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Abstract

The recently developed paradigm of cognitive radio wireless devices has been developed
with the goal of achieving more customizable and efficient spectrum utilization of commonly
used wireless frequency bands. The primary focus of such spectrum utilization approaches
has been to discern occupancies and vacancies over portions of the wireless spectrum without
necessarily identifying how specific radio frequency (RF) devices contribute to the tempo-
ral dynamics of these occupancy patterns within the spectrum. The aim of this thesis is
to utilize a hidden semi-Markov model (HSMM) statistical analysis to infer the individual
occupancy patterns of specific users from wireless RF observation traces. It is proposed that
the HSMM approach for RF device characterization over time may act as a first step towards
performing a more complete characterization of the RF spectrum in which the inferred traffic
patterns may demonstrate the coexistence of multiple networks, the specific devices com-
prising each distinct network, and the level of mutual interference between the component
networks resultant from such coexistence.

The first main portion of this thesis is the development of a Bayesian learning framework
for HSMM characterization of the wireless RF observations, with occupancy periods and each
individual RF device being classified as distinct states in the HSMM. The traditional HSMM
approach is supplemented with the concept of the hierarchical Dirichlet random process to
achieve a minimal number of states needed to effectively capture each distinct device, without
the need for strong a priori assumptions regarding the number of devices seen in the RF trace
prior to computational analysis. The second portion of the thesis utilizes user-programmed
cognitive radios to construct a real-time software-defined RF network environment emulation
testbed to assess the accuracy of the HSMM characterization. Finally, the HSMM algorithm
is tested on wireless devices operating under an actual implementation of the ubiquitous
IEEE 802.11 wireless standard.

viii



Chapter 1

Introduction

The wireless communications sector of the telecommunications industry has experienced
rapid technological advancement and widespread acceptance over the past few decades. A
wide variety of radio frequency (RF) devices have been designed and implemented in the
creation of short-range communication networks for residential and occupational usage, in
addition to sparking the development of nationwide mobile telephone networks of consider-
able scale and complexity. Due to the relatively large number of RF communications present
over a limited set of available radio frequencies at any given point in time, the Federal Com-
munications Commission (FCC) has been made directly responsible for the regulation and
management of the RF spectrum and the wireless devices operating over these frequency
bands. This responsibility includes the licensing of certain frequency bands to functionally
similar RF devices and the enforcement of stringent operational requirements on these de-
vices in order to mitigate potential interference arising from the coexistence of many devices
over the available RF spectrum.

Reports from the FCC have indicated that certain portions of the RF spectrum remain
heavily occupied, while large portions of the spectrum tend to be partially occupied or vacant
over time [3]. As a result, a large amount of research has recently been devoted towards
developing intelligent wireless communication protocols to promote more uniform usage of
the available RF bands. The objective of this development seeks to leverage the temporal
dynamics of the spectral occupancy patterns to accommodate a large variety of wireless
devices with maximum efficiency and minimal performance degradation. This particular
problem has been a leading factor in the development of what is known as cognitive radios.

In 2000, Joseph Mitola proposed the concept of wireless devices known as “cognitive
radios” capable of learning from their local RF environment and adapting their behavior
in real-time based on their inferences [12]. Given the heavily dynamic nature of the RF
spectrum, this new paradigm was proposed as a means to promote spectral fairness and
optimize communication performance from a multiple network perspective. Implementation
of the cognitive radio concept is traditionally performed by software defined radios (SDRs)
combining general purpose RF hardware devices, such as antennas and local oscillators, with
software-reconfigurable signal processing chains. SDR systems allow for user customization
of the RF device’s functional behavior and the subsequent adaptability for a single wireless
device to communicate using a variety of wireless protocols. With the capability to design RF
devices through computer programming instead of laborious stages of hardware construction
and testing, SDRs provide the potential for more rapid development into experimentally
verifiable solutions to the spectral fairness problem, or indeed any other task envisioned
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by the wireless communications engineer. For example, SDRs have been also utilized for
adaptively optimizing wireless network throughput, avoiding RF interference from a vast
array of different sources, and identifying specific RF devices from detecting certain features
embedded within the received signal waveforms.

Recent research has proposed using hidden Markov models (HMMs) for learning the
dynamic behavior of portions of the RF spectrum over time [15]. This research attempts
to characterize collected RF activity into disjoint time segments corresponding to either
spectral vacancies or busy periods comprising observed transmissions, with each different
outcome termed as a distinct state in the HMM. The goal of such formulations is to apply the
learned outcomes for such HMM fitting to predict the future behavior of the RF spectrum
and allow such SDRs to adapt their behavior in order to avoid potential data collisions
and promote effective spectral fairness. However, HMMs possess a degree of inflexibility
in effectively modeling the time durations for each given state, as well as requiring a fixed
number of states being forced upon the model before initiating any characterization of the RF
activity [17]. This view of the RF frequency bands as being either occupied (ON) or vacant
(OFF) over time cannot reflect the dynamics of how distinct devices can contribute to the
observed spectral occupancy patterns, especially given the inherent multitude of potential
devices transmitting over such RF bands and the resulting dynamism as these devices rapidly
occupy and vacate these frequencies over long periods of time. Furthermore, this HMM
characterization has no inherent mechanism for determining how potential interference or
repeated instances of data packet collisions over the frequency bands of interest can affect
future spectral occupancy patterns.

The focus of this thesis is to apply hidden semi-Markov models (HSMMs) with an
extension of the Dirichlet random process to overcome the time domain and state space
limitations of the HMM, so that multi-user characterization of the RF bands with interference
detection capabilities may be achieved. Supplementing the HSMM with the Dirichlet random
process concept permits flexibility in the number of states within the Markov modeling of
the wireless RF activity, with the added benefit of concentrating upon a smaller model state
space to encourage model parsimony. As an added benefit, this HSMM learning algorithm
examines the observed wireless activity within the framework of Bayesian statistics, allowing
any initial assumptions about the wireless activity to be reflected into prior probability
distributions on the HSMM model’s parameters. This Bayesian approach to the HSMM
formulation simultaneously permits such initial parameter assumptions to be less restrictive
than the HMM approach and more dependent on the data being analyzed, resulting in a
more direct application towards the dynamic nature of analyzing highly time-variant wireless
frequency bands.

In this research, the Bayesian HSMM algorithm is evaluated using wireless traces in-
volving real-time SDR wireless transmissions in conjunction with observations from a widely
deployed IEEE 802.11 wireless local area network (WLAN). The RF data observations from
the SDR devices are designed to assess the HSMM’s accuracy in multi-user detection in var-
ious degrees of coordination and interference amongst the operating RF devices. Likewise,
the experimental observations of the operational 802.11 networks are conducted to assess
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the algorithm’s capability for RF device identification and network traffic analysis in a more
typical wireless network environment.

1.1 Organization of Thesis

Chapter 2 of this thesis is meant to describe the fundamental components of a typical
SDR unit and to provide a mathematical characterization of the bandpass transmission
and reception signal paths for the experimental validation of this research. Chapter 3 will
focus on the development of the hidden semi-Markov models within a Bayesian probabilistic
framework to learn the model parameters for data in which RF devices correspond to states
within the model. A detailed description of the deployed HSMM learning algorithm and the
corresponding results of the HSMM learning algorithm for SDR communication scenarios will
be provided and evaluated in Chapter 4. In Chapter 5, the algorithm is further extended
to collected measurements of a wireless network operating under the commonly used IEEE
802.11 wireless network standard. Further topics of investigation towards improving the
HSMM algorithm’s performance and identifying higher-level features of wireless network
characterization will be suggested in Chapter 6.
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Chapter 2

Fundamentals of Software Defined
Radio

As previously mentioned in the Introduction, the overall objective of software defined
radio is to provide a synergistic combination of the basic hardware components of a typical
wireless RF device with the processing power of a central processing unit (CPU). The focus
of SDR system development is thus to create computer programs defining the system flow
through a wireless RF radio and execute the majority of the required signal processing on
a CPU throughout the program’s execution, while the actual RF hardware essentially acts
as the direct interface to the wireless channel of interest. Shifting the processing load of the
system onto the CPU allows for high bandwidth communication, along with the flexibility of
system design focused on computer programming rather than device fabrication and testing.

This chapter will focus on the general functionalities of both the hardware and software
components of a functional SDR, in addition to providing a mathematical system model for
how the SDR elements perform transmission and reception in a typical wireless communica-
tions scenario. Section 2.3 will additionally discuss the waveform characteristics of several
different modulation schemes, since transmissions from SDRs employing such modulations
will be used to assess the HSMM learning algorithm’s overall performance for wireless device
discovery as investigated in Chapter 4.

2.1 SDR Hardware

The hardware components of a typical SDR system are primarily responsible for four
tasks:

1. Directly transmitting and receiving information signals over the desired RF bandwidth.

2. Modulating the information signal onto the desired RF carrier frequency, or demodu-
lating the RF bandpass signal back to the baseband in the case of signal reception.

3. Converting the intended information signal from the discrete domain to the analog
domain in the case of RF transmission, and vice versa for RF reception.

4. Processing and relaying the desired information signals for transmission to/from the
host CPU.
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Figure 2.1 depicts a typical layout of the separate hardware components used for each these
primary tasks. The functional units of the SDR platform can be subdivided into RF daugh-
terboards for signal transmission and reception, converters for switching between analog and
digital signal representations, field programmable gate arrays for data rate handling, and a
controller for interfacing the SDR with the host CPU.

Figure 2.1: SDR Hardware Diagram

While several different SDR-compatible hardware platforms are commercially available,
the Universal Software Radio Peripheral (USRP) manufactured by Ettus Research LLC has
achieved widespread acceptance for both research and commercial applications. A USRP
B100 Bus Series device was utilized in the experiments detailed in Chapter 4, and thus the
technical specifications and limitations of this specific radio will be emphasized. Nonetheless,
the general limitations of the USRP series are additionally present in SDR platforms provided
by other manufacturers, each with their own specific design for balancing high performance
radio functionality with the complications of RF design from generic electronic hardware
components. Most of the information within this section has been extrapolated from the
GNURadio website and the USRP B100 data sheets provided by Ettus Research [2, 8].

2.1.1 Daughterboards

Each USRP is capable of housing one or more daughterboards responsible for RF tuning
and filtering of noise and spurious frequencies over the desired RF bandwidth. As a result,
the daughterboards serve as the closest link in the signal chain to the RF channel. Most of the
available RF daughterboards actually possess two separate signal paths, one for transmission
and one for reception, and thus are capable of achieving full-duplex communication [1]. In
the case of the SBX 400-4400 MHz daughterboard used in the experiments of this thesis, both
signal paths have their own 40 MHz bandwidth filters placed directly in front of the attached
antennas. Furthermore, each signal path contains local oscillators for carrier modulation and
demodulation, as necessitated to achieve full duplex capability. It is worth emphasizing that
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the information signals processed through the USRP daughterboards are continuous-time
analog RF signals.

2.1.2 Analog-to-Digital and Digital-to-Analog Converters

Each USRP contains 2 separate analog-to-digital converters (ADCs) which digitize the
analog RF signals received from the daughterboard. Each ADC is capable of real and
complex sampling. Complex sampling actually requires the usage of 2 ADCs to decompose
the RF signal into its in-phase (I) and quadrature (Q) components, thus limiting the USRP
to a single RF input configuration. Since the complex sampling has direct application and
widespread usage in wireless communications design, this option is regularly chosen in most
USRP experiments. Each ADC is capable of digitizing the analog RF inputs into 12-bit
samples at a rate of 64 million samples per second (MS/s). The Shannon-Nyquist sampling
theorem suggests the USRP could then perfectly reconstruct received analog signals of 64
MHz bandwidth in the case of complex sampling. However, the front-end filtering in the
daughterboard’s signal path implies that only signals of less than 40 MHz bandwidth can be
reconstructed without the introduction of aliasing.

The digital-to-analog converters (DACs) perform the opposite functionality of the ADC
by transforming baseband data into the analog domain. The 2 DACs in the USRP B100 can
accept 14-bit samples at a rate of 128 MS/s. Once again, the bandwidth of the transmitted
signals must fall below 40 MHz bandwidth to prevent significant waveform distortion from
being introduced by the daughterboard’s transmitter filter.

2.1.3 Field Programmable Gate Arrays

As mentioned in the previous section, the ADC sampling rate alone has imposed a limit
of 64 MHz bandwidth maximum for aliasing-free representation of the received RF signals.
Since the received baseband signal in the USRP requires transmission to the host CPU for
any additional digital processing, it is necessary to additionally consider the data rate at
which the digitized samples can be reliably transmitted to the CPU. The USRP B100 sends
digitized complex IQ samples in 16-bit signed integer format over USB 2.0, which has an
average data transfer rate of 32 megabits per second (MB/s). Since there are 4 bytes in one
such sample, the maximum ADC sampling rate that can be effectively transported to the
host CPU is reduced to 8 MS/s, consequently reducing the maximal RF signal bandwidth
to 8 MHz.

A primary role of the field programmable gate array (FPGA) within the USRP is to
perform digital down conversion of the sample stream from the ADC to meet the 32 MB/s
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data rate constraint imposed by the USB connection.1 The standard FPGA image for the
USRP includes 2 digital down converters (DDCs), each composed of 4 stage cascaded inte-
grator comb (CIC) decimation filters followed by halfband filters, to remove the appropriate
amount of samples from the data stream. These filters additionally act to minimize aliasing
and maximize out-of-band rejection.2 For the transmit path, the executed SDR program
may require the sample rate from the input baseband samples to be increased before being
processed by the DAC. The FPGA image accordingly possesses CIC interpolation filters to
perform this functionality, while the digital up converters (DUCs) responsible for completing
the sample rate conversion actually reside within the DACs themselves.

The FPGA is also responsible for directly interfacing with the USRP’s USB 2.0 controller
for data transfer to and from the host computer. When data from the USRP and computer
involves multiple channels, the FPGA also multiplexes and demultiplexes the data stream to
feed the appropriate transmit and receive channels through the USRP. This direct connection
between the FPGA and computer is also what permits the FPGA to be reprogrammed.

2.2 SDR Software

The true power of the SDR paradigm resides in the customizability and reconfigurability
at the baseband processing level. The USRP is compatible with the extensively developed
open-source GNU Radio signal processing development toolkit which provides the most com-
monly used components of a working radio system. The GNU Radio toolkit is composed
as modular C++ programming blocks that are connected together to construct the sig-
nal chain of the SDR. Examples of standard blocks includes modulators and demodulators,
filters, equalizers, channel coders and decoders, and other data manipulation capabilities.
Since C++ is a low-level programming language, the signal processing blocks accommodate
the real-time requirements for a high-performance wireless radio platform. Any added func-
tionality not possessed in the GNU Radio library can also be developed through user-created
C++ functions.

The complexity of implementing the GNU Radio toolkit is largely minimized by ‘wrap-
ping’ the C++ processing blocks to equivalent modules within the Python programming
language via the Simplified Wrapper Interface Generator (SWIG) [8]. Since Python is a
higher-level object-oriented programming language than C++, interconnecting the process-
ing blocks into a functional program is much more easily facilitated by the creation of what
are termed flow graphs. Each flow graph consists of the connections of such blocks, depend-
ing on whether each block acts as a data source or sink. Each flow graph then possesses
a scheduler that handles data transfer between the C++ blocks, with the use of input and

1Other USRP models allow Ethernet connectivity to the host CPU, allowing for greater observable RF
bandwidth than the USRP B100. Nonetheless, hardware-imposed bandwidth constraints will still be present
in a similar manner despite the increase in throughput.

2Since FPGAs are primarily user-programmable integrated circuits, it is possible to reprogram the FPGA
in Verilog to customize such filter design or to enable more DDCs.
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output buffers to ensure real-time processing with minimal latency as data flows through the
individual processing elements.

2.3 Baseband Waveform and Modulation Characteris-

tics

The following sections mathematically describe how the USRP signals are converted
back and forth to bandpass signals suitable for transmission and reception over radio fre-
quencies (Section 2.3.1). Also, a short description of several data modulation techniques are
discussed in Sections 2.3.3-2.3.6, as these modulation techniques are employed in Chapter
4 for generating USRP transmissions. The mathematical analysis has been adapted and
extrapolated from the more detailed expositions found in [16] and [18].

2.3.1 Bandpass Signal Representation

By definition, all wireless signals transmitted over radio frequencies are bandpass signals,
since the bandwidth-restricted information signals are used to modulate a carrier frequency
fc greater than zero. The desired information signals of interest however are baseband
signals, meaning that they possess a finite bandwidth centered around zero frequency. Thus,
it is often useful to characterize the bandpass signals into complex baseband representation
in order to analyze the information-bearing portion of the wireless signals regardless of the
specific carrier frequency being utilized.

Figure 2.2 depicts a complex demodulator used to transform a bandpass signal s(t) into
its baseband equivalent s̃(t). The first step in this process involves the creation of an analytic
signal s+(t) containing only positive frequency components. The analytic signal defined in
(2.1) is then a complex-valued waveform composed of the original bandpass signal s(t) and
its Hilbert transform ŝ(t) = H[s(t)] = s(t) ∗ 1

πt
.

s+(t) = s(t) ∗

[
1

2
δ(t) +

j

2πt

]
(2.1)

= s(t) ∗ 1

2
δ(t) + s(t) ∗ j

2πt
(2.2)

=
1

2
s(t) +

j

2
ŝ(t) (2.3)

The baseband equivalent, or complex envelope, s̃(t) is then generated by scaling s+(t) and
demodulating by the carrier frequency fc.
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Since the complex envelope is a complex-valued signal, it possesses both real and imagi-
nary parts denoted as its in-phase (I) and quadrature (Q) signal components respectively.

s̃(t) = 2s+(t)e−j2πfct (2.4)

=
[
s(t) + jŝ(t)

]
e−j2πfct (2.5)

=
[
s(t) cos 2πfct+ ŝ(t) sin 2πfct

]
+ j
[
− s(t) sin 2πfct+ ŝ(t) cos 2πfct

]
(2.6)

= sI(t) + jsQ(t) (2.7)

Figure 2.2: Complex Bandpass Demodulation

In a similar manner, Figure 2.3 depicts the modulation of the baseband equivalent signal
onto the carrier frequency of interest. Note that the real part of the newly modulated signal
is the only relevant information in the signal, since the bandpass signals of interest are real
valued.

s(t) = Re
{
s̃(t)ej2πfct

}
(2.8)

= Re
{(
sI(t) + jsQ(t)

)
ej2πfct

}
(2.9)

It is often more convenient for s(t) to be expressed in polar coordinates, in terms of an

instantaneous envelope a(t) =
√
s2
I(t) + s2

Q(t) and instantaneous phase φ(t) = tan−1 sQ(t)

sI(t)
.

s(t) = a(t) cos
[
2πfct+ φ(t)

]
(2.10)

2.3.2 Modeling SDR Transmission and Reception Signal Flow

Figures 2.4 and 2.5 display system block diagrams used to model the signal flow for
USRP transmitters and receivers respectively. In these depictions, fc represents the RF
carrier frequency used for communicating over the wireless channel. For both signal paths,
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Figure 2.3: Complex Bandpass Modulation

all filtering operations, including front-end filtering at the daughterboard end and halfband
filtering in the FPGA, are incorporated into shaping function b(t,−→xi ).

Figure 2.4: SDR Transmitter Diagram

Figure 2.5: SDR Receiver Diagram

Also note that the front-end filters present in the USRP daughterboards are common to
both the transmission and reception signal paths. The presence of such filtering introduces
some amount of amplitude and phase distortion of the transmitted and received signals even
if additional pulse-shaping filters are used to mitigate intersymbol interference. Since the
transmitter’s front-end filter will not be exactly identical for two USRPs possessing the same
daughterboard models, each separate device should produce its own unique spectral charac-
teristics regardless of the baseband waveforms used in any communications over the wireless
channel. Since this project of this research deals with identifying specific RF transmitters, it
is also worth noting that the front-end filter in the reception path will likewise introduce am-
plitude and phase distortions of the receiver signal, thus complicating the ability to extract
arbitrarily precise timing information about onset RF device activity.

Equation (2.11) mathematically describes how transmitted data is modulated into sym-
bols {−→xn} and transformed to a complex baseband signal before carrier frequency modulation
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and transmission over the wireless channel. A represents a separate amplitude correspond-
ing to signal amplification for combating channel noise and aiding symbol detection at the
corresponding receiver. The baseband signal s̃(t) is thus a continuous-time signal produced
by a stream of modulated symbols at a symbol rate of T symbols per second.

s̃(t) = A ·
∞∑

n=−∞

b(t− nT,−→xn) (2.11)

2.3.3 M-ary Phase Shift Keying

One common method for modulating source binary data into symbols is to introduce
discrete phase shifts to the baseband equivalent signal in what is known as phase shift
keying (PSK). M -ary phase shift keying maps source binary data into {−→xn} with M possible
symbols xn ∈ {0, 1, . . . ,M − 1}. The excess phase θn determining the amount of phase shift
per symbol period is given by (2.12).

θn =
j2πxn
M

(2.12)

The complex baseband equivalent signal waveform for M -ary PSK is given by (2.13). For
simplicity, the shaping function of the waveform ha(t) is modeled as a truncated unit step
function of duration T as seen in (2.16).

s̃(t) = A ·
∞∑

n=−∞

ha(t− nT ) exp

{
j2πxn
M

}
(2.13)

ha(t) = uT (t) (2.14)

= u(t)− u(t− T ) (2.15)

=

1, 0 ≤ t ≤ T

0, else
(2.16)

Two commonly implementedM -ary PSK waveform are binary phase shift keying (BPSK)
where M = 2 and quadrature phase shift keying (QPSK) where M = 4.

2.3.4 M-ary Quadrature Amplitude Modulation

While M -ary phase shift keying focuses on modulating the instantaneous phase of the
baseband signal, M -ary quadrature amplitude modulation (QAM) instead directly modulates
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the instantaneous envelope of the baseband signal. The real and imaginary parts of each data
symbol xn = xI,n + jxQ,n are separately mapped to one of M possible values. QAM signal
space constellations can be constructed in a variety of manners given M , although square
constellations result when M is an even power of 2 (xI,n, xQ,n ∈ {±1,±3, . . . ,±(

√
M − 1)}).

This signal mapping results in a complex baseband signal waveform can thus be expressed
by (2.17) and (2.18).

s̃(t) = A ·
∞∑

n=−∞

xn ha(t− nT ) (2.17)

= A ·
∞∑

n=−∞

(xI,n + jxQ,n)ha(t− nT ) (2.18)

2.3.5 Gaussian Minimum Shift Keying

Since coherent M -ary PSK introduces abrupt changes in the carrier phase at every
data symbol period, the resulting waveforms possess poor spectral compactness due high-
frequency components introduced by the phase shifting operations. Continuous pulse modu-
lation (CPM) was developed to improve upon these disadvantages by instead modulating the
carrier phase continuously over the course of transmissions. The CPM baseband waveform
can be expressed generally as in (2.19), where θ0 is the initial phase at t = 0.

s̃(t) = A exp
{
j
(
φ(t) + θ0

)}
(2.19)

The data symbols xn thus introduce modulation with the carrier frequency through the
excess phase φ(t).

φ(t) = 2πh

∫ t

0

∞∑
k=0

xk hf (τ − kT ) dτ (2.20)

The modulation index h in (2.20) is a measure of the instantaneous frequency deviation of
the excess phase seen in (2.22).

fdev(t) =
1

2π

dφ(t)

dt
(2.21)

= h ·
∞∑
k=0

xk hf (t− kT ) (2.22)

Here, hf (t) is a frequency-shaping function with zero value for t < 0 and t > LT , normalized
to have area of 1

2
. An equivalent pulse shaping function β(t) may be defined as in the
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following equation.

β(t) =


0, t < 0∫ t

0
hf (τ) dτ, 0 ≤ t ≤ LT

1
2
, t ≥ LT

(2.23)

The resultant full-response CPM baseband waveform may then be expressed by (2.24), where
L = 1.

s̃(t) = A ·
∞∑

n=−∞

exp

{
j

(
πh

n−1∑
k=0

xk + 2πhxnβ(t)

)}
uT (t) (2.24)

By choosing binary values of xn ∈ {−1,+1} and setting the modulation index to h = 1
2
,

the baseband waveform is expressed according to (2.25).

s̃(t) = A ·
∞∑

n=−∞

exp

{
j

(
π

2

n−1∑
k=0

xk +
π

2T
xn

)}
uT (t) (2.25)

As a result, one of two frequencies f for transmission is chosen per baud interval depending
on the value of xn, with f = fc ± 1

4T
. Since the minimum frequency separation needed to

maintain orthogonality between these two frequencies is 1
2T

, this modification to the CPM
transmission scheme is known as minimum shift keying (MSK).

Since this version of MSK uses a rectangular frequency shaping function hf (t) = 1
2T
uT (t),

the frequency spectrum of the baseband waveform may be further compacted by adding an-
other lowpass filter after the MSK modulating signal. Choosing H(f) as in (2.26) to resemble
a Gaussian waveform with zero mean frequency and 3-dB filter bandwidth B results in a
Gaussian minimum shift keying (GMSK) modulation scheme.

H(f) = exp

{
−

(
f

B

)2
ln 2

2

}
(2.26)

The time-domain representation of this Gaussian filter is thus given by (2.27) through ap-
plication of the inverse Fourier transform. By lowering the value of the bandwidth-time
product 0 < BT < 1, the baseband waveform will be made more compact in the frequency
domain.

h(t) =

√
2π

ln 2
B exp

{
− 2π2

ln 2
(BT )2

}
(2.27)
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The equivalent frequency-shaping filter hf (t) can then be expressed as a cascade of the
rectangular shaping function ha(t) = 1

2T
uT (t) and the Gaussian filter h(t).

hf (t) = ha(t) ∗ h(t) (2.28)

=
1

2T
uT (t+ T/2) ∗

√
2π

ln 2
B exp

{
− 2π2

ln 2
(BT )2

}
(2.29)

=
1

2T

√
2π

ln 2
(BT )

∫ t/T+1/2

t/T−1/2

exp

{
− 2π2

ln 2
(BT )2 x2

}
dx (2.30)

Note that ha(t) requires a time shift for the frequency-shaping filter to become causal and
thus implementable for direct wireless applications. The baseband waveform for a GMSK
modulated signal is then expressed by (2.31). Figure 2.6 shows a graphical representation of
the transmitter diagram with the addition of the Gaussian shaping filter.

s̃(t) = A ·
∞∑

n=−∞

exp

{
j

(
π

2

n−1∑
k=0

xk + π xn β(t)

)}
(2.31)

where β(t) =
∫ t
−∞ hf (τ) dτ .

Figure 2.6: GMSK Transmitter Diagram

2.3.6 Orthogonal Frequency Division Multiplexing

In contrast to the modulation schemes detailed earlier, orthogonal frequency division
multiplexing (OFDM) is a multi-carrier modulation scheme using multiple mutually orthog-
onal subcarriers to transmit information in parallel streams. As a consequence, OFDM is
a block modulation scheme where N data symbols of duration Ts are converted to a block
of N parallel data symbols with a new symbol duration of T = NTs. By spacing the sub-
carriers by multiples of 1/T Hz apart, the subcarriers remain orthogonal regardless of the
phase differences between all of the subcarriers. The subcarrier orthogonality within a block
−→xn = [x0, x1, . . . , xN−1] is easily accomplished by taking the N -point inverse discrete Fourier
transform of the symbols xn, k from each subcarrier k.

xn =
1√
N

N−1∑
k=0

xn,ke
j2πkt/T , 0 ≤ n ≤ N − 1. (2.32)
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OFDM is a popular modulation scheme for reducing intersymbol interference from a
non-uniform channel response over the transmission bandwidth, since the available channel
bandwidth is subdivided into many subchannels of approximately constant magnitude. The
addition of a cyclic prefix also provides a time guard interval to prevent interference from
being introduced by successive OFDM blocks. The cyclic prefix consists of appending Ng

symbols before the original N data symbols in the original OFDM block, making the new
OFDM symbol period Tg =

(
N

N+Ng

)
Ts. The resultant baseband waveform is seen in (2.33),

with the guard interval defined as αg = Ng/N .

s̃(t) = A ·
∞∑

n=−∞

[
uTg(t)

N−1∑
k=0

xn,k e
j2πkt/Tg + uαgTg(t+ αgTg)

N−1∑
k=0

xn,k e
j2πk(t+Tg)/Tg

]
(2.33)

By judiciously choosing the cyclic prefix’s samples as [xn,N−Ng−1, xn,N−Ng , . . . , xn,N−1], mul-
tipath interference for wireless channels of length-Ng impulse responses can be eliminated
through removal of the first Ng symbols in the OFDM block at the receiver end. Since no
additional information is transmitted through the cyclic prefix, the number of subcarriers
N is usually chosen to be much larger than the cyclic prefix length Ng to improve the effec-
tive information data rate from transmitter to receiver. Figure 2.7 shows a typical system
diagram for an OFDM transmitter.

Figure 2.7: OFDM Transmitter Diagram
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Chapter 3

A Bayesian Approach to Hidden
Semi-Markov Modeling

3.1 Hidden Markov Models

Many mathematical models in engineering applications involve analyzing the input-
output relationships for systems possessing a large number of potential variables, some of
which may remain unknown. The intractability of deterministic analysis in such situations
often leads to treating the observable system variables as random variables instead, where
the variables of interest are treated within a probabilistic framework. Markov chains are a
popular statistical tool for modeling the temporal evolution of discrete time systems as a
memoryless process undergoing transitions between a finite number of states at each par-
ticular point in time. More specifically, a time series with a collection of random variables
X1, X2, . . . , Xt, Xt+1, Xt+2, . . . at each time unit t can be modeled as a Markov chain where
the state of a random variable Xn+1, n ∈ {1, 2, . . . , t−1} is conditionally independent of past
and future values given the present state Xn.1

P (Xn+1 = x|X1 = x1, X2 = x2, . . . Xn = xn) = P (Xn+1 = x|Xn = xn) (3.1)

In this equation, the values of each random variable Xi belong to a countable state space,
with Xi ∈ {1, 2, . . . , N} where N <∞.

Many Markov chain applications involve situations where the state of the underlying
process can not be determined directly but only through a set of observations Y1, Y2, . . . , Yn
that are a probabilistic function of the system’s state. For example, multiple different states
may possibly produce the same observable value Yi = y. Since there is no one-to-one mapping
between the observations and the underlying state, the process is said to be hidden. A system
model possessing this partially observable nature along with the Markovian property in (3.1)
is known as a hidden Markov model (HMM).

1Throughout this chapter, random variables will be denoted with capital letters, while the outcomes
associated with such random variables will be given lowercase letters.
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A complete HMM λ is characterized by five quantities. As mentioned earlier, a HMM
consists of a finite state space ΩX = {1, 2, . . . , N} of cardinality N . An initial state distri-
bution π describes the discrete probabilities 0 ≤ πi ≤ 1 that each state Si is the first state
occurring in the random process.

πi = P (X1 = i), i = 1, 2, . . . , . (3.2)

The probabilities in which states transition amongst themselves at each time step is described
by a state transition matrix A.2

aij = P (Xt+1 = j|Xt = i), 1 ≤ i, j ≤ N with 0 ≤ aij ≤ 1 and
N∑
i=1

aij = 1 (3.3)

Associated with each state is an emission probability distribution bi describing the prob-
ability of producing each possible observable value from a finite countable alphabet set
{y1, y2, . . . , yM} where M <∞.

bi(m) = P (Yt = ym|Xt = i), 1 ≤ i ≤ N and 1 ≤ m ≤M (3.4)

Thus, the complete HMM can be given as λ = (π,A,B), where B is the N ×M matrix
described in (3.4).

Three fundamental tasks are associated with most HMM applications:

1. Given observation sequence Y = {Y1 = y1, Y2 = y2, . . . , YT = yT} and model λ, how
well does the model match the observation sequences? (Calculate P (Y |λ))

2. Given Y and λ, find the optimal possible state sequence X = {X1 = x1, X2 =
x2, . . . , XT = xT} for what has been observed. (Maximize P (X|Y,λ))

3. Given Y , what are the optimal model parameters associated with this observation
sequence? (Maximize P (Y |λ))

A conclusive solution to each of these problems would involve enumeration of the probabilities
associated with every possible observation sequence, which is inefficient and computationally
expensive for large observation sequences. For this reason, it is worthwhile to explore the
application of the forward-backward algorithm for the first problem alone, in which these
calculations are performed for each time step for partial observation sequences within the
entire sequence Y .3

2It is worth noting that the state transition matrix A may be time-inhomogeneous, meaning that A
changes as a function of time t. All further analysis regarding Markov models in this project implicitly
assumes time-homogeneous Markov processes instead.

3The Viterbi and expectation-maximization algorithms are extensively used in a variety of HMM appli-
cations for solving the second and third problems respectively. More information into these algorithms can
be found in [17]. Only the first problem is analyzed, since this forward-backward procedure is directly used
in the context of HSMMs for this thesis.
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3.1.1 Forward-Backward Algorithm

As mentioned in the previous paragraph, evaluating the performance of how well an
HMM λ matches an observation sequence Y = {Y1 = y1, Y2 = y2, . . . , YT = yT} is equivalent
to calculating P (Y |λ). There is also an associated state sequence X = {X1 = x1, X2 =
x2, . . . , XT = xT} responsible for producing such observations, although this process is not
directly observable. In this analysis, it is assumed that the underlying state sequence X is
known.

Assuming that all observations in Y are statistically independent, the probability of
producing such an observation sequence conditioned on a realization of the state sequence
X is then calculated according to (3.5) and (3.6).

P (Y |X,λ) =
T∏
t=1

P (Yt|Xt,λ) (3.5)

= bx1(Y1) · bx2(Y2) · bx3(Y3) · · · bxT
(YT ) (3.6)

The probability of the assumed state sequence X occurring in terms of the model λ is then
computed through repeated usage of the elements within the state transition matrix A after
drawing an initial state x1 according to the initial state distribution π.

P (X|λ) = πx1 · ax1x2 · ax2x3 · · · axT−1xT
(3.7)

Using these two quantities, the probability of the observation sequence is obtained by sum-
ming the product of (3.5) and (3.7) over all possible state sequences ΩT

X = {(X1, X2, . . . , XT ) :
X1 ∈ ΩX , X2 ∈ ΩX , · · · , XT ∈ ΩX}.

P (Y |λ) =
∑
ΩT

X

P (Y |X,λ)P (X|λ) (3.8)

=
∑
ΩT

X

πx1bx1(Y1) · ax1x2bx2(Y2) · ax2x3bx3(Y3) · · · · · axT−1xT
bxT

(YT ) (3.9)

Instead of directly computing the sum in (3.9), it is worth noting that there are N
possible paths for a state xj to occur at time t+1 after a transition from Xt. Thus a forward
variable αt(i) for each state i at time t is defined by (3.10).

αt(i) = P (Y1, Y2, · · · , Yt, Xt = i|λ) (3.10)

At the first time instant t = 1, the forward variable for all states i ∈ ΩX can easily be
calculated according to (3.11).

α1(i) = πibi(Y1), 1 ≤ i ≤ N (3.11)
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At time instant t = 2, the forward variable α2(j) can be computed using the previously
calculated value of α1(i) as in (3.12).

α2(j) =

[
N∑
i=1

α1(i)aij

]
bj(Y2), 1 ≤ j ≤ N (3.12)

Thus, the forward variable at each time instant 1 ≤ t ≤ T − 1 can be expressed by the
following equation through induction as seen in (3.13).

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Yt+1), 1 ≤ j ≤ N ; t = 1, 2, . . . , T − 1 (3.13)

Figure 3.1 shows a graphic visualization of how at+1(j) can be calculated from at(i) from
the state trajectory in time. The quantity P (Y |λ) in (3.9) can then be expressed as the
sum of the forward variable at time T over all states. Since each of the N states at a time
step t + 1 can be reached from each of the N possible states at time t, the probability of
the observation sequence Y given the HMM λ can be computed as a sum of the forward
variables according to (3.14).

P (Y |λ) =
N∑
i=1

αT (i) (3.14)

In summation, the joint probability of the entire observation sequence is broken down into
a sum of the probabilities for partial observation sequences at each time instant, since the
entries of the state transition matrix allows easy updating for each one-step transition in time.
Using this approach, P (Y |λ) can be calculated in roughly N2T calculations as opposed to
2T ·NT required through direct calculation of (3.9) [17].

Figure 3.1: Forward Variable Graphic Depiction
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Just as the forward variable is used to calculate the probability of a partial observation
sequence from time 1 to time t, a backward variable βt(i) can likewise be defined to calculate
the probability of a partial observation sequence from time t+ 1 to time T .4

βt(i) = P (Yt+1, Yt+2, . . . , YT |Xt = i,λ) (3.15)

In this case, the backwards variable at time T is initialized to 1 for all states.

βT (i) = 1, 1 ≤ i ≤ N (3.16)

For any state j a time T , there are N possible paths to the state i at time T − 1 that could
have resulted in a transition to j, as seen in Figure 3.2. Solving through induction as in the
case of the forward variable, the backwards variable can be expressed as in (3.17).

βt(i) =
N∑
j=1

aijbj(Yt+1)βt+1(j), 1 ≤ i ≤ N, t = T − 1, T − 2, . . . , 1 (3.17)

Once again, this involves roughly N2 T calculations as in the forward case.

Figure 3.2: Backward Variable Graphic Depiction

3.2 Hidden Semi-Markov Models (HSMMs)

Despite the effectiveness of HMMs in modeling a diverse array of physical phenomena,
HMMs are of limited utility in modeling the durations in which a state may persist before
exiting to a different state. Suppose that a state i in the HMM is entered at time t and
remains in that state for a duration of d time units before exiting to another state j 6= i.

4It is this backward variable that will be of extreme utility in the computation of the hidden semi-Markov
algorithms discussed later in this thesis.
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The duration probability distribution pi(d) of state i is thus expressed by (3.18) and (3.19).

pi(d) = P (St = i, St+1 = i, . . . , St+d−1 = i, St+d 6= i|St−1 6= i) (3.18)

= (aii)
d−1(1− aii) (3.19)

From examination, the HMM has implicitly imposed a restriction on the potential duration
probability distribution to the form of a discrete geometric probability distribution with the
expectation value of the duration di.

d̄i = E[di] (3.20)

=
∞∑
d=1

d pi(d) (3.21)

=
1

1− aii
(3.22)

Consequently, it is sometimes useful to extend the HMM to allow the state durations
to be a random variable as well, where each state i is further endowed with a state duration
probability distribution Di(d).

Di(d) = P (Xt = 1, Xt+1 = i, . . . , Xt+d−1 = i,Xt+d 6= i), 1 ≤ i ≤ N (3.23)

This allows the model to incorporate probabilistic formulations for how long states may
persist before switching. This addition to the HMM formulation results in what is known
as a hidden semi-Markov model (HSMM). The HSMM has an additional stipulation that
no state may transition into itself, so that the state duration distributions fully capture
the temporal behavior of the underlying process. These modifications to the original HMM
formulation imply that diagonal entries of the state transition matrix are zero by definition
(aii = 0 for 1 ≤ i ≤ N).

The Markov property must also be slightly altered from (3.1), since the conditional
independence must be formulated by the underlying superstate sequence, describing the
sequence in which the states have transitioned without considering the durations for each
state’s visit. If s represents the s-th visited state in the superstate sequence, the modified
Markov property can be given by (3.24).

P (Xs+1 = x|X1 = x1, X2 = x2, . . . Xs = xs) = P (Xs+1 = x|Xs = xs) (3.24)

The generative process for a sequence of observations Y from an HSMM can be described
by the following outline:

1. Draw an initial state x1 = i according to the initial state distribution π.

2. Draw a random duration d1 from the duration probability distribution Di(d).
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3. A sequence of d1 independent, identically distributed (iid) observations
y1:d1 = {y1, y2, . . . , yd1−1, yd1} are emitted from state i according to the emission prob-
ability distribution bi(y).

4. At time d1 + 1, draw the second visited state x2 = j according to the transition
distribution given by the i-th row of the state transition matrix A.

5. Draw a random duration d2 from the duration probability distribution Dj(d).

6. A sequence of d2 iid observations
yd1+1:d1+d2 = {yd1+1, yd1+2, . . . , yd1+d2} are emitted from state j according to the emis-
sion probability distribution bj(y).

7. Continue steps 4 through 6 throughout the length of the process.

The backward-message passing procedure described in section 3.1.1 requires modifi-
cation due to the Markovian nature of state-switching over random durations as opposed
to each discrete time unit. The backward messages per state i are broken up into two
components Bt(i) and B∗t (i) for convenience, as denoted in [13]. As mentioned earlier,
the HSMM now incorporates a set of duration distributions associated with each state, so

λ =
(
π,A,B, {Di(·)}Ni=1

)
. In this assessment xt = i means that the process is in the i-th

state at time t. The initialization step for each state essentially remains unchanged from the
HMM case.

BT (i) = 1, 1 ≤ i ≤ N (3.25)

The first component Bt(i) of the backward message seen in (3.27) describes the probability
of observing a partial observation sequence yt+1:T after a transition from state i to state j
at time t+ 1, while the random variable Ft = 1 denotes that state i has finished emitting its
own observations at time t and is ready to transition to some other state j 6= i.

Bt(i) = P (yt+1:T |xt = i, Ft = 1,λ), 1 ≤ i ≤ N (3.26)

=
N∑
j=1

B∗t (j) aij (3.27)

The second component B∗t (i) of the backwards message is defined by (3.28).

B∗t (i) = P (yt+1:T |xt+1 = i, Ft = 1,λ), 1 ≤ i ≤ N (3.28)

=
T−t∑
d=1

Bt+d(i) · p(Dt+1 = d|xt+1 = i,λ) · P (yt+1:t+d|xt+1 = i,Dt+1 = d,λ)

+ P (Dt+1 > T − t|xt+1 = i,λ)P (yt+1:T |xt+1:T = i,Dt+1 > T − t,λ) (3.29)

The final term in (3.29) contains the probability that the sequence of interest has been right-
censored in time, in which the final observation at time T does not necessarily denote the last
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emitted observation of the last visited state in the data5 [9]. Since there is little other change
to the backward-message passing scheme for HSMMs as opposed to their HMM counterpart,
the number of computations remains on the order of N2 T .

3.3 HSMMs Using Hierarchical Dirichlet Random Pro-

cesses

Hidden semi-Markov models possess the same a priori assumption about the number of
states N present within the process being examined. Unfortunately, many situations arise
in which there is no straightforward interpretation for the number of states present in the
data beforehand, especially whenever additive noise arising the data collection process is
highly nonlinear or time-variant. In the context of the experiments within Chapter 4, the
highly dynamic nature in which wireless devices access the RF frequencies precludes such a
possibility of knowing the discoverable state space with exact certainty.

Choosing initial characterizations for the remaining HSMM features can pose equally
difficult challenges to finding the best model to fit the observed data. For example, statistical
modeling for each emission distribution bi per state will also require additional parameters
as well, which can hardly be known before performing the HSMM state sequence discov-
ery process. The task of choosing the best HSMM matching the data observations would
involve creating several HSMMs with different initial parameter sets, finding the optimal
updated model parameters with the use of the forward-backward algorithm, and perform
cross-validation across the different HSMMs to infer the optimal model matching the data.
As an alternate approach, Bayesian statistics provide a more intuitive and natural extension
for iteratively learning the HSMM parameters from a collection of observations.

3.3.1 Bayesian Foundations of the Algorithm

The more traditional frequentist interpretation of probability focuses on the formula-
tion of a random variable’s probability distribution through performing a large number of
repeated experiments. Suppose that a random variable Z associated with a set of possible
outcomes A = {z1, z2, . . . , zN}. The relative frequency of each event z ∈ A is thus con-
structed by counting the number of times ni in which z occurs after n repeated experiments.
The probability distribution of Z is constructed by taking the limit of the relative frequencies
of each possible event zi as an infinite number of experiments have been conducted.

P (Z = zi) = lim
n→∞

ni
n
, i = 1, 2, . . . , N (3.30)

5It is implicitly assumed that the first data point in the sequences of interest do correspond to the
first emitted observation of the associated state. However, the HSMM formulations can be modified to
left-censored data in which this condition does not hold.
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This method possesses obvious computational difficulties due to the impossibility for per-
forming infinitely many experiments, each with infinitely precise control on the physical
factors governing the experimental process itself at each performance. Furthermore, compu-
tations of joint probabilities involving multiple random variables can become equally cumber-
some for these same reasons, especially if the random variables involved are not independent.

Suppose that the desired quantity of interest is to evaluate the joint probability distri-
bution P (Y, θ) of two random variables Y and θ, where Y is associated with an observation
of some experiment and θ reflects the underlying parameters governing that observation.6

Provided that P (θ) 6= 0, the conditional distribution of Y given direct knowledge of θ can
be calculated according to Bayes’ theorem in (3.31).

P (Y |θ) =
P (Y, θ)

P (θ)
(3.31)

Reapplication of Bayes’ theorem can likewise be used to calculate the conditional distribution
of θ given direct knowledge of Y under similar non-zero conditions on P (θ).

P (θ|Y ) =
P (Y, θ)

P (Y )
(3.32)

By equating the joint probability distribution from both expressions, the conditional distri-
bution P (θ|Y ) can be expressed as the product of the conditional distribution P (Y |θ) and
the marginal distribution P (θ) of the parameter θ.

P (θ|Y )P (Y ) = P (Y |θ)P (θ) (3.33)

P (θ|Y ) =
1

P (Y )
P (Y |θ)P (θ) (3.34)

∝ P (Y |θ)P (θ) (3.35)

The step from (3.34) and (3.35) is possible since the marginal distribution P (Y ) has no fac-
tor of θ, and thus may be treated as a constant.7 Instead of explicitly assuming a particular
value for the parameter θ, it is then possible to reflect the uncertainties about θ through a
probability distribution and subsequently evaluate the resulting change in uncertainty about
θ after observing a particular value of Y . This data-driven updating of model uncertain-
ties is the fundamental principle in Bayesian probabilistic interpretations. Philosophically,
the Bayesian approach is also more intuitive for analyzing observable data that cannot be
repeatedly replicated in the sense of the frequentist approach.

The first term in (3.35) is known as the posterior distribution P (θ|Y ), while P (θ) denotes
the prior distribution. The distribution P (Y |θ) becomes a likelihood function when Y is

6In the case of θ being a set of parameters, P (Y, θ) would obviously be a joint distribution of two or more
random variables.

7Technically speaking, the expression in (3.32) is an unnormalized probability distribution, since∫
P (θ|Y ) dY 6= 1. Since 1

P (Y ) is a constant, this omitted factor has no influence for any potential value
of Y and thus does not significantly affect any statistical inferences based on this equation.
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assumed to be a fixed value or values occuring from a set of observations. For a given
likelihood function used for modeling the observed process, it would be beneficial to obtain a
computationally efficient way for updating the posterior distribution P (θ|Y ) after collecting
values for Y . This effort is accomplished by choosing the prior distribution P (θ) to belong
to the same family of distributions as the likelihood function P (Y |θ). Such distributions
are considered to be conjugate distributions to each other, since the posterior distribution
as calculated by (3.35) will result in a probability distribution that is functionally similar to
the prior distribution P (θ).8

The usefulness of such a conjugacy relationship can be exploited when it is desired
to repeatedly sample from the prior distribution P (θ) after collecting observations of Y .
Suppose that zi is a sample value from a prior distribution on a sought parameter Z ∼ f(λ),
where f is the probability distribution over which uncertainty about Z is modeled. After
observing values of Y , the posterior distribution P (θ|Y ) will thus result in a new probability
density Z ′ ∼ f(λ′), with λ′ generally being a simple algebraic modification of the original
hyperparameter λ.9 As each new observation of Y is gathered, the process may be iterated
indefinitely, yielding a continually refined model that reflects how each additional gathered
data point decreases the initial uncertainty about the process’s parameters Z. The newly
updated posterior distributions may then be sampled as the new prior distribution for λ
upon observing new data about the underlying process, continually iterating this process
to sequentially obtain more accurate estimates for the model parameters. This data-driven
approach also reduces algorithmic sensitivity to initial parameter assumptions about the
model through sequentially gathering more data.

3.3.1.1 Gibbs Sampling

According to this Bayesian approach to modeling HMMs or HSMMs, performing param-
eter inference would involve sampling from the joint prior distribution P (θ) = P (θ1, θ2, . . . , θn)
for the model parameters θi and subsequently updating the posterior distributions P (θ|Y )
for these parameters given the likelihood functions for the observed data. However, sampling
from such joint distributions may become difficult if there are probabilistic interdependencies
between the model parameters (i.e., the model parameters are not all marginally indepen-
dent). Gibbs sampling allows the joint distribution to be sampled by treating the model
parameters as themselves being a Markov chain and repeatedly sampling from the condi-
tional distributions for the model parameters as a function of time t.10

8Explanations of the conjugacy relationships used in the HSMM algorithm of this thesis can be found in
Appendix A.

9λ is termed a hyperparameter of the Bayesian model, since it is some initial value used for modeling the
probability distribution describing the primary parameter of interest.

10More details on Gibbs sampling may be found in [7, 10].
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Let P (θj|θ−j) represent the conditional distribution of θj given the remaining model
parameters θ−j = {θ1, θ2, . . . , θj−1, θj+1, . . . , θn} for every element j ∈ {1, 2, . . . , n}. The
Gibbs sampling algorithm is summarized by the following steps :

1. Select initial values for the n random variables θj.

2. Repeat for t = 1, 2, . . . :
For k = 1, 2, . . . , n :

θ
(t)
k ∼ P

(
θ

(t)
k |θ

(t)
1 , . . . , θ

(t)
k−1, θ

(t−1)
k+1 , . . . , θ

(t−1)
n

)
(3.36)

3. Repeat step 2 until the joint distribution P (θ) = P (θ1, . . . , θn) does not change.

Such repeated sampling upon conditional distributions can only result in producing the
true joint distribution if the Markov chain on the set of variables θ as described in (3.36) is
irreducible and aperiodic.11 According to step 3, this process requires multiple iterations over
t of this sampling process before the Markov chain converges to its stationary distribution.
The time required for such convergence is known as the burn-in time for the Gibbs sampler.
As a result of the stochastic nature for generating the joint probability distributions P (θ),
HMM and HSMM parameter inference within a Gibbs sampling framework requires multiple
iterations over a given data set before achieving a certain accuracy in estimating the desired
parameters.

3.3.2 The Dirichlet Distribution

By the fundamental axioms of probability, a discrete probability distribution, or proba-
bility mass function (PMF), −→p = [p1, p2, . . . , pN ] with N components satisfies the following
properties listed in (3.37). {

0 ≤ pi ≤ 1, ∀ i ∈ {1, 2, . . . , N}∑N
i=1 pi = 1

(3.37)

Random PMFs may be constructed by drawing from a Dirichlet distribution with concentra-
tion parameter −→α = [α1, α2, . . . , αN ] defined as αi > 0 for i ∈ {1, 2, . . . , N}. If α0 ,

∑N
i=1 αi,

the probability of drawing a specific PMF can be expressed with the density function given

11A Markov chain is considered irreducible if any state may be reached from any other state after some
number of transitions. Such a chain is also aperiodic if returns to a state do not regularly occur in multiples
of some finite number of transitions.
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by (3.38).12

P (−→p |−→α ) =
Γ(α0)∏N
i=1 Γ(αi)

N∏
i=1

pαi−1
i (3.38)

∝
N∏
i=1

pαi−1
i (3.39)

The mean E[−→p ] and covariance of a draw from a Dirichlet distribution are given by (3.40)
and (3.41).

E[−→p ] =
−→α
α0

(3.40)

Cov[pi, pj] =

{
αi(α0−αi)

α2
0(α0+1)

, i = j
−αiαj

α2
0(α0+1)

, i 6= j
(3.41)

Note that the covariance Cov[pi, pj] is negative for i 6= j, since the N components are not
all independent resulting from the constraints in (3.37). If α1 = α2 = · · · = αN = c where
c > 0 is a constant, the mean of the resulting PMFs will be a uniform distribution over all N
components. Likewise, |Cov[pi, pj]| for i 6= j decreases as c grows increasingly larger. As an
example, choosing −→α = [1, 1, 1] results in a uniform distribution over the N − 1-dimensional
probability simplex determined by (3.37), with all resulting PMFs tending having equal
probability of being drawn. In constrast, there will be a higher probability of drawn a
uniformly distributed PMF by choosing −→α = [15, 15, 15], since the covariance between PMF
components will decrease accordingly despite having the same mean E[−→p ] = [1/3, 1/3, 1/3].
As c → 0, almost all weight is given to one component in the PDF, while −→p tends to the
uniform distribution on any draw as c → ∞. When the component weights of −→α are not
all equal, more mass on the drawn PMF will be assigned to the components higher values
associated with the corresponding components in −→α .

As explained in Appendix A.4, the Dirichlet distribution serves as a conjugate prior to a
multinomial likelihood function. The multinomial distribution described in (3.42) is used to
calculate the probability of observing each potential outcome i ∈ {1, 2, . . . , N} occurring ni
times after n repeated trials of an experiment, where pi denotes the probability of observing
an outcome of i in one trial.

p(n1, n2, . . . , nN |−→p , n) =
n!

n1!n2! · · ·nN !

N∏
i=1

pni
i (3.42)

In the context of the HSMM, the state of the model xt at any given time t is itself an element
of the set {1, 2, . . . , N}. This fact suggests that the Dirichlet distribution can be used to
update beliefs about the transition matrix A after the state sequence from an observation

12The gamma function Γ(x) is defined as Γ(x) =
∫∞
0
tx−1 exp{−t} dt for x > 0.
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set has been labeled according to the HSMM backward message-passing algorithm described
in Section 3.2.

Furthermore, partitioning of the original state space {1, 2, . . . , N} into disjoint sets
{A1, A2, . . . , Ak} will result in a Dirichlet distribution over the new state space. A more
formal description of this property can be expressed as follows.

If [p1, p2, . . . , pN ] ∼ Dir
(
[α1, α2, . . . , αN ]

)
,

then
[∑
i∈A1

pi,
∑
i∈A2

pi, . . . ,
∑
i∈Ak

pi

]
∼ Dir

([∑
i∈A1

αi,
∑
i∈A2

αi, . . . ,
∑
i∈Ak

αi

])
. (3.43)

This aggregation property suggests that the Dirichlet distribution may be equally beneficial
for HSMMs that attempt to flexibly model the state space cardinality within in the Bayesian
context.

3.3.3 Dirichlet Random Processes

For the Dirichlet distribution considered thus far, a finite number of outcomes has
been assumed in the sample space X = {1, 2, . . . , N} when one trial of an experiment is
considered, as implied by the finite number of components N within −→p and −→α . In the
Bayesian framework, constant addition of new observations introduces increasing degrees of
freedom to the model under consideration, which can render finite-dimensional models for X
inadequate for accurately modeling the bounded state space as more observations are added.
As a result, it is worthwhile to extend the Dirichlet distribution to handle infinite sample
spaces through what is known as the Dirichlet random process.13

For a measurable space (X ,B) with sample space X and σ-algebra B, it is worth consid-
ering if it is possible to assign a probability P (B) to some subset B ∈ B and its associated
sequence of points {xk} in the sample space satisfying (3.44).

P (B) =
∞∑
k=1

pkδxk
, with δxk

=

{
1, xk ∈ B
0, xk /∈ B

(3.44)

If α is a finite non-zero measure on (X ,B), it is possible to create a random probability
measure P for any finite measureable partition {Bi}Ni=1 on X satisying (3.45).

α(Bi) =

∫
X
1Bi

(X) dα(x), where 1Bi
(x) =

{
1, x ∈ Bi

0, x /∈ Bi

(3.45)

13For a brief description of some relevant elements concerning probability and measure theory relied upon
by this section, one can consult Appendix B. More information on Dirichlet random processes may be found
in [4], [5], [14], and [19].
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Accordingly, the Dirichlet process (DP) with concentration parameter α creates a collection
of random variables over the σ-algebra B where the probability of each element in the
partition is a component drawn from a Dirichlet distribution according to (3.46).[

P (B1), P (B2), . . . , P (BN)
]
∼ Dir

([
α(B1), α(B2), . . . , α(BN)

])
(3.46)

From examining equations (3.43) and (3.46), the Dirichlet process can be thought of an
an extension of the Dirichlet distribution to incorporate random variables whose index set
becomes the σ-algebra B. Thus, the DP allows a random measure G to be drawn from some
base measure G0 given the concentration parameter α.

G ∼ DP(α,G0) (3.47)

It follows from the definition of the Dirichlet process that independent draws from a
DP will result in probability distributions over different partitions on the sample space X ,
thus implying that there is zero probability of observing a unique sample from X common to
each probability distribution. In the context of the HSMM, construction of an N ×N state
transition matrix A with each row being a DP realization would not link the states together
as they transition, since the underlying partitions for each row’s DP would be disjoint. A
solution to this difficulty can be found by using one DP realization to create a base measure
β, from which all transition matrix rows are subsequently drawn from independent DPs on
β subject to a separate concentration parameter α. This technique extends the Dirichlet
process to a hierarchical Dirichlet process (HDP), in which all rows are tied together on the
same common base measure.

β|γ ∼ Dir(γ/Nmax, . . . , γ/Nmax) (3.48)
−→ai |β, α ∼ DP(αβ1, . . . , αβNmax) i = 1, 2, . . . , Nmax (3.49)

Since the Dirichlet process is defined to construct measures over an infinite sample space,
the Nmax factor in (3.48) and (3.49) is required to computationally realize the HDP prior
distributions in an algorithmic sense. This prior is known as a weak-limit approximation to
the HDP, since it converges to a true HDP as Nmax →∞.
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Chapter 4

Application of the Bayesian
HDP-HSMM Algorithm

The focus of this chapter is the implementation of the Bayesian HSMM model described
in Chapter 3 towards identifying the transmissions of wireless RF devices. The algorithm’s
perfomance is tested using collected measurements from a USRP in the local proximity of
communicating SDRs as they transmit data between each other. Specific portions of the
algorithm discussed in [13] were modified to more reliably model key features of wireless
communication scenarios from the perspective of wireless channel-accessing strategies.

4.1 Bayesian HDP-HSMM Algorithmic Description

The overall objective of the Bayesian inference algorithm in this thesis is to create an ini-
tial HSMM and use the model parameters to create a maximum a posterior (MAP) estimate
for the HSMM labeled state sequence given the RF trace data provided to the algorithm. It
is desired that each state within the HSMM correspond to distinct observed activities on the
wireless channel, such as transmissions originating from a specific RF device, packet colli-
sions between multiple RF devices, or vacant periods over the channel. Performing Bayesian
inference in the HDP-HSMM framework is accomplished by combining the message-passing
scheme from Section 3.2 with a generative Gibbs sampling approach for block-sampling for
the state sequence conditional on the observed data points. Prior to performing the numerical
computations, a maximum number of model states Nmax is used to bound the potential state
space to a reasonable size. Likewise, the state labeling procedure is run for a pre-determined
number of iterations Niter for the algorithm to converge towards a suitable labeling of the
observed semi-Markov chain.

A generative approach for creating the semi-Markov chain described in Sections 3.2
within the HDP framework can be found in the following equations.

β|γ ∼ Dir(γ/Nmax, . . . , γ/Nmax) (4.1)
−→ai |β, α ∼ Dir(αβ1, . . . , αβNmax) i = 1, 2, . . . , Nmax (4.2)

π|ρ ∼ Dir(ρ/Nmax, . . . , ρ/Nmax) (4.3)

θi|H ∼ H i = 1, 2, . . . , Nmax (4.4)

ωi|Ω ∼ Ω i = 1, 2, . . . , Nmax (4.5)
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As the first step in the algorithm, a concentration hyperparameter γ is used to create the
base measure β through a draw from a Dirichlet distribution.1 In accordance with the con-
cept of the hierarchical Dirichlet process, the transition matrix A is subsequently initialized
through Nmax independent draws from the base measure created from (4.1). The third step
is responsible for initializing the initial state distribution π as a draw from a Dirichlet dis-
tribution with concentration hyperparameter ρ. The duration parameters θi and emission
parameters ωi for each state are then drawn from the appropriate parameter spaces H and
Ω respectively.

At this point, the HSMM transition matrix A and initial state distribution π have been
created. The second fundamental task is to compute the backward messages Bt(i) and B∗t (i)
according to (3.27) and (3.29) for each state over the observation data set length T . The
drawn duration parameters ωi, emission parameters θi, and data observations y1:T are used to
calculate the duration and emission probabilities according to the state-specific distribution
functions Di(d) and bi(yt) respectively over the entire data set.

As discussed in Section 4.1.2, the labeled state sequence at each data point is then
obtained by block sampling conditional on the initial model parameters (A,B,π, {Di}Nmax

i=1 )
and the data set y1:T . Using the conjugacy relationships, the initial model parameters are
updated after labeling the HSMM state sequence. The termination of this step now completes
one full iteration of the Bayesian HSMM algorithm. The entire process is repeated for the
remaining Niter− 1 iterations, with the exception of the initial model creation steps detailed
in (4.1) through (4.5). A brief summary of this process is given in the following outline.2

1. Create an initialized HDP-HSMM λ(0).

2. Set m = 1.

3. Calculate the backward messages Bt() andB∗t () conditioned on the λ(m−1) and observed
data set {yt}Tt=1.

4. Block sample the labeled state sequence {xt}Tt=1 conditioned on λ(m−1) and {yt}Tt=1 as
discussed in Section 4.1.2.

5. Update the model hyperparameters based on the labeled state sequence {xt}Tt=1 as
discussed in Section 4.1.3.

6. Increment m.

7. Generate an updated HDP-HSMM λ(m).

8. Repeat steps 4-7 until m > Niter.

1A description of how to generate Dirichlet distributions is given in Appendix C.
2When discussing the model parameters, the superscript notation x(m) is used to denote the model

parameter x at the m-th iteration of the algorithm.
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4.1.1 Modeling of Duration and Emission Distributions

In accordance with the HSMM definition, each state i is endowed with its own duration
distribution Di(d). For the experiments of this thesis, each state’s duration distribution is
selected to belong to a family of Poisson distributions, each with mean parameter λi, as
shown in (4.6). Related work in RF channel modeling has shown that sojourn times for
observed wireless nodes and idle periods can be well modeled as a hyper-Erlang distribution
for both stationary and non-stationary traffic [6]. Since the hyper-Erlang is closely related
to the exponential distribution, the Poisson distribution seen in (4.6) is chosen to function
as a discrete time counterpart of the exponential distribution.

Di(d|λi) =
λdi exp{−λi}

d!
, d ∈ 0, 1, 2, . . . (4.6)

The assumption for Poisson likelihood functions for the durations also implies that the
gamma distribution can be chosen to draw values for the mean parameter λi as seen in the
conjugacy relationships discussed in Appendix A.1.

The emission distributions fi(
−→y ) for each state are similarly modeled as two-dimensional

multivariate Gaussian distributions with mean −→µi and covariance Σi, as described in (4.7).

fi(
−→y |−→µi ,Σi) =

1

2π|Σi|
exp

{
− 1

2
(−→y −−→µi)TΣ−1

i (−→y −−→µi)

}
(4.7)

(4.8)

The two-dimensional multivariate Gaussian distribution is utilized to model the emissions
corresponding to the in-phase and quadrature components received by a USRP observing
an RF band of interest at discrete points in time. While a significant advantage for this
choice of fi(

−→y ) is its conjugacy with a normal inverse Wishart distribution as detailed in
Appendix A.3, a further incentive is provided for modeling additive noise over the wireless
channel. In the absence of any received RF user’s signals, samples for the in-phase and
quadrature components of the received signal is often modeled as independent Gaussian
random variables.

It should be noted that the received signal waveforms corresponding to the RF users do
not generally demonstrate Gaussian time-domain characteristics. Nonetheless, the previous
assumptions of Poisson-distributed durations and multivariate Gaussian-distributed emis-
sions per state perform well for the purpose of HSMM state labeling as seen later in Section
4.2.
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4.1.2 Block Sampling of the State Sequence

In order to perform the posterior inference in the Bayesian setting, it is necessary to
construct a joint distribution for the model parameters and state sequence {xt}Tt=1 according
to (4.9).

P ({xt}, {θi}, {−→ai}, {ωi}|{yt}, H,Ω, α) (4.9)

Since this joint distribution is difficult to characterize in terms of the marginal distributions,
a Gibbs sampling approach is taken to iteratively sample from the following conditional
distributions.

P ({θi}|{xt}, {yt}, H)

P ({ωi}|{xt},Ω)

P ({αi}|{xt}, α)

P ({xt}|{θi}, {ωi}, {αi}, {yt})

While sampling from the first three conditional distributions is easily performed as shown in
(4.1)-(4.5), this task is more involved for sampling the hidden state sequence for the HSMM.
An efficient means for performing this task couples the backward message calculations ac-
cording to the drawn model parameters and observation sequence {yt} with random draws
from the duration distributions per state. The following procedure gives a pseudo-code
representation of this process.
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t := 1 (4.10)

next state unsmoothed = π(m−1) (4.11)

while t ≤ T : (4.12)

for j = 1, 2, . . . , Nmax (4.13)

log domain(j) = B∗t (j)−maxB∗t (j) (4.14)

end (4.15)

for j = 1, 2, . . . , Nmax (4.16)

next state distribution(j) = exp(log domain(j))

∗ next state unsmoothed(j) (4.17)

end (4.18)

i ∼ next state distribution (4.19)

duration prob ∼ U(0, 1) (4.20)

d = 0 (4.21)

while duration prob > 0 : (4.22)

p d marginal = Di(d+ 1) (4.23)

if p d marginal == 0 (4.24)

d = d+ 1 (4.25)

continue (4.26)

end (4.27)

if t+ d ≤ T : (4.28)

p d = exp(sum(LL(i, t : t+ d)) + βt+d(i)− β∗t (i)) ∗ p d marginal (4.29)

duration prob = duration prob− p d (4.30)

d = d+ 1 (4.31)

end (4.32)

end (4.33)

xt:t+d−1 = i (4.34)

next state unsmoothed = −→ai (m−1) (4.35)

t = t+ d (4.36)

end (4.37)

The first step of the procedure is to initialize a time counter to t = 1 and use the inferred
initial state distribution π(m−1) for selecting the first state in the model. A vector log domain
with Nmax components is created to store the backward message B∗t (i) calculated using the
data observations yt:T for each potential state in the model. The equation (4.14) is formulated
so that smaller values per component correspond to the most probable states responsible for
producing the observations from time t to T . The variable next state distribution in (4.17)
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thus modifies the unsmoothed estimate for the next state distribution to reflect how each
state fits the observation sequence yt:T as indicated in the HSMM backward messages. The
underlying state xt = i is then chosen by drawing from the newly modified next state
distribution.

Since HSMM states persist for random periods of time, it is necessary to draw from
the duration distribution Di(d) corresponding to state i. The steps from (4.20) to (4.34)
are used to perform inverse transform sampling for the duration d of the state xt. In these
equations, LL is denotes the log-likelihood for the points in consideration using the Gaussian
observation distribution for the selected state i. Since a state transition must necessarily
occur within the HSMM framework, the unsmoothed next state distribution is selected as
the transition matrix row −→ai (m−1) obtained from the last iteration of the model inference
process. The timer is incremented by d samples, and the process is repeated until the timer
variable reaches the end of the data set at time T .

This block sampling procedure explains the necessity for several iterations of the Bayesian
approach to construct an accurately inferred HSMM. Since the Bayesian approach adopts a
stochastic means for inferring the model explaining the observation data, there is no glob-
ally optimal solution for the model. The sampling approach for creating the model’s prior
distributions will yield different initial conditions for initiating the inference algorithm, thus
resulting in uniquely labeled state sequence and model parameters at the each performance.
Achieving accurate results for the state labeling is necessarily dependent on performing
enough iterations M of the Gibbs sampling to achieve stationarity, while the conjugacy re-
lationships permit updating the model parameters at each iteration to incrementally refine
the model parameters estimates as the Gibbs sampling procedure approaches stationarity.

4.1.3 Updating the Model Parameters

The following sections detail how the model parameters are updated between subsequent
iterations in the Bayesian HSMM algorithm. The relative ease of parameter updating is
accomplished through the judicious choice of the conjugate prior distributions as discussed
more thoroughly in Appendix A.

4.1.3.1 Updating the Emission Distributions

As indicated in (4.4), the mean vector −→µi and covariance matrix Σi for observations
produced by each state are initialized through draws from an emission parameter space
H. Since each observation −→y is modeled by a multivariate Gaussian distribution, the prior
distribution for −→µi and Σi is chosen to be a normal inverse Wishart (NIW) distribution as
given in (4.38).

−→µi (0),Σi
(0) ∼ NIW

(−→µ0,i
(0), κi

(0), νi
(0),Λi

(0)
)
, i = 1, . . . , Nmax (4.38)
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The NIW distribution thus introduced four distinct hyperparameters into the model. The
hyperparameters −→µ0 and Λ are used to model the expected means per component and ex-
pected covariances between components respectively. Likewise, κ0 and ν0 are used to model
the variability with which −→µ0 and Λ are respectively drawn from the NIW distribution.
Increasing values of κ0 lead to decreasing variance from the drawn mean vector −→µ . On
the other hand, decreasing values for ν0 decreases the degrees of freedom for modeling Σ,
resulting in drawn values of Σ much closer to Λ.

After labeling the state sequence {xt}Tt=1, the observations {−→yt }Tt=1 are collected into
distinct groups per model state i = 1, . . . Nmax. Supposing that ni observations belong to
each model state i on the (m− 1)-th iteration, the hyperparameters are updated according
to the following four equations of (4.39).3

κi
(m) = κi

(m−1) + ni

νi
(m) = νi

(m−1) + ni
−−→
µ

(m)
0,i =

(
κi

(m−1)/κi
(m)
)−−−−→
µ

(m−1)
0,i +

(
ni/κi

(m)
)
ȳ

Λi
(m) = Λi

(m−1) + S +
(
κi

(m−1) ni/κi
(m)
)(
ȳ −
−−−−→
µ

(m−1)
0,i

)T(
ȳ −
−−−−→
µ

(m−1)
0,i

) (4.39)

New values for the mean vector −→µi and covariance matrix Σi at iteration m + 1 are sub-
sequently drawn for each state using the recalculated hyperparameters from the previous
iteration m.

−→µi (m+1),Σi
(m+1) ∼ NIW

(−→µ0,i
(m), κi

(m), νi
(m),Λi

(m)
)
, i = 1, . . . , Nmax (4.40)

4.1.3.2 Updating the Duration Distributions

Draws from the duration parameter space Ω for each state are accomplished using the
gamma distribution with shape parameter k and scale parameter θ according to the following
equation. Thus, the initialization of the duration distributions is accomplished by drawing
distinct Poisson mean parameters λi, with one mean parameter characterizing each state.

λ
(0)
i ∼ Gamma

(
ki

(0), θi
(0)
)
, i = 1, . . . , Nmax (4.41)

The hyperparameter k models the shape of the gamma distribution, while θ represents the
scale or variability with which λ is drawn. As a result, increasing value of θ will result in
more statistical dispersion in the drawn values of λ. Since it is difficult to visualize how k
affects changes in λ, it is worthwhile to note that the expected value for the drawn Poisson
mean parameter is E[λi] = ki θi, with variance of Var[λi] = ki θi

2.

3In the interest of space and maintaining relevancy, consult Appendix A.3 for definitions of the quantities
S and ȳ respectively.
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Suppose that each state i is labeled is visited ni times in (m− 1)-st iteration of labeling
the superstate sequence, with each visit lasting for dj time units. The hyperparameters k
and θ may be easily updated at each iteration according to the following equations in (4.42).{

ki
(m) = k

(m−1)
i +

∑ni

j=1 dj

θi
(m) = θi

(m−1)/
(
1 + ni θi

(m−1)
) (4.42)

4.1.3.3 Updating the State Transition Matrix

The initial creation of the state transition matrix A in the Bayesian HSMM algorithm
is the result of repeatedly drawing from a base measure β(0) to construct all Nmax rows of A
as detailed in (4.43) and (4.44) .

β(0)|γ ∼ Dir(γ/Nmax, . . . , γ/Nmax) (4.43)

−→ai (0)|γ, β(0), α ∼ Dir
(
αβ1

(0), . . . , αβNmax

(0)
)
, i = 1, . . . , Nmax (4.44)

From examining the conjugacy of the Dirichlet distribution with the multinomial likelihood
in which states appear within the labeled state sequence {xt}Tt=1, one would expect that
updating the state transition matrix can be easily performed. There are subtle difficulties
introduced by the requirement for zero elements along the main diagonal of A in a HSMM
formulation. As detailed more explicitly in [13], the conjugacy relation can be restored
through the introduction of auxiliary random variables; a brief discussion of this process is
given below.

After labeling the superstate sequence {zs}Ss=1 with S visited states from the (m− 1)-st
iteration of the algorithm, suppose that there are n transitions out of state i, with nj of those

to state j for j = 1, . . . , Nmax such that
∑Nmax

j=1 nj = n. As a means to restore conjugacy, n
auxiliary random variables {ri,k}nk=1 are independently drawn from a geometric distribution

ri,k
iid∼ Geo(1− aii) with success parameter 1− aii as given in (4.45).

P (ri,k|aii) = aii
ri,k(1− aii), ri,k ∈ {0, 1, . . . } (4.45)

After using these auxiliary random variables, the base measure β(m) is updated, from which
each row of the transition matrix −→ai (m) can be ascertained through the hierarchical Dirichlet
process drawing procedure as described below.

−→ai (m)|γ, β(m−1), α, {zs}Ss=1 ∼ Dir

(
α
(
β1

(m−1) + n1

)
, . . . , α

(
βi

(m−1) +
n∑
k=1

ri,k

)
,

. . . , α
(
βNmax

(m−1) + nNmax

))
, i = 1, . . . , Nmax (4.46)
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4.1.3.4 Updating the Initial State Distribution

Creation of the initial state distribution π is easily accomplished by sampling from a
Dirichlet distribution with a concentration parameter having weights of ρ/Nmax along all
Nmax components as seen in (4.47).

π(0) ∼ Dir(ρ/Nmax, . . . , ρ/Nmax) (4.47)

The conjugacy relationship between the Dirichlet prior on π and a multinomial likelihood
allows for a simple updating procedure for this model parameter. Suppose z1 = i is the first
visited superstate upon the (m− 1)-st iteration of the state labeling process. The updated
initial state distribution is obtained by sampling π(m) ∼ Dir(−→α ), with only the component
for the i-th state being affected as gien in (4.48).

αj =

{
ρ/Nmax, j 6= i

(ρ/Nmax) + 1, j = i
(4.48)

4.1.4 Modifications to the Algorithm

4.1.4.1 Hyperparameter Selection

A naive application of the Bayesian HSMM model may not necessitate endowing each
model state with distinct hyperparameters for the observation and duration distributions.
Since the application of the HSMM algorithm is used to classify RF users and potential
packet collisions from received wireless traces, it would be more beneficial to choose these
hyperparameters to reflect some of the basic features with which wireless RF devices typically
behave over the course of their transmissions. Although knowledge of each RF device in
terms of transmission durations and signal energies cannot be well-known before of the data
collection process, it is worthwhile to examine the statistical properties for idle time over the
wireless channel medium in which no users are present.

Suppose that the wireless received signal r[n] at discrete instances of time can be rep-
resented as the linear superposition of several signal sources si[n] in addition to a noise
component n[n]. Expressed in terms of its in-phase and quadrature components, the re-
ceived signal can be presented as in (4.51).

r[n] =
∑
i

si[n] + n[n] (4.49)

=
∑
i

(
si,I [n] + jsi,Q[n]

)
+
(
nI [n] + jnQ[n]

)
(4.50)

=
(∑

i

si,I [n] + nI [n]
)

+ j
(∑

i

si,Q[n] + nQ[n]
)

(4.51)
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In the absence of any RF transmitter, the lone contribution to the received signal at each
point is time is solely characterized by the noise added over the wireless channel. A com-
mon model for such noise is as additive white Gaussian noise, where both nI [n] and nQ[n]
are treated as independently drawn from zero-mean univariate Gaussian distributions with
variances σ2

I and σ2
Q respectively. As a result, the covariance matrix between the in-phase

and quadrature components of the noise can be represented by (4.52).

Cov[nI , nQ] =

[
σ2
I 0

0 σ2
Q

]
(4.52)

Simulating parameters of such additive white Gaussian noise for the idle state, with the
assumption of σ2

I = σ2
Q = 1, can be accomplished through setting the NIW hyperparameters

of (4.38) so that −→µ0 =
−→
0 and Λ0 = I.4 By selecting higher values of κ0 and lower values

of ν0 for the idle state hyperparameters as opposed to those for the remaining model states,
the initialized parameters for the idle state will be more reflective of an AWGN channel than
a state corresponding to transmissions from one or more RF devices. Thus if each state in
the HSMM is to be tied to a specific RF device or potential packet collisions, varying the
degrees of freedom ν0 with which the covariance matrices Σi are drawn will reflect varying
degrees of correlation between the in-phase and quadrature signal components.

Likewise, choosing distinct values of the duration hyperparameters k and θ for the idle
state can be used to reflect the relative congestion of the wireless channel over time. Since
E[d] = kθ is the expected state duration for such hyperparameters, choosing smaller values of
k may be used to initialized the idle state’s duration to model shorter time periods between
observed transmissions. In the context of the experiments within section 4.2, the shape
hyperparameter k of the idle state was chosen to be smaller than those used to model the
RF device’s transmission periods.

4.1.4.2 Staging the Inference Process

Repeated application of the discussed Bayesian HSMM algorithm was seen to result in
labeled state sequences that frequently involved very short superstate durations for some
model states, sometimes comprising durations of 1 to 2 samples for such state occurrences.
Since it is highly unlikely that such a small number of samples could correspond to RF
transmissions, the iterative process for state labeling was subdivided into two distinct stages
to mitigate such fast state-switching within the model. The number of iterations Niter was
broken up into one stage of N1 iterations, followed by a subsequent block of N2 iterations
using only the model states possessing Poisson mean durations above a small predetermined
limit of λmax = 5 as follows.

4−→0 here represents a two-dimensional vector with both components equal to zero, while I represents a
2× 2 identity matrix.
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At the end of the (N1)-st iteration, all states with λi ≤ λmax were removed from the
model, with the transition matrix A(N1) and initial state distribution π(N1) renormalized
to ensure that the probability spaces for A and π remain intact. Next, the labeled state
sequence {xt}(N1) and superstate sequence {zt}(N1) were relabeled to include only states
within in the newly modified HSMM state space. Properly relabeling the state sequences
after such model reduction required reapplication of the backward messages to accurately
refit the model to those necessary portions of the state sequence.

Suppose zs is a superstate having duration ds is marked for deletion, with previous state
zs−1 = i of duration ds−1 and next state zs+1 = j lasting ds+1. The procedure for relabeling
the state sequences are as follows.

1. Calculate the log-likelihoods for:

(a) −→y (t−ds−1−1):(t+ds−1)

(b) −→y t:(t+ds+ds+1−1)

2. Calculate the duration probabilities for:

(a) state i lasting for ds + ds−1

(b) state j lasting for ds + ds+1

3. Using steps 1 and 2, calculate the backward messages with altered truncation limits
for T .

(a) β∗t−ds−1−1(i) with T = t+ ds − 1

(b) β∗t (j) with T = t+ ds + ds+1 − 1

4. zs is labeled as the state with the larger β∗ quantity.

5. The state duration ds and associated labels within {xt} are updated accordingly.

The updated state sequences and durations were then used in the resampling procedure to
start the (N2)-st iteration, after which the Bayesian HSMM algorithm continued as previously
described. In order to create the model to initiate the second stage, the concentration
parameters α, γ, and ρ are each readjusted to equal the number of states detected at the
end of the first stage of the algorithm. Performing enough iterations for the second stage of
the algorithm mitigates the inexactitude with which these parameters are chosen, since the
algorithm would then undergo enough Gibbs sampling steps to converge to its best estimate
of the model parameters.
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4.2 Experimental Results

4.2.1 USRP Transmission Analysis

Analyzing the Bayesian HSMM performance for detecting wireless RF devices was ac-
complished by programming several USRPs to transmit data according to semi-Markovian
behavior as implemented through custom Python programs using GNU Radio.5 The Python
programs enable two USRPs to coordinate their activity through the host PC so that no
packet collisions are produced as they transmit data over the program’s execution. A third
USRP was then utilized to collect wireless RF traces of the generated activity to use as
inputs to the Bayesian HSMM algorithm.

The coordinated behavior of the two USRPs is programmed to simulate wireless net-
works acting in perfect accordance under a medium access protocol to prevent data collisions
for users within the network. Further experiments introduce a third transmitting USRP en-
acting its own semi-Markovian behavior in an autonomous manner, where this USRP is
allowed to access and vacate the wireless channel irrespective of the other two coordinated
USRPs. Thus, packet collisions between the coordinated USRPs and the autonomous USRP
are introduced to the wireless network modeling. It is the goal of the Bayesian HSMM algo-
rithm to identify the number of devices present in each collected RF trace by examining the
statistical properties of the received signal over time and to also identify collision instances
when two USRPs attempt to transmit data packets simultaneously.

4.2.1.1 Implementing HSMM Transmissions on Multiple Radios

The procedure for implementing two coordinated USRPs under a common semi-Markov
chain is outline in (4.53) through (4.82) on the next page. The construction begins with
generating an alternating sequence of busy states (denoted as 1’s) and idle states (denoted
as 0’s). During each idle state, program execution is temporarily halted, or “slept”, for a
random amount of seconds as drawn from an exponential distribution Doff ∼ Exp(lambda),
where lambda denotes the mean of the exponential distribution.6 Drawn sleep durations
are chosen to be truncated within pre-determined limits of d min and d max to model a
realistic idle time with no transmissions over the wireless channel. Periods between packet
transmission can neither occur instantaneously under a well-designed wireless channel access
protocol, nor can these periods be excessively long for highly utilized portions of the 2.4 GHz
ISM band.

5The Python programs used to implement the following experiments, along with all other programs used
within this research, may by acquired at the web address specified in Appendix D.2.

6An exponential distribution with rate parameter α has a distribution of the form P (d|α) = α exp{−αd}
for x, α > 0. Hence, E[Doff ] = 1/α. Note that the notation Exp(·) used in this section denotes the mean of
this distribution within the parentheses for ease of interpretation in the experimental setting.
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For each busy state, a random variable x is drawn from a uniform distribution and
compared to a predetermined probability USRP prob that determines the relative frequency
with which USRP 1 is selected to transmit data for a generated busy state. After the
appropriate USRP is chosen, another random variable z is drawn from a uniform distribution.
Draws of z are used to select two linked parameters for the chosen USRP: the number of
packets sent num pkts and the size of each packet pkt size in bytes. For example, setting
the packet emission probability vector PE prob = [1/2, 1/2] with num pkts = [5, 10] and
pkt size = [50, 75] means that a busy state will send 5 packets of 50 bytes with probability
1/2, and likewise for sending 10 packets of 75 bytes.

Each USRP is allowed to employ either distinct or identical modulation schemes for
encoding the binary data within each packet. The true time duration of each USRP’s
transmissions over the channel will thus be a function of the selected symbol bandwidth or bit
rate. The transmission gain with which each USRP sends information over the channel is pre-
selected before execution time to model a more realistic distance between each transmitter
and the observing USRP within the laboratory setting.

42



x ∼ U(0, 1) (4.53)

if x ≤ 0.5 : (4.54)

superstate(1) = 0 (4.55)

else : (4.56)

superstate(1) = 1 (4.57)

for i = 2 : num states : (4.58)

if superstate(i− 1) == 0 : (4.59)

superstate(i) = 1 (4.60)

else : (4.61)

superstate(i) = 0 (4.62)

end (4.63)

for i = 1 : num states (4.64)

if superstate(i) == 0 : (4.65)

d ∼ Exp(lambda) (4.66)

if d < d min : (4.67)

d = d min (4.68)

elseif d > d max : (4.69)

d = d max (4.70)

sleep for d seconds (4.71)

else : (4.72)

y ∼ U(0, 1) (4.73)

if y ≤ USRP prob : (4.74)

USRP 1 chosen (4.75)

else : (4.76)

USRP 2 chosen (4.77)

z ∼ U(0, 1) (4.78)

j = min

{
k :

k∑
l=1

PE prob(l) ≥ z

}
(4.79)

chosen USRP sendsnum pkts(j) packets of pkt size(j) bytes (4.80)

i = i+ 1 (4.81)

end (4.82)
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4.2.1.2 Collecting RF Traces Using the USRP

Collection of the wireless traces over the ISM band was performed by running the
USRP Python program given in Appendix D.1. The inputs to this program specify the
center frequency of interest, the sampling rate with which the received signal appearing at
the antenna are digitized by the USRP’s ADC, an identifier for the USRP device acting
as receiver, and a name for the output file into which the digitized samples are stored in
binary format. The binary data within the output file was then read into MATLAB as
complex samples, with each the real and imaginary parts of each sample being stored in
double format. These in-phase and quadrature components of the received signal serve as
the two components of −→y at each time instant in the Bayesian HSMM algorithm.

Due to the large amount of data stored within the files at the utilized sampling rate
of 500 kHz for these experiments, the data was subsequently downsampled to a rate of 1
kHz to allow the Bayesian HSMM algorithm to be conducted in reasonable amounts of time.
Although the downsampling operation implies that the information embedded within the RF
device transmission would be unrecoverable due to noncompliance of the Shannon-Nyquist
sampling theorem, the focus of this thesis is merely to identify the RF devices and potential
data collisions over the course of their operation. While decreasing the downsampling factor
would also allow the transmission and idle durations to be inferred with greater precision,
inherent limitations of the HSMM algorithm’s processing time dictate that a compromise
between increased timing accuracy and more expedient data analysis should be sought in
this application.

4.2.1.3 Two Coordinated OFDM Users

The first considered experiment assesses the Bayesian HSMM algorithm’s ability to
discern between two coordinated USRPs in a “perfect” transmission environment in which
no collisions may occur. Both USRPs were chosen to send OFDM symbols with BPSK as
the underlying modulation, as detailed in Table 4.1. As noted, the major difference between
the two transmitters is reflected in the transmission power.
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Table 4.1: USRP Generation of Experiment 1

USRP 1 USRP 2
Modulation OFDM-BPSK OFDM-BPSK

Symbol Bandwidth 250 kHz 250 kHz
Number of Subcarriers 200 200

Packet Size 508 bytes 508 bytes
Packet Bunches [5, 10, 15] [5, 10, 15]

Packet Emission Probs. [1/2, 1/2, 0] [1/2, 1/2, 0]
Transmission Gain 10.0 20.0
Idle State Duration Doff ∼ Exp(0.2) sec,

Doff ∈ [0.3, 0.5] sec

The initial hyperparameters and other required inputs to the algorithm are also sum-
marized in the following outline.7

Initial Hyperparameters

• Nmax = 8

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)

• States 2-8: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

Figure 4.1 depicts the labeled state sequence after the final iteration of the algorithm, along
with the sample magnitudes for each point in the RF trace. A legend for mapping each state
to its corresponding can be found in the following bullets. At the completion of the first N1

iterations, the resultant state sequence used only 4 model states and likewise after the final
iteration. As seen in Figure 4.1, the algorithm was able to discern the idle state within the
RF trace with very good accuracy. Instances of USRP 2’s transmissions were well reflected
by the state sequence due to the large difference in transmission power with respect to USRP

7A more detailed list of the inferred experimental results from the HSMM algorithm regarding all of the
examples in this chapter may be found in Appendix E.
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1. On the other hand, fluctuations in the received power of USRP 1’s signal resulted in the
creation of two states to model the device’s behavior.

• State 1 (Dark Blue): Idle State, having mean parameter λ1 = 98.059738

• State 2 (Cyan) : USRP 1, having mean parameter λ2 = 125.038564

• State 3 (Green): USRP 2, having mean parameter λ3 = 141.050548

• State 5 (Orange): USRP 1, having mean parameter λ4 = 86.090321

The inferred state transition matrix A over the four-dimensional state space reveals
that the non-zero elements within the first column are indeed close to 1.8 In other words,
the transition matrix reflects that there is overwhelming probability that the idle state will
follow any transmissions by either USRP. The inferred model thus seems to indicate that the
observed transmissions over the channel indeed correlate to a well-controlled wireless channel
for coordinating users, since there is very little probability that two users’ transmissions
would immediately succeed each other in time.

A =


1 2 3 5

1 0.000000 0.610113 0.378314 0.011573

2 0.901059 0.000000 0.095198 0.003742

3 0.998246 0.000217 0.000000 0.001537

5 0.997800 0.001911 0.000289 0.000000

 (4.83)

4.2.1.4 Two Coordinated OFDM Users with OFDM Interference

The second experiment was conducted to assess how well the HSMM algorithm is able
to discern distinct users and packet collisions for all 3 USRPs employing similar OFDM
modulation schemes as detailed in Table 4.2.9 The initial hyperparameters given to the
algorithm are listed in the following outline, with only Nmax being altered with respect to
the first experiment.

8The first row and columns of the inferred transition matrices considered in the experimental sections are
used to label the state numbers for ease of readability.

9In the laboratory setup for the remainder of the experiments, the interfering USRP was positioned closer
to the observing USRP collecting data measurements. Thus, a value of 0.0 for the transmission gain of USRP
3 does not indicate that the received signal energy from USRP 3 is lower than those for USRPs 1 and 2.
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Figure 4.1: Labeled State Sequence for Experiment 1. Dark Blue = Idle State, Orange and
Cyan = USRP 1, Green = USRP 2.
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Table 4.2: USRP Generation of Experiment 2.

Coordinated USRPs Interfering USRP
USRP 1 USRP 2 USRP 3

Modulation OFDM-BPSK OFDM-BPSK OFDM-BPSK
Symbol Bandwidth 500 kHz 250 kHz 500 kHz

Number of Subcarriers 200 200 200
Packet Size 508 bytes 508 bytes 508 bytes

Packet Bunches [5, 10, 15] [5, 10, 15] [5, 10, 15]
Packet Emission Probs. [1/2, 1/2, 0] [1/2, 1/2, 0] [1/2, 1/2, 0]

Transmission Gain 25.0 20.0 0.0
Idle State Duration Doff ∼ Exp(0.3) sec Doff ∼ Exp(0.2) sec,

Doff ∈ [0.4, 0.9] sec Doff ∈ [0.3, 0.7] sec

Initial Hyperparameters

• Nmax = 6

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)

• States 2-6: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

The legend for the labeled state sequence presented in Figure 4.2 in terms of the 4
resultant states is presented as follows.

• State 1 (Dark Blue): USRP 2, with mean duration parameter λ1 = 69.081473

• State 2 (Cyan): USRP 1 and USRP 2/USRP 3 Collisions, with mean duration param-
eter λ2 = 142.328302

• State 3 (Green): USRP 3 and USRP1/USRP 3 Collisions, having mean duration pa-
rameter λ3 = 153.371946

• State 4 (Yellow): Idle State, with mean duration parameter λ4 = 77.665725
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From examining the labeled state sequence, it is apparent that idle states within the data
set once again accurately fit periods of no activity, while collisions between the coordinated
users and USRP 3 are also detected well as noted by abrupt state transitions in the middle
of packet bursts. However, packet collisions between USRP 2 and USRP 3 are labeled the
same as collision-free transmissions from USRP 1. Packet collisions between USRP 1 and 3
are also labeled indistinguishably from collision-free transmissions USRP 3. Thus the signal
mixing that occurs during packet collisions is not distinct enough to warrant creations of
new states that may indicate the specific pairs of users involved in such packet collisions.

The inferred state transition matrix given in (4.84) also seems to a less apparent degree
of channel access coordination within the RF trace compared to that in section 4.2.1.3,
as seen by examining the 4th column of A related to the idle state. On the other hand,
the relative busy-idle duty cycles for each semi-Markov chain and the short transmission
durations for the interfering USRP seem to be coupled so that many transitions from channel
occupancy to channel vacancy occur in the overall RF trace. Thus examining the column of A
corresponding to the labeled idle state is not sufficient for assessing the overall coordination of
the channel accessing between users, since many collision instances are nonetheless observed
within this RF trace.

A =


1 2 3 4

1 0.000000 0.377650 0.100816 0.521534

2 0.036572 0.000000 0.150152 0.813277

3 0.224202 0.000028 0.000000 0.775770

4 0.610809 0.043805 0.345386 0.000000

 (4.84)

4.2.1.5 Two Coordinated OFDM Users with Low-Power OFDM Interference

The third performed experiment generates a semi-Markov chain with the associated
USRP parameters given in Table 4.3. By comparison, the experimental setup is very similar
to that in the previous section, but with a much lower transmission power and typically longer
durations between transmissions for the interfering USRP. The initial hyperparameters given
in the subsequent bullets are once again unaltered, with the exception of Nmax decreased to
5.

Initial Hyperparameters

• Nmax = 5

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)
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Figure 4.2: Labeled State Sequence for Experiment 2. Yellow = Idle State, Cyan = USRP
1/Collision, Dark Blue = USRP 2, Green = USRP 3/Collisions.
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Table 4.3: USRP Generation of Experiment 3.

Coordinated USRPs Interfering USRP
USRP 1 USRP 2 USRP 3

Modulation OFDM-BPSK OFDM-BPSK OFDM-BPSK
Symbol Bandwidth 500 kHz 250 kHz 500 kHz

Number of Subcarriers 200 200 200
Packet Size 508 bytes 508 bytes 508 bytes

Packet Bunches [5, 10, 15] [5, 10, 15] [5, 10, 15]
Packet Emission Probs. [1/2, 1/4, 1/4] [1/2, 1/4, 1/4] [1/2, 1/4, 1/4]

Transmission Gain 10.0 20.0 -15.0
Idle State Duration Doff ∼ Exp(0.45) sec Doff ∼ Exp(1.5) sec,

Doff ∈ [0.3, 0.7] sec Doff ∈ [1.0, 3.0] sec

• States 2-5: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

The legend for the states appearing the final labeled state sequence depicted in Figure
4.3 is as follows.

• State 1 (Dark Blue): USRP 2, having mean duration parameter λ1 = 296.183757

• State 2 (Cyan): Idle State, having mean duration parameter λ2 = 191.789526

• State 3 (Yellow): USRP 1 and USRP 3/Collisions, having mean duration parameter
λ3 = 115.911212

In contrast to the previous experiment, it is much less apparent that there are any packet
collisions from the state labeling due to the much reduced interference level introduced by
USRP 3. As a consequence, the column of A corresponding to the idle state is more similar
to that of the coordinated network presented in section 4.2.1.3. This fact strengthens the
suggestion that the state transition matrix cannot be the sole discriminating evidence for
judging the coordination between observed RF devices as associated with the inferred HSMM
states.
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A =


1 2 3

1 0 0.7734 0.2266

2 0.7774 0 0.2226

3 0.1352 0.8648 0

 (4.85)

4.2.1.6 Two Coordinated OFDM Users with QPSK Interference

The USRP model specifications for the fourth experiment is detailed below in Table
4.4. In this case, the two coordinated OFDM users are given different modulation scheme
for subcarriers within their respective OFDM symbols, while the interfering USRP is pro-
grammed to use QPSK instead of OFDM as its modulation. The following outline also lists
the initial hyperparameters for the HSMM algorithm, with the most noticeable difference
being an increase in Nmax to 8.

Table 4.4: USRP Generation of Experiment 4.

Coordinated USRPs Interfering USRP
USRP 1 USRP 2 USRP 3

Modulation OFDM-BPSK OFDM-QAM64 QPSK
Symbol Bandwidth 250 kHz 250 kHz —

Bit Rate — — 250 kHz
Number of Subcarriers 200 200 —

Packet Size 508 bytes 508 bytes 508 bytes
Packet Bunches [5, 10, 15] [5, 10, 15] [5, 10, 15]

Packet Emission Probs. [1/2, 1/2, 0] [1/2, 1/2, 0] [1/2, 1/2, 0]
Transmission Gain 10.0 20.0 8.0
Idle State Duration Doff ∼ Exp(0.45) sec Doff ∼ Exp(1.2) sec,

Doff ∈ [0.3, 0.7] sec Doff ∈ [0.5, 1.75] sec

Initial Hyperparameters

• Nmax = 8

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)
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Figure 4.3: Labeled State Sequence for Experiment 3. Cyan = Idle State, Yellow = USRP
1/USRP 3 with Collisions, Dark Blue = USRP 2.
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• States 2-8: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

The following bullets provide the legend for interpreting the time-domain state switching
depicted in Figure 4.4.

• State 1 (Black): Transients, having mean duration parameter λ1 = 23.346766

• State 2 (Blue): USRP 3 and USRP 2/USRP 3 Collisions, having mean duration pa-
rameter λ2 = 96.327425

• State 3 (Cyan): USRP 2, having mean duration parameter λ3 = 98.187928

• State 5 (Yellow): Idle State, having mean duration parameter λ4 = 132.951206

• State 6 (Orange): USRP 1 and USRP 1/USRP 3 Collisions, having mean duration
parameter λ5 = 132.164126

• State 7 (Red): USRP 2, having mean duration parameter λ6 = 95.707505

As evidenced by the labeled state sequence, the algorithm resulted in a notably larger state
space. As in section 4.2.1.4, the algorithm was unable to create distinct states correspond-
ing to which coordinated user’s packets collide with interfering USRP 3’s transmissions.
Furthermore, there seems to be a high degree of coupling between states 3 and 7 over the
course of the transmission durations resulting from USRP 2’s transmissions, as well as a
relatively short lasting transient state 1 occurring infrequently within the state sequence.
The strong coupling between states 3 and 7 suggest a systematic error in labeling the state
sequence given the inferred model parameters up to the last iteration of the algorithm. This
strong degree of frequent switching and larger state space leads to less evident relationship
in examining the rows and columns of the state transition matrix A as given below.

A =



1 2 3 5 6 7

1 0.000000 0.020870 0.185350 0.593991 0.199627 0.000162

2 0.159109 0.000000 0.049473 0.452194 0.166289 0.172935

3 0.000064 0.023298 0.000000 0.165509 0.023859 0.787270

5 0.010114 0.505946 0.206098 0.000000 0.078658 0.199184

6 0.011801 0.011199 0.001997 0.973571 0.000000 0.001432

7 0.138084 0.001772 0.713293 0.124696 0.022155 0.000000


(4.86)
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Nonetheless, the algorithm does perform well in labeling the idle state and uncollided
transmissions for USRPs 1 and 3. Although one may be tempted to say that USRP 2’s under-
lying modulation of QAM-64 may be responsible for introducing larger statistical variations
resulting in the more complicated HSMM model, the remaining parameters between the two
coordinated OFDM devices are identical, so it is unlikely that the modulation schemes would
be solely responsible for introducing significantly different time domain characteristics. This
experiment thus demonstrates that an effective implementation of the HSMM algorithm for
identifying distinct RF devices should possess some means for evaluating the effects of pos-
sible systemic errors at the final iteration before making any conclusive inferences about the
observed wireless environment.

4.2.1.7 Two Coordinated OFDM Users with GMSK Interference

Table 4.5 presents a summary for the fifth experimental setup, in which the interference
introduced by USRP 3 is the result of GMSK transmissions over the wireless channel. Since
GMSK is a means of frequency shift keying and is thus distinct from the OFDM transmission
scheme and the underlying phase shift keying for USRPs 1 and 2, it is expected that the
HSMM algorithm should be able to distinguish GMSK packet transmissions with better
accuracy. The following outline also shows that the initial hyperparameters for the HSMM
algorithm is unchanged with respect to the initialization within the fifth experiment detailed
in section 4.2.1.6.

Table 4.5: USRP Generation of Experiment 5.

Coordinated USRPs Interfering USRP
USRP 1 USRP 2 USRP 3

Modulation OFDM-BPSK OFDM-BPSK GMSK
Symbol Bandwidth 250 kHz 250 kHz —

Bit Rate — — 250 kHz
Number of Subcarriers 200 200 —

Packet Size 508 bytes 508 bytes 508 bytes
Packet Bunches [5, 10, 15] [5, 10, 15] [5, 10, 15]

Packet Emission Probs. [1/2, 1/2, 0] [1/2, 1/2, 0] [1/2, 1/2, 0]
Transmission Gain 10.0 20.0 8.0
Idle State Duration Doff ∼ Exp(0.2) sec Doff ∼ Exp(0.2) sec,

Doff ∈ [0.3, 0.7] sec Doff ∈ [0.3, 0.7] sec
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Figure 4.4: Labeled State Sequence for Experiment 4. Yellow = Idle State, Orange = USRP
1/Collisions, Cyan and Red = USRP 2, Dark Blue = USRP 3/Collisions, Black = Transients.
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Initial Hyperparameters

• Nmax = 8

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5, ν = 3

)
• States 2-8: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW

(−→µ0 =
−→
0 ,Λ = I, κ = 8, ν = 3

)
• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

The labeled state sequence upon the final iteration of the algorithm is shown in Figure
4.5, with the following outline providing a legend for the 3 identified states within the model.

• State 1 (Blue): USRP 3 and Collisions, having mean duration parameter λ1 = 131.650711

• State 2 (Cyan): Idle State, having mean duration parameter λ2 = 378.450516

• State 3 (Yellow): USRP 1 and USRP 2, having mean duration parameter λ3 =
254.233984

As is apparent from Figure 4.5, the algorithm does indeed perform well in identifying both the
idle state and GMSK transmissions over the course of the RF trace. Due to the high power
for the introduced interference from GMSK, all collisions occurring between the coordinated
users and USRP 3 are considered as belonging to the same state upon the final iteration.
Likewise, state 3 also includes transmissions from both coordinated OFDM users as opposed
to treating them distinctly. Since several transmissions from USRP 1 are included within
state 3 representing vacancies over the wireless channel, it is worthwhile to study if lowering
the transmission power of the interfering GMSK user as in the next section can resolve this
error in labeling the state sequence.

A =


1 2 3

1 0.000000 0.552871 0.447129

2 0.883738 0.000000 0.116262

3 0.734436 0.265564 0.000000

 (4.87)
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Figure 4.5: Labeled State Sequence for Experiment 5. Cyan = Idle State, Yellow = USRP
1 and USRP 2, Green = USRP 3/Collision.
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4.2.1.8 Two Coordinated OFDM Users with Low Power GMSK Interference

In order to address some of the difficulties presented in the previous section, the trans-
mission power for the interfering GMSK device was reduced as noted in Table 4.6. The
transmitter powers of the coordinated USRPs 1 and 2 were also increased to assess how
the relative powers between the devices would affect the final state labeling. The initial
hyperparameter setup was left unaltered as well, except for a reduction of Nmax to 6.

Table 4.6: USRP Generation of Experiment 6.

Coordinated USRPs Interfering USRP
USRP 1 USRP 2 USRP 3

Modulation OFDM-BPSK OFDM-BPSK GMSK
Symbol Bandwidth 250 kHz 250 kHz —

Bit Rate — — 250 kHz
Number of Subcarriers 200 200 —

Packet Size 508 bytes 508 bytes 508 bytes
Packet Bunches [5, 10, 15] [5, 10, 15] [5, 10, 15]

Packet Emission Probs. [1/2, 1/2, 0] [1/2, 1/2, 0] [1/2, 1/2, 0]
Transmission Gain 15.0 25.0 3.0
Idle State Duration Doff ∼ Exp(0.2) sec Doff ∼ Exp(0.2) sec,

Doff ∈ [0.3, 0.7] sec Doff ∈ [0.3, 0.7] sec

Initial Hyperparameters

• Nmax = 6

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3)

• States 2-6: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW(−→µ0 =
−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

The legend for interpreting the state labeling as seen in 4.6 is presented below.

• State 1 (Black): USRP 3, having mean duration parameter λ1 = 65.255393
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• State 2 (Dark Blue): USRP 2, having mean duration parameter λ2 = 130.422329

• State 3 (Cyan): Idle State and USRP 1, having mean duration parameter λ3 =
149.927048

• State 4 (Green): Collisions and Transients, having mean duration parameter λ4 =
41.915780

• State 5 (Yellow): USRP 3 and Collisions, having mean duration parameter λ5 =
107.176962

Once again, the final results in the state labeling show missed detection of USRP 1, as it is
considered to belong to the same state as vacancies over the channel. Instances of GMSK’s
presence over the channel are consistently detected and considered as belonging to the same
state, regardless of collision instances or undisturbed transmission. States 1 and 4 of the
model also represent shorter duration states that seem to result from transient behavior as
transmissions initiate from the USRP devices.

A =



1 2 3 4 5

1 0.000000 0.007514 0.147488 0.778349 0.066649

2 0.000001 0.000000 0.262107 0.698158 0.039734

3 0.001195 0.000002 0.000000 0.201300 0.797503

4 0.004149 0.577418 0.142121 0.000000 0.276312

5 0.506790 0.064346 0.268037 0.160827 0.000000


(4.88)

4.2.1.9 Two Coordinated OFDM Users with GMSK Interference (Second Case)

As a counterpart to the experiment of 4.2.1.7, USRP 3 is presented as interference to
a coordinated network of USRPs using OFDM with two different underlying modulation
schemes, namely BPSK and QAM-64 as detailed in Table 4.7. It is worth noting that the
transmission gains of the three USRPs are identical to those presented in 4.2.1.7, with the
another significant differences in experimental setup being the ranges in which the idle state
durations may be drawn for each type of network. A list of the initial hyperparameters at
the commencement of the algorithm is detailed in the following bulleted list.

Initial Hyperparameters

• Nmax = 8

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)
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Figure 4.6: Labeled State Sequence for Experiment 6. Cyan = Idle State/USRP 1, Dark
Blue = USRP 2, Black and Yellow = USRP 3, Green = Collision/Transients.
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Table 4.7: USRP Generation of Experiment 7.

Coordinated USRPs Interfering USRP
USRP 1 USRP 2 USRP 3

Modulation OFDM-BPSK OFDM-QAM64 GMSK
Symbol Bandwidth 250 kHz 250 kHz —

Bit Rate — — 250 kHz
Number of Subcarriers 200 200 —

Packet Size 508 bytes 508 bytes 508 bytes
Packet Bunches [5, 10, 15] [5, 10, 15] [5, 10, 15]

Packet Emission Probs. [1/2, 1/2, 0] [1/2, 1/2, 0] [1/2, 1/2, 0]
Transmission Gain 10.0 20.0 8.0
Idle State Duration Doff ∼ Exp(0.45) sec Doff ∼ Exp(1.2) sec,

Doff ∈ [0.3, 0.7] sec Doff ∈ [0.5, 1.75] sec

• States 2-8: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

The legend for interpreting the state labeling as seen in 4.7 is presented below. From
examining the final HSMM state sequence as depicted in 4.7, the resultant 4 states appearing
in the model’s labeling seem to clearly identify undisturbed packet transmissions from both
USRPs 1 and 2 as well as identifying the idle state accurately. State 2 however identifies
both uninterfered transmissions from the GMSK-employed USRP 3 as being identical with
any interference that USRP 3 introduces to the coordinated network. This combination can
mostly be attributed to the high power with which USRP 3 appears in the RF trace in
comparison to the users of the coordinated network. Furthermore, the heavy weighting of
first column of the transition matrix A also tends to reflect the frequent appearance of the
GMSK user’s transmissions over the course of the RF measurements.

• State 2 (Cyan): USRP 3 and Collisions, having mean duration parameter λ2 =
138.4176

• State 3 (Green): Idle State, having mean duration parameter λ3 = 162.2581

• State 4 (Yellow): USRP 2, having mean duration parameter λ4 = 129.6950

• State 5 (Orange): USRP 1, having mean duration parameter λ5 = 127.7830
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A =


2 3 4 5

2 0.000000 0.578705 0.002443 0.418852

3 0.667084 0.000000 0.000011 0.332905

4 0.531989 0.255759 0.000000 0.212252

5 0.627741 0.361974 0.010285 0.000000

 (4.89)
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Figure 4.7: Labeled State Sequence for Experiment 7. Green = Idle State, Orange = USRP
1, Yellow = USRP 2, Cyan = USRP 3 and Collisions.
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Chapter 5

Wireless LAN Analysis Using the
HDP-HSMM Algorithm

The focus of this chapter is to assess the HDP-HSMM algorithm’s efficacy in identifying
distinct transmitters and their associated activity patterns operating under the ubiquitous
IEEE 802.11 wireless network standard. The experiments were carried out by establishing a
direct connection between a laptop and a nearby access point (AP) functioning to wirelessly
broadcast files from a desktop without native wireless capabilities. After establishing the
direct link connection between the two computers, bidirectional file transfers were executed
with a USRP capturing the wireless trace of the data transmissions over time. These mea-
surements were then fed into the previously explained HDP-HSMM algorithm for further
analysis.

5.1 Types of IEEE 802.11 Transmissions

Before discussing more details of the experimental setup, it is important to differentiate
between the two functionally different types of packets that are sent over the 2.4 GHz wireless
band according to the IEEE 802.11 standard. In addition to data packets sent over the
channel for traditional node-to-node file transfers, 802.11 devices also transmit and receive a
variety of management packets responsible for establishing the networks in which to associate
and also for regulating use of the wireless band under a medium access protocol (MAC). As
an example, wireless APs periodically transmit short-duration beacon signals to announce
its presence to all proximal devices that may seek to join the AP’s network. The MAC
protocol of the 802.11 standard utilizes a form of carrier sense multiple access with collision
avoidance (CSMA/CA) technique to mitigate potential collisions over the wireless channel
and to coordinate multiple network peers’ transmissions amongst each other. This MAC
protocol involves a regular series of management packet transmissions between the network
peers to indicate requests to send data as well as clearances to send data.

In the scope of this thesis, it is desired to capture both the data and management pack-
ets over the 802.11 network’s course of operation, since identification of bidirectional man-
agement packet transmissions could provide strong evidence about the potential networks
observable within the collected RF trace. As will be shown in the later results, successful
capture of the management packets is hindered by the comparatively smaller size of the
management packets after the RF trace is downsampled as discussed in Section 4.2.1.2.
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5.2 802.11 Wireless Trace Collection Procedure

As mentioned at the beginning of this chapter, a wireless broadasting network was
established by connecting a desktop to a Cisco Aironet 1200 access point. This connection
allowed file transfers from the desktop computer to other laptops within proximity of the
AP as well as transfers in the reverse direction. The AP was sent to broadcast on the third
channel of the 802.11 subdivision of the 2.4 GHz wireless spectrum; this particular channel
was chosen so as to minimize the potential for transmissions associated with other APs
within the laboratory building to be observed in the RF traces collected by the USRP.1 A
laptop computer was subsequently allowed to join the AP’s broadcast network to commence
file sharing between the two computers.

Both the laptop and desktop computers were each given several distinct files of varying
size ranging from approximately 100 kilobytes to 1.5 megabytes as detailed in Table 5.1. In
each experiment, random permutations in which to transmit the distinct files were generated
using MATLAB, and the file transfers were executed between the two computers with the
use of a file transfer protocol client.2 Time intervals between file transfers was randomized
in the sense that commencement of the transfer was initiated manually and not through any
periodic or computerized methods.

Table 5.1: List of File Sizes Per Device

Laptop Desktop
1 115 kB 152 kB
2 171 kB 395 kB
3 534 kB 541 kB
4 558 kB 790 kB
5 962 kB 966 kB
6 1,030 kB 1,193 kB
7 1,214 kB 1,637 kB

The transmission powers of both the AP and the laptop client were controllable through
direct specification of the AP’s customizable settings, as mentioned in the next three items.

• In order for the AP to remain 802.11b compliant, data rates below 20 megabits per
second (MBps) use the complementary code keying (CCK) modulation scheme detailed

1For reference, the third channel of the 802.11 standard indicates a center frequency of 2.422 GHz for
transmissions. Choosing such a channel helps to reduce potential for interference introduced by the most
commonly used channels of 1, 5, 9, and 13 in typical 802.11 deployments. The IEEE 802.11 standard may
be consulted for more details about the channel allocation scheme for the 2.4 GHz band. [11]

2Note that the files on the laptop set for transmission were sent to the laptop with no possibility for
resending, and vice versa. In this way, a specific file only gets sent once over the sequence of file transactions
over the wireless channel for a given permutation.
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in [11]. The AP’s CCK transmitter power was configurable to distinct values within a
range of 1 to 100 milliwatts (mW).

• For data rates above 20 Mbps and other intermediate values not mandated by the
802.11b specification, OFDM is used as the modulation scheme for transmissions over
the channel. The AP allows the transmitter power to be set at distinct values between
1 and 30 mW.

• The AP also possesses a Limit Client Power option that forces associated clients to
the AP to transmit below a maximal power limit. This option was enabled over the
course of the experiments, with the client’s power limit being varied in a range between
1 to 100 mW. Note that this does not strictly mean that the clients will continuously
transmit packets at the level set by the limit set by the AP.

5.3 802.11 Wireless Trace Analysis

5.3.1 WLAN Experiment 1

The first WLAN experiment is used to assess the algorithm’s capability of discerning
between the packet transmissions of the laptop and the AP whenever there is a large contrast
in transmission power between the two different users. The power specifications for this
experiment are detailed in Table 5.2. The initial hyperparameters may also be found in the
following outline, with the maximum number of states set to Nmax = 3 over the course of
200 iterations. The sequence in which files are transmitted over this captured RF trace can
also be found in Table 5.3 3.

Table 5.2: Power Specifications for WLAN Experiment 1

CCK Power 30 mW
OFDM Power 30 mW

Max. Client Power 1 mW

Initial Hyperparameters

• Nmax = 3

• State 1: λ ∼ Gamma(k = 150, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

3An ’A’ signifies a file originating from the access point, while an ’L’ denotes files originating from the
laptop computer. The numbers correspond to the specific file sent in accordance with Table 5.1.
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• State 2: λ ∼ Gamma(k = 25, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 3: λ ∼ Gamma(k = 30, θ = 7); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• Niter = 200 iterations

Table 5.3: File Transfer Sequence for WLAN Experiment 1

L3, L6, L5, L1, L4, A7, A6, A1, A3

The learned HSMM state sequence is graphically presented in Figure 5.1. As similarly
found in the results of the previous chapter, the algorithm is generally successful in differenti-
ating idle periods over the RF band from file transmissions from the two users. On the other
hand, the algorithm does not successfully capture every periodic beacon signal sent from
the AP. Likewise, there also appears to be several instances of ‘stray’ packet transmissions
not sent from the laptop or AP, as would be found over portions of the RF band possessing
coexisting networks.

Experiment 1 State Legend

• State 1 (Dark Blue): 802.11 Data Traffic Transmissions, having mean duration param-
eter λ1 = 107.4008, multivariate Gaussian mean vector −→µ1 = [0.0013,−0.0048], and
multivariate Gaussian covariance matrix Σ1:

Σ1 =

[
0.0285 −8.2705× 10−4

−8.2705× 10−4 0.0413

]

• State 2 (Cyan): 802.11 Beacon Signals, having mean duration parameter λ2 = 1.4065
multivariate Gaussian mean vector−→µ2 = [−8.6052 × 10−4, 0.0042], and multivariate
Gaussian covariance matrix Σ2:

Σ2 =

[
0.0477 0.0020

0.0020 0.0841

]

• State 3 (Yellow): Idle State, having mean duration parameter λ3 = 146.1474, multi-
variate Gaussian mean vector −→µ3 = [−6.4365 × 10−5, 2.5295 × 10−5], and multivariate
Gaussian covariance matrix Σ3:

68



Σ3 =

[
3.4359× 10−5 −2.4728× 10−7

−2.4728× 10−7 3.4509× 10−5

]

A =


1 2 3

1 0.0000 0.9995 0.0005

2 0.1112 0.0000 0.8888

3 0.0000 1.0000 0.0000

 (5.1)

5.3.2 WLAN Experiment 2

As discussed in the previous section, the results of the previous experiment did not
identify the existence of two distinct users or systematically capture the periodic beacon
signal emitted by the AP. The HDP-HSMM algorithm was consequently rerun for the same
RF data trace, under identical initial conditions with the exception of an increase in the
number of iterations to Niter = 250. The purpose of this repeat calculation was to determine
a general guidelines for selecting the proper number of iterations and the consequent effect
on the final learned HSMM state sequence. As noted, the experimental details as found in
Tables 5.4 and 5.5, with the initial hyperparameters in the following outline remain otherwise
unaltered.

Table 5.4: Power Specifications for WLAN Experiment 2

CCK Power 30 mW
OFDM Power 30 mW

Max. Client Power 1 mW

Initial Hyperparameters

• Nmax = 3

• State 1: λ ∼ Gamma(k = 150, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• State 2: λ ∼ Gamma(k = 25, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

69



Figure 5.1: Labeled State Sequence for WLAN Experiment 1. Yellow = Idle State, Dark
Blue = 802.11 Data Traffic Packets, Cyan = Beacons.
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• State 3: λ ∼ Gamma(k = 30, θ = 7); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• α = γ = ρ = 3

• Niter = 250 iterations

Table 5.5: File Transfer Sequence for WLAN Experiment 2

L3, L6, L5, L1, L4, A7, A6, A1, A3

In a similar manner to the first case, the results as visualized in Figure 5.2 indicate that
all packet transmissions, originating from either the laptop or the AP, are labeled as belonging
to State 1, while only some of the AP’s beacon signals are labeled as State 2. In comparing the
learned results of the algorithm with those of the previous trial encompassing fewer iterations
(summarized below), the learned parameter values for the state’s distributions as well as the
state transition matrices happen to be quite similar. Thus the increase in number of iterations
for the second execution of this RF trace has resulted in quite comparable results as the first
execution, thereby indicating that the algorithm’s final results have stabilized by around 200
iterations, after which increasing the number of interations would not considerably alter the
final learned results.

Experiment 2 State Legend

• State 1 (Dark Blue): 802.11 Data Traffic Transmissions, having mean duration param-
eter λ1 = 108.7185, multivariate Gaussian mean vector −→µ1 = [−0.0051, 0.0029], and
multivariate Gaussian covariance matrix Σ1:

Σ1 =

[
0.0281 −9.5957× 10−4

−9.5957× 10−4 0.0414

]

• State 2 (Cyan): 802.11 Beacon Signals, having mean duration parameter λ2 = 1.2097,
multivariate Gaussian mean vector −→µ2 = [0.0045,−0.0013], and multivariate Gaussian
covariance matrix Σ2:

Σ2 =

[
0.0553 0.0030

0.0030 0.0884

]

• State 3 (Yellow): Idle State, having mean duration parameter λ3 = 146.1633, multi-
variate Gaussian mean vector −→µ3 = [−2.1540 × 10−6, 7.6220 × 10−5], and multivariate
Gaussian covariance matrix Σ3:
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Σ3 =

[
3.4284× 10−5 1.2194× 10−7

1.2194× 10−7 3.4908× 10−5

]

A =


1 2 3

1 0.0000 0.8778 0.1262

2 0.1314 0.0000 0.8686

3 0.0280 0.9720 0.0000

 (5.2)

5.3.3 WLAN Experiment 3

This third presented case investigates the effect of increasing the maximum number of
states Nmax to 4 using the same RF collected trace as the previous two WLAN experiments.
The initialized hyperparameter values for this experiment are quite similar to the previous
two experiments, with only the addition of an extra possible state with distinct duration
hyperparameters from the remaining three model states. A brief summary of the remaining
initial conditions for the experiment can be found below.

Table 5.6: Power Specifications for WLAN Experiment 3

CCK Power 30 mW
OFDM Power 30 mW

Max. Client Power 1 mW

Initial Hyperparameters

• Nmax = 4

• State 1: λ ∼ Gamma(k = 150, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• State 2: λ ∼ Gamma(k = 25, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)
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Figure 5.2: Labeled State Sequence for WLAN Experiment 2. Yellow = Idle State, Dark
Blue = 802.11 Data Traffic Packets, Cyan = Beacons.
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• State 3: λ ∼ Gamma(k = 30, θ = 7); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 4: λ ∼ Gamma(k = 100, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• α = γ = ρ = 3

• Niter = 250 iterations

Table 5.7: File Transfer Sequence for WLAN Experiment 3

L3, L6, L5, L1, L4, A7, A6, A1, A3

Despite the increase in the maximum number of allowable states within the model, the
learned results indicate that the data trace only possesses three states upon conclusion of
the final iteration. Nonetheless, the previously noted difficulties of indistinguishability of
different RF devices and sparse beacon signal labeling can be seen in the state sequence
depicted in Figure 5.3.

Experiment 3 State Legend

• State 1 (Dark Blue): 802.11 Data Traffic Transmissions, having mean duration param-
eter λ1 = 203.9010

• State 2 (Cyan): Idle State, having mean duration parameter λ2 = 87.4118

• State 4 (Orange): 802.11 Beacon Signals, having mean duration parameter λ3 = 0.9792

A =


1 2 4

1 0.0000 0.1620 0.8380

2 0.0176 0.0000 0.9830

4 0.0213 0.9871 0.0000

 (5.3)

5.3.4 WLAN Experiment 4

For this experiment, the transmission power of the laptop was increased to 5 mW as
indicated in Table 5.8. The maximum number of states was also increased to Nmax = 5,
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Figure 5.3: Labeled State Sequence for WLAN Experiment 3. Cyan = Idle State, Dark Blue
= 802.11 Data Traffic Packets, Orange = Beacons.
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with each state having initial hyperparameters as listed in the ensuing outline. Each state
was also given a distinct set of initial hyperparameters in order to potentially increase the
likelihood of resolving the different RF devices into distinct states.

Table 5.8: Power Specifications for WLAN Experiment 4

CCK Power 30 mW
OFDM Power 30 mW

Max. Client Power 5 mW

Initial Hyperparameters

• Nmax = 5

• State 1: λ ∼ Gamma(k = 150, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• State 2: λ ∼ Gamma(k = 25, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 3: λ ∼ Gamma(k = 30, θ = 7); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 4: λ ∼ Gamma(k = 40, θ = 8); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 5: λ ∼ Gamma(k = 100, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• α = γ = ρ = 3

• Niter = 250 iterations

Table 5.9: File Transfer Sequence for WLAN Experiment 4

L1, A2, A5, A1, L5, L4, A4, L2, A6, A7
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From examining the depiction of the learned HSMM superstate sequence in 5.4, an
extra state (State 4) is shown to capture the first file transmission from the laptop as well
as the transmission immediately succeeding the A5 transmission originating from the ac-
cess point. This second transmission does not seem to correspond directly to any activity
presented within the purposefully created traffic as presented in Table 5.9; correspondingly,
it is unknown as to the origin of this transmitted signal or the type of traffic presented by
this captured transmission. All known transmissions from the laptop are not consistently
labeled as belonging to the same state upon the final iteration of the algorithm, and thus
the initialization of each HSMM state with different hyperparameters seems to have little
effect on achieving a more consistent labeling of the final HSMM state sequence.

Experiment 4 State Legend

• State 2 (Cyan): 802.11 Beacon Signals and Data Traffic Transmissions, having mean
duration parameter λ1 = 1.4991

• State 3 (Green): Idle State, having mean duration parameter λ2 = 142.4575

• State 4 (Yellow): 802.11 Data Traffic Transmissions, having mean duration parameter
λ3 = 114.2218

• State 5 (Orange): 802.11 Data Traffic Transmissions, having mean duration parameter
λ3 = 120.0889

A =


2 3 4 5

2 0.0000 0.9012 0.0048 0.0939

3 0.9996 0.0000 0.0002 0.0002

4 0.9796 0.0204 0.0000 0.0000

5 0.9898 0.0102 0.0000 0.0000

 (5.4)
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Figure 5.4: Labeled State Sequence for WLAN Experiment 4. Green = Idle State, Orange
and Yellow = 802.11 Packets, Yellow and Cyan = Beacons.
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Chapter 6

Future Work

The experimental results in Chapter 4 indicate that the HSMM algorithm can be uti-
lized to approximate the number of wireless devices within an RF trace after providing coarse
model assumptions about device behavior in terms of signal durations and received energy.
A prominent feature of the algorithm is its ability to focus on learning the statistical features
of the separate signal sources without creating sophisticated models for random effects in-
troduced by the wireless channel or the underlying signal features of the received RF signals.
This chapter will discuss several ideas for improving the algorithm to increase the accuracy
of the inference process to discover more detailed information about the wireless networks
responsible for the observed RF traces.

6.1 Algorithmic Improvements

As evidenced in Chapter 4 , the choice for modeling the separate state observation distri-
butions by multivariate Gaussian distributions allows for coarse time domain segmentation
of the RF traces according to spectral occupancies and vacancies over the wireless channel.
Although the observations within the RF traces can hardly be assumed to have Gaussian
statistical distributions, the algorithm does an admirable job of segmenting the data into
distinct regions of interest without resorting to thorough experimental accumulation of the
best statistical distributions for modeling the RF signal sources. A further line of inquiry for
developing the HSMM algorithm should pursue whether more appropriate distributions with
the desirable conjugacy relationship within the Bayesian framework should be incorporated
to model the state emission process.

Characterization of the HSMM state emission process additionally considers the emis-
sions to be independent and identically distributed over the course of each state’s duration,
thus neglecting time domain correlations in the data throughout each state’s persistence.
Such spectral methods for examining RF signal features has been a more thoroughly investi-
gated and demonstrably successful approach for identifying RF devices in previous research
applications. It is worth investigating the potential for adding this approach to modeling
the emission distributions so that stronger conclusions can be made with regards to mapping
discovered states to unique RF devices or packet collision instances.

Implementation of the algorithm within this thesis was also performed in an offline
manner due to the large amount of data within the wireless RF traces. Since the behavior of
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wireless traffic over the RF frequencies is highly time variant over long observation windows,
the inference process needs modification for reducing the computational complexity so that
the inferred model parameters can be quickly utilized by software defined radios for adapting
their behavior as wireless traffic patterns change over time. Such a sequential treatment of the
inference algorithm would thus ultimately broaden the impact of the algorithm’s purpose to
implement more efficient methods for practicably achieving better spectral usage efficiencies
over the RF band.

The majority of the computational expense in the inference process involves the calcu-
lation of the backward message passage scheme described in Sections 3.1.1 and 3.2. A first
method for reduce this computational expense would be to minimize the number of data
points needed to sufficiently capture the temporal dynamics within the captured RF trace
while preserving enough embedded information to statistically distinguish between distinct
users. Another possibility would be to investigate how to modify the backward message
passing calculations to be performed in parallel algorithms using a generic graphics process-
ing unit (GPU) as opposed to a CPU. The highly parallelized structure of modern GPUs
is generally more amenable to performing intensive computations much faster than even
multi-core CPUs, and would thus provide a worthwhile candidate for expediting the HSMM
learning process for the desired applications.1

6.2 Algorithm Performance Assessment

In [13] and [14], the performance of their developed HSMM algorithm is calculated
in terms of computing the normalized Hamming error between the final learned HSMM
state sequence with a corresponding state sequence serving as a ground truth model for
the experimentally based data input into the algorithm. Such an error criterion serves as a
quantitative means for identifying the fraction of time in which the labeled state sequence
correctly identifies the appropriate device within the experimental data provided to the
algorithm. The lack of direct synchronization between the coordinated USRP network and
the autonomous interfering USRP within the experiments of Chapter 4 presents a unique
challenge to creating an overall ground truth model; with further development of the GNU
Radio programs used in the experimental generation process, it may be possible to develop
such a ground truth model that aggregates the time-based behavior of the distinct acting
RF devices into an overall state sequence that can be compared to the final learned HSMM
state sequence. Upon completion of such a task, it would then be possible to quantitatively
judge how well the algorithm can capture the temporal behavior for each distinct device
as they appear over the course of repeated measurements by the observing USRP; then it

1The experiments within this thesis were performed using a desktop equipped with a Intel Xeon Quad
Core W3565 CPU and 5.7 GB of random access memory. For a wireless RF trace consisting of roughly 32,000
complex data points, a typical application of the HSMM algorithm described in Chapter 4 encompassing
250 iterations required approximately 3 hours for completion. Obviously, there is indeed much room for
improving the algorithm’s computational structuring in terms of CPU execution.
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would then be possible to also assess the convergence speed (i.e., number of iterations) at
which the algorithm settles on a consistent labeling of the HSMM state sequence.

On the other hand, unidentified RF emissions from unanticipated RF devices with the
frequency band of interest may arise within the course of data collection process as seen in
Chapter 5. This primary difficulty again arises in temporally characterizing RF devices if
there is no definitive prior information known about the number or behavior of such devices
on the specified RF bandwidth of interest, since there can be no definitive ground truth
model for the observed temporal behavior. In the absence of such a ground truth model,
the final results of the HSMM algorithm should be assessed in terms of consistency. In
other words, it is worth comparing the statistical properties amongst individual instances
of each similarly labeled superstate in order to seek out potential instances of mislabeled
regions within the HSMM labeling. Likewise, such instances can be compared between
different states to determine if multiple state can be deemed statistically similar enough
to be resolved into a smaller number of states. These sorts of comparison would involve
developing some further nonparametric, empirically based probability density estimations.

6.3 Further Details about Wireless Network Inference

It is also very desirable to generalize the HSMM algorithm’s learned parameters to de-
velop more comprehensive understandings of the wireless networks responsible for driving
the observed behavior within each collected RF trace. For example, mapping user-specific
occupancy patterns across multiple RF traces may be used to discover how the observed RF
devices behave within their operational roles of their specific wireless networks. An identifi-
cation of transmitter/receiver pairs along with how specific users react to data transmissions
over time could then motivate a more sophisticated means for improving spectral efficiency
amongst distinct networks while minimizing interference between these networks as they
compete to channel access within more congested portions of the RF spectrum.

In order to accomplish this task of wireless network discovery, some means must be
provided to discern whether subsets of the observed RF devices seem to act in accordance
to protocol-based behavior. Since wireless channel access protocols are designed to prevent
simultaneous transmissions for multiple network devices, it is worthwhile to assess whether
identified packet collisions from the HSMM algorithm can indicate the existence or absence
of an underlying protocol governing the behavior of the wireless devices within the RF traces.
Thus the inferred timing parameters and observation distributions from the HSMM algorithm
should be developed into a general framework for assessing the level of coordination amongst
the RF devices and their networks as they contend for access over the RF spectrum.

The requisite goal of wireless network inference using the HSMM algorithm is thus
to assess the degree of coordination amongst the identified devices’ transmissions within
the input wireless RF traces. By examining the timing patterns in which a single user’s
transmissions occur with respect to the other users’ transmissions distinguished within the
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trace, we wish to infer whether the timing patterns over which several devices emerge are
consistent with bidirectional communications in accordance with some specified protocol
governing their behavior over time. Conversely, we may also seek to determine whether
the transmission patterns between subsets of users appear in a random fashion, signifying
a lack of common protocol regulating their temporal behavior or possibly even indicating
the presence of purposefully introduced interference to disrupt the communications between
network participants.

6.4 Experimental Considerations

As noted in the experimental results of the previous chapter, the inferred state sequences
resultant from the HSMM algorithm seems to be dependent on the relative transmission
powers of each RF device. Since the observed signal powers for each device is directly
correlated to the distances from each RF signal source to the sensors collecting the RF
measurements, it is also worthwhile to investigate how RF traces collected from multiple
RF sensors may be aggregated to provide more reliable conclusions about the identity of
each RF emitter in a more spatially diverse data collection process. Consequently, it is
worthwhile to consider how information from multiple sensors can be fused together to
provide inputs to the HSMM algorithm, or even perhaps have each sensor independently
perform the HSMM inference algorithm in their own operating environment and aggregate
their inferred model parameters together in a more cohesive manner. Thus as issue remains
of achieving a consistent methods for labeling the observed HSMM states amongst several
RF sensing devices.

The developed HSMM model for classifying RF users has also not considered more
detailed fading and path loss characterizations introduced by the wireless channels of interest.
A more complete implementation of the HSMM algorithm should account for a more realistic
modeling of the time-variant features for the wireless channel itself and the corresponding
effects that such time variance introduces to the data collection process. Since it is generally
more difficult to calibrate RF measurements performed by the USRPs between devices,
additional test scenarios should incorporate higher performance spectrum analyzers to collect
the RF traces serving as input to the HSMM algorithm.
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Appendix A

Explanation of Conjugate Pairs in the
Bayesian HSMM Algorithm

The intent of this appendix is to provide a rough mathematical explanation of the
conjugacy relationship between the prior distributions and likelihood functions for the dis-
tributions encountered in Chapter 4 as extrapolated from [7]. As discussed in section 3.3.1,
the unnormalized posterior distribution P (θ|Y ) can be computed as the product of the like-
lihood function P (Y |θ) and prior distribution P (θ).

P (θ|Y ) ∝ P (Y |θ)P (θ) (A.1)

Suppose that a collection of values −→y = [y1, y2, . . . , yn]T for the random variable Y are
yielded as the results of observing some process whose parameters θ are sought.1 The
likelihood function for a single observation in −→y is said to belong to the exponential family
of distributions if it can be expressed in (A.2), where f(·), g(·), φ(·), and u(·) represent generic
functions.

P (yi|θ) = f(yi) · g(θ) exp{φ(θ)Tu(yi)}, ∀ i (A.2)

For independent and identically distributed values of yi ∈ −→y , this functional form can be
extended to the entire collection −→y .

P (−→y |θ) =

[
n∏
i=1

f(yi)

]
g(θ)n exp

{
φ(θ)T ·

n∑
i=1

u(yi)

}
(A.3)

∝ g(θ)n exp

{
φ(θ)T ·

n∑
i=1

u(yi)

}
(A.4)

Since the likelihood for θ only depends on the values within −→y through the quantity t(−→y ) ,∑n
i=1 u(yi), it is said that t(−→y ) is a sufficient statistic for θ.

Suppose the prior distribution P (θ) is also chosen to have the form

P (θ) ∝ g(θ)η exp
{
φ(θ)T · ν

}
. (A.5)

The posterior distribution as calculated from (A.1) can also be seen to be a member of the

1T represents the transposition operation as commonly used in linear algebra.
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same exponential family expressed in (A.3).

P (θ|−→y ) ∝ g(θ)η+n exp
{
φ(θ)T ·

[
ν + t(−→y )

]}
(A.6)

Thus the chosen prior distribution and the likelihood function are conjugate to each other,
since they belong to the same family of distributions. It should be noted that the support
set for which the prior and posterior distributions are non-zero should be identical if proper
conjugate priors are chosen.

A.1 Conjugate Prior for a Poisson Likelihood

Suppose that the likelihood function has the form of a Poisson distribution with mean
parameter λ (θ = λ) as shown in (A.7).

P (Y = yi|λ) =
λyi

yi!
exp{−λ}, yi ∈ {0, 1, 2, . . . }, λ > 0 (A.7)

=
1

yi!
exp{−λ} exp{log(λyi)} (A.8)

=
1

yi!
exp{−λ} exp{log(λ) · yi} (A.9)

From inspection of (A.2), the Poisson distribution is a member of the exponential family
with f(yi) = 1

xi!
, g(θ) = exp{−λ}, and sufficient statistic t(yi) = yi. If the mean parameter

λ is modeled by a gamma distribution (λ ∼ Gamma(k, θ)), the prior distribution will be
expressed by (A.11) using a shape parameter k and a scale parameter θ.

P (λ) ∼ Gamma(k, θ), k, θ > 0 (A.10)

=
1

θk Γ(k)
λk−1 exp

{
− λ

θ

}
, Γ(k) =

∫ ∞
0

tk−1 exp{−t} dt (A.11)

∝ λk−1 exp

{
− λ

θ

}
. (A.12)
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The calculation of the posterior distribution P (λ|−→y ) for a set of observations −→y is as follows.2

P (λ|−→y ) ∝ λ
P
yi exp{−λn} · λk−1 exp

{
− λ

θ

}
(A.13)

∝ λ(k+
P
yi)−1 exp

{
− λ(1 + nθ)

θ

}
(A.14)

P (λ|−→y ) ∼ Gamma

(
k +

n∑
i=1

yi ,
θ

1 + nθ

)
(A.15)

Comparison of (A.14) with (A.12) proves that the gamma distribution is the appropriate
conjugate prior for a Poisson likelihood function. Obtaining a revised estimate of λ can be
generated by resampling from the initial gamma distribution with the update hyperparam-
eters modified as in (A.16). {

kn = k +
∑n

i=1 yi

θn = θ
1+nθ

(A.16)

A.2 Conjugate Prior for a Univariate Gaussian Likeli-

hood

A.2.1 Unknown Mean, Known Variance

Consider the likelihood of a single scalar observation y as following a Gaussian N
(
µ, σ2

)
distribution with known variance σ2 (hence, θ = µ).

P (y|θ) =
1√

2πσ2
exp

{
− 1

2

(y − θ)2

σ2

}
(A.17)

The likelihood consequently is an exponential of quadratic form in θ, entailing that the
appropriate conjugate prior should also have this same form. In this case, the posterior
distribution will then be the product of two exponentials of identical form, yielding another

2In the context of the presented algorithm, −→y would represent a collection of observed durations for for
a single state after the HSMM state sequence labeling.
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exponential form.

P (θ) ∝ exp{Aθ2 +Bθ + C} (A.18)

∝ exp

{
− 1

2

(θ − µ0)2

τ 2
0

}
(A.19)

P (θ) ∼ N
(
µ0, τ

2
0

)
(A.20)

The posterior density can then be calculated as follows.

P (θ|y) ∝ exp

{
− 1

2

[
(y − θ)2

σ2
+

(θ − µ0)2

τ 2
0

]}
(A.21)

∝ exp

{
− 1

2

(θ − µ1)2

τ 2
1

}
(A.22)

P (θ|y) ∼ N
(
µ1, τ

2
1

)
(A.23)

The equations in (A.24) define the new updated hyperparameters for drawing from the
posterior distribution. 

1
τ2
1

= 1
τ2
0

+ 1
σ2

µ1 =

(
τ2
1

τ2
0

)
µ0 +

(
τ2
1

τ2
0

)
y

(A.24)

Extension to a set of observations −→y is obtained in a similar fashion.

P (θ|−→y ) ∝ P (−→y |θ)P (θ) (A.25)

=
n∏
i=1

P (yi|θ) · P (θ) (A.26)

∝
n∏
i=1

exp

{
− 1

2

(yi − θ)2

σ2

}
· exp

{
− 1

2

(θ − µ0)2

τ 2
0

}
(A.27)

∝ exp

{
− 1

2

[∑n
i=1(yi − θ)2

σ2
+

(θ − µ0)2

τ 2
0

]}
(A.28)

P (θ|−→y ) ∼ N
(
µn, τ

2
n

)
(A.29)

The equations in (A.30) once again define the updated hyperparameters for drawing from
the posterior distribution.

1
τ2
n

= 1
τ2
0

+ n
σ2

µn =

(
τ2
n

τ2
0

)
µ0 +

(
τ2
n

σ2

)
nȳ with ȳ , 1

n

∑n
i=1 yi

(A.30)
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A.2.2 Known Mean, Unknown Variance

For a a collection of values −→y = [y1, y2, . . . , yn]T , the likelihood function is given by
(A.31).

P (−→y |θ) =
(
2πσ2

)−n/2 · exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

}
(A.31)

For the prior distribution P (σ2), we choose a Gamma(a,b) prior with λ = 1
σ2 , which is more

commonly known as an inverse-gamma distribution for the variable σ2.

P (σ2) =
ba

Γ(a)
λa−1

(
σ2
)−(a−1)

exp

{
− b

σ2

}
(A.32)

P (σ2) ∼ Inv-Gamma(a, b) (A.33)

Consequently, the posterior distribution is computed as follows.

P (θ|−→y ) ∝
(
σ2
)−n/2

exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

}
·
(
σ2
)−(a−1)

exp

{
− b

σ2

}
(A.34)

∝
(
σ2
)−[(a+n/2)−1] · exp

{
−
∑

(yi − µ)2 + 2b

2σ2

}
(A.35)

P (θ|−→y ) ∼ Inv-Gamma

(
a+

n

2
, b+

1

2

n∑
i=1

(yi − µ)2

)
(A.36)

Thus, the inverse gamma distribution is the conjugate prior for a univariate Gaussian likeli-
hood function with known mean and unknown variance, with the updated hyperparameters
defined in (A.37). {

an = a+ n
2

bn = b+ b+ 1
2

∑n
i=1(yi − µ)2

(A.37)

A.2.3 Unknown Mean and Unknown Variance

The conjugate prior for a collection of univariate Gaussian observations with unknown
mean and unknown variance can be obtained by appropriately combining the prior of Sections
A.2.1 and A.2.2. As opposed to the previous cases, P (θ) = P (µ, σ2) is a joint distribution
of two random variables. First, suppose the marginal distribution P (σ2) is modeled by an
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inverse gamma distribution according to (A.39).

P (σ2) ∼ Inv-Gamma(ν0, σ
2
0) (A.38)

=
(σ2

0)ν0

Γ(ν0)
λν0−1

(
σ2
)−(ν0−1)

exp

{
− σ2

0

σ2

}
(A.39)

Then the conditional distribution P (µ|σ2) can be modeled a Gaussian distribution with a
rescaled variance σ2/κ0.

P (µ|σ2) ∼ N (µ0, σ
2/κ0) (A.40)

=
κ0

2πσ2
0

exp

{
− κ0

2

(µ− µ0)2

σ2
0

}
(A.41)

The prior distribution P (θ) can then be expressed as the product of (A.39) and (A.41) in
what is termed a normal-scaled inverse gamma (NIG) distribution.

P (θ) = P (µ, σ2) (A.42)

= P (µ|σ2)P (σ2) (A.43)

∝
√
κ0√

2πσ2
0

(σ2)−(ν0+1) exp

{
− 2σ2

0 + κ0(µ− µ0)2

2σ2

}
(A.44)

Using (A.31), the posterior distribution P (−→y |θ) can be calculated as follows. After alge-
braically rearranging the terms of (A.45), it is can be seen that the NIG distribution is
the conjugate prior for iid observations of a Gaussian distribution of unknown mean and
variance.

P (−→y |θ) ∝
(
2πσ2

)−n/2
exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

}

·
√
κ0√

2πσ2
0

(σ2)−(ν0+1) exp

{
− 2σ2

0 + κ0(µ− µ0)2

2σ2

}
(A.45)

∼ NIG
(
µn, κn, νn, σ

2
n) (A.46)

The updated hyperparameters for drawing from the posterior distribution are as follows in
(A.47). 

κn = κ0 + n

µn =
(
κ0/κn

)
µ0 +

(
n/κn

)
ȳ

νn = ν0 + n

σ2
n =

(
ν0/νn

)
σ2

0 + 1
νn

[
µ2

0κ0 − µ2
nκn +

∑n
i=1 y

2
i

] (A.47)
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A.3 Conjugate Prior for a Multivariate Gaussian Like-

lihood

Performing posterior inference for a collection of n k-dimensional iid multivariate Gaus-
sian observations Y = {−→y1 ,

−→y2 , . . . ,
−→yn} is very similar to the approach used throughout

section A.2 except extrapolated to multiple dimensions. The likelihood for one multivariate
Gaussian observation with mean vector −→µ and covariance matrix Σ (θ = {−→µ ,Σ}).3

P (−→y |θ) = (2π)−k/2 |Σ|−1/2 exp

{
− 1

2
(−→y −−→µ )TΣ−1(−→y −−→µ )

}
(A.48)

For a collection of n iid vectors −→yi , the likelihood function becomes the product of the n
marginal distributions in (A.48).

P (Y) = (2π)−kn/2 |Σ|−n/2 exp

{
− 1

2

n∑
i=1

(−→yi −−→µ )TΣ−1(−→yi −−→µ )

}
(A.49)

∝ |Σ|−n/2 exp

{
1

2
tr
(
Σ−1S

)}
, S ,

n∑
i=1

(−→yi −−→µ )(−→yi −−→µ )T (A.50)

(A.51)

In (A.50), tr(·) represents the trace operation, while S is called the scatter matrix showing
the sum of squares around the mean vector −→µ .

Supposing that both the mean vector and covariance matrix are unknown, the analysis
for the proper conjugate prior is very similar to the procedure detailed earlier in Section A.2.3.
The first task is to generate a sample for the covariance matrix Σ from an unnormalized
inverse Wishart (IW) distribution, which is a multidimensional extension of the inverse
gamma distribution introduced earlier.

P (Σ) ∝ |Σ|−(ν0+k+1)/2 exp

{
− 1

2
tr
(
Λ0Σ

−1
0

)}
(A.52)

∼ IW(ν0,Λ
−1
0 ) (A.53)

The conditional distribution P (−→µ |Σ) is then modeled as a multivariate Gaussian according
to (A.48) with a rescaled covariance matrix.

P (−→µ |Σ) ∼ N
(−→µ0,Σ/κ0) (A.54)

∝ |Σ|−1/2 exp

{
− κ0

2
(−→µ −−→µ0)TΣ−1(−→µ −−→µ0)

}
(A.55)

3|Σ| denotes the determinant of the matrix Σ
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The prior distribution P (θ) is then the product of P (Σ) and P (−→µ |Σ), resulting in an normal
inverse Wishart (NIW) distribution as seen in (A.59).4

P (θ) = P (µ,Σ) (A.56)

= P (−→µ |Σ) · P (Σ) (A.57)

∝ |Σ|−(ν0+k+1)/2 exp

{
− 1

2
tr
(
Λ0Σ

−1
0

)}

· |Σ|−1/2 exp

{
− κ0

2
(−→µ −−→µ0)TΣ−1(−→µ −−→µ0)

}
(A.58)

∝ |Σ|−[(ν0+k)/2+1] exp

{
− 1

2
tr
(
Λ0Σ

−1
0

)
− κ0

2
(−→µ −−→µ0)TΣ−1(−→µ −−→µ0)

}
(A.59)

P (θ) ∼ NIW(−→µ0, κ0, ν0,Λ0) (A.60)

The hyperparameters −→µ0 and κ0 are used to express the mean value and variance of each
component for the generated mean vector −→µ . Generating a positive definite covariance
matrix Σ requires two hyperparameters, a degrees-of-freedom parameter ν0 ≥ k − 1 and a
positive semidefinite matrix Λ0. As ν0 → ∞ close to its minimum value of k − 1 generates
nearly singular matrices, while decreasing ν0 places more emphasis on the scale matrix Λ0.

P (θ) = Pr(Σ) · Pr(−→µ |Σ) (A.61)

∼ IWν0

(
Λ−1

0

)
· N
(−→µ 0,Σ/κ0) (A.62)

∝ |Σ|−(ν0+k+1)/2 exp

{
− 1

2
tr
(
Λ0Σ

−1
0

)}

· |Σ|−1/2 exp

{
− κ0

2
(−→µ −−→µ0)TΣ−1(−→µ −−→µ0)

}
(A.63)

P (θ) ∝ |Σ|[(ν0+k)/2+1] exp

{
− 1

2
tr
(
Λ0Σ

−1
0

)
− κ0

2
(−→µ −−→µ0)TΣ−1(−→µ −−→µ0)

}
(A.64)

The posterior distribution P (θ|Y) can then be derived as follows.

P (θ|Y) ∝ P (Y|θ) · P (θ) (A.65)

∝ |Σ|−n/2 exp

{
1

2
tr
(
Σ−1S

)}

· |Σ|−[(ν0+k)/2+1] exp

{
− 1

2
tr
(
Λ0Σ

−1
0

)
− κ0

2
(−→µ −−→µ0)TΣ−1(−→µ −−→µ0)

}
(A.66)

P (θ|Y) ∼ NIW(−→µn, κn, νn,Λn) (A.67)

4Note that this distribution is unnormalized. As mentioned previously in Chapter 3, the omission of the
normalization constant does not affect the inference process.
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As a result, the NIW distribution is seen to serve as a conjugate prior for likelihood functions
modeled by a multivariate Gaussian distribution. After computing the posterior distribution
according to (A.66), the updated values for the hyperparameters can be seen in (A.68).

κn = κ0 + n

−→µn = (κ0/κn)−→µ0 + (n/κn)ȳ

νn = ν0 + n

Λn = Λ0 + S + (κ0 n/κn)(ȳ −−→µ0)T (ȳ −−→µ0)

(A.68)

In these formulations, x̄ is actually a vector representing the empirical mean along each
dimension of these multivariate random variables (ȳj = 1

n

∑n
i=1 yi,j ∀ j = 1, 2, . . . , k).

A.4 Conjugate Prior for a Multinomial Likelihood

Suppose that some experiment yields one of N outcomes at each trial, with the probabil-
ity of each event i occurring given by a probability mass function −→p = [p1, p2, . . . , pN ]. After
n trials of such an experiment, each possible event i ∈ {1, 2, . . . , N} will have occurred ni
times, with

∑N
i=1 ni = n. The probability that each possible event occurs with the observed

frequency can be described by a multinomial distribution given in (A.69).

p(n1, n2, . . . , nN |−→p , n) =
n!

n1!n2! · · ·nN !

N∏
i=1

pni
i (A.69)

As mentioned in Section 3.3.2, the Dirichlet distribution serves as a conjugate prior for a
multinomial likelihood, as detailed in the following analysis, where −→n = [n1, n2, . . . , nN ].

P (θ|−→n ) = P (−→n |θ) · P (θ) (A.70)

=
n!

n1!n2! · · ·nN !

N∏
i=1

pni
i ·

Γ(α0)∏N
i=1 Γ(αi)

N∏
i=1

pαi−1
i (A.71)

∝
N∏
i=1

pni
i ·

N∏
i=1

pαi−1
i (A.72)

∝
N∏
i=1

pαi+ni−1
i (A.73)

∼ Dir(−→α +−→n ) (A.74)
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Appendix B

Relevant Information from Measure
Theory

A full understanding for the concepts introduced in Sections 3.3.2 and 3.3.3 require a
short introduction to a more axiomatic description of probability and measure theory.1 In
a rough sense, probability is primarily focused on providing a framework for quantifying
the expected result of some random experiment, with more likely experimental outcomes
possessing a greater value than other less likely outcomes. For such an experiment, each
performance will yield one outcome out of the set of all potential outcomes known as the
sample space X . Alternatively, one can consider computing the probability for events, or
subsets of the sample space. As a quick example, one roll of a regular six-sided die will
result in one of six potential outcomes for the number on the top face of the die, resulting
in a sample space X = {1, 2, 3, 4, 5, 6} for one experimental trial. In this case, each distinct
element in the sample space is considered the event of interest. It may also be desired to
define an event as the resultant number on the top face being odd; computing the probability
of such an event would then encompass somehow aggregating the probabilities for observing
1, 3, or 5.

A measureable space (X ,F) consists of the experiment’s sample space and a number of
subsets F on that sample space known as a σ-algebra. A σ-algebra is defined as having the
following properties:

1. F 6= ∅. (F is not empty.)

2. If B ∈ F , then Bc ∈ F . In other words, each set in the σ-algebra must also possess
its complement within the σ-algebra as well.

3. If {Bi}∞i=1 ∈ F , then
⋃∞
i=1Bi ∈ F . Thus for every countable collection of sets in the

σ-algebra, the union of every set in that collection must also reside in the σ-algebra.

Through these three stipulations, it follows that the smallest possible σ-algebra is F =
{∅,X}. On the other hand, the largest possible σ-algebra contains every potential subset of
the sample space X .

It is also useful to define a measure µ that assigns a non-negative real number to every
member within the σ-algebra F . A measure µ : F → [0,∞) satisfies the following properties:

1For a more formal and thorough treatment of these subjects, one can consult Probability and Measure
by Patrick Billingsley or Probability: A Graduate Course by Allan Gut.
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1. For all F ∈ F , µ(F ) ≥ 0.

2. The measure of the empty set is µ(∅) = 0.

3. For a countable collection of disjoint sets {Fi}i∈A ∈ F with Fi ∩ Fj = ∅ for i 6= j,
the measure of the union of those sets is equal to the sum of the measures for each
individual set Fi.

µ
(⋃
i∈A

Fi

)
=
∑
i∈A

µ(Fi) (B.1)

A probability measure P also has the additional property that P (X ) = 1. Thus, a probability
space (X ,F , P ) is an ordered triple used to calculate the probability for the potential events
arising from some experiment.
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Appendix C

Generating Samples from a Dirichlet
Distribution

Many numerical computing software environments, such as MATLAB, include native
functions for drawing from commonly used probability distributions including the beta and
gamma distribution, yet do not possess such functions for drawing from Dirichlet distribu-
tions. This appendix will consider two different techniques for drawing Dirichlet distributions
using these more common distributions. The first technique, known as the stick breaking pro-
cedure, provides an intuitive way to visualize the creation of Dirichlet distributions through
an iterative process. The second technique involving gamma distributions is also included,
due to its more computationally efficient structure. A more detailed discussion of these
procedures and their derivation can be found in [5].

C.1 Stick-Breaking Procedure

Suppose that a random variable X is drawn from a beta distribution (X ∼ Beta(a,b)).
The probability distribution for the beta distribution is given in (C.1), where a and b repre-
sent two distinct shape parameters.

P (x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1 (1− x)b−1, x ∈ [0, 1]; a, b > 0 (C.1)

As previously discussed in Section 3.3.2, a random probability mass function (PMF) −→p can
be drawn from a Dirichlet distribution such that −→p ∼ Dir(−→α ).

P (−→p |−→α ) =
Γ(α0)∏N
i=1 Γ(αi)

N∏
i=1

pαi−1
i (C.2)

∝
N∏
i=1

pαi−1
i (C.3)

From examining (C.1) and (C.2), it can be seen that a two-dimensional probability mass func-
tion −→p = [p1, p2] ∼ Dir([a, b]) reduces to a beta distribution Beta(a, b). Thus, the constraint∑N

i=1 pi = 1 for an N -component PMF suggests that an iterative procedure can be specified
to generate a Dirichlet distribution from drawing from several linked beta distributions.
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It is convenient to envision the Dirichlet distribution as breaking a stick of unit length
into N components, with each component having a random length. The stick breaking
procedure is briefly examined in the following outline.

1. Draw a value u1 ∼ Beta(α1,
∑N

j=2 αj) and set p1 = u1. At this point, one component
of length p1 has been broken from the stick with 1−u1 = 1−p1 of the stick remaining.

2. For 2 ≤ i ≤ N − 1, i − 1 components, each with random length, have been removed
from the stick. As an extension of the first step,

∏i−1
j=1(1− uj) will remain on the stick

after i segmentations. Thus, draw ui ∼ Beta(αi,
∑N

j=i+1 αj) and set

pi = ui
∏i−1

j=1(1− uj).

3. For i = N , the remainder of the stick will be assigned to pN , with pN = 1−
∑N−1

j=1 pj.

C.2 Generating Dirichlet Distributions from Gamma

Random Variables

A random variable X drawn from a gamma distribution (X ∼ Gamma(k, θ)) has a
probability distribution function given by (C.4) as follows.

P (x|k, θ) =
1

θk Γ(k)
xa−1 exp

{
− x

θ

}
, x > 0; k, θ > 0 (C.4)

If Xi ∼ Gamma(ki, θ) are marginally independent for i = 1, . . . , N , then the joint probability
distribution for (X1, . . . , XN) is a product of the N marginal distribution from (C.4), each
with the same scale parameter θ but distinct shape parameters ki.

P (x1, . . . , xN |k1, . . . , kn, θ) =
1

θ
P

i ki Γ(
∑

i ki)

(
N∑
i=1

xi

)(
P

i ki−1)

exp

{
−
∑N

i=1 xi
θ

}
(C.5)

Examining (C.5), it can be seen that
∑N

i=1 Xi ∼ Gamma
(∑N

i=1 ki, θ
)

. By setting θ = 1,

it is possible to draw an N -component Dirichlet distribution using the gamma distribution
through the procedure outlined below.

1. For i = 1, . . . , N , ui ∼ Gamma(αi, 1).

2. For i = 1, . . . , N , pi = uiPN
i=1 ui

.

The second step is needed to renormalize the drawn components to satisfy the PMF require-
ment that

∑N
i=1 pi = 1.
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Appendix D

Software Programs

D.1 Acquiring Wireless Traces Using the USRP

#!/usr/bin/env python

#

# Copyright 2012 Free Software Foundation, Inc.

#

# This file is part of GNU Radio

#

# GNU Radio is free software; you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation; either version 3, or (at your option)

# any later version.

#

# GNU Radio is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with GNU Radio; see the file COPYING. If not, write to

# the Free Software Foundation, Inc., 51 Franklin Street,

# Boston, MA 02110-1301, USA.

#

"""

Read samples from a UHD device and write to file formatted as binary

outputs single precision complex float values or complex short values

(interleaved 16 bit signed short integers).

"""

##############################################################################

Usage: ./uhd_rx_cfile -f center_freq --samp-rate sampling_rate

--args "usrp_identifier" output_file

Example: ./uhd_rx_cile -f 2.422G --samp-rate 500k --args "name=usb_usrp1"
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wireless_trace.dat

##############################################################################

from gnuradio import gr, gru, eng_notation

from gnuradio import uhd

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import sys

n2s = eng_notation.num_to_str

class rx_cfile_block(gr.top_block):

def __init__(self, options, filename):

gr.top_block.__init__(self)

# Create a UHD device source

if options.output_shorts:

self._u = uhd.usrp_source(device_addr=options.args,

stream_args=uhd.stream_args(’sc16’,

options.wire_format, args=options.stream_args))

self._sink = gr.file_sink(gr.sizeof_short*2, filename)

else:

self._u = uhd.usrp_source(device_addr=options.args,

stream_args=uhd.stream_args(’fc32’,

options.wire_format, args=options.stream_args))

self._sink = gr.file_sink(gr.sizeof_gr_complex, filename)

# Set the subdevice spec

if(options.spec):

self._u.set_subdev_spec(options.spec, 0)

# Set the antenna

if(options.antenna):

self._u.set_antenna(options.antenna, 0)

# Set receiver sample rate

self._u.set_samp_rate(options.samp_rate)

# Set receive daughterboard gain

if options.gain is None:

g = self._u.get_gain_range()

options.gain = float(g.start()+g.stop())/2

print "Using mid-point gain of", options.gain, "(", g.start(), "-", g.stop(), ")"

self._u.set_gain(options.gain)
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# Set frequency (tune request takes lo_offset)

if(options.lo_offset is not None):

treq = uhd.tune_request(options.freq, options.lo_offset)

else:

treq = uhd.tune_request(options.freq)

tr = self._u.set_center_freq(treq)

if tr == None:

sys.stderr.write(’Failed to set center frequency\n’)

raise SystemExit, 1

# Create head block if needed and wire it up

if options.nsamples is None:

self.connect(self._u, self._sink)

else:

if options.output_shorts:

self._head = gr.head(gr.sizeof_short*2, int(options.nsamples))

else:

self._head = gr.head(gr.sizeof_gr_complex, int(options.nsamples))

self.connect(self._u, self._head, self._sink)

input_rate = self._u.get_samp_rate()

if options.verbose:

try:

info = self._u.get_usrp_info()

mboard_id = info.get("mboard_id").split(" ")[0]

if info.get("mboard_serial") == "":

mboard_serial = "no serial"

else:

mboard_serial = info.get("mboard_serial")

rx_id = info.get("rx_id").split(" ")[0]

if info.get("rx_serial") == "":

rx_serial = "no serial"

else:

rx_serial = info.get("rx_serial")

rx_antenna = info.get("rx_antenna")

rx_subdev_spec = info.get("rx_subdev_spec")

print "Motherboard: %s (%s)" % (mboard_id, mboard_serial) \

print "Daughterboard: %s (%s, %s, %s)" \

% (rx_id, rx_serial, rx_antenna, rx_subdev_spec)
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except:

print "Args: ", options.args

print "Rx gain:", options.gain

print "Rx baseband frequency:", n2s(tr.actual_rf_freq)

print "Rx DDC frequency:", n2s(tr.actual_dsp_freq)

print "Rx Sample Rate:", n2s(input_rate)

if options.nsamples is None:

print "Receiving samples until Ctrl-C"

else:

print "Receving", n2s(options.nsamples), "samples"

if options.output_shorts:

print "Writing 16-bit complex shorts"

else:

print "Writing 32-bit complex floats"

print "Output filename:", filename

# Direct asynchronous notifications to callback function

if options.show_async_msg:

self.async_msgq = gr.msg_queue(0)

self.async_src = uhd.amsg_source("", self.async_msgq)

self.async_rcv = gru.msgq_runner(self.async_msgq, self.async_callback)

def async_callback(self, msg):

md = self.async_src.msg_to_async_metadata_t(msg)

print "Channel: %i Time: %f Event: %i" \

% (md.channel, md.time_spec.get_real_secs(), md.event_code)

def get_options():

usage="%prog: [options] output_filename"

parser = OptionParser(option_class=eng_option, usage=usage)

parser.add_option("-a", "--args", type="string", default="",

help="UHD device address args , [default=%default]")

parser.add_option("", "--spec", type="string", default=None,

help="Subdevice of UHD device where appropriate")

parser.add_option("-A", "--antenna", type="string", default=None,

help="select Rx Antenna where appropriate")

parser.add_option("", "--samp-rate", type="eng_float", default=1e6,

help="set sample rate (bandwidth) [default=%default]")

parser.add_option("-f", "--freq", type="eng_float", default=None,

help="set frequency to FREQ", metavar="FREQ")

parser.add_option("-g", "--gain", type="eng_float", default=None,

help="set gain in dB (default is midpoint)")

parser.add_option( "-s","--output-shorts", action="store_true", default=False,

help="output interleaved shorts instead of complex floats")
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parser.add_option("-N", "--nsamples", type="eng_float", default=None,

help="number of samples to collect [default=+inf]")

parser.add_option("-v", "--verbose", action="store_true", default=False,

help="verbose output")

parser.add_option("", "--lo-offset", type="eng_float", default=None,

help="set daughterboard LO offset to OFFSET [default=hw default]")

parser.add_option("", "--wire-format", type="string", default="sc16",

help="set wire format from USRP [default=%default")

parser.add_option("", "--stream-args", type="string", default="",

help="set stream arguments [default=%default]")

parser.add_option("", "--show-async-msg", action="store_true", default=False,

help="Show asynchronous message notifications from UHD [default=%default]")

(options, args) = parser.parse_args ()

if len(args) != 1:

parser.print_help()

raise SystemExit, 1

if options.freq is None:

parser.print_help()

sys.stderr.write(’You must specify the frequency with -f FREQ\n’);

raise SystemExit, 1

return (options, args[0])

if __name__ == ’__main__’:

(options, filename) = get_options()

tb = rx_cfile_block(options, filename)

try:

tb.run()

except KeyboardInterrupt:

pass

D.2 Other Code

Due to various interdependencies amongst many separate Python programs and MAT-
LAB functions, space limitations have precluded their addition within this document itself.
The remainder of the software code used for implementing HSMM chains with USRPs and
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conducting the Bayesian HSMM inference algorithm is made publicly available at the fol-
lowing website:

http://www.ece.lsu.edu/swei/Documents/publications/thesis/CarrollThesis.html

D.2.1 HSMM Generation Using USRPs

The following outline shows the folder hierarchy containing the Python programs for im-
plementing the USRP transmission environments used within this thesis. A short functional
description accompanies each file or folder name as well.

• /USRP Semi-Markov Implementation/

– /OFDM uhd/

∗ ofdm hsmm tx pktsize.py: implements an OFDM-transmitting USRP ac-
cording to a two-state ON-OFF semi-Markov chain (can be used to generate
interference to the coordinated scenarios)

∗ two usrp mixed hsmm tx pkts.py: implements a 3-state semi-Markov chain
in which one OFDM transmitter and one non-OFDM transmitter coordinate
their activity to prevent simultaneous transmissions

∗ two usrp ofdm hsmm tx pkts.py: implements a 3-state semi-Markov chain in
which two OFDM transmitters coordinate their activity to prevent simulta-
neous transmissions

∗ ofdm transmit path.py & ofdm transmit path2.py: defines the transmission
path needed to create one OFDM transmitter as needed to implement the
semi-Markov chains

∗ uhd ofdm interface.py & uhd ofdm interface2.py: creates the Python flow
graph object needed to instantiate the OFDM transmitters

∗ regular transmit path.py: defines the transmission path needed to create one
non-OFDM transmitter as needed to implement the semi-Markov chains

∗ uhd reg interface.py: creates the Python flow graph object needed to instan-
tiate the non-OFDM transmitter

– /regular uhd/

∗ hsmm tx pktsize: implements an OFDM transmitting USRP according to a
two-state ON-OFF semi-Markov chain (can be used to generate interference
to the coordinated scenarios)

∗ transmit path.py: defines the transmission path needed to create one non-
OFDM transmitter as needed to implement the semi-Markov chain

∗ uhd interface.py: creates the Python flow graph object needed to instantiate
the non-OFDM transmitter
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D.2.2 Bayesian HDP-HSMM Algorithm

The following outline shows the folder hierarchy containing the MATLAB files used to
perform the Bayesian HDP-HSMM algorithm as used in the thesis. Many of the main class
definition files used for implementing the algorithm can be found in their original form from
Matthew Johnson’s website as denoted below1:

https://github.com/mattjj/matlab-hsmm

• /commented-hsmm-algorithm/

– /+durations/

∗ poisson.m: class definition to draw from, resample, & calculate likelihood
values for Poisson distributions

– /+observations/

∗ gaussian.m: class definition to draw from, resample, & calculate likelihood
values for multivariate Gaussian distributions

– /other m files/

∗ hsmm plot.m: plot the HSMM labeled state sequence along with the magni-
tude of each complex sample within an input USRP trace

∗ identify idle state.m: identify the idle state

∗ new state labeling.m: relabel the HSMM state sequence after certain states
are marked for removal

∗ remove states: remove short transient states from the HSMM state sequence
based on an lower bound on the Poisson mean parameter

∗ reshape trans matrix.m & reshape trans matrix2.m: reshape the transition
matrix to reflect only those states not marked for deletion

∗ runlength.m: used to recompute HSMM state durations in the learned state
sequence after doing any state sequence modification

∗ stationary dist.m: calculate the stationary distribution for an input transition
matrix

∗ transition count.m: count the number of one-step state transitions from an
input HSMM state sequence

∗ trunc resample.m: used to calculate likelihood functions in the short state
removal process

– /print/

∗ initial draw printout.m: print out results of the first draw from the initial
prior distributions to an output text file

1Note that Matthew Johnson, the coauthor of [13] and [14], has released these files into the public domain
on the corresponding website.
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∗ posterior header printout.m: print out preliminary information about the al-
gorithm’s initial parameters (1st stage) to an output text file

∗ reduced header printout.m: print out preliminary information about the al-
gorithm’s initial parameters (2nd stage) to an output text file

∗ reduced states printout.m: print out the learned parameters for the states
occurring in the labeled HSMM state sequence after the second round of
iterations (2nd stage, after short state removal)

∗ reduced states printout2.m: print out the learned parameters for the states
occurring in the labeled HSMM state sequence after the second round of
iterations and short-state removal

∗ states printout.m: print out the learned parameters for the states occurring
in the labeled HSMM state sequence

– /+util/

∗ logsumexp.m: used as an aid in speeding up likelihood calculations

∗ plot gaussian 2D.m: plots how the scatter of the data points in relation to
the learned covariances in each state

∗ print dot.m: prints a dot to MATLAB command window at the conclusion
of a single iteration

∗ sample discrete.m: used to sample from discrete distribution

– hsmm first stage inference.m: script file used to perform the initial stage of iter-
ations for the HDP-HSMM algorithm

– reduced model inference.m: script file used to perform the second stage of itera-
tions for the HDP-HSMM algorithm

– hsmm.m: class definition used to create an hsmm object that serves as the main
structure that holds all the relevant information concerning the algorithm’s results

– states.m: class definition used to perform state labeling and backward message
passing

– transitions.m: class definition used to generate and resample the state transition
matrices

– initial state.m: class definition used to generate and resample the initial state
distributions

– read complex binary.m: imports binary file with USRP trace measurements into
a MATLAB compatible format

Figure D.1 provides a graphic description of sequential order in which significant steps
of the HSMM algorithm are performed, along with the relevant MATLAB functions, class
definition, and methods necessary in each step. The items aside the initialization step state
what variables or parameters need to be specified to run the algorithm as needed in the
hsmm first stage inference.m and reduced model inference.m script files.
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Figure D.1: HSMM Algorithm Flow Diagram
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Appendix E

Detailed Experimental Results from
Chapters 4 and 5

This appendix provides a more in-depth summary of the learned HSMM parameters
corresponding to the experiments within Chapters 4 and 5.

E.1 Chapter 4 Detailed Results

E.1.1 Two Coordinated OFDM Users

Initial Hyperparameters

• Nmax = 8

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)

• States 2-8: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

Resulting Model States
State 1 (Idle State)
Poisson Rate λ1 = 98.059738
Multivariate Gaussian Mean Vector −→µ1 = [−0.000645, 0.000551]
Multivariate Gaussian Covariance Matrix Σ1:
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Σ1 =

[
0.000172 −0.000005

−0.000005 0.000167

]

State 2
Poisson Rate λ2 = 125.038564
Multivariate Gaussian Mean Vector −→µ2 = [0.000074, 0.000925]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.005184 0.000054

0.000054 0.003902

]

State 3
Poisson Rate λ3 = 141.050548
Multivariate Gaussian Mean Vector −→µ3 = [−0.008029, 0.003744]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
0.052985 −0.000937

−0.000937 0.041330

]

State 5
Poisson Rate λ5 = 86.090321
Multivariate Gaussian Mean Vector −→µ5 = [−0.001876, 0.003308]
Multivariate Gaussian Covariance Matrix Σ5:

Σ5 =

[
0.013854 0.000074

0.000074 0.009522

]

Initial State Distribution π = [0.4879, 0.0303, 0.2888, 0.1930]

State Transition Matrix A:

A =


1 2 3 5

1 0.000000 0.610113 0.378314 0.011573

2 0.901059 0.000000 0.095198 0.003742

3 0.998246 0.000217 0.000000 0.001537

5 0.997800 0.001911 0.000289 0.000000



E.1.2 Two Coordinated OFDM Users with OFDM Interference

Initial Hyperparameters
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• Nmax = 6

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)

• States 2-6: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

Resulting Model States
State 1
Poisson Rate λ1 = 296.183757
Multivariate Gaussian Mean Vector −→µ1 = [−0.002287, 0.002959]
Multivariate Gaussian Covariance Matrix Σ1:

Σ1 =

[
0.024771 −0.000058

−0.000058 0.018549

]

State 2 (Idle State)
Poisson Rate λ2 = 191.789526
Multivariate Gaussian Mean Vector −→µ2 = [−0.000693, 0.000517]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.000177 0.000000

0.000000 0.000156

]

State 3
Poisson Rate λ3 = 115.911212
Multivariate Gaussian Mean Vector −→µ3 = [0.000638, 0.005621]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
0.063751 0.001897

0.001897 0.047895

]

State 4
Poisson Rate λ4 = 153.371947
Multivariate Gaussian Mean Vector −→µ4 = [0.005114;−0.001122]
Multivariate Gaussian Covariance Matrix Σ4:
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Σ4 =

[
0.086058 −0.002595

−0.002595 0.082201

]

Initial State Distribution π = [0.2803, 0.0038, 0.2660, 0.4498]

State Transition Matrix A:

A =


1 2 3 4

1 0.000000 0.377650 0.100816 0.521534

2 0.036572 0.000000 0.150152 0.813277

3 0.224202 0.000028 0.000000 0.775770

4 0.610809 0.043805 0.345386 0.000000



E.1.3 Two Coordinated OFDM Users with Low-Power OFDM In-
terference

Initial Hyperparameters

• Nmax = 5

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)

• States 2-5: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

Resulting Model States
State 1
Poisson Rate λ1 = 296.183757
Multivariate Gaussian Mean Vector −→µ1 = [−0.002287, 0.002959]
Multivariate Gaussian Covariance Matrix Σ1:
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Σ1 =

[
0.024771 −0.000058

−0.000058 0.018549

]

State 2 (Idle State)
Poisson Rate λ2 = 191.789526
Multivariate Gaussian Mean Vector −→µ2 = [−0.000693, 0.000517]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.000177 0.000000

0.000000 0.000156

]

State 3
Poisson Rate λ3 = 115.911212
Multivariate Gaussian Mean Vector −→µ3 = [0.000638, 0.005621]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
0.063751 0.001897

0.001897 0.047895

]

Initial State Distribution π = [0.1158, 0.6661, 0.2181]

State Transition Matrix A:

A =


1 2 3

1 0 0.7734 0.2266

2 0.7774 0 0.2226

3 0.1352 0.8648 0



E.1.4 Two Coordinated OFDM Users with QPSK Interference

Initial Hyperparameters

• Nmax = 8

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)

• States 2-8: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)
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• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

Resulting Model States
State 1
Poisson Rate λ1 = 23.346766
Multivariate Gaussian Mean Vector −→µ1 = [−0.028191,−0.030406]
Multivariate Gaussian Covariance Matrix Σ1:

Σ1 =

[
0.014232 0.002428

0.002428 0.018758

]

State 2
Poisson Rate λ2 = 96.327425
Multivariate Gaussian Mean Vector −→µ2 = [−0.005928,−0.004105]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.066769 −0.001658

−0.001658 0.137198

]

State 3
Poisson Rate λ3 = 98.187928
Multivariate Gaussian Mean Vector −→µ3 = [−0.008969, 0.010114]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =
[
0.037303 0.0009670.000967 0.060702

]
State 5 (Idle State)

Poisson Rate λ5 = 132.951206
Multivariate Gaussian Mean Vector −→µ5 = [−0.000152, 0.000604]
Multivariate Gaussian Covariance Matrix Σ5:

Σ5 =

[
0.000097 0.000002

0.000002 0.000103

]

State 6
Poisson Rate λ6 = 132.164126
Multivariate Gaussian Mean Vector −→µ6 = [0.003819, 0.001659]
Multivariate Gaussian Covariance Matrix Σ6:
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Σ6 =

[
0.004734 0.000088

0.000088 0.008005

]

State 7
Poisson Rate λ7 = 95.707505
Multivariate Gaussian Mean Vector −→µ7 = [0.001230,−0.003616]
Multivariate Gaussian Covariance Matrix Σ7:

Σ7 =

[
0.035072 0.003015

0.003015 0.070294

]

Initial State Distribution π = [0.0445, 0.1714, 0.1515, 0.0967, 0.4319, 0.1040]

State Transition Matrix A:

A =



1 2 3 5 6 7

1 0.000000 0.020870 0.185350 0.593991 0.199627 0.000162

2 0.159109 0.000000 0.049473 0.452194 0.166289 0.172935

3 0.000064 0.023298 0.000000 0.165509 0.023859 0.787270

4 0.010114 0.505946 0.206098 0.000000 0.078658 0.199184

5 0.011801 0.011199 0.001997 0.973571 0.000000 0.001432

6 0.138084 0.001772 0.713293 0.124696 0.022155 0.000000



E.1.5 Two Coordinated OFDM Users with GMSK Interference

Initial Hyperparameters

• Nmax = 8

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5, ν = 3

)
• States 2-8: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW

(−→µ0 =
−→
0 ,Λ = I, κ = 8, ν = 3

)
• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

Resulting Model States
State 1
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Poisson Rate λ1 = 131.650711
Multivariate Gaussian Mean Vector −→µ1 = [0.017916, 0.003861]
Multivariate Gaussian Covariance Matrix Σ1:

Σ1 =

[
0.282688 −0.003165

−0.003165 0.274904

]

State 2 (Idle State)
Poisson Rate λ2 = 378.450516
Multivariate Gaussian Mean Vector −→µ2 = [0.000154,−0.000019]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.000158 0.000001

0.000001 0.000156

]

State 3
Poisson Rate λ3 = 254.233984
Multivariate Gaussian Mean Vector −→µ3 = [0.000173, 0.000947]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
0.006451 0.000204

0.000204 0.006147

]

Initial State Distribution π = [0.2048, 0.6691, 0.1261]

State Transition Matrix A:

A =


1 2 3

1 0.000000 0.552871 0.447129

2 0.883738 0.000000 0.116262

3 0.734436 0.265564 0.000000



E.1.6 Two Coordinated OFDM Users with Low-Power GMSK In-
terference

Initial Hyperparameters

• Nmax = 6
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• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3)

• States 2-6: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW(−→µ0 =
−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations

Resulting Model States
State 1
Poisson Rate λ1 = 65.255393
Multivariate Gaussian Mean Vector −→µ1 = [0.024193,−0.032945]
Multivariate Gaussian Covariance Matrix Σ1:

Σ1 =

[
0.166973 0.015821

0.015821 0.129211

]

State 2
Poisson Rate λ2 = 130.422329
Multivariate Gaussian Mean Vector −→µ2 = [−0.007762, 0.002981]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.034896 0.000554

0.000554 0.022773

]

State 3 (Idle State)
Poisson Rate λ3 = 149.927048
Multivariate Gaussian Mean Vector −→µ3 = [0.000022,−0.000235]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
0.000459 0.000006

0.000006 0.000346

]

State 4
Poisson Rate λ4 = 41.915780
Multivariate Gaussian Mean Vector −→µ4 = [−0.007581,−0.011208]
Multivariate Gaussian Covariance Matrix Σ4:
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Σ4 =

[
0.035247 −0.001818

−0.001818 0.022169

]

State 5
Poisson Rate λ5 = 107.176962
Multivariate Gaussian Mean Vector −→µ5 = [0.024286, 0.008171]
Multivariate Gaussian Covariance Matrix Σ5:

Σ5 =

[
0.166768 −0.002750

−0.002750 0.118607

]

Initial State Distribution π = [0.4626, 0.0546, 0.2813, 0.0859, 0.1155]

State Transition Matrix A:

A =



1 2 3 4 5

1 0.000000 0.007514 0.147488 0.778349 0.066649

2 0.000001 0.000000 0.262107 0.698158 0.039734

3 0.001195 0.000002 0.000000 0.201300 0.797503

4 0.004149 0.577418 0.142121 0.000000 0.276312

5 0.506790 0.064346 0.268037 0.160827 0.000000



E.1.7 Two Coordinated OFDM Users with GMSK Interference
(2nd Case)

Initial Hyperparameters

• Nmax = 8

• State 1: λ ∼ Gamma(k = 10, θ = 5); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 5,

ν = 3
)

• States 2-8: λi ∼ Gamma(k = 20, θ = 5); −→µi ,Σi ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 8,

ν = 3
)

• α = γ = ρ = 3

• N1 = 50 iterations

• N2 = 50 iterations
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Resulting Model States
State 2
Poisson Rate λ2 = 138.4176
Multivariate Gaussian Mean Vector −→µ2 = [−0.0082, 0.0054]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.0739 −0.0020

−0.0020 0.0710

]

State 3
Poisson Rate λ3 = 162.2581
Multivariate Gaussian Mean Vector −→µ3 = [−2.4264× 10−4, 2.4709× 10−4]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
1.1029× 10−4 1.0869× 10−7

1.0869× 10−7 1.0946× 10−4

]

State 4
Poisson Rate λ4 = 129.6950
Multivariate Gaussian Mean Vector −→µ4 = [−0.0013, 0.0037]
Multivariate Gaussian Covariance Matrix Σ4:

Σ4 =

[
0.0236 −0.0011

−0.0011 0.0230

]

State 5
Poisson Rate λ5 = 127.7830
Multivariate Gaussian Mean Vector −→µ5 = [−0.0014, 2.7778× 10−4]
Multivariate Gaussian Covariance Matrix Σ5:

Σ5 =

[
0.0027 −2.9807× 10−5

−2.9807× 10−5 0.0026

]

Initial State Distribution π = [0.0237, 0.7027, 0.1483, 0.1253]

State Transition Matrix A:
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A =


2 3 4 5

2 0.000000 0.578705 0.002443 0.418852

3 0.667084 0.000000 0.000011 0.332905

4 0.531989 0.255759 0.000000 0.212252

5 0.627741 0.361974 0.010285 0.000000



E.2 Chapter 5 Detailed Results

E.2.1 WLAN Experiment 1

Initial Hyperparameters

• Nmax = 3

• State 1: λ ∼ Gamma(k = 150, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• State 2: λ ∼ Gamma(k = 25, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 3: λ ∼ Gamma(k = 30, θ = 7); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• α = γ = ρ = 3

• Niter = 200 iterations

Resulting Model States
State 1
Poisson Rate λ1 = 108.7185
Multivariate Gaussian Mean Vector −→µ1 = [0.0013,−0.0048]
Multivariate Gaussian Covariance Matrix Σ1:

Σ1 =

[
0.0285 −8.2705× 10−4

−8.2705× 10−4 0.0413

]

State 2
Poisson Rate λ2 = 1.4065
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Multivariate Gaussian Mean Vector −→µ2 = [−8.6052× 10−4, 0.0042]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.0477 0.0020

0.0020 0.0841

]

State 3 (Idle State)
Poisson Rate λ3 = 146.1474
Multivariate Gaussian Mean Vector −→µ3 = [−6.4365× 10−5, 2.5295× 10−5]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
3.4359× 10−5 −2.4728× 10−7

−2.4728× 10−7 3.4509× 10−5

]

Initial State Distribution π = [0.4357; 0.3754; 0.1888]

State Transition Matrix A:

A =


1 2 3

1 0.0000 0.9995 0.0005

2 0.1112 0.0000 0.8888

3 0.0000 1.0000 0.0000



E.2.2 WLAN Experiment 2

Initial Hyperparameters

• Nmax = 3

• State 1: λ ∼ Gamma(k = 150, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• State 2: λ ∼ Gamma(k = 25, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 3: λ ∼ Gamma(k = 30, θ = 7); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• α = γ = ρ = 3
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• Niter = 200 iterations

Resulting Model States
State 1
Poisson Rate λ1 = 108.7185
Multivariate Gaussian Mean Vector −→µ1 = [−0.0051, 0.0029]
Multivariate Gaussian Covariance Matrix Σ1:

Σ1 =

[
0.0281 −9.5957× 10−4

−9.5957× 10−4 0.0414

]

State 2
Poisson Rate λ2 = 1.2097
Multivariate Gaussian Mean Vector −→µ2 = [0.0045,−0.0013]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.0553 0.0030

0.0038 0.0884

]

State 3 (Idle State)
Poisson Rate λ3 = 146.1633
Multivariate Gaussian Mean Vector −→µ3 = [−2.1540× 10−6, 7.6220× 10−5]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
3.4284× 10−5 1.2194× 10−7

1.2194× 10−7 3.4908× 10−5

]

Initial State Distribution π = [0.0691; 0.0871; 0.8438]

State Transition Matrix A:

A =


1 2 3

1 0.0000 0.8778 0.1262

2 0.1314 0.0000 0.8686

3 0.0280 0.9720 0.0000



E.2.3 WLAN Experiment 3

Initial Hyperparameters
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• Nmax = 4

• State 1: λ ∼ Gamma(k = 150, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• State 2: λ ∼ Gamma(k = 25, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 3: λ ∼ Gamma(k = 30, θ = 7); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 4: λ ∼ Gamma(k = 100, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• α = γ = ρ = 3

• Niter = 250 iterations

Resulting Model States
State 1
Poisson Rate λ1 = 203.9010
Multivariate Gaussian Mean Vector −→µ1 = [−0.0060, 0.0053]
Multivariate Gaussian Covariance Matrix Σ1:

Σ1 =

[
0.0311 −5.3603× 10−4

−5.3603× 10−4 0.0446

]

State 2 (Idle State)
Poisson Rate λ2 = 87.4118
Multivariate Gaussian Mean Vector −→µ2 = [−5.6561× 10−5, 5.6610× 10−5]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
3.4921× 10−5 −1.8496× 10−8

−1.8496× 10−8 3.5102× 10−5

]

State 4
Poisson Rate λ4 = 146.9792
Multivariate Gaussian Mean Vector −→µ4 = [8.1794× 10−4,−0.0082]
Multivariate Gaussian Covariance Matrix Σ4:
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Σ4 =

[
0.0500 7.6600× 10−4

7.6600× 10−4 0.0792

]

Initial State Distribution π = [0.0918; 0.7296; 0.1786]

State Transition Matrix A:

A =


1 2 4

1 0.0000 0.1620 0.8380

2 0.0176 0.0000 0.9830

3 0.0213 0.9871 0.0000



E.2.4 WLAN Experiment 4

Initial Hyperparameters

• Nmax = 5

• State 1: λ ∼ Gamma(k = 150, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• State 2: λ ∼ Gamma(k = 25, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 3: λ ∼ Gamma(k = 30, θ = 7); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 4: λ ∼ Gamma(k = 40, θ = 8); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 3000,

ν = 302
)

• State 5: λ ∼ Gamma(k = 100, θ = 2); −→µ ,Σ ∼ NIW
(−→µ0 =

−→
0 ,Λ = I, κ = 300,

ν = 102
)

• α = γ = ρ = 3

• Niter = 250 iterations
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Resulting Model States
State 2
Poisson Rate λ2 = 1.4991
Multivariate Gaussian Mean Vector −→µ2 = [0.0036, 0.0061]
Multivariate Gaussian Covariance Matrix Σ2:

Σ2 =

[
0.0355 −0.0023

−0.0023 0.0441

]

State 3 (Idle State)
Poisson Rate λ3 = 142.4575
Multivariate Gaussian Mean Vector −→µ3 = [−9.6582× 10−5, 1.1266× 10−4]
Multivariate Gaussian Covariance Matrix Σ3:

Σ3 =

[
3.4805× 10−5 −1.9054× 10−7

−1.9054× 10−7 3.5381× 10−5

]

State 4
Poisson Rate λ4 = 114.2218
Multivariate Gaussian Mean Vector −→µ4 = [7.3428× 10−4, 7.6264× 10−4]
Multivariate Gaussian Covariance Matrix Σ4:

Σ4 =

[
0.0033 −1.1203× 10−4

−1.1203× 10−4 0.0030

]

State 5
Poisson Rate λ5 = 120.0889
Multivariate Gaussian Mean Vector −→µ5 = [−0.0014,−0.0149]
Multivariate Gaussian Covariance Matrix Σ5:

Σ5 =

[
0.0275 −8.5148× 10−5

−8.5148× 10−5 0.0371

]

Initial State Distribution π = [0.0476; 0.1110; 0.0531; 0.7883]

State Transition Matrix A:
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A =


2 3 4 5

2 0.0000 0.9012 0.0048 0.0939

3 0.9996 0.0000 0.0002 0.0002

4 0.9796 0.0204 0.0000 0.0000

5 0.9898 0.0102 0.0000 0.0000
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