since its components are all independent Gaussian random variables. It follows that,

P [E|Tx] =
1

2

(

1 + erf

(

K − µR

σ
√

2

))

(2.16)

where

erf(x) =
2√
π

∫ x

0

e−t2dt (2.17)

Hence,

P [E] =
1

N

N
∑

i=1

[

1

2

(

1 + erf

(

Ki − µR

σ
√

2

))]

(2.18)

where Ki is K calculated for the ith catastrophic event and N being the total number
of different catastrophic errors present in the code (16 in the case of using the code
G=[5,3,6]).

P [E] gives the probability of having a catastrophic event after 2 signal periods, an
approximate value Pe can be used to simplify calculation as it gives the probability of a
catastrophic event after only 1 period of time. This value Pe can be said to be in a case
similar to a BSC channel, where there is 1 − Pe probability that no catastrophic errors
will happen and Pe probability that a catastrophic error will happen after each symbol.
Since this code cannot have a catastrophic error by the first symbol alone, the path taken
will not shift to another parallel path, but rather behave as a normal error, which can be
corrected if the next symbols are received correctly. Since the first symbol did not initiate
the catastrophic error then it is following the BSC-like probability 1 − Pe. The second
symbol will initiate the catastrophic error and hence follow the BSC-like probability Pe.
From here, it is seen that P [E] = (1 − Pe) × Pe ⇒ P 2

e − Pe + P [E] = 0, which makes

Pe =
1 −

√

1 − 4P [E]

2
. (2.19)

A table of probability of k catastrophic errors to happen within a packet containing
n transmissions can easily then be constructed using the following equation

P [k] = n!
k!(n−k)!

P k
e (1 − Pe)

(n−k). (2.20)

PER can be easily calculated by taking the catastrophic error-free transmission (k = 0
catastrophic errors)at all SNRs and compute PER= 1 − P [k = 0], where P [k = 0] is the
probability of having 0 catastrophic errors, and thus PER represents the probability of
sending a message with n transmissions and receiving it with no catastrophic errors at all.
This procedure ignores any normal errors and only focus on catastrophic ones because of
the minor changes that normal errors have on PER or BER as compared to catastrophic
errors are negligible.

As for BER, it can be calculated as follows:

BER(σ) =
∑n

k=1 P [k] ∗ ⌊(k+1)/2⌋
k+1

(2.21)
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where ⌊(k+1)/2⌋
k+1

is the average BER when k catastrophic errors are present in a code having
2 parallel paths (as the example code used in Figure 2.7). In such a code, there are k + 1
parts between catastrophic events, which fluctuate the decoded path between the two
possible error vectors (i.e. all-zeros or all-ones), ⌊(k + 1)/2⌋ parts will correspond to the
all-ones error, while the rest correspond to the all-zero error, and hence the average BER
is computed on the assumption that all events are equally apart as ⌊(k+1)/2⌋

k+1
. Table 2.2.6

gives the theoretical PER and BER for the example code G = [5, 3, 6] using a packet
length of (n = 1000) and d2

cat = 4.

Table 2.6: Theoretical PER and BER for the sample code G = [5, 3, 6] using a packet
length of (n = 1000) and d2

cat = 4.
SNR per bit

1 2 3 4 5 6 7 8 9 10 11
PER% 100 100 100 100 99.75 90.90 53.90 17.40 3.30 0.40 < 10−2

BER% 49.62 49.03 48.08 47.10 45.83 39.65 24.56 8.44 1.64 0.19 < 10−2

The following Figure 2.17 shows the theoretical calculation as compared to the actual
simulation results. As it can be seen from the figure, theoretical calculation is very close
to simulation results.

Figure 2.17: Theoretical results as compared to simulation

An interesting phenomenon is observed when calculating the theoretical BER curves for
longer packet lengths (larger n). As noticed before in the simulations of different packet
lengths, the slope of the BER curve after the SNR threshold increases as the packet length
increases, this observation is emphasized with the theoretical results. The following Fig-
ure 2.18 shows the theoretical BER for various packet lengths using the constellation
where d2

cat = 4. As it can be seen from the figure, the curve drop continues to shift to
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Figure 2.18: Packet length effect for the code G = [5, 3, 6] with d2
cat = 4

larger threshold SNRs as packet length increases, while at the same time increasing the
slope and nearing a waterfall phenomenon as packet length reaches infinity. Of course
these results do not count the normal errors that happen in catastrophic codes, since as
we said earlier, normal errors are negligible at high SNRs, but nonetheless, these normal
errors are expected to determine the error floor of the waterfall drop of catastrophic codes.

In another similar BER theoretical calculation, Figure 2.19 shows the theoretical
BER for various packet lengths using the constellation where d2

cat = 6 in Figure 2.15. In
this figure, it is obvious that constellation changes did not affect the slopes of the BER
after the threshold, but it did change the SNR threshold itself by shifting it about 2 dB
to the left. This observation again emphasizes our previous observation made through
simulations.

2.2.7 Taking Control of Catastrophic Codes BER Curves

From the previous sections, we can now conclude that the parameters of the catastrophic
codes (i.e. packet length and constellation labeling) can be used to control the SNR
threshold as well as the BER slope beyond the threshold. Table 2.7 summarizes the
observations:

Table 2.7: Summary of catastrophic code parameters effects
Parameter SNR Threshold Slope after threshold

Larger Packet Length Increase Increase
Larger d2

cat Decrease None
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Figure 2.19: Packet length effect for the code G = [5, 3, 6] with d2
cat = 6

As can be seen, the labeling plays the part of shifting the curves while the packet
length steepens the slope and shifts the curve. A good approach is to use higher packet
lengths with larger d2

cat so that to increase the slope without shifting the curve further to
the right (This is done by canceling the shift that occurred when increasing the packet
length, by introducing an opposite shift using the constellation and labeling). Figure 2.20
is an example done in simulation. It can be seen that we were able to gain slope without
shifting the curves.

Using this approach of controlling the catastrophic codes through the packet lengths
and labeling is a way of constructing the code we intended to design at first as presented
in Chapter 1. Although catastrophic codes cannot produce codes below a certain SNR
with a steep slope, but nonetheless, they act in a way similar to what we intended to do
in the mid-high SNR region.

2.2.8 Simulation Procedure for Viterbi Decoding

In this section, we provide a flowchart illustrating how simulations are conducted. Simula-
tion procedure is simple. At least 1000 packets of a specific number of bits (1000,10000,. . . ,etc.)
is simulated for each value of Eb/N0. Each packet starts with all-zero state, randomly
generates the data, encode it and transmitted over an AWGN channel. The data being
received is decoded using the soft-Viterbi algorithm as described in section 2.1.1. The
following Figure 2.21 shows a brief flowchart of the code.
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Figure 2.20: Simulation comparison between 1000 and 100000 packet lengths using d2
cat =

4 and d2
cat = 7.4 respectively

2.3 BCJR Decoding of Catastrophic Codes

2.3.1 Description of the BCJR Decoding Algorithm

Viterbi algorithm finds the most likely path that is taken in any trellis, and thus mini-
mizes the sequence error probability (SER); i.e. it minimizes the probability P (v̂ 6= v|r)
that the decoded (ML) codeword v̂ is not equal to the transmitted codeword v given the
received sequence r. Although Viterbi algorithm is optimal in minimizing SER, it may
not be optimal in minimizing the BER which we are actually interested in. To minimize
the BER, the posteriori probability P (ûl = ul|r) that an information bit ul at is correctly
decoded must be maximized. Such algorithm is called a maximum a posteriori probabil-
ity (MAP) decoder.

In 1974, Bahl, Cocke, Jelinek and Raviv [36] introduced a MAP decoder, which is
known as the BCJR algorithm. This algorithm calculates the a posteriori L-values

L(ul) ≡ ln

[

P (ul = 1|r)
P (ul = 0|r)

]

(2.22)

called the APP L-values, of each information bit ul, which are then used to decide the
output which is given by

ûl =

{

1 if L(ul) > 0
0 if L(ul) < 0

(2.23)

The decoded bits ûl are then used to compute the error sequence as el = |ûl − ul|.
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Figure 2.21: A simplified flowchart of the code used in the simulation, using Viterbi
decoding
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The BCJR algorithm is similar to Viterbi in the sense of branch metrics and path
metrics. Every received symbol will transfer the trellis from one state s′ to another s,
s, s′ ∈ S where S is the total set of possible states. The branch metrics γl(s

′, s) at symbol
index l is calculated by Lc

2
rl.vl where Lc = 4Es/N0 is the channel reliability factor and

Es/N0 is the symbol energy to noise ratio (SNR). The branch metrics are then used
to calculate two other metrics, the forward αl(s) metric (similar to Viterbi path metric)
and the backwards βl−1(s

′) metric (a reversed version of the forward metric). In the
Log-domain BCJR algorithm, where there are K transmitted symbols of a 1/n code rate,
the forward metrics are calculated as follows:

α0(s) =

{

0 s = 0
−∞ s 6= 0

(2.24)

where α0(s) is the initial forward metric, α0(0) is initialized to zero since in every packet
transmission, we start from the all-zero state, while all other α0(s) are set to −∞. And

αl(s) = ln
∑

s′∈σl−1

e[γl(s
′,s)+αl−1(s

′)] (2.25)

for l = {1, 2, . . . , K}, where σl is the set of all possible states at symbol index l. In
order to calculate the backward metrics, we have to initialize the last state of the trellis.
There are two ways to do that depending on the situation, if the transmission is always
terminated by a sequence of zeros to drive the last state to all-zero state then

βK(s) =

{

0 s = 0
−∞ s 6= 0

(2.26)

only if the whole sequence of received data is available. However, if the sequence is not
terminated by zeros, or the received data does not represent the whole sequence, then
βK(s) is initialized by the value of αK(s)

βK(s) = αK(s) , ∀s ∈ σK (2.27)

After initializing βK(s), the rest of the backward metrics can then be calculated as follows:

βl−1(s
′) = ln

∑

s′∈σl

e[γl(s
′,s)+βl(s)] (2.28)

When all αl(s), βl(s) and γl(s) are available, then the APP L-values L(ul) are calculated
as follows:

L(ul) = ln







∑

(s′,s)∈
∑

1

l

eαl−1(s′)+γl(s
′,s)+βl(s)







− ln







∑

(s′,s)∈
∑

0

l

eαl−1(s′)+γl(s
′,s)+βl(s)







(2.29)
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where (s′, s) ∈ ∑1
l corresponds to all the state transitions s′ → s at time l such that the

input bit ul is one, while (s′, s) ∈ ∑0
l corresponds to all state transitions such that the

input bit ul is zero.

2.3.2 Simulation Results

The simulations results of convolutional codes decoded using the BCJR algorithm did
not enhance the BER curves as compared to the Viterbi decoding algorithm. This is
seen in Figure 2.22. This observation is shared in [37], where the authors conclude that
both algorithms produce very similar results especially when the information bits {0,1}
are i.i.d with {0.5,0.5} probabilities.

Figure 2.22: BCJR decoding produces similar results to Viterbi decoding using the 1/3
code G=[5,3,6] and d2

cat = 4

2.4 Terminating Simulation with All-Zero State

Until now, all discussion involved coding and simulation of a truncated code (i.e. not
terminated with all-zero state). In normal codes, terminating the simulation with a
sequence of zeros forcing the final state to go to zero does not affect the actual performance
of the code, however, in catastrophic codes, the situation is different. As described earlier
in this chapter, the decoded path of a catastrophic code fluctuates between the different
parallel paths present in a given code. At the beginning of every packet transmission, the
starting state is fixed (usually all-zero state) and thus, the decoded path at the section
before the first catastrophic error is always the correct path as presented earlier. However,
after that first catastrophic error, the decoded path will fluctuate between all the parallel
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paths. Forcing the trellis to go to the all-zero state at the end of the packet will give a
second known point in decoding which forces the decoded path to consist of the correct
path not only at the beginning of the trellis but also at the end of it. This will eliminate
at most one catastrophic error and thus shifts the BER curves to the left. Below, we can
find some simulation results in Figure 2.23 showing the effect. It can be concluded that
forcing to all-zero state is another parameter that can be used in designing the desired
code which increases the slope after the threshold.

Figure 2.23: Comparing simulations with All-zero state termination. the code = [5, 3, 6]
with 1000-bit packet is used and d2

cat = 6

2.5 Second Order Statistics of Information Bit LLRs

and Errors

After studying the BER curves of catastrophic codes, we wanted to see the correlation
of errors and also study the information bits soft output LLRs before the actual hard
decoding. This study is made hoping to infer more on catastrophic codes, especially in
the low SNR region before the BER drops. As we saw previously, the catastrophic code
does not produce independent errors, knowing that we have an error somewhere enables
us to correct not only that error but also all of the surrounding bits. This dependence
makes us wonder what Eve can infer from the received data, can she correct anything or
know the positions of catastrophic errors?

To understand the results better, we simulated a normal non-catastrophic convolu-
tional code of 1/3 rate and having a generating matrix G = [5, 7, 7]. In the figures that
follow, we will see 5 sub-figures in each, the 2 on the left show the soft LLR output drawn
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for 3 successive 1000-bit packets in the time domain along with the error vector (one fig-
ure showing the actual value and the other the absolute value of LLRs), the error vector
is such that the bits in error will have a value of 1 and those bits received correctly will
have a value of 0. On the right side, there are 3 sub-figures, the top showing the empirical
probability density of the soft LLRs, and the bottom two showing the auto-covariance of
the LLRs’ and errors.

The following Figure 2.24, Figure 2.25 and Figure 2.26 show the results for 3 different
SNRs 1,3 and 6 respectively.

Figure 2.24: BCJR decoding of a normal convlolutional code at SNR = 1 dB (BER =
8.15×10−2)

The following observations can be made from these figures regarding BCJR decoding
of a normal convolutional code.� Absolute value of LLRs |LLR| increases as SNR increases.� The LLRs probability density function is a two Gaussian-like Bell-shaped peaks

representing the information bits (negative LLR for 0, and positive LLR for an
information bit of 1). These two peaks move apart as SNR increases and each
becomes a district Gaussian-like distribution.� LLRs are not correlated at all.� Error correlation is low and present only for the neighboring 10-20 bits. This
correlation decreases to zero as SNR increases.
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Figure 2.25: BCJR decoding of a normal convlolutional code at SNR = 3 dB (BER =
1.41×10−2)

Figure 2.26: BCJR decoding of a normal convlolutional code at SNR = 6 dB (BER =
1.13×10−4)
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In the next set of figures we will see the results when a catastrophic code is used and thus
will be able to see differences from the normal non-catastrophic codes. The following
Figure 2.27, Figure 2.28 and Figure 2.29 show the results of catastrophic convolutional
codes at SNRs 1,3 and 6, respectively.

Figure 2.27: BCJR decoding of a catastrophic convlolutional code at SNR = 1 dB (BER
= 4.94×10−1 and PER = 1)

These new figures differ greatly from the previous ones. The following observations
can be made:� Absolute value of LLRs does not behave at all like before. It starts at a point and

keeps its value for a while, then decreases suddenly to another value and keeps that
value for a while and so on, it keeps decreasing and actually resembles in a way a
staircase that keeps going down. Of course, the beginning of a new packet resets
the starting |LLR| to a relatively high value.� The time when a certain |LLR| value is kept constant increases as SNR increases,
which results in decreasing the number of the distinct sudden drops present in the
|LLR| throughout a single packet.� Catastrophic errors are clearly seen, when a catastrophic error happens, the error
vector stays at 1 for a while before another catastrophic error takes it back to 0.� Catastrophic errors seems to happen only when there is a drop in |LLR|. On
the other hand, a drop in |LLR| does not always mean that a catastrophic error
happens, it only points to the possibility that a catastrophic error may be present.
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Figure 2.28: BCJR decoding of a catastrophic convlolutional code at SNR = 3 dB (BER
= 4.74×10−1 and PER = 1)

Figure 2.29: BCJR decoding of a catastrophic convlolutional code at SNR = 6 dB (BER
= 2.07×10−1 and PER = 4.89×10−1)
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� The probability density function of LLRs has lost its Gaussian-like property and
now it is all concentrated around zero.� Errors are highly correlated, and correlation increases with SNR. Errors are highly
correlated because catastrophic codes decoding tend to have many long periods of
constant errors (i.e. error vector = 1). As SNR increases, the number of catastrophic
errors decreases. This increases the period between successive catastrophic events,
and thus increases the duration of those long periods resulting in higher correlation
to adjacent time periods.

From the results we got, it can be said that catastrophic codes does not produce inde-
pendent errors, and thus cannot be considered perfectly secret, even when the BER is
high. However, correcting catastrophic errors in the low SNR region does not seem to be
a possibility even when some relation is found between the possible positions of the errors
and the absolute values of |LLR|s. In the next section, we will present a simple method
to see if any improvement in decoding catastrophic codes are possible by exploiting this
relation.

2.6 Trial to Improve Catastrophic Decoding through

Watching LLRs

The relationship between catastrophic errors and |LLR|s is interesting in the sense that
we might be able to detect a possible catastrophic event while decoding and thus correct
it. In this section, we propose a simple method to detect possible catastrophic events
and try to correct them hoping to yield better decoding of catastrophic codes.

In order to decode catastrophic codes correctly, we should find a way to eliminate
catastrophic errors. Catastrophic errors might be eliminated if the code needs at least 2
symbols to produce the error (as the code we used G = [5, 3, 6]). Since at least 2 symbols
are needed, then 1 symbol in error will not be able to produce a catastrophic error. Our
method can be summarized in the following steps:

1. Decode the whole sequence first and get the soft |LLR| values of the whole packet.

2. Decide the position of the bits where |LLR| drops happen. This can be done using
a simple criterion. For example, a position of an |LLR| drop can be decided if 2 or
3 symbols are keeping their values at |LLR1| ± δ, where δ is some small number,

and the next 2 or 3 symbols have a value of |LLR2| ± δ, where |LLR2|
|LLR1|

< ∆ for some
0 < ∆ < 1.

3. Extract the received symbols at those bit positions, and replace them with a (0,0)
symbol (i.e. remove a possibly defected symbol and replace it with a received value
that gives same probabilities to all possible symbols). In this case, we are hoping
that this symbol represents one of the two symbols that are needed to cause a
catastrophic error and that this symbol is defected. By removing this symbol and
replacing it with a symbol that gives the same probability to all received symbols,
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we are removing the effect of the that symbol and hoping that such a scenario will
not drifting the decoder into a possible catastrophic error.

4. Decode again the new adjusted received sequence and compare the results.

Some simulations were done to test this method using different values of ∆. The results
were almost identical to regular curves except for large ∆ when the method produces
worse BERs. Figure 2.30 shows the results. The fact that results did not get worse by

Figure 2.30: Simulations of the correcting method using different values of ∆

this method is in itself a sign that a more advanced study of catastrophic codes with
|LLR|s may lead to a new way in decoding catastrophic codes. Notice for example the
slight improvement done at SNR = 4 dB, especially for ∆ = 0.1.
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Chapter 3

Serial Concatenated Convolutional
Codes (SCCC)

Concatenated codes are known for their sharp transition in bit error probability termed
as the waterfall effect [38]. This transition is very sharp that the BER drops at once from
high values to very low BERs in a span of 1dB or less. This sharp transition is what we
desire for our objective. The only thing that needs adjustment is the position of this drop,
for it always happens at low SNRs for the rates of interest, which is not what we want for
a more secure setting. In this chapter, we will study Serially Concatenated Convolutional
Codes (SCCC) and see how their drop can be shifted to higher SNRs without loosing the
original sharpness. Another problem we will also investigate is the use of catastrophic
codes in SCCC. The questions we pose are: will catastrophic codes shift the low SNR
threshold of SCCC to higher values, or will it destroy the sharpness of SCCC?

3.1 Concatenated Codes

3.1.1 Introduction

In the search for codes that approach Shannon’s capacity limit, turbo codes [39] were
introduced in 1993. These codes succeeded in achieving a random-like code similar to
what was originally envisioned by Shannon [40]. Because of this, these codes were able to
achieve exceptionally good performance, that generally for any code rate and information
block length larger than 104, turbo codes with iterative decoding can achieve BERs as
low as 10−5 within 1 dB from the Shannon’s limit. Turbo codes are a special case of
the more general concatenated codes. Concatenated codes are comprised basically of at
least two simple codes (e.g. convolutional codes) arranged in concatenations (parallel or
serial) along with a pseudo-random interleaver (π). A simple turbo code is a parallel
concatenated code having a block diagram as shown in Figure 3.1. The information
sequence enters the first encoder as is (the usual case of any encoder), while the same
information sequence gets permuted and then enters the second encoder. The outputs of
the two coders are combined to form the output of the turbo code. In serial concatenation
[31] however, as shown in Figure 3.2, the information sequence enters the first encoder
(the outer encoder), then the output of this first encoder gets permuted through the
random interleaver, and then enters into the second encoder (inner encoder). The output
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Figure 3.1: Parallel concatenated encoder block diagram

of the concatenated code thus becomes the same output of the second inner encoder.
A k/n SCCC can be represented as k/N/n where k is the number of information bits
encoded at a time, N is the number of output bits of the outer encoder and also the input
of inner encoder, and n is the number of output bits from the inner encoder.

Figure 3.2: Serial concatenated encoder block diagram

3.1.2 Overview of Decoding Process

Decoding of concatenated codes involves an iterative process using soft-input-soft-output
(SISO) decoders. A demodulator first calculates the soft output of each coded bit received,
these values are then fed to the SISO decoders which work together to best estimate the
original information sequence. A SISO decoder is a four port device as shown in Figure
3.3 that takes as input the soft information of coded bits sequence P(c; I) and uncoded

Figure 3.3: SISO Module

bits sequences P(u; I) of a specific code. From the two sequences, it produces a better
soft output estimate to both of them: P(c; O) and P(u; O). The soft data can be repre-
sented as the posteriori probability of each bit being zero or one. A details description of
the algorithm involved will be presented afterwords.

In parallel decoding as shown in Figure 3.4, there are two SISO modules or decoders
corresponding to each code 1 and 2. In each iteration, the first decoder will have two
inputs the demodulator output as P1(c; I), and the π−1 of the soft uncoded output bits
of decoder 2 in the previous iteration as P1(u; I) (In the first iteration, uniform density
is used, i.e. P1(u; Ii) = 0.5 ∀i ∈ I). The outputs of this decoder are P1(c; O) which is
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Figure 3.4: Parallel concatenated decoder block diagram

not used and P1(u; O) which gets permuted before getting to the second decoder making
P2(u; I) = π[P1(u; O)]. The second decoder also uses the demodulator output as P2(c; I),
and then produces its results as P2(c; O) which is not used, and the final data P2(u; O)
which is either used for the final decision making or passed to P1(u; I) = π−1[P2(u; O)]
for another iteration.

The serially concatenated decoding is done is a similar but different fashion. The block
diagram of an SCCC decoder is shown in Figure 3.5. In SCCC, the coded demodulator

Figure 3.5: Serial concatenated decoder block diagram

data is taken only by the inner decoder (as Pi(c; I)), which takes also the permuted
outer decoder coded bits output Po(c; O) of the previous iteration. The inner decoder
produces two sequence of outputs Pi(c; O), which is not used, and Pi(u; O), which is
inverse permuted and used as input to the outer decoder coded sequence Po(c; I) =
π−1[Pi(u; O)]. The outer decoder takes another uniform density input which represents
that the original message is uniformly distributed between ones and zeros. Unlike turbo
codes (PCCC), both of the outer decoder’s outputs are used. Po(c; O) is permuted and
used as the uncoded input for the inner decoder next iteration Pi(u; I) = π[Po(c; O)] if
needed, and Po(u; O) is used for the final decision making.

3.1.3 Detailed View of Different SCCC Modules

In this section, we will present a more detailed view of the several parts involved in
concatenated coding. Particularly, the inteleaver used within the encoding and decoding
processes, the SISO APP module, and the soft-bit demodulation required.
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• Interleaving

The random like code of concatenated codes is much influenced by the random inter-
leaver. Pseudo-random interleaving patterns can be generated in many ways for use in
concatenated codes [34]. We used a simple method to generate the random interleaving
function. The method is known by Fisher-Yates [41] or Knuth shuffle, and is summarized
in the following steps:
For an interleaver with K bits:

1. In a K-bit array A, store the numbers 1 though K in order (Ai = i, ∀i ∈ {1, 2, . . . , K}).

2. let k = 1

3. Pick a random number r between 1 and K inclusive.

4. Swap Ar with Ak

5. increment k by one

6. repeat from step 3 until k = K

The resulting array A is taken to be the interleaving function (π). The inverse interleaving
function (π−1) is easily constructed from A. Let B be a K-bit array representing π−1,
then BAi

= i, ∀i ∈ {1, 2, . . . , K}.

• SISO APP Module

Another very important part is the SISO decoder. The SISO decoder is based in part
on the BCJR algorithm described in section 2.3.1. We changed the algorithm used from
log-based BCJR algorithm described above to another, even better algorithm, described
in [42]. This algorithm takes as input the probabilities of coded and uncoded bits of a
specific code and outputs an enhanced a posteriori probabilities describing both of them.
One difference between the BCJR algorithm used before and this SISO algorithm is that
this one uses the normal-scale multiplication procedure rather than the log-scale summa-
tion described earlier. The use of this algorithm was beneficial in our scenario because
of one numerical problem faced during simulation. In the log algorithm, the summation
terms of the trellises tend to go to very high numbers reaching infinity as iterations pro-
ceed, while for the algorithm adopted, the use of the product rather than summation
helps in solving this numerical simulation. A description of the algorithm follows below.

In order to describe the SISO algorithm, we need to define some quantities that
will be used in the description. In a convolutional k/n code, the sequences of input
symbols are represented by U = (Ul)l∈L which is defined over a time index set L and
drawn from an alphabet set U = {u1, . . . , u2k}. Each input symbol Ul consists of k bits
U j

l , j = 1, 2, . . . , k with realization uj ∈ {0, 1}. To the sequence of input symbols, we
associate the sequence of a priori probability distributions P(u; I) = (Pl(u; I))l∈L, where
Pl(u; I) =

∏k
j=1 Pl(u

j; I). The output coded sequences is similarly defined as C = (Cl)l∈L

drawn from the alphabet C = {c1, . . . , c2n}. Each output symbol Cl consists of n bits
Cj

l , j = 1, 2, . . . , n with realization cj ∈ {0, 1}. To the sequence of output symbols, we
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associate the sequence of a priori probability distributions P(c; I) = (Pl(c; I))l∈L, where
Pl(c; I) =

∏n
j=1 Pl(c

j; I). The assumption that a priori input distributions of symbols
can be represented as the product of marginal distribution of bits is valid since we use a
random bit-interleaver.

As in the description of BCJR algorithm before, at each time instant l, there is a trel-
lis section consisting of transitions (“edges”) between the states (from state sS to state
sE). The set of trellis states is represented by S with realizations s ∈ S. The transitions
between these states can be represented by e ∈ E, where E is the total number of trellis
transitions present in each trellis section. Each transition (e) is associated with a starting
and ending states sS(e) and sE(e), as well as an input uncoded symbol u(e) and an output
coded symbol c(e), see Figure 3.6. Each transition e can be uniquely distinguished using

Figure 3.6: An edge of the trellis section

its starting state and uncoded input symbol:
(

sS(e), u(e)
)

.

The SISO module as stated earlier is a 4 port device with input sequences of proba-
bility distributions P(c; I) and P(u; I), and outputs the sequences P(c; O) and P(u; O)
based on the inputs and on its knowledge of the trellis section or code. For a finite time
index set L = {1, . . . , L}, the SISO algorithm can be explained in two steps: The first
step is to compute the output probability distributions P̃l(c

j; O) and P̃l(u
j; O) for the jth

bit within each symbol at time l, where

P̃l(c
j; O) = H̃cj

∑

e:Cj
l (e)=cj

Al−1[s
S(e)]Pl[u(e); I]Pl[c(e); I]Bl[s

E(e)] (3.1)

P̃l(u
j; O) = H̃uj

∑

e:Uj
l (e)=uj

Al−1[s
S(e)]Pl[u(e); I]Pl[c(e); I]Bl[s

E(e)] (3.2)

and Al(.) for l = 1, . . . , L and Bl(.) for l = 0, . . . , L− 1 are obtained through the forward
and backward recursions as:

Al(s) =
∑

e:sE(e)=s

Al−1[s
S(e)]Pl[u(e); I]Pl[c(e); I] (3.3)

Bl(s) =
∑

e:sS(e)=s

Bl+1[s
E(e)]Pl+1[u(e); I]Pl+1[c(e); I] (3.4)

The forward recursions compute the forward path metric for each state by taking all the
edges that lead to that state

(

e : sE(e) = s
)

, update the previous metrics Al−1[s
S(e)], by
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multiplying them with the a priori probabilities of the corresponding uncoded Pl[u(e); I]
and coded Pl[c(e); I] symbols at time l, and summing them up all together. While the
backward recursions compute the backward path metric for each state by taking all
the edges that start from that state e : sS(e) = s, update the metrics present at the
corresponding end states Bl+1[s

E(e)], by multiplying them with the a priori probabilities
of the corresponding uncoded Pl+1[u(e); I] and coded Pl+1[c(e); I] symbols at time l + 1,
and summing them up all together. This method is similar to the BCJR algorithm, with
the exception that the uncoded symbols are also used in computing the metrics, rather
than using the coded symbols alone as in BCJR.
The initial values for the recursions are A0(s) = 1 if s = S0 and A0(s) = 0 otherwise, and
BL(s) = 1 if s = sL and BL(s) = 0 otherwise only if sL is known, or BL(s) = AL(s), ∀s
if sL in not known. The quantities H̃cj , H̃uj are normalization constants such that
∑

cj P̃l(c
j; O) = 1 and

∑

uj P̃l(u
j; O) = 1 respectively.

In the second step, from equations (3.1) and (3.2), it is apparent that Pl(c
j(e); I) in

the first equation and Pl(u
j(e); I) in the second do not depend on e by definition of the

summation indexes, and thus can be extracted from the summations. Thus defining the

new quantities Pl(c
j; O) , Hcj

P̃l(c
j ;O)

Pl(cj ;I)
and Pl(u

j; O) , Huj
P̃l(u

j ;O)
Pl(uj ;I)

, where Hcj , Huj are

normalization constants such that
∑

cj Pl(c
j; O) = 1 and

∑

uj Pl(u
j; O) = 1. It can be

easily verified that Pl(c
j ; O) and Pl(u

j; O) can be obtained through the expressions:

Pl(c
j; O) = HcjH̃cj

∑

e:Cj
l (e)=cj

Al−1[s
S(e)]Pl[u(e); I]







n
∏

i=1
i6=j

Pl[c
i(e); I]






Bl[s

E(e)] (3.5)

Pl(u
j; O) = HujH̃uj

∑

e:Uj
l (e)=uj

Al−1[s
S(e)]







k
∏

i=1
i6=j

Pl[u
i(e); I]






Pl[c(e); I]Bl[s

E(e)](3.6)

The probability distributions Pl(c
j; O), Pl(u

j; O) are computed based on the code con-
straints and obtained using the probability distributions of all bits of the sequence except
the distributions Pl(c

j; I), Pl(u
j; I) of the jth bit within the lth symbol, respectively. In

the literature of concatenated coding Pl(c
j; O), Pl(u

j; O) would be called extrinsic bit
information. They represent the “added value” of the SISO module to the a priori dis-
tributions Pl(c

j ; I), Pl(u
j; I). These Pl(c

j ; O), Pl(u
j; O) are the quantities that are used

as inputs for the other SISO modules in an iterative decoding environment.

• Soft Bit Demodulation

It is seen in Figures 3.4 and 3.5 that one important input to the SISO module (P(c; I))
is coming from the demodulator. As described above, the SISO module accepts as input
the probability distributions of each coming bit, for both coded and uncoded sequences.
In this situation, the received sequence of coded symbols should be demodulated in a
way that produces probability distributions of each coded bit rather than relying only on
the distances between the received symbols and any constellation points, as in Viterbi
or BCJR described earlier. The following is a description of the demodulation algorithm
used to provide the soft bit information as probability distributions of each based on [43].
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Let C , {c0, c1, . . . , cN−1} be the coded message to be transmitted over a channel.
And let the modulation scheme to be used consists of M (M = 2m) symbols (such
as MQAM or MQSP). Every m bits from C can be considered as an m-dimensional
vector U |uN/m−1

u0
, ul = {ul,0, ul,1, ..., ul,m−1} which will be mapped to a constellation point

represented by two real valued symbols (Al, Bl) at time l. In an AWGN channel, the
received signal can be written as (Xl, Yl)

Xl = Al + Il

Yl = Bl + Jl
(3.7)

where Il, Jl are two independent Gaussian noises with zero mean and variance σ2
N .

For each bit ul,i , the constellation symbols are divided into two parts. Let C1(i) be the
set of symbol points (Xn, Yn) with their corresponding ith bit being 1, and C0(i) the set of
points with the corresponding bit being zero. Then, the bit-level probability distributions
can be calculated using Bayes rule as

P{ul,i = 1|Xl, Yl} =
P̃{Xl, Yl|ul,i = 1}

P̃{Xl, Yl|ul,i = 0} + P̃{Xl, Yl|ul,i = 1} (3.8)

P{ul,i = 0|Xl, Yl} =
P̃{Xl, Yl|ul,i = 0}

P̃{Xl, Yl|ul,i = 0} + P̃{Xl, Yl|ul,i = 1} (3.9)

since P{ul,i = 0} = P{ul,i = 1} = 1
2
, where

P̃{Xl, Yl|ul,i = 1} =
∑

(Xn,Yn)∈C1(i)

P{Xl = Xn + Il, Yl = Yn + Jl}

= 1√
2πσN

∑

(Xn,Yn)∈C1(i)

e
−

(Xl − Xn)2 + (Yl − Yn)
2

2σ2
N

(3.10)

P̃{Xl, Yl|ul,i = 0} =
∑

(Xn,Yn)∈C0(i)

P{Xl = Xn + Il, Yl = Yn + Jl}

= 1√
2πσN

∑

(Xn,Yn)∈C0(i)

e
−

(Xl − Xn)2 + (Yl − Yn)
2

2σ2
N

(3.11)

Using soft bit demodulation, Gray coding serves as the optimal choice of lattice labeling,
since here we are interested in the bits themselves rather than the symbols as is the case
we used before in Viterbi and BCJR.

3.2 Simulation

As stated earlier, we used SCCC codes in our testing, The following flowchart diagram
in Figure 3.7 represents a simplified version of the actual algorithm used in simulation.
As in convolutional codes, we also used 1000 packets of various lengths (1000 and 10000
bits/packet)to run the simulations for each value of Eb/N0. All packets are initialized
from the all-zero state and then the data is randomly generated, encoded using the
SCCC encoder described earlier and transmitted over an AWGN channel. The data
received is decoded using the iterative decoding algorithm described in section 3.1.2 with
10 iterations (unless specified otherwise).
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Figure 3.7: A simplified flowchart of the SCCC coding algorithm used in simulations
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3.3 Testing Our SCCC Algorithm with MATLAB’s

Demo

After finishing the program we have used for SCCC. An important step was to check that
our results are consistent with performance evaluation done in literature. To make sure
we achieve the desired performance, we looked at MATLAB, and found that there is a
demonstration of SCCC coding simulation, very similar to our scenario. The following
Figures 3.8 and 3.9 show how close our results are to MATLAB’s.

Figure 3.8: SCCC comparison between MATLAB demo simulation and our C++ program
using an outer code of rate 1/2, G=[1,2], and inner code of rate 2/3, G=[17,6,15]. The
results are after 6 iterations

3.4 Using Catastrophic Inner Codes in SCCC

In chapter 2, we have seen that regular catastrophic codes have an interesting error vector,
which contains several long burst-like error periods. Burst errors are usually counteracted
by using interleavers that separate the errors allowing for better correction. As seen ear-
lier in this chapter, interleaving plays an important role in concatenated codes, so we
were motivated to study SCCC having catastrophic inner codes with some regular outer
codes. We were hoping that the positioning of a catastrophic code inside an SCCC will
increase the sharpness of the BER curve threshold found in catastrophic codes, and move
it to some lower SNRs that are in between the high SNR threshold of catastrophic codes
and the low SNR threshold of SCCC.

We used the inner code as the catastrophic code along with a regular outer code. The
inner code we used is the one whose trellis is shown in Figure 2.8; It is a 2/3 rate code
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Figure 3.9: SCCC comparison between MATLAB demo simulation and our C++ program
using an outer code of rate 1/2, G=[7,5], and inner code of rate 2/3, G=[17,6,15]. The
results are after 6 iterations

with G=[5,12,17]. Different rate 1/2 outer codes were used in order to better understand
the influence of the outer code on the performance. The outer codes used are shown in
Table 3.1. Figure 3.10 shows the results when using packets of 1000-bit lengths. These

Table 3.1: Outer codes used
Code number Generating Matrix

Code1 [3,2]
Code2 [1,3]
Code3 [7,5]
Code4 [1,2]

results are compared to the performance of the same inner catastrophic code when used
alone in a convolutional code and Viterbi decoding in Figure 3.11. The same comparison
is done for 10000-bit packets in Figure 3.12

It can be seen from the figures that contrary to what we were hoping to see, SCCC
with catastrophic codes did not shift the threshold to lower SNRs, and it did not produce
better slopes beyond the threshold, as compared to regular catastrophic codes especially
for the 1000-bit per packet case. Increasing the packet length increases the slope in
SCCC similar to what happens in catastrophic convolutional codes, but the slope is still
less than that of regular catastrophic codes.

In [44], catastrophic codes were studied in turbo codes. One important thing was
emphasized that iterative decoding is not effective when catastrophic codes are used due
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Figure 3.10: Comparison between different outer codes used with the same inner catas-
trophic code, using 1000 packets of 1000-bit length

Figure 3.11: Comparison between catastrophic codes in SCCC and convolutional codes,
both using 1000 packets of 1000-bit length
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Figure 3.12: Comparison between catastrophic codes in SCCC and convolutional codes,
both using 1000 packets of 10000-bit length

to the poor convergence behavior of the constituent decoders. Iterative decoding may
succeed if something can be done to start the convergence process in the initial iteration.
The author in [44] suggested the use of doping (i.e replace some nonsystematic bits with
systematic ones) which takes the code back to the normal behavior of turbo codes, which
again is not what we are looking for. However, from Figure 3.12, we can find that selecting
appropriate outer codes can help us in maintaining the BER waterfall and shifting around
the threshold.

3.5 Controlling Non-Catastrophic SCCC

After the undesirable results we got using catastrophic codes in inner encoders of SCCC
for rates of interest, we shift attention to the use of regular SCCC. Since regular SCCC
are known to have a sharp BER transition in the low SNR region, we investigated some
ways to shift this threshold without destroying the sharpness to some higher SNRs, the
following sections describe the different methods used. All the methods were done on the
1/2/3 SCCC code with outer 1/2 rate code with G=[7,5] and inner 2/3 rate code with
G=[17,6,15]. A packet length of 1000 is used and decoding is done for 10 iterations.

3.5.1 Introducing Burst Errors

Catastrophic codes resemble normal convolutional codes but with many large bursts of
errors. Of course these bursts are the sole cause of the bad performance of catastrophic
codes as it is seen earlier. This led us to investigate introducing one intentional burst error
of m-bits in some random position within each transmitted packet. The introduction of
this burst error is done after encoding; When the whole packet is encoded, a random
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number r is picked between 1 and K − m, where K is the total number of bits present
in a packet, then the bits from r to r + m are flipped and then transmitted. The results
of this method are shown in Figure 3.13. As seen in the figure, the introduction of burst

Figure 3.13: Results of introducing random burst errors of different number of bits m

errors did not shift the SNR threshold but rather increased the BER of the error floor
for SNRs after the threshold. This of course makes this method useless in our case.

3.5.2 Random BSC-like Errors

Another method tried is the introduction of random BSC-like errors rather than one long
burst error. In this way we are hoping to shift the BER curve by increasing the noise.
The introduction of this noise is done by passing the coded message through a BSC
channel shown in Figure 3.14 with a specific p before the actual transmission. Figure

Figure 3.14: The BSC channel

3.15 show the results of this method using different p values. From the figure, it can be
seen that introducing BSC-like errors does in fact shift the BER curve to higher SNRs
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Figure 3.15: Results of introducing random BSC-like errors using different p values

at the expense of flattening the slope as p increases, thus this method cannot be used
if shifting the threshold to mid SNRs as the slope will be almost flat, losing the desired
sharp threshold feature.

3.5.3 Puncturing

Puncturing is a method usually used to increase the transmission rate without actually
changing the code. It is done by removing some pre-specified bits from the coded message
before transmission. For a k/n code, puncturing is done by taking successive symbols
(say p symbols with n bits each), the rate of which is k×p

n×p
, and removing z bits of the

coded message before being transmitted at an equivalent rate of k×p
n×p−z

. The z bits that
are removed from each group of p symbols, are specified using a puncturing matrix P
which consists of p rows and n columns, each element in P is either 1, for those bits that
are transmitted, or 0, for those bits that are removed before transmission. Thus making
z equals the number of zeros present in P .
For easiness of representation, we will write P in one line consisting of p × n bits rather
than a p × n matrix. We will separate each n bits by a semicolon.

Example on puncturing: Suppose we have a 1/3 rate code, and we want to trans-
mitted at a rate of 3/7. We will use a puncturing matrix P with p = 3 and z = 2 as for
example the one shown below:

P =





1 0 1
1 1 1
1 0 1



 = [101; 111; 101]

Now suppose that a part of the coded message to be transmitted is the sequence of bits
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(100 011 010 111 110 000). This sequence is multiplied in a bitwise operation with P
before transmission to yield the actual message to be transmitted.

Coded message = . . . 100 011 010 111 110 000 . . .
P = . . . [101; 111; 101][101; 111; 101] . . .

Transmitted message = . . . 10 011 00 11 110 00 . . .

In order to see what puncturing can achieve, we simulated the code using 4 different
puncturing matrices changing the 1/3 rate to several new rates as shown in Table 3.2.
Some examples of punctured codes are given In [45]. The simulation results are shown

Table 3.2: Puncturing matrices used and the corresponding new rate
New Rate Puncturing matrix used

2/5 [111;101]
3/8 [111;101;111]
3/7 [101;111;101]
5/11 [101;111;001;111;101]

in Figure 3.16 It is seen that increasing the rate through puncturing does shift the BER

Figure 3.16: Increasing the rate through puncturing and its effects on SCCC

curve to the right. This shift, however, affects the sharpness of the threshold making it
less distinct than before. It can be concluded that puncturing is a possible method to be
used in shifting the BER curve, it achieves better slopes and threshold sharpness than
BSC approach, but still can not be used for shift the BER to high SNRs.
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3.5.4 Modulation

Our last approach is using different modulations. Up till now, all the simulation in
SCCC were done using a QPSK modulation. Using higher order modulations results in
less power per transmitted bit, since the average power used to transmit each symbol is
kept the same and number of bits per symbol is increased. This reduction of bit power
is expected to shift the curve without much affecting the slope or sharpness of the origi-
nal QPSK curve. We simulated 3 other modulations; 8-PSK, 16-PSK and 16-QAM. As

Figure 3.17: Using different modulation schemes on SCCC

shown in Figure 3.17, the results were very much what is expected, the curves shifted
to the right with relatively small variations in sharpness and slope. This makes it along
with puncturing a possible approach to shift the BER curve to higher SNR thresholds.

As a conclusion, we can see that using non-catastrophic SCCC modified using mod-
ulation schemes and/or puncturing, is a very promising approach that can be taken to
provide physical layer security in our scenario especially when Bob is working on a low or
mild SNR. An additional remark is that both modulation and puncturing vary the equiv-
alent rates and hence change the BER curve, unlike regular catastrophic codes, where
the rate is kept constant and only labeling or packet lengths are used in control.

3.6 Second Order Statistics of Information Bit LLRs

and Errors

As in the case for BCJR codes, we also investigated the LLRs in the low SNR region
around the waterfall: their probability density function and correlation, as well as the
correlation of the error sequence. We studied both the normal SCCC and the SCCC with
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a catastrophic inner code to see the similarities and differences. The normal SCCC code
used is the same one used in the previous section. We investigate different modulations
to see the effects since this approach has been shown to have the best way to shift the
BER curve.

We start with the normal SCCC modulated using QPSK. The results are shown for
SNRs = 1, 1.5, 2 and 2.5 in Figures 3.18, 3.19, 3.20 and 3.21. As shown in the figures,

Figure 3.18: SCCC decoding of a code transmitted using QPSK modulation at SNR = 1
dB (BER = 2.05×10−1)

the following observations are made:� The LLRs are not correlated as in the case in convolutional coding.� Error correlation decreases as SNR increases as in the case of normal non-catastrophic
convolutional codes.� The most interesting observation is the presence of 3 peaks at low SNRs. The 2
side ones are Gaussian-like, while the middle is just around zero. The Gaussian-like
figures is an expected result especially when there are many analytical papers that
use Gaussian approximations for the study of turbo codes such as [46] and [47].
But the presence of the middle lobe is the interesting part. According to Lee and
Blahut in [48],[49] and [50], the Gaussian approximations are useful for the infinite
length turbo coding analysis, while on the other hand, finite length codes as in our
case have different characteristics than the infinite length codes. One of the main
differences is this peak around zero, which is present at low SNRs and disappears
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Figure 3.19: SCCC decoding of a code transmitted using QPSK modulation at SNR =
1.5 dB (BER = 2.59×10−2)

Figure 3.20: SCCC decoding of a code transmitted using QPSK modulation at SNR = 2
dB (BER = 4.04×10−4)
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Figure 3.21: SCCC decoding of a code transmitted using QPSK modulation at SNR =
2.5 dB (BER = 2×10−7)

gradually as SNR increases beyond the waterfall region, in what seems to be a
transition from the middle lobe to the side lobes.� From the LLRs time domain figures, it is observed that the |LLR| is either at some
high value for an entire packet (present in one of the side lobes) or at a low value
for the entire packet (middle lobe around zero). Whenever the |LLR| is at the high
value, the bit errors are rare to happen, while on the contrary, if the |LLR| in a
packet is at a low value, then that packet has BER almost equal to 0.5.� As proved recently in [51], optimization of PER or BER are two contradicting
requests to any coding scheme transmitting at a rate above the capacity R > C
(i.e. at low SNRs). It also proved that codes optimized for PER have the property
of transmitting packets either correctly or in such a way that no information is
transmitted at all corresponding to a burst error with a probability of 0.5. The
SCCC scheme is a PER optimized code, and thus the observations shown above
completely agree with [51]. This further implies that we cannot approximate the
channel between the information bits and decoded bits as a memoryless channel.
As a contrast, in chapter 2 convolutional codes demonstrated low correlation in bit
errors.

These observations are seen in the same exact way for higher modulations, but of
course of higher SNR values as seen in Figures 3.22 and 3.23 using 8-PSK modulations
at SNRs 3 and 4; and Figures 3.24 and 3.25 using 16-PSK modulation at SNRs 5 and 6.
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Figure 3.22: SCCC decoding of a code transmitted using 8-PSK modulation at SNR =
3 dB (BER = 1.02×10−1)

Figure 3.23: SCCC decoding of a code transmitted using 8-PSK modulation at SNR =
4 dB (BER = 2.6×10−4)
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Figure 3.24: SCCC decoding of a code transmitted using 16-PSK modulation at SNR =
5 dB (BER = 8.14×10−2)

Figure 3.25: SCCC decoding of a code transmitted using 16-PSK modulation at SNR =
6 dB (BER = 7.09×10−4)
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Then, the results of using a catastrophic inner code in SCCC are investigated. We
used two different outer codes to see the possible effects of an outer code in decoding.
Figures 3.26, 3.27 and 3.28 show the results at 3, 5 and 7 dBs of using an outer code
with a generating matrix of G = [1, 2], while figures 3.29 and 3.30 show the results at 7
and 9 dBs of using an outer code with a generating matrix of G = [7, 5]. From the

Figure 3.26: SCCC decoding of a catastrophic inner code using an outer code with G =
(1,2) at SNR = 3 dB (BER = 9.05×10−2, PER = 5.36×10−1)

catastrophic inner codes figures, the following observations can be made:� As everywhere else, the LLRs are uncorrelated.� The error correlation in catastrophic SCCC codes does not change much with SNR
and it resembles the error correlation in regular SCCC at low SNRs, some packets
are received error-free, while others depending on the outer code, have either BER
near 0.5 or BER of almost 1.� The LLRs in the time domain have lost the stair-like that was present in the non-
concatenated catastrophic codes before.� The LLR distribution depends on the outer code too. For some outer codes the
LLR distribution has two Gaussian-like lobes, while for some other codes, the LLR
distribution is just like catastrophic non-concatenated codes concentrated around
zero. In the former case, the error pattern is almost always all-ones or all-zeros
in each packet, while in the latter case, the errors are distributed equally on all
packets. Both cases, however, lack any interesting feature that can be exploited to
further correct the errors.
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Figure 3.27: SCCC decoding of a catastrophic inner code using an outer code with G =
(1,2) at SNR = 5 dB (BER = 6.6×10−2, PER = 8.1×10−2)

Figure 3.28: SCCC decoding of a catastrophic inner code using an outer code with G =
(1,2) at SNR = 7 dB (BER = 4.2×10−2, PER = 4.5×10−2)
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Figure 3.29: SCCC decoding of a catastrophic inner code using an outer code with G =
(7,5) at SNR = 7 dB (BER = 8.7×10−1, PER = 3.89×10−1)

Figure 3.30: SCCC decoding of a catastrophic inner code using an outer code with G =
(7,5) at SNR = 9 dB (BER = 7.87×10−2, PER = 1.59×10−1)
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It is interesting to note the differences between the behavior of error covariance in regular
SCCC as compared to regular convolutional codes. In regular convolutional codes, due
to the spread nature of errors, the errors covariance is a fast decaying function to zero,
while the SCCC’s, due to its bursty packet nature, is a slow decaying function. In both,
however, the LLR covariance is similar and very much uncorrelated. This behavior can be
interpreted by comparing the LLR distribution. If the LLR distribution is Gaussian-like
as in regular convolutional codes, the errors should be almost independent and hence the
fast decaying covariance to zero. Therefore, convolutional codes are good for minimizing
BER for R > C [51] and result almost like a memoryless BSC channel [52]. While in
SCCC, the LLR empirical distribution is not Gaussian because of the middle lobe or peak
that occurs at low SNRs. This lobe means that although the LLRs are uncorrelated, they
are not independent and thus result in higher correlation of errors that is slowly decaying
to zero.

3.7 ARQ Using LLR Values

In this section, we will propose a simple yet very effective method to work as an Auto-
matic Repeat reQuest (ARQ) in normal SCCC. As seen previously, the LLRs in a normal
SCCC have 3 lobes before the waterfall, and 2 lobes after the waterfall. The middle lobe
concentrated around zero is the lobe that actually produces most of the errors making
the BER soaring to high values. When this lobe gradually disappear and only 2 lobes
are present then the BER falls to very low values. Another very interesting observation
is that always whole packets are either in middle zero lobe or divided between the two
side lobes. Thus, it can be said that packets are divided into bad packets with so many
errors, or good packets with almost no errors at all.

The method is very simple and is explained in the steps below:

1. Compute the average value of |LLR| in each packet of the received sequence.
LLRi

av = 1
K

∑K
j=1 |LLRi

j |, ∀i = 1, . . . , N where i is the packet number, N is the
total number of packets, K is the number of information bits per packet and j is
the bit index within a packet.

2. Come up with some threshold T that will divide the bad packets from the good
ones. We used a simple direct approach by taking T = max(LLRav)+min(LLRav)

2
.

3. Decode all packets with LLRav > T and request a retransmission for packets with
LLRav < T

4. The BER is calculated only for those packets where LLRav > T , and thus the
transmission throughput will decrease because of the dropping of all the packets
with LLRav < T .

The following Figure 3.31 shows the BER before and after applying this method for
a simulation of 1000 packets of 1000-bits each, using the QPSK SCCC 1/2/3 code with
Gouter = [7, 5] and Ginner = [17, 6, 15](K = 1000, N = 1000, T is computed in the program).
The BER after applying the method is composed of the packets that were decoded only
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(i.e. The packets that requests a retransmission were not included in the BER calcula-
tion). The percentage of packets that need retransmission is shown in Figure 3.32. As
seen in the figures, the proposed ARQ method actually does a perfect job in removing
the damaged packets and keeping the good packets.

Figure 3.31: Applying the ARQ method

Figure 3.32: Packet percentage that needed retransmission
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Chapter 4

Summary

In this concluding chapter, we will summarize our results and compare between the use
of catastrophic codes and SCCC in the security context. We will also provide a simple
example of the usage of this type of security in a real life scenario. And conclude by
proposing some areas that can be investigated in a future work.

4.1 Convolutional Catastrophic Codes vs. SCCC

As seen in the preceding chapters, we investigated the use of catastrophic codes and
SCCC codes in a security context where the wiretapper (Eve) is at a disadvantage of a
more noisy signal than the legitimate receiver (Bob). Our goal as described in Chapter
1 is to find a code that has a sharp movable threshold in the BER curve, with low error
correlation.

From our results we can provide the following comparison between the coding schemes
as seen in Table 4.1. An interesting observation found in the codes is the phenomenon
of good-bad packets. As seen in catastrophic codes, packets are divided into error-free
packets or very bad packets with an average BER of 0.5. The same can be said about the
SCCC scheme. In regular SCCC, we were able with a very simple method to eliminate
almost all the bad packets and keep the almost error-free packets. The only difference is
that in catastrophic codes, the errors within one packet come in long all-error or error-free
periods, thus having a high correlation (as seen in Figure 2.28 and Figure 2.29), while
bad packets in SCCC have the bits flipping rapidly between error-bits or correct-bits as
seen in Figure 3.18, and hence have lower correlation. This makes the bad packets in the
regular SCCC scheme almost impossible to correct below the threshold since they have
almost independent errors. But on the other hand, this behavior enables us to easily
extract all the good packets received. Using the SCCC scheme with a catastrophic in-
ner encoder also has this property, but similar to regular catastrophic codes, there is no
correlation between the LLRs and errors (since there is no middle peak in the LLR dis-
tribution), which means that there is no way to detect the bad packets as in regular SCCC.

Thus, we can conclude:� Although regular SCCC provides the best BER slope after the threshold, it cannot
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Table 4.1: Comparison between catastrophic codes and SCCC codes.
Catastrophic
Codes

Regular SCCC
Codes

Catastrophic
SCCC

SNR Threshold Middle-High range Low-Middle range Middle-High range
Threshold Not sharp as SCCC Sharp threshold

and very steep
slope

Similar to regular
catastrophic codes

Packet length Around 1k-10k and
even longer packets
for a steeper slope

Around 1k-10k 10k or longer

Implementation Simple Viterbi Complex iterative
SISO

Complex iterative
SISO

Error correlation High Lower than catas-
trophic codes

Similar to regular
SCCC

Error and LLR
Correlation

Low High None

Decoding possibil-
ity below threshold

Unlikely even when
error correlation
and LLRs are
related

Good packets can
be extracted easily

Very hard

be considered secure because of the high correlation between the bad packets and
the LLRs. This means that a good amount of the received data can be extracted
using a simple ARQ method.� Catastrophic codes used in regular convolutional codes or SCCC do not show corre-
lation between LLRs and errors, which keeps the system secure in low SNR’s. The
price that must be paid is the higher value of SNR2, which makes it unsuitable for
use in low SNR regions.� Regular catastrophic codes provide a simple and easy way to provide some security
in mid-high SNR regions through adjusting the BER curves by using packet lengths
and lattice labeling.� Catastrophic codes used in an SCCC provide a promising scenario that could be
explored by using a good outer code and adjusting all the other parameters such
as: modulation, puncturing, packet length, . . . , etc.

The following example demonstrates a possible use of such codes.

Example:
A building-based company needs to implement secure wireless communications between
its employees, while forbidding everyone else. Since all the employees are present physi-
cally inside the building, the communication routers or hubs can be positioned in places
giving all the employees a direct line of sight (LOS) communication ensuring a high SNR
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to all employees. The high SNR at the employees will ensure an almost error-free en-
vironment inside the company using either codes with some ARQ protocol enabled to
ensure that no packets are lost. The walls of the company building will act as a barrier
lowering the SNR to anyone present physically outside the building. This low SNR will
prevent anyone from getting any useful information of what is being sent inside.

4.2 Future Work

Throughout the course of the study of this thesis, several problems arose and may be
investigated further in the future.� Catastrophic codes are found to have a relation between the LLRs and the catas-

trophic errors. This relation may be investigated further to see if a wiretapper may
be able to correct the errors or not.� Analyze the low SNR region in SCCC, the correlation between the LLRs and bit er-
rors needs further analysis to better understand the causes and possible corrections,
if possible.� Study and optimize the proposed ARQ method as well as its relation to the resulting
throughput.� Catastrophic codes (in regular convolutional codes or SCCC) should be explored
further in the context of physical layer security.
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Appendix A: Simulation Code
Description

All Simulations were done using C++, the following is a description of the codes used.

Description of the Code Used in Viterbi Simulation

The code is listed in “Viterbi.txt”. The top section of the code is the data input section,
which must be filled prior to each simulation. The input parameters include the following:� modk : The number of binary bits in each lattice symbol.� k : The number of binary encoder input bits.� n : The number of binary encoder output bits.� m : The length of the encoding register in bits.� G[n] : The n generating polynomials in octal form.� Pkts : The number of packets to be simulated.� EbNo start : The first SNR per bit to be simulated.� EbNo end : The last SNR per bit to be simulated.� limit sim bits : The packet bit length.� limit sim errors : The number of errors needed to stop the simulation.� Lattice[2modk+1] : The position of the 2modk complex lattice points (a+jb) in order.

(i.e. [a0, b0, a1, b1, . . . , a2modk−1, b2modk−1]).

The code will be described in a flowchart. Four important tables are mentioned in the
simulation process. These tables are described below:� “Decoding reference table”: This table is filled at the beginning. It includes all

the possible transitions that occur within a convolutional code trellis. It associates
each starting-state and input, with the corresponding end-state and output.� “Current state path metric table”: This table holds the updated path metric for
each state computed to include the last received symbol. The table holds one path
metric per state (the surviving path metric).
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� “Current state transition table”: This table is used at the reception of each symbol.
It is filled with the new updated path metrics of all possible transitions between all
states. The updated path metrics are computed by taking the path metric value of
the starting state from the “Current state path metric table” and adding it to the
branch metric computed for each transition.� “State history table”: This table holds the history of the trellis paths leading to
each current state (the surviving paths). It is filled during simulation as each
received symbol is decoded. After filling the “Current state transition table”, the
path metrics are compared to find the transition leading to the lowest metric for
every state. The transitions are used to determine the preceding state to the new
state and eliminate all other paths having higher metrics. The preceding states are
added to the table.

The flowchart is shown in Figure A-1 and Figure A-2

Notes regarding the simulation:� The SNRs simulated in the program start from EbNo start and end at EbNo end
with increment value of 1.� The lattice symbols (ai, bi), i = {0, 1, . . . , 2modk − 1} are scaled down to (δai, δbi)

such that 1
2modk

∑2modk−1
i=0

√

(δai)2 + (δbi)2 = 1� The binary generating polynomials are computed from the octal input G[n].� The transmission and reception registers are used to regulate the flow of the symbols
especially when modk 6= n.� The AWGN σ is calculated from the input Eb/N0 as follows:

Es

N0

(dB) = Eb

N0

(dB) + 10 log10 modk + 10 log10
k
n

N0 = 10
−Es
N0

/10
since Es = 1

σ =
√

N0

2� The decoding is done by taking a decoding delay (lookback) of 5×
⌈

m
k

⌉

as suggested
in [33].� The program output the results per SNR on the screen as well as in a file “Sum-
mary.txt”. Another file “Errors.txt” is generated that contains the error vectors in
the simulation.

Description of the Code Used in BCJR Simulation

The listing of the code is found in “BCJR.txt”. This code also has the regular Viterbi
algorithm embedded, and thus can be used for Viterbi decoding (Description of the
Viterbi part is omitted since it is similar to the above section). The top section of the
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Figure A-1: Flowchart of the Viterbi simulation code part 1
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Figure A-2: Flowchart of the Viterbi simulation code part 2

BCJR code is the input section which is similar to the Viterbi code above. There is no
need to reiterate the parameters. One extra parameter however is BCJR which is used
to select Viterbi decoding if it is reset to 0, while it selects the BCJR algorithm when it
is set to 1. The tables however are different, the “state history” and the “current state
path metric” tables are replaced by the following three tables:� “Alpha table”: The alpha table is updated at the reception of each new symbol.

It stores the forward path metrics (α(s)) of all the states and keeps them for the
whole delay period to be used in the calculation of the information bit LLRs and
decoding decision afterwords.
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� “Gamma table”: The gamma table is very similar to the alpha table except that it
stores the whole branch metrics (γ(s′, s)) of all the state transitions.� “Beta table”: Unlike the “alpha” and “gamma” tables which are updated at the
reception of each new symbol, the beta table needs the lookback (delay) period to
pass first. When it passes, it updates the whole table for every new received symbol
(again, unlike the other two tables), and thus helps in making a decision about
the state transition at the beginning of the delay period. The beta table holds the
computed data for the backward path metrics (β(s)).

The flowchart of the code is shown in Figure A-3 and Figure A-4.

Notes on the BCJR code:� The detailed mathematical background of all the computations included is found
in section 2.3.1.� In addition to the generated files in the Viterbi code, the BCJR code also generates
“LLRs.txt” file including all the information bits LLRs.� In both Viterbi and BCJR algorithms, the program uses a look-back window of
length 5 ×

⌈

m
k

⌉

as suggested in [33].� This BCJR code decodes using the Euclidean distance to the transmitted symbols.
Another BCJR code listed in “BCJR sd.txt” uses the soft demodulation algorithm
used in SCCC to compute the probabilities of the coded bits, and a decoding algo-
rithm similar to SCCC outer (or inner) codes. This code does not use windowing
(the whole packet is used).

Description of the Code Used in SCCC Simulation

The listing of the code is found in “SCCC.txt”. Similar to the Viterbi and BCJR decod-
ing programs, the top portion of the code is for the input parameters. The following list
contains all the parameters used in the simulations.� modk : The number of binary bits in each lattice symbol.

The Inner Encoder:� ki : The number of binary inner encoder input bits.� ni : The number of binary inner encoder output bits.� mi : The length of the inner encoding register in bits.� Gi[ni] : The ni generating polynomials in octal form.
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Figure A-3: Flowchart of the BCJR simulation code part 1
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Figure A-4: Flowchart of the BCJR simulation code part 2

The Outer Encoder:� ko : The number of binary outer encoder input bits.� no : The number of binary outer encoder output bits.� mo : The length of the outer encoding register in bits.� Go[no] : The no generating polynomials in octal form.

Some other input parameters:� K : The interleaver length.� iterations : Number of iterations wanted in decoding.
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� P [c × ni] : The puncturing matrix used. c can be any constant above-zero integer.
(All ones for no puncturing).� BE : The number of consecutive bits to flip before transmission of each packet. (0
for normal).� PBF : The probability of a random BSC-like flip of the packet bits before trans-
mission. (0 for normal).� Pkts : The number of packets to be simulated.� EbNo start : The first SNR per bit to be simulated.� EbNo end : The last SNR per bit to be simulated.� EbNoinc : The increment value between successive SNRs.� Lattice[2modk+1] : The position of the 2modk complex lattice points (a+jb) in order.
(i.e. [a0, b0, a1, b1, . . . , a2modk−1, b2modk−1]).

The tables in this program are very similar to the BCJR program tables, with one dif-
ference is that there are two alpha tables (one for the inner and the other for the outer
code), and two decoding reference tables. The flowchart of the SCCC code is shown in
Figures A-5, A-6, and A-7.

Notes on the SCCC code:� The detailed mathematical background of all the computations included is found
in section 3.1.3.� This code does not use windowing and thus it computes the data for each packet
as a whole. No windowing is used here because of the use of an interleaver, which
requires the whole sequence of bits to be available.
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Figure A-5: Flowchart of the SCCC simulation code part 1
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Figure A-6: Flowchart of the SCCC simulation code part 2
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Figure A-7: Flowchart of the SCCC simulation code part 3
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Appendix B: MATLAB Code

Theoretical Calculation of Regular Catastrophic Codes

PER and BER

The following is the MATLAB code used to calculate P [k] for each SNR. The output is
then used to calculate the PER as 1−P [k = 0] and the BER according to Equation 2.21.

The top section is the input part including the following parameters:� n: The code packet length used� paths: These are the exhaustive trellis states paths (of length 2) found in the
catastrophic code. Each row represents one path. (We have 16 rows in this case)� ppaths: The paths corresponding to a catastrophic event for each row in paths.
The full list is found in Table 2.1� outputs: These are 8 rows representing the 8 transitions found in the trellis. Each
row contains the starting state, ending state and the corresponding output. Check
Figure 2.7.� Lattice: The lattice labeling used for 8-PSK modulation.� EbNo: The SNRs wanted to calculate the probabilities for.

Description of the code is found in comments within the code.

n=1000; %packet length
paths = [0 0 0;0 0 2;0 2 1;0 2 3;1 0 0;1 0 2;1 2 1;1 2 3;

2 1 0;2 1 2;2 3 1;2 3 3;3 1 0;3 1 2;3 3 1;3 3 3]; %Correct paths
ppaths = [0 2 3;0 2 1;0 0 2;0 0 0;1 2 3;1 2 1;1 0 2;1 0 0;

2 3 3;2 3 1;2 1 2;2 1 0;3 3 3;3 3 1;3 1 2;3 1 0]; %Parallel paths
outputs = [0 0 0;0 2 5;1 0 6;1 2 3;2 1 3;2 3 6;3 1 5;3 3 0]; %Paths outputs
lpp = sqrt(2)/2;
Lattice = [1 0;lpp lpp; −lpp lpp;0 1; −lpp −lpp; −1 0;0 −1;lpp −lpp]; %Lattice
Prbcats=0;
EbNo = [1:16]; %SNR
%The following calculates sigma for all EbNo.
EsNo = EbNo;
No = 10.ˆ( −EsNo/10);
sigma = sqrt(No/2);
%In the following for loop. All paths and ppaths are compared to find the
%corresponding trellis outputs, that are used to calculate the distance

92



%and probability of error.
for i = 1:16 %for each path

path = paths(i,:); %get the path
ppath = ppaths(i,:); %get the corresponding parallel event path
pathout = []; %the normal path outputs to be found
ppathout = []; %the catastrophic event path outputs to be found
%The normal path outputs are found below
for j = 1:length(path) −1

from = path(j);
to = path(j+1);
for k = 1:8

if from==outputs(k,1) & to==outputs(k,2)
pathout = [pathout outputs(k,3)];

end
end

end
%The catastrophic event path outputs are found below
for j = 1:length(ppath) −1

from = ppath(j);
to = ppath(j+1);
for k = 1:8

if from==outputs(k,1) & to==outputs(k,2)
ppathout = [ppathout outputs(k,3)];

end
end

end
%By knowing the two outputs. The probability of the catastro phic event
%can be computed for all SNRs.
c = [Lattice(pathout(1)+1,:);Lattice(pathout(2)+1,:)] ;
w = [Lattice(ppathout(1)+1,:);Lattice(ppathout(2)+1,: )];
C = c(1,1)ˆ2+c(1,2)ˆ2+c(2,1)ˆ2+c(2,2)ˆ2;
W = w(1,1)ˆ2+w(1,2)ˆ2+w(2,1)ˆ2+w(2,2)ˆ2;
e = c − w;
K = (C−W)/2;
ur = sum(sum(e. * c));
sr = sqrt(sum(sum(e. * e)). * (sigma.ˆ2));
%Prbcats is the catastrophic events probability
Prbcats = 0.5 * (1+erf((K −ur)./(sr * sqrt(2))))/16+Prbcats;

end
Prbcats;
%Prbsteperr adjusts the event probability to compute the pr obability of
%length 1 catastrophic event for easier calculations.
Prbsteperr = (1 −sqrt(1 −4. * Prbcats))./2
Probnumerr = []; %A table having in each row the probabilities for

%a specific number of catastrophic errors
%at each SNR

for k = 0:20 %Number of catstrophic errors to happen within a packet
Probnumerr = [Probnumerr;nchoosek(n,k). * (Prbsteperr.ˆk)

. * ((1 −Prbsteperr).ˆ(n −k))];
end
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MATLAB Iterative Decoding of SCCC Simulation

In MATLAB, there is a simulink demo titled “Iterative Decoding of SCCC” that can be
found in “Blocksets→Communications→Channel Coding→Iterative Decoding of SCCC”.
The following Figure B-1 shows the simulink block diagram. The parameters of the
convolutional codes and APP decoders are changed to match the used codes as follows:
(The following example parameters are used in the simulation results found in Figure 3.9� The outer convolutional encoder

Trellis structure: poly2trellis(3, [5 7])� The inner convolutional encoder

Trellis structure: poly2trellis([2 2], [3 1 2;3 2 3])� The inner APP decoder

Trellis structure: poly2trellis([2 2], [3 1 2;3 2 3])

Algorithm: True APP� The inner APP decoder

Trellis structure: poly2trellis(3, [5 7])

Algorithm: True APP� Global parameters Eb/No must also be changed to the desired values.

Figure B-1: MATLAB Simulink Demo “Iterative Decoding of SCCC”

94



Vita

Bandali Akkawi was born in April 1983, in Amman, Jordan. He enrolled in Princess
Sumaya University for Technology, Jordan and earned a Bachelor of Science degree in
electronics engineering in February 2005. He then joined Louisiana State University
to pursue his graduate studies in communications engineering as a Master of Science
candidate in 2006.

95


